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Abstract. A growing body of evidence indicates that anthropogenic greenhouse gases are changing Earth’s

climate, and that those changes may involve not only changes in climatic means but also in variability. Climate

models may be informative about these future changes, but their use is complicated by the fact that they do not

capture variability in current climate well. Many methods have therefore been developed to combine models

and data in simulations of future climate, but current methods generally account only for changes in marginal

variation and do not capture projected changes in correlation (spatial, temporal, spatiotemporal). We develop here

a procedure to simulate future daily mean temperature that modifies climate observations based on changes in the

mean and spectral density suggested by climate model output, and illustrate our methodology with projections

from the CCSM3 (Community Climate System 3) climate model. We are able to simulate a future climate with

changing temporal covariance while largely retaining non-Gaussian features of the observations. Our results

suggest that in CCSM3, at most locations and most timescales, variability in daily mean temperature decreases

under anthropogenic warming. The methodology presented here applies only to fully equilibrated future climate

states, but may be extended to simulating transient states as well.

1 Introduction

With mounting evidence indicating that Earth’s climate is

changing (IPCC, 2007, and references therein), it is becom-

ing increasingly important to understand the potential im-

pacts of climate change on society. Impacts assessment re-

quires projections of future climate under increased concen-

trations of greenhouse gases (GHGs). For example, under-

standing climate effects on food supply would require simu-

lations of future temperature and precipitation for use in agri-

cultural yield models. Crop yields, however, are highly non-

linear with temperature and precipitation and therefore are

sensitive not only to climatological means but also to short-

term extremes (e.g., Schlenker and Roberts, 2009; Wheeler

et al., 2000). In this context, climate must be understood as

an underlying, multivariate, spatiotemporal probability dis-

tribution, for which weather is a random realization. Human

societies can be impacted by changes of not only the mean,

but of the entire probability distribution.

Changes in variability in both temperature and precipi-

tation are physically plausible. For precipitation, standard

physics would suggest increases in both spatial and tem-

poral variability, with dry areas drier, wet areas wetter, and

rainfall occurring in more intense events (Held and Soden,

2006). Changes in temperature variability are less robustly

predicted. Some empirical studies suggest that temperature

variability may already be changing in particular contexts,

though some studies argue for increases and others for de-

creases (Karl et al., 1995; Timmermann et al., 1999; Schär

et al., 2004; Hansen et al., 2012; Huntingford et al., 2013).

For instance, in large portions of North America, a weakened

polar jet stream (in part driven by reduced latitudinal tem-

perature gradients) may (Francis and Vavrus, 2012) or may

not (Barnes, 2013; Screen and Simmonds, 2013) lead to pro-

longed weather patterns that shift variation to lower frequen-

cies. Studies of variability changes in climate models remain

limited, and it is not yet clear which if any predictions are
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Figure 1. Comparison of modeled and observed global mean temperatures. (a) CO2 concentrations used in “baseline” and “scenario” runs

with the CCSM3 model. (See Appendix A for description of experiments and observations.) Figures here truncate output after less than

600 years but the scenario run extends for 6000 years. (b) Corresponding annual model GMT (◦C) for the two runs and observed GMT from

the Global Historical Climatological Network. Model output reproduces trends in global temperature well but with a systematic offset from

observations. To better show the similarity in trend we also plot the observational record minus a 2 ◦C offset.

robust across models (see, e.g., Barnes and Polvani, 2013) or

physical parameterizations (see, e.g., Hawkins et al., 2013).

The area remains one of active research.

One complication to analyses of potential future changes

in climate variability is that while the deterministic climate

models used for long-term climate forecasts appear to cap-

ture trends, they do not accurately reproduce observed cur-

rent climate. These models, known as atmosphere–ocean

general circulation models (AOGCMs), are physically based

numerical simulations of transport of energy and moisture in

the atmosphere and ocean, typically with separate submod-

els for the atmosphere, ocean, sea ice, and vegetation. Many

AOGCMs successfully reproduce observed large-scale cir-

culation, atmospheric structure, latitudinal temperature gra-

dients, storm tracks, and quasi-periodic interdecadal phe-

nomena such as the El Niño–Southern Oscillation. When

driven with historical records of CO2 and aerosol emissions

due to human and volcanic activity, they also reproduce

well the observed temperature trend of the last 2 centuries.

Figure 1 demonstrates this ability to capture trends in the

widely used Community Climate System 3 (CCSM3) model

(Collins et al., 2006), which we use in examples throughout

this manuscript. (See Appendix A for description of model

and experimental runs, as well as observational data used in

comparisons.) CCSM3 and other AOGCMs do not, however,

perfectly reproduce either the mean or distribution of current

climate. Model present-day global mean temperature (GMT)

can be offset by several degrees from observations (again,

see Fig. 1) and probability distributions of temperature and

precipitation at individual locations do not match those of

weather observations (Fig. 3, which shows marginal distri-

butions in CCSM3 temperature output and observations for

three representative locations whose time series are given in

Fig. 2; see also Lambert and Boer, 2001, for discussion).

The comparisons above suggest that climate models may

be informative about changes in climate, even while fail-

ing to capture certain current characteristics. This is well-

demonstrated for means (again, see Fig. 1), and the fact

that AOGCMs capture trends in mean climate well suggests

that their physics may be sufficiently realistic to provide a

guide to trends in variability. We therefore seek a method

of producing simulations of future climate that combines

model output with data to incorporate both observational

ground truth and model forecasts of trends. An appropriate

method should simply reproduce current climate when mod-

els suggest no changes. When models do predict changes,

the desired “data-driven simulation” should reproduce model

changes in second-order moments (e.g., covariance) of cli-

mate but retain most non-Gaussian characteristics of data,

rather than of model output, when changes in variability are

relatively small. Our motivation in this work is to develop an

empirically driven approach to simulating future climate that

modifies existing observations in terms of means and second-

order moments (including covariances) based on changes in

model simulations.

Many methods for combining observations with model

output in climate projections have been developed for use

in impacts studies, especially those involving hydrology and

agriculture (see, e.g., Wood et al., 2004; Diaz-Nieto and

Wilby, 2005; Eisner et al., 2012; Hawkins et al., 2013). In

these cases, impacts models typically require inputs of tem-

perature and precipitation at finer spatial resolution than is

provided by AOGCMs, whose typical state-of-the-art resolu-

tion is on the order of 1◦ (111 km or 69 miles). For this rea-

son, approaches for simulating future climate by combining

model output and data are often intertwined with methods for

downscaling to higher spatial resolutions, and are described

in the literature on statistical downscaling1. We provide a

1The other approach to downscaling, dynamic downscaling, in-

volves the running of a regional climate model (RCM) at a higher

spatial resolution over a much smaller spatial domain, where bound-

ary conditions are supplied by an AOGCM.
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Figure 2. (Left) Three locations (individual model pixels) used as examples throughout the manuscript, chosen to represent different combi-

nations of seasonality, variability, and expected future changes: Illinois, mid-continental with a strong seasonal component (green, 38.97◦ N,

90◦W); Gulf of Guinea, near-equatorial with little seasonal cycle (red, 1.86◦ S, 0◦ E); and Southern Ocean, which has strong projected

changes in both mean temperature and in variability (blue, 61.2◦ S, 33.8◦ E). Annual standard deviation of daily temperatures σ and pro-

jected temperature change 1 (scenario–baseline) are Illinois: σ = 10.81, 1= 3.87; Gulf of Guinea: σ = 1.97, 1= 2.43; Southern Ocean:

σ = 4.67, 1= 8.10. (Right) Time series of the 3 years of daily temperature (◦C) from the NCEP-DOE (National Centers for Environmen-

tal Predictions – Department of Energy) Climate Forecast System Reanalysis at those locations. (See Appendix A for a description of the

observational data set.)
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Figure 3. Marginal densities (by season) of daily mean tempera-

ture (◦C) for the pixels in Illinois (top row), the Gulf of Guinea

(middle row), and the Southern Ocean (bottom row) for reanalysis

data (solid blue line), baseline model output (dashed blue line), and

scenario model output (dashed red line). The model output does not

replicate the marginal distributions of the reanalysis observations.

Furthermore, the marginal distributions in the model output change

from the baseline to scenario periods.

brief summary of existing approaches, along with what we

consider to be the primary shortcomings of each approach.

All approaches that combine observations and model out-

put in simulating future climates correct in some way for

model–observation discrepancies. One approach is a simple

“bias correction” in which any offsets between current ob-

served and modeled present-day climate are assumed to be

systematic model errors. Model simulations of future climate

are then “corrected” by adding the present-day bias (deter-

mined by comparing observations to a baseline run). Bias

corrections can be made on annual mean temperatures or,

more commonly, on monthly mean temperatures or annual

harmonics, since models may not perfectly capture observed

seasonal variation. One drawback of this approach is that

all higher-order moments of the marginal and joint proba-

bility distributions (variability, skewness, stationarity, etc.)

are provided by the future model output. As we have seen

in Fig. 3, climate models may not adequately capture higher-

order characteristics in the data.

A variant on this approach, typically termed “bias cor-

rection/spatial disaggregation” (BCSD), attempts to provide

a better approximation of observed climate distributions by

separately bias-correcting the different quantiles of model

output (e.g., Wood et al., 2002, 2004). This approach is also

termed “quantile mapping” and involves computing a trans-

fer function between model simulations of present-day cli-

mate and actual observations based on the ranked model out-

put. The transfer function is then applied to AOGCM projec-

tions of future climate. This approach accommodates errors

in higher-order moments of the model – in the most extreme

case, the procedure results in a full transformation of the

empirical cumulative distribution function (CDF) – but only

corrects the marginal distributions of the model, and takes

no account of differences in the covariance structure of the

model output and the observed climate. Since human soci-

eties are sensitive to climate variation at different timescales

(e.g., to changes in duration of droughts or rainfall that pro-

duces flooding), BCSD is not ideal for estimating the societal

impacts of climate change.

While the previous two approaches are model-based, i.e.,

they quantify present-day model–observation discrepancy

and apply it to future model output, the “change-factor” or

“delta” method (see, e.g., Diaz-Nieto and Wilby, 2005; Eis-

ner et al., 2012, and references therein) is observation-based:

future climate projections are generated by modifying obser-

vations based on present–future differences in AOGCM sim-

ulations. Specifically, the delta method involves quantifying

the difference (e.g., in annual or monthly means) between

model output from a baseline run driven with present-day

or preindustrial GHG concentrations and that from a “sce-

www.adv-stat-clim-meteorol-oceanogr.net/1/1/2015/ Adv. Stat. Clim. Meteorol. Oceanogr., 1, 1–14, 2015
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nario” run under future GHG concentrations2, then adding

this difference onto some observation set. As a result, higher-

order moments (in terms of the marginal and joint PDFs) will

be derived from observations. Hawkins et al. (2013) showed

that delta-method approaches may provide a better fore-

cast of future climate than bias-correction approaches. Delta-

method approaches do not however generally involve repre-

senting changes in variability in future climate regimes. Re-

cent advances have been developed to accommodate chang-

ing marginal variances (see, e.g., Ho et al., 2012; Hawkins

et al., 2013); however, such approaches ignore joint depen-

dence characteristics (e.g., covariances).

In this work, we adopt the observation-based approach of

the delta method (modifying observations based on changes

suggested by model output) but extend the method to account

for possible changes in variability and temporal correlations.

While recent work has extended the delta-method approach

to accommodate some aspects of changing variability (Ho

et al., 2012; Hawkins et al., 2013), these methods do not ac-

count for changes in third-order or higher moments of the

marginal distribution, or in the covariance of the joint dis-

tribution. Changing covariance structures in particular are a

critical component of simulating future climate for impacts

assessment.

A delta- or change-factor approach that involves modify-

ing covariance structures poses substantial challenges. The

approach requires modifying a vector of random variables

with a given joint dependence structure to produce a new

vector of random variables with a different dependence struc-

ture. To achieve this goal, it helps to think about modi-

fying quantities that are independent (or close to indepen-

dent) under both present and future climates. In this regard,

spectral-based approaches provide a natural framework. We

propose an approach that modifies the discrete Fourier trans-

form (DFT) of observations based on an estimated ratio of

spectral densities of model output. Under a large class of sta-

tionary processes, the DFT is a transformation to approxi-

mate independence (Brillinger, 1981). This approach shares

an important quality with the delta method that when the

model suggests no changes (in either first- or second-order

moment characteristics), the simulations equal the observa-

tions.

One caveat is that the procedure is designed to transform

model simulations of an assumed equilibrium climate to an-

other equilibrium climate while, during foreseeable human

timescales, climate will continue to remain in a transient

state. This approach does not directly address the impor-

tant problem of simulating transient climate behavior in the

covariance structure. However, it is likely that the method

would remain an improvement over the delta method even in

predicting future transient climate states, with certain exten-

2Because current climate is transient and changes as a result of

increased GHG emissions are not fully realized yet, preindustrial

GHG forcings may be a reasonable assumption in these problems.

sions related to nonstationary time series. We do not explore

the issue in this paper, but point out a potential approach in

Sect. 4.

In the remainder of the paper, Sect. 2 outlines the method-

ology, explaining how to estimate the ratio of spectral den-

sities and use it to modify observations. We also explain an

approach to account for a limited type of temporal nonsta-

tionarity in the data as brought about by differences in in-

traseasonal variability across seasons. Section 3 applies the

method to generating simulations of daily mean temperature

for a higher-CO2 world, and Sect. 4 discusses results and fu-

ture research needs. We provide supplemental materials that

give further details, a numerical study, and information on

how to access the code and data used to reproduce the analy-

sis.

2 Methods

Our method produces data-driven simulations of future cli-

mate that combine observed climate with model predictions

of changes to climate means, variability and temporal cor-

relation. To do this we need to take account of changes in

variability of model output over all temporal scales.

In the sections below, we first demonstrate the principle of

our approach for an idealized situation: we assume an infinite

length observational time series with known changes in the

spectral process. We then develop the method for the more

practical setting in which

– the time series of both observations and model output

are finite

– we do not know the explicit form of the spectral process

– we do not know the explicit form of changes to the spec-

tral process

– climate exhibits a strong seasonal cycle in both first and

second-order moments.

2.1 Motivation

We demonstrate here that given an infinite length Gaussian

time series representing present-day climate with a known

spectral process and known future changes in the spec-

tral process, we can modify the continuous Fourier trans-

form separately at each frequency to produce output that

has the correct joint distribution for the future process. Let

{Z0,t ; t = 0,±1,±2, . . .} represent a time series of an ob-

servable process of interest. Furthermore, suppose {Z0,t } is

a stationary Gaussian process with E(Z0,t )= 0 and covari-

ance function γ0(h)= Cov(Z0,t ,Z0,t−h)= E(Z0,tZ0,t−h).

Let {Z1,t ; t = 0,±1,±2, . . .} represent the future process that

we wish to simulate. Suppose that {Z1,t } is also a station-

ary Gaussian process with E(Z1,t )= 0, but with covariance

function γ1(h)= Cov(Z1,t ,Z1,t−h)= E(Z1,tZ1,t−h), where

γ1(h) is not necessarily equivalent to γ0(h).

Adv. Stat. Clim. Meteorol. Oceanogr., 1, 1–14, 2015 www.adv-stat-clim-meteorol-oceanogr.net/1/1/2015/
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We are interested in modifying {Z0,t } in order to gener-

ate a random process that is equal in (joint) distribution to

{Z1,t }. The temporal correlations in {Z0,t } makes this non-

trivial. However, the orthogonal nature of the spectral rep-

resentation makes it the natural domain in which to mod-

ify random quantities. For example, writing ı for
√
−1,

Z0,t has the representation Z0,t =
∫ 0.5

−0.5
exp(2πıωt)dẐ0(ω)

where Ẑ0(ω) is a complex-valued Gaussian random mea-

sure with mean of 0 and for disjoint sets [a,b] ∩ [c,d] =

∅, E(Ẑ0([a,b]), Ẑ0([c,d]))= 0, and x represents the com-

plex conjugate of x. That is, Ẑ0(ω) (also referred to

as the spectral process associated with {Z0,t }) is an or-

thogonal Gaussian measure that can be modified sepa-

rately at each frequency to produce a process with a dif-

ferent covariance structure. The spectral distribution as-

sociated with {Z0,t }, G0(ω), is the positive finite mea-

sure given by E(
∣∣dẐ0(ω)

∣∣2)= dG0(ω). Assuming absolute

summability of the covariance, i.e.,
∞∑

h=−∞

|γ0(h)|<∞, the

spectral distribution is absolutely continuous: dG0(ω)=

g0(ω)dω and g0 is called the spectral density for {Z0,t }.

The spectral density can be obtained from the covariance

function γ0 by g0(ω)=
∞∑

h=−∞

exp(−2πıωh)γ0(h). If γ1 is

summable, we can similarly consider the second-order char-

acteristics of {Z1,t } based on its spectral density g1(ω)=
∞∑

h=−∞

exp(−2πıωh)γ1(h).

The spectral densities g0(ω) and g1(ω) provide informa-

tion regarding the covariance structure of {Z0,t } and {Z1,t },

respectively, for frequencies, ω ∈ (−0.5,0.5]. Then, given a

spectral density ratio ρg(ω)= g1(ω)/g0(ω) we can modify

the spectral process associated with
{
Z0,t

}
to generate

Z1,t =

0.5∫
−0.5

exp(2πıωt)

√
ρg(ω)dẐ0(ω),

which is a stationary, Gaussian process with E(Z1,t )= 0 and

covariance γ1(h). In this way, we derive the future, unob-

servable process in terms of the present process, modified by

the ratio of their spectral densities. If g1(ω)= g0(ω), for all

ω ∈ (−0.5,0.5], then Z1,t = Z0,t , for all t (because in this

special case the procedure reduces to taking the DFT and

then the inverse DFT of the observations). In particular, the

temporal covariance structure of the simulations equals that

of the observations.

2.2 Outline of approach

When working with real time series of climate observations

and model output, the spectral densities in the past and future,

g0(ω) and g1(ω), are not known. While g0(ω) can be esti-

mated from data, clearly we cannot provide an observation-

based estimate of g1(ω). A central question then becomes

how to best represent the spectral ratio ρg(ω). Let f1(ω) rep-

resent the future spectral density associated with the com-

puter model output. For AOGCMs, f1(ω) may differ sub-

stantially from g1(ω). However, given the model’s suggested

covariance structure under a baseline period, represented by

f0(ω), the estimated change in covariance structure may be

a reasonable approximation for the real changes in the co-

variance structure, especially if those changes are relatively

small. We therefore do not assume that model output has

the correct covariance structure for a given GHG scenario,

but assume that the computer model provides a reasonable

approximation to the changes in the spectral density across

all frequencies (i.e., ρg(ω)= ρf (ω) for all ω ∈ (−0.5,0.5],

where ρf (ω)= f1(ω)/f0(ω)).

Carrying out the simulation on real data then requires the

following steps, starting with {Z0,t } (observations), {Y0,t }

(model base period time series), and {Y1,t } (model scenario

period time series):

1. Preprocess the observations and model out-

put to produce Z∗0,t = (Z0,t − µ̂z,t )/Dz,t ,

Y ∗0,t = (Y0,t− µ̂0,t )/D0,t , and Y ∗1,t = (Y1,t− µ̂1,t )/D1,t ,

which have mean of 0 and are stationary. See Sect. 2.5

for details on the estimation of the seasonal cycle (i.e.,

µ̂z,t , µ̂0,t , and µ̂1,t ) and see Sect. 2.6 and Sect. S2 in

the Supplement for details on the estimation of seasonal

variation (i.e., Dz,t , D0,t , and D1,t ).

2. Estimate the ratio of spectral densities of
{
Y ∗1,t

}
, and{

Y ∗0,t

}
, following the steps given in Sects. 2.4 and S1.

Then, use the estimated spectral densities to modify the

discrete Fourier transform of
{
Z∗0,t

}
, producing

{
Z∗1,t

}
,

following the instructions in Sect. 2.3.

3. Reverse preprocessing to produce simulations Z1,t =

µ̂z,t + (µ̂1,t − µ̂0,t )+Dz,t (D1,t/D0,t )Z
∗

1,t .

In the following subsections we describe in detail these

primary steps: estimating the spectral ratio and modifying

the discrete Fourier transform; removing the seasonal cycle;

and modulating the deseasonalized time series.

2.3 Spectral-based conditional simulation

Let {Z0,t ; t = 0, . . .,T − 1} represent the observations of the

process of interest, observed at regular time points. For now,

assume that the process is stationary with E(Z0,t )= 0. We

discuss how we account for any trend in Sects. 2.5 and 2.6.

In the previous section T =∞ whereas, in practice,

our observations are observed discretely over a finite pe-

riod and the spectral process associated with
{
Z0,t

}
is

unknown. First we approximate the true spectral process

by using the discrete Fourier transform of the obser-

vations Ẑ0,k = T
−1/2

T−1∑
t=0

Z0,t exp(−2πıωkt) for ωk = k/T

www.adv-stat-clim-meteorol-oceanogr.net/1/1/2015/ Adv. Stat. Clim. Meteorol. Oceanogr., 1, 1–14, 2015
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and k =−T/2+ 1, . . .,T /2. Here, Ẑ0,k are complex-valued

quantities that provide an approximation to Ẑ0(ω), with

Ẑ0,k = Ẑ0,−k . We can similarly define the cosine trans-

form Ẑc0,k = T
−1/2

T−1∑
t=0

Z0,t cos(2πωkt) and sine transform

Ẑs0,k = T
−1/2

T−1∑
t=0

Z0,t sin(2πωkt), which relate to the DFT

through the equality Ẑ0,k = Ẑ
c
0,k − iẐ

s
0,k . Because Ẑc0,k and

Ẑs0,k are linear combinations of Gaussian processes, Ẑc0,k

and Ẑs0,k are also Gaussian and, under the condition that

β =
∞∑

h=−∞

|h||γ0(h)|<∞, the following asymptotic results

hold in terms of the covariance structure for the cosine trans-

form

Cov(Ẑc0,j , Ẑ
c
0,k)=

{
g0(ωj )/2+ εT , j = k

εT , j 6= k
,

the sine transform

Cov(Ẑs0,j , Ẑ
s
0,k)=

{
g0(ωj )/2+ εT , j = k

εT , j 6= k
,

and also Cov(Ẑc0,j , Ẑ
s
s,k)= εT , for all j,k. (See Shumway

and Stoffer, 2011, for details.) Here, εT is a generic remain-

der that varies with j and k and can be shown to obey a

bound |εT | ≤ β/T . As a result, our methodology is modi-

fying nearly independent quantities in order to produce sim-

ulations with a different covariance structure than the obser-

vations. Let ρ̂f (ωk) be an estimate of the ratio of the spec-

tral densities at ωk . Then, the simulations (not accounting for

changes in mean) under a given scenario can be represented

as

Z1,t = T
−1/2

T/2∑
k=−T/2+1

√
ρ̂f (ωk)Ẑ0,k exp(2πıωkt); (1)

so, when ρ̂f (ωk)= 1, k =−T/2+ 1, . . .,T /2, then Z1,t =

Z0,t , t = 0, . . .,T −1. This suggests the following covariance

structure for {Z1,t } for a given estimate ρ̂f (ωk):

E(Z1,t+hZ1,t )= T
−1

T/2∑
k=−T/2+1

ρ̂f (ωk)g0(ωk)exp(2πıωkh).

A brief numerical study in Sect. S3 illustrates the efficacy

of this approach even for fairly small T when ρg = ρf
is known. In the following section, we provide the details

of a penalized likelihood approach to estimate ρf (ωk). Fi-

nally, although we have motivated this methodology in terms

of Gaussian processes, the resulting simulation of Z1,t in

Eq. (1) will tend to retain any non-Gaussian characteristics

of Z0,t , at least if
√
ρ̂f (ωk) is nearly constant.

2.4 Estimation of the ratio of spectral densities

(ρf
(
ωk

)
)

We propose a penalized likelihood approach for estimation

of ρf (ωk), similar to the approach given in Pawitan and

O’Sullivan (1994) for the estimation of one spectral density.

Let fj,k = fj (ωk), θj,k = log(fj,k), j = 0,1,k = 1, . . .,K ,

and θ j = (θj1, . . .,θjK)
′. Then, a penalized likelihood can be

generally written as

L0(θ0)+L1(θ1)+ δJ (θ0,θ1),

whereL0(θ0) andL1(θ1) represent the Whittle likelihood for

j = 0,1, respectively. So, L0(θ0) and L1(θ1) provide an ob-

jective function that determines the fit to the data, J (θ0,θ1)

is a function that penalizes lack of smoothness, and δ is a

smoothness parameter.

Likelihood

Let {Yi,0,t ; t = 0, . . .,T − 1} represent the ith realization of

AOGCM output (i = 1, . . .,n0) of the baseline run and let

{Yi,1,t ; t = 0, . . .,T −1} represent AOGCM output for the ith

realization of the scenario run (i = 1, . . .,n1). Here we in-

troduce the possibility of having multiple independent real-

izations, i.e., the AOGCM output that was run under identi-

cal forcings but with different initial conditions. Let Yi,0 =(
Yi,0,0, . . .,Yi,0,T−1

)′
and Yi,1 =

(
Yi,1,0, . . .,Yi,1,T−1

)′
. We

assume that Y1,0, . . .,Yn0,0 are independent and identically

distributed, that Y1,1, . . .,Yn1,1 are also independent and

identically distributed, and finally that Yi,0 and Yi′,1 are in-

dependent, for all i, i′.

Let Ŷi,j,k = T
−1/2

T−1∑
t=0

Yi,j,t exp(−2πıωkt) represent the

DFT of the ith realization of the model output at frequency

ωk (for either the model baseline or scenario run). Note that

when
{
Yi,0,t

}
and

{
Yi,1,t

}
follow stationary, Gaussian distri-

butions, the periodograms Ii,j,k =

∣∣∣Ŷi,j,k∣∣∣2, for j = 0,1, fol-

low (asymptotically) independent exponential distributions

such that E
(
Ii,j,k/fj,k

)
→ 1 as T →∞. As a result, the

Whittle negative-log-likelihood approximationL(θ j ;I i,j )=
T/2∑

k=−T/2+1

{
θj,k + Ii,j,k exp(−θj,k)

}
is a reasonable approxi-

mation for the likelihood in the objective function (Whit-

tle, 1954). In the event that we have multiple realizations,

we can take the average periodogram Ij,k =
nj∑
i=1

Ii,j,k which

follows asymptotically a gamma distribution with E(Ij,k)=
fj,k as before but with Var(Ij,k)= fj,k/nj (as opposed to

Var(Ij,k)= fj,k).

We further linearize the log likelihood and carry out

estimation using an iterative, weighted least squares ap-

proach (McCullagh and Nelder, 1989). Let L(θ j )≈

Adv. Stat. Clim. Meteorol. Oceanogr., 1, 1–14, 2015 www.adv-stat-clim-meteorol-oceanogr.net/1/1/2015/
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T/2∑
k=−T/2+1

wj,k(mj,k − θj,k)
2, with

mj,k = θ
0
j,k + (Ij,k − exp(θ

(0)
j,k ))

dθj,k

dfj,k

∣∣∣∣
θ
(0)
j,k

= θ0
j,k + Ij,k exp(−θ

(0)
j,k )− 1, and

w−1
j,k =

 dθj,k

dfj,k

∣∣∣∣
θ
(0)
j,k

2

Var(Ij,k)= n
−1
j .

Thus, this framework can handle the situation in which there

is a different number of independent realizations for the base-

line and scenario runs. For given initial conditions, these

computations are iterated until convergence.

Penalty function

Although penalties could be placed on the individual spec-

tral densities themselves, for our analysis we only need an

estimate of the ratio; therefore, we place the penalty on the

log ratio of the spectral densities θ1− θ0 so that J (θ0,θ1)

can be written as J (θ1− θ0). Because we expect the ra-

tio of spectral densities to be smoother than the individual

spectral densities themselves, it makes sense to place the

penalty on this ratio, enabling us to obtain a low-variance

estimate of the ratio while increasing the bias less than

we would by smoothing each spectral density individually.

Our penalty function is then placed on the `th derivative of

λ(ω)= θ1(ω)− θ0(ω): J (λ)= (2π)−2`
∫ 0.5

−0.5

{
λ(`)(ω)

}2
dω.

Using Parseval’s identity, this can be written as J (λ)=
∞∑

k=−∞

k2`
∣∣3∗k∣∣2, where 3∗k is the kth Fourier coefficient of

λ(ω), 3∗k =
∫ 0.5

−0.5
λ(ω)exp(−2πıkω)dω. We then approx-

imate the penalty function by J (λ)≈
T/2∑

k=−T/2+1

k2`|3k|
2,

where 3k is the discrete Fourier coefficient of λ, 3k =

T −1/2
T/2∑

j=−T/2+1

λ(ωj )exp(−2πıkωj ).

The objective function that we minimize can then be writ-

ten as

T/2∑
k=−T/2+1

[
n1(m1,k − θ0,k − λk)

2

+n0(m0,k − θ0,k)
2
+ δk2`

|3k|
2
]
,

where, for a given smoothing parameter δ, we can iterate

back and forth between estimates of θ0,k and λk until conver-

gence. The ratio of spectral densities can be estimated using

the algorithm provided in Sect. S1.

We do not develop an automated method for choosing

the smoothing parameter δ in this paper. In a situation in

which multiple realizations of a climate scenario exist, it

may be desirable to choose δ based on a cross-validation

study. Here, we chose δ = e−7
≈ 9.12×10−4, which appears

to give good visual results. Using the formula for effec-

tive degrees of freedom given by Pawitan and O’Sullivan

(1994) yields an approximate bandwidth for this smoother

of 0.078 day−1, which is quite broad considering that we

are defining the spectral density on (−0.5,0.5] day−1. We

believe this degree of smoothing is acceptable given that

the estimated log-spectral ratios are quite flat. (As men-

tioned previously, one advantage of smoothing on the ra-

tio of spectral densities is that the ratio is flatter than are

the individual spectral densities.) However, we do see some

evidence that the ratio is less flat at the lowest (below-

annual) frequencies. For studies of interannual variability,

there could be some advantage in using a penalty function

that allows for more flexibility in λ near the origin by defin-

ing J (λ)= (2π)−2`
∫ 0.5

−0.5
η(ω){λ(`)(ω)}2 dω for some posi-

tive, even function η that takes on smaller values near 0. Such

a technique could resolve different changes at different inter-

annual frequencies.

2.5 Seasonal cycle and long-term trend

The previous section assumed that the process of interest was

a stationary process with constant mean. Daily mean tem-

perature however involves a strong seasonal component. So,

before estimating the spectral ratio and modifying the DFT

of the observations, we remove the seasonal cycle in the ob-

servations and AOGCM output. The empirical mean of the

observations and present–future difference in the AOGCM

output are then added back on at the end of the algorithm.

This part of our approach is analogous to the delta method

and in fact reduces to the delta method when the present and

future spectral densities are equal.

As mentioned previously, the delta method uses model

output for changes in first-order characteristics (e.g., over-

all mean and seasonal cycle) estimated from the model out-

put. This method typically involves adding the difference in

the overall mean (usually including the seasonal cycle) of the

base and scenario time slices for the AOGCM to the obser-

vations. Let µ̂0,t and µ̂1,t represent monthly means or an-

nual harmonics, i.e., µ̂j,t = µ̂j +
K∑
k=1

R̂j,kcos(2πωkt + φ̂j,k)

for j = z,0,1, and ωk = k/365.25. The parameters µ̂z, µ̂0,

and µ̂1 are the estimated long-term averages for the obser-

vations, base, and scenario periods, respectively, and R̂z,k ,

R̂0,k , and R̂1,k are the estimated amplitudes at ωk for the ob-

servations, base, and scenario periods, respectively. Lastly,

φ̂z,k , φ̂0,k , and φ̂1,k are the estimated phase shifts for ωk . All

parameters are estimated using least squares. Seasonal de-

modulation (Sect. 2.6) is performed on Z̃0,t = Z0,t − µ̂z,t ,

Ỹ0,t = Y0,t − µ̂0,t , and Ỹ1,t = Y1,t − µ̂1,t , in order to account

for seasonal difference in second-order moments.

www.adv-stat-clim-meteorol-oceanogr.net/1/1/2015/ Adv. Stat. Clim. Meteorol. Oceanogr., 1, 1–14, 2015
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Figure 4. (Top) Log (base 10) of averaged periodograms for the Illinois location, by season, for the reanalysis (left), model baseline period

(middle), and model scenario period (right). Note strongest variability in winter, weakest in summer. (Middle) Identical to top but now for the

demodulated time series. Seasonal differences in variability are effectively removed, suggesting we can treat these time series as stationary

in time. (Bottom) Modulation constants used for the reanalysis (left), model baseline period (middle) and model scenario period (right),

showing smallest values in summer, as expected. See Figs. S1 and S2 for similar plots for other locations used as examples; results are

similar.

In our example, our AOGCMs have been run far past the

point of CO2 stabilization and, therefore, can be considered

to be nearly in an equilibrated state. However, there is evi-

dence of a long-term trend in temperature in the observations

{Z0,t }. We remove this long-term trend from the observations

using a simple linear regression of the observations against

the logarithm of CO2
3.

2.6 Accounting for seasonal nonstationarity

Thus far we have assumed that the deseasonalized observa-

tions and model output, Z̃0,t = Z0,t−µ̂z,t , Ỹ0,t = Y0,t−µ̂0,t ,

and Ỹ1,t = Y1,t − µ̂1,t are (temporally) stationary. However,

this need not be the case and in applications involving daily

mean temperature it likely is not the case. Figure 4 shows the

log-averaged periodograms by season for the Illinois pixel

for the base and scenario period, as well as for the obser-

vations (similar plots are provided for the Southern Ocean

3The trend in the observations may be affected by volcanoes

(e.g., Pinatubo), which produce a temporary reduction in GMT. The

fact that these trends are not removed implicitly assumes that in-

termittent volcanic eruptions would continue in the future. Another

potential concern is that the aerosol forcings that affect observed

climate will not continue to evolve indefinitely as they have in the

past.

and Gulf of Guinea in Figs. S1 and S2 in the Supplement).

Clearly, the seasonal spectral density functions for the base

period are different for the different seasons, with the win-

ter months showing the greatest variability and the summer

months the lowest variability across all frequencies. Note

that in the case of the scenario period, variability across fre-

quencies in the winter has decreased, and is now roughly

the same as in spring and fall, but the summer variability

is still roughly the same, and is lower across most frequen-

cies. Thus, the assumption of temporal stationarity is not rea-

sonable and, furthermore, the form of the nonstationarity is

somewhat different for the base and scenario periods. How-

ever, the log periodograms for the different seasons are nearly

parallel for both periods, suggesting that it may be reason-

able to treat the processes as uniformly modulated (Priestley,

1988).

Following Priestley, we consider Z̃0,t =Dz,tZ
∗

0,t , Ỹ1,t =

D1,tY
∗

1,t , and Ỹ0,t =D0,tY
∗

0,t , after deseasonalizing, where{
Z∗t
}
,
{
Y ∗1,t

}
, and

{
Y ∗0,t

}
are stationary processes (corre-

sponding to the observations, model output under scenario

period, and model output under base period, respectively).

Then,
{
Dz,t

}
,
{
D1,t

}
, and

{
D0,t

}
are modulation constants

to be estimated. Thus, if we can find suitable values for the

modulation constants, then we can perform the spectral den-

Adv. Stat. Clim. Meteorol. Oceanogr., 1, 1–14, 2015 www.adv-stat-clim-meteorol-oceanogr.net/1/1/2015/
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sity estimation on
{
Y ∗1,t

}
and

{
Y ∗0,t

}
, in order to modify the

DFT of
{
Z∗0,t

}
, and then multiply by the constants D1,t as

a last step to account for the nonstationarity across seasons.

Our approach to estimating the modulation constants is pro-

vided in Sect. S2. Figure 4 and Figs. S1 and S2 show the log-

averaged periodograms for the modified process. The log-

periodograms are much closer together than they were origi-

nally, suggesting that this approach accounts for most of the

seasonal nonstationarity.

3 Application

In this section, we continue to illustrate our methodology us-

ing NCEP Climate Forecast System Reanalysis observations

(Saha et al., 2010) and the CCSM3 output described in Ap-

pendix A. Because the observations and model output used

are of different lengths (32 years and 100 years, respectively)

the Fourier frequencies will be different. As a result, after es-

timating the ratio of spectral densities for the model output,

we do a simple linear interpolation on the log-spectral ratio

of the model output to the Fourier frequencies of the obser-

vations.

Although we are only modifying the temporal covariance

structure, we can produce maps that show how variability

is changing at different locations and different frequencies

(e.g., see Fig. 5). In general, at most locations and at most

frequencies, variability is decreasing in the CCSM3 output

for this particular scenario. Variability increases occur only

in a few regions. Increases in lower-frequency (periods close

to 3.2 years) variability appear primarily on land at low lat-

itudes. Increases in higher-frequency (periods of roughly 2

days) variability occur primarily at low latitudes over water

near coastlines.

Variability clearly changes differently at different loca-

tions (Figs. 5, 6) and, furthermore, variability changes at a

given location can differ with frequency (Fig. 6, top panel).

In Illinois and the Gulf of Guinea, there is a modest decrease

in low-frequency variability. At high frequencies, there is a

slightly greater suppression of variation in Illinois, whereas

in the Gulf of Guinea high-frequency variation is actually

larger for the future scenario than the present. The decreasing

variability at high frequencies in Illinois may be consistent

with suggested changes in the polar jet stream that impacts

weather at the middle latitudes. For the Gulf of Guinea, the

slight suppression of low-frequency variation and the ampli-

fication of high-frequency variation may suggest fundamen-

tally changing weather patterns at this location. These results

show that the manner in which variability changes is nontriv-

ial and is dependent on the temporal scale. As a result, an ap-

proach that considers changes across a variety of timescales

is necessary (as opposed to a simple rescaling of the obser-

vations based on changes in model output).

In contrast to those locations, however, are pixels such

as the Southern Ocean, where the change in variability re-

Figure 5. (Top) Estimated log (base 10) ratio of spectral densities

for model scenario vs. baseline at low and high frequencies. The

low-frequency results are the estimated log ratios at 1168 days and

the high-frequency results at 2 days; however, due to the large de-

gree of smoothing, it is best to think of them as representing low-

and high-frequency behavior. Both long- (left column) and short-

term (right column) variability decreases in nearly all locations. Re-

mainder of rows: estimated log-spectral densities at these frequen-

cies for reanalysis (second row), model baseline period (third row)

and model scenario period (bottom row), using the demodulated and

deseasonalized time series. The pattern of enhanced variability over

land vs. ocean and high vs. low latitudes is as expected.

mains relatively constant across all frequencies (with ap-

proximately a 60 % decrease in overall variability). For lo-

cations that exhibit this type of change in the spectral ratio, a

simple scaling of the observations may be acceptable. How-

ever, Fig. 6 indicates that in all three locations, the across-

frequency variation of the spectral density is greater than the

across-frequency variation of the spectral ratio, supporting

our claim that the spectral ratio is smoother than the spectral

densities themselves.

All three locations used as examples show evidence of a

mean shift (see Fig. 7). Mean shifts in Illinois and the Gulf

of Guinea are of a few degrees, similar to changes in global

mean temperature, though in the Illinois location the shift

www.adv-stat-clim-meteorol-oceanogr.net/1/1/2015/ Adv. Stat. Clim. Meteorol. Oceanogr., 1, 1–14, 2015
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Figure 6. (Top) Logarithm (base 10) of the estimated spectral den-

sity ratios in the Southern Ocean (blue), Illinois (green), and Gulf

of Guinea (red). (Bottom) Logarithm of the estimated spectral den-

sities of the reanalysis data (solid line), base period (dashed line),

and scenario period (dashed and dotted line). The spectral density

estimation was performed on the deseasonalized and demodulated

time series.

is small relative to temperature variability. In the Southern

Ocean location, the mean shift in local Winter (JJA, June–

August) is nearly 10◦, which is likely due to the loss of sea

ice in the future scenario. (Ice cover allows for lower tem-

peratures than are possible over open ocean). All locations

show physically reasonable characteristics in variability and

in changes in variability: variability is stronger in the the non-

equatorial locations (Southern Ocean and Illinois) than near

the Equator and stronger in winter than in summer, and vari-

ability reductions are also greater in winter.

