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S1 Spectral ratio estimation1

The following algorithm is used to estimate the ratio of spectral densities for a given smooth-2

ness parameter δ. A complete description of the approach is given in Section 2.4. First,3

set the tolerance level, εtol that indicates when to stop the algorithm. The parameters θ0,k4

and θ1,k represent the logarithm of the spectral density for present and future, respectively,5

and I0,k and I1,k represent the empirical periodogram at frequency ωk. Then, initialize θ
(0)
0,k6

and θ
(0)
1,k and set i = 1. Repeat the following steps until convergence.7

1. Set m
(i)
0,k = θ

(i)
0,k + I0,kexp(−θ(i)

0,k)− 1 and m
(i)
1,k = θ

(i)
1,k + I1,kexp(−θ(i)

1,k)− 1.8

2. Set M
∗(i)
1,k = T−1/2

∑T/2
j=−T/2+1 n1(m1,j − θ0,j)exp(−2πijk/T ).9

3. Set Λ
(i)
k = (n1 + δk2`)−1M

∗(i)
1,k .10

4. Set λ
(i)
k = T−1/2

∑T/2
j=−T/2+1 Λ

(i)
j exp(2πijk/T ).11

5. Set θ
(i+1)
0,k = (n1m

(i)
1,k + n0m

(i)
0,k − n1λ

(i)
k )/(n0 + n1).12

6. Set θ
(i+1)
1,k = λ

(i)
k + θ

(i)
0,k.13

7. Stop if
∑T/2

k=−T/2+1

(
θ

(i)
1,k − θ

(i−1)
1,k

)2

< εtol &
∑T/2

k=−T/2+1

(
θ

(i)
0,k − θ

(i−1)
0,k

)2

< εtol, other-14

wise set i = i+ 1 and return to Step 1.15

Matlab code to estimate the ratio of two spectral densities is available upon request.16

S2 Modulation constant estimation17

Here we illustrate how we compute the modulation constants for the deseasonalized ob-18

servations, {Z̃0,t}. Let It(ωk) represent an empirical periodogram of {Z̃0,t, . . . , Z̃0,t+44} for19

frequency ωk = k/45. The choice of 45 days windows is in order to accommodate the20

relatively smooth transition in variability across seasons, but windows of a different length21

could be chosen. Then, I t(ωk) = 1
45

∑t
m=t−44 It(ωk) is the average of those periodogram22

estimates, and provides an estimate of the spectral density at frequency ωk for time t. Now,23

we also average the estimate across years. For notational convenience, let Id,y(ωk) represent24

I t(ωk), where d refers to the day of the year (d = 1, . . . , 365 in our case, as our particular25
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climate model does not have leap years1) and y refers to the year (y = 1, . . . , ny). Then,26

Id(ωk) =
∑ny

y=1 Id,y(ωk), and finally we sum up the variability across all frequencies and27

take the square root to produce the modulation constant for day d,28

Dd =

√∑
k

Id(ωk)

exp

(
1

365

∑
d

log

(√∑
k

Id(ωk)

)) ,
so that

∑
d log(Dd) = 0.29

Figures S1 and S2 show the log-periodograms for the original deseasonalized time se-30

ries and the deseasonalized and demodulated time series. Matlab code to estimate the31

demodulation constants is available upon request.32

S3 Numerical study33

In this section we present results from a numerical study to illustrate the validity of our34

approach. Define35

Z1,t =
1

T 1/2

∑
k

e−ıωkt
√
ρ(ωk)

T−1∑
s=0

Z0,se
ıωks.36

Then37

Cov(Z1,t1 , Z1,t0) =
1

T

T−1∑
s,s′=0

γ0(s− s′)
∑
k

eıωk(s−t1)ρ(ωk)
∑
l

eıωl(s−t0)ρ(ωl).38

We consider the simple case of an AR(1) model:39

Z0,t = αZ0Z0,t−1 + εZ,t, εZ,t
iid∼ N(0, σ2

Z0
),

which has the known spectral density40

f0(ω) =
σ2
Z0

|1− αZ0 exp(−2πıω)|2
,

1Note that when demodulating the observations (which do contain leap years), we first compute Id,y(ωk)

for the length of the time series, then remove the Id,y(ωk) corresponding to leap days before calculating

