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S1 Spectral ratio estimation

The following algorithm is used to estimate the ratio of spectral densities for a given smooth-
ness parameter 0. A complete description of the approach is given in Section 2.4. First,
set the tolerance level, €, that indicates when to stop the algorithm. The parameters 6
and 6, j, represent the logarithm of the spectral density for present and future, respectively,
and Iy and I, , represent the empirical periodogram at frequency wy. Then, initialize 9((]?;

and 9§?,1 and set ¢ = 1. Repeat the following steps until convergence.
1. Set m(()i = 9(()2 + Io,kexp(—ﬁég) — 1 and m% = 9% + Il,kexp(—eg) — 1.

2. Set Mf(kz) =T Zfz/zT/2+1 ni(ma; — 6o;)exp(—2mijk/T).

3. Set AY) = (ny + oK) M.

4. Set \) =172 02 A exp(2mijik/T).

5. Set 9&21) = (mm% + nom(()i}C —nAY)/ (o + na).

6. Set 0V =2 + 0"}

. N2 . N2
7. Stop if ZZLQ_T/Q—H (99@ - 9&31)) < 6ol & ZZZQ_T/Z-H (0(()% - 9((;,1;1)) < €gol, Other-

wise set ¢ =7+ 1 and return to Step 1.

Matlab code to estimate the ratio of two spectral densities is available upon request.

S2 Modulation constant estimation

Here we illustrate how we compute the modulation constants for the deseasonalized ob-
servations, {20,,5}. Let I;(wy) represent an empirical periodogram of {Zo,t, . 207“44} for
frequency wy = k/45. The choice of 45 days windows is in order to accommodate the
relatively smooth transition in variability across seasons, but windows of a different length
could be chosen. Then, I;(wy) = 4 S i L(wy) is the average of those periodogram
estimates, and provides an estimate of the spectral density at frequency wy, for time ¢t. Now,
we also average the estimate across years. For notational convenience, let dey(wk) represent

I,(wy,), where d refers to the day of the year (d = 1,...,365 in our case, as our particular
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climate model does not have leap years') and y refers to the year (y = 1,...,n,). Then,
Tg(wi) = 2211 I4,(wg), and finally we sum up the variability across all frequencies and

take the square root to produce the modulation constant for day d,

so that ), log(Dy) = 0.
Figures S1 and S2 show the log-periodograms for the original deseasonalized time se-
ries and the deseasonalized and demodulated time series. Matlab code to estimate the

demodulation constants is available upon request.

S3 Numerical study

In this section we present results from a numerical study to illustrate the validity of our

approach. Define

1 T-1
Zl,t _ m Z e—lwkt /p(wk) Z Z(),s@lwks.
k s=0

Then

~
_

1
COV(Zl,tla Z17t0) = f

ol = ) 3 () 3 ),
k l

0

We consider the simple case of an AR(1) model:

iid 2
Zo,t = aZOZO,t—l + €z, €24~ N(0> 020)7

which has the known spectral density

2

fo(w) iz

- 11— g, exp(—2mw)|?’

!Note that when demodulating the observations (which do contain leap years), we first compute I, (wy)
for the length of the time series, then remove the I, (wy) corresponding to leap days before calculating
Dg. Then, after Dy is calculated it is estimated for the corresponding leap days using the average of the

day before and after.
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and for simplicity, assume a%o = 1. For this example, assume the base and scenario period
are from an AR(1) model and ayz, = 0.9 and az, = 0.99. Figure S3 shows the theoretical
covariance matrices for both values of the autoregressive parameter and Figure S4 shows
the theoretical semivariograms (e.g., (1/2)E[(Z; — Zy)?]) when T = 1500. We modify
the DFT of the baseline period covariance based on the known changes to the spectral
density. Let Cy(h) = E[Zys+nZo.) represent the covariance of the baseline period and
let Cy(h) = E[Z1+1nZ14] represent the covariance function of the scenario period. The
matrices Cy and C; represent the covariance matrices for the base and scenario periods,
respectively. Where ® represents the DFT matrix and F,.,; represents the diagonal matrix
that has the square root of the spectral ratios at the Fourier frequencies along the diagonal,

we compute

C;=® 'F.,®C,®F,, o'

which is the covariance matrix for the simulated process. Figure S3 shows the covariance
matrix derived from modifying the DFT of the original covariance matrix. The resulting
covariance matrix is nonstationary, with the most significant deviation from the target
covariance matrix being near the edges. This is also evident when looking at the semivar-
iogram with origin near the boundary (see Figure S4). When considering the variogram
between locations not too near either end of the series, the approximation to the desired
variogram is excellent. Thus, for example, Figure S4 shows that (1/2)E[(Ziy100 — Z100)?]
under our approach is very close to what it should be for 0 < ¢t < 250. Thus, at least in
this case, we can address inaccuracies in the implied covariance structure by discarding a

modest number of observations at the beginning and end of the series.
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Figure S1: Top: Log of averaged periodograms for the Southern Ocean location, by season,
for the reanalysis data (left), base period (middle), and scenario period (right) respectively.
Note strongest variability in winter, weakest in summer. The model shows a decrease in
the differences in within-season variability across seasons from the base to scenario periods.
Middle: identical to top row but now for demodulated time series. Seasonal difference in
variability are effectively removed, suggesting we can treat the time series as stationary
in time. Bottom: Modulation constants used for the reanalysis data (left), base period

(middle) and scenario period (right).
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Figure S2: Top: Log of averaged periodograms for the Gulf of Guinea location, by season,
for the reanalysis data (left), base period (middle), and scenario period (right) respectively.
Middle: Identical to top but now for the demodulated time series. Seasonal differences in
variability are effectively removed, suggesting we can treat the time series as stationary in
time. Bottom: Modulation constants used for the reanalysis data (left), model baseline

period (middle) and model scenario period (right).
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Figure S3: Left: True covariance matrix for an AR(1) process with o = 0.9. Middle: True

covariance matrix for an AR(1) process with a = 0.99. Right: Covariance matrix created

by modifying DFT of the process in the left panel. The resulting covariance matrix on the

right is nonstationary, with the behavior of the process near the edges exhibiting different

characteristics than near the center of the time series.

Semivariogram, T = 1500
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Figure S4: Theoretical semivariogram for the AR(1) process with a = 0.9 (solid blue

line) and o = 0.99 (solid red line), modified semivariogram with origin at Z (red dashed

line), and modified semivariogram with origin at Zjpo (red dotted line), as described in

Section S3. The modified semivariogram with origin at Z;q tracks the true semivariogram

nearly exactly, suggesting that the first and last portions of the simulated time series should

be discarded.
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