An important aspect of our approach is that it does not sig-

nificantly alter the non-Gaussian aspects (e.g., tail behavior)

of observed climate. In fact, in our method, when the model

does not show changes in mean or covariance, the simula-

tions are simply the observations and, thus, non-Gaussian

features of the data are retained exactly. When the obser-

vations are not significantly changed, the non-Gaussian fea-

tures of the data are largely retained. For instance, JJA in the

Gulf of Guinea shows a marginal distribution that is posi-

tively skewed. In this case, the simulation shows a slight de-

crease in marginal variability, as well as an increase in mean

temperatures, but we maintain the positive skewness of the

observations (see Fig. 8). We consider this to be a strength of

our approach: in the event that there are non-Gaussian fea-

tures of the data, the simulations will retain these features,

at least when the change in the dependence structure is rela-

tively small.

Preserving the shapes of distribution of the observations

(e.g., skewness, kurtosis) would be a problem if the actual

shapes of distributions changed from present to future. For

locations in or near bodies of water, changes in tempera-

ture means can alter climate variability distributions because

those distributions are sensitive to the freezing point of wa-
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Figure 7. Time series of daily mean temperature (◦C) for 3 years

of reanalysis (blue) and simulations (red) at Illinois (top row), Gulf

of Guinea (middle row), and Southern Ocean (bottom row).

ter. As long as water is liquid, temperature variability is con-

strained because air temperatures cannot drop significantly

below freezing. This property is evident in the marginal dis-

tributions for both observations and model output in Fig. 3,

which show upward bumps in the marginal densities at near-

freezing temperature, i.e., a clustering of temperatures near

freezing. When open water freezes, however, air temper-

atures can become very cold. The left-skewed tail in the

Southern Ocean local winter in reanalysis data (Fig. 3, bot-

tom row JJA) indicates that the location is sea-ice covered for

part of the season. This freezing point effect introduces fur-

ther problems when model output is biased relative to obser-

vations. The example of the Southern Ocean location in win-

ter shows this clearly. The wintertime base period CCSM3

temperatures show a distribution characteristic of complete

sea ice cover rather than the partial cover implied by obser-

vations, with a strong cold bias (a mode over 10◦ below the

freezing point) and a wide spread. Because sea ice is lost in

the warmer future scenario, the temperature change between

model base and future periods is very large. The modeled

changes in both mean temperature and temperature variabil-

ity are therefore physically inappropriate when applied to ob-

servations and produce unphysically high wintertime temper-

atures and low wintertime variability in resulting data-driven

simulations (Fig. 7). We note that this limitation applies not

just to our approach but to statistical downscaling methods

in general. Systematic offsets in the mean between climate

model and data make it difficult to adequately simulate fu-

ture climate, so that simulations are inherently limited by the

skill of the AOGCM being used.
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Figure 8. Marginal densities (by season) of daily temperature (◦C)

for the pixels at Illinois (top row), Gulf of Guinea (middle row),

and Southern Ocean (bottom row) for reanalysis (blue line) and the

simulations (red line). The simulations display marginal tail behav-

ior similar to the reanalysis observations.

4 Discussion

Detailed characterization of the nature in which climate is

changing (mean shifting, tail behavior, spatial and temporal

covariance structures) is still a relatively open area of inquiry.

One of the best ways of studying how future climate might

change is by first investigating the nature in which the sta-

tistical properties of the output of AOGCMs change from

the present to possible future scenarios. We have provided a

method of quantifying how temporal covariance is changing

in these AOGCMs at different temporal scales. Our results

show that variability is changing differently at different loca-

tions. At a given location, the changes in variability may be

different (in both magnitude, direction of the change, or both)

across different frequencies. We used this estimate of chang-

ing variability to produce simulations that modify the tempo-

ral covariance structure of the observations. In this way, we

extend the delta method to be able to account for changes in

the mean and covariance structure.

Our method for producing simulations relies on modify-

ing the discrete Fourier transform of the observations and, as

such, the length of the simulations in this manner is currently

limited by the available data. However, it is possible that by

recycling old observations, one could generate simulations of

longer length. Another possibility is to modify the observa-

tions by phase scrambling (Davison and Hinkley, 1997) and

then appending these newer pseudo-observations to the true

observations.

We point out that we have not accounted for any changes

in spatial and spatiotemporal covariance structures. Account-

ing for changes in spatial covariance is complicated by the

nonstationarity present in the observations (due to geogra-

phy, land–ocean contrasts, etc.) and remains the subject of

future research. However, we do note that, due to the use of

the observations, we are mimicking any spatial structure in

the present climate regime.

Next, while we have provided a method for producing

simulations of daily mean temperature, most impacts as-

sessments also rely on simulations of daily precipitation.

The methodology presented here is not fit to handle the

highly non-Gaussian, nonlinear nature of daily precipitation

directly; however, a popular approach in the statistics litera-

ture is to model precipitation using a latent Gaussian process

(see Allcroft and Glasbey, 2003, for an example). The ap-

proach presented could be applied to such a latent process.

Latent processes might be further extended to consider joint

bias correction and downscaling of temperature and precipi-

tation.

Perhaps most importantly, the methodology presented here

is based on the assumption of stationarity in the model out-

put and the data. While we did incorporate the concept of

a uniformly modulated process to deal with seasonal non-

stationarity, this methodology is still limited to simulating

equilibrium climate. Because for the foreseeable future our

climate will be in a transient state, we must consider ways

of extending this methodology to be able to simulate tran-

sient climate. We point out that there is the potential for this

methodology to be extended by considering an evolutionary

spectral approach (Priestley, 1988).

Lastly, our methodology is limited to generating simula-

tions for those GHG scenarios for which an AOGCM has

been run. We cannot produce simulations for arbitrary GHG

emissions scenarios without first running the AOGCM to ob-

tain the necessary output. However, we note the potential to

consider “emulating” higher-order characteristics in the gen-

eral circulation models in order to generate simulations for

arbitrary emissions scenarios. For transient climates, it may

be possible to relate changes in the covariance structure to

the past trajectory of CO2.

We believe that our approach provides a general frame-

work for high-resolution future climate simulation. Two crit-

ical features