Dd. Then, after Dd is calculated it is estimated for the corresponding leap days using the average of the

day before and after.
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and for simplicity, assume σ2
Z0

= 1. For this example, assume the base and scenario period41

are from an AR(1) model and αZ0 = 0.9 and αZ1 = 0.99. Figure S3 shows the theoretical42

covariance matrices for both values of the autoregressive parameter and Figure S4 shows43

the theoretical semivariograms (e.g., (1/2)E[(Zt − Z0)2]) when T = 1500. We modify44

the DFT of the baseline period covariance based on the known changes to the spectral45

density. Let C0(h) = E [Z0,t+hZ0,t] represent the covariance of the baseline period and46

let C1(h) = E [Z1,t+hZ1,t] represent the covariance function of the scenario period. The47

matrices C0 and C1 represent the covariance matrices for the base and scenario periods,48

respectively. Where Φ represents the DFT matrix and Frat represents the diagonal matrix49

that has the square root of the spectral ratios at the Fourier frequencies along the diagonal,50

we compute51

C∗1 = Φ−1FratΦC0ΦFratΦ
−1

which is the covariance matrix for the simulated process. Figure S3 shows the covariance52

matrix derived from modifying the DFT of the original covariance matrix. The resulting53

covariance matrix is nonstationary, with the most significant deviation from the target54

covariance matrix being near the edges. This is also evident when looking at the semivar-55

iogram with origin near the boundary (see Figure S4). When considering the variogram56

between locations not too near either end of the series, the approximation to the desired57

variogram is excellent. Thus, for example, Figure S4 shows that (1/2)E[(Zt+100 − Z100)2]58

under our approach is very close to what it should be for 0 < t < 250. Thus, at least in59

this case, we can address inaccuracies in the implied covariance structure by discarding a60

modest number of observations at the beginning and end of the series.61
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Figure S1: Top: Log of averaged periodograms for the Southern Ocean location, by season,

for the reanalysis data (left), base period (middle), and scenario period (right) respectively.

Note strongest variability in winter, weakest in summer. The model shows a decrease in

the differences in within-season variability across seasons from the base to scenario periods.

Middle: identical to top row but now for demodulated time series. Seasonal difference in

variability are effectively removed, suggesting we can treat the time series as stationary

in time. Bottom: Modulation constants used for the reanalysis data (left), base period

(middle) and scenario period (right).
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Figure S2: Top: Log of averaged periodograms for the Gulf of Guinea location, by season,

for the reanalysis data (left), base period (middle), and scenario period (right) respectively.

Middle: Identical to top but now for the demodulated time series. Seasonal differences in

variability are effectively removed, suggesting we can treat the time series as stationary in

time. Bottom: Modulation constants used for the reanalysis data (left), model baseline

period (middle) and model scenario period (right).
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Figure S3: Left: True covariance matrix for an AR(1) process with α = 0.9. Middle: True

covariance matrix for an AR(1) process with α = 0.99. Right: Covariance matrix created

by modifying DFT of the process in the left panel. The resulting covariance matrix on the

right is nonstationary, with the behavior of the process near the edges exhibiting different

characteristics than near the center of the time series.
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Figure S4: Theoretical semivariogram for the AR(1) process with α = 0.9 (solid blue

line) and α = 0.99 (solid red line), modified semivariogram with origin at Z0 (red dashed

line), and modified semivariogram with origin at Z100 (red dotted line), as described in

Section S3. The modified semivariogram with origin at Z100 tracks the true semivariogram

nearly exactly, suggesting that the first and last portions of the simulated time series should

be discarded.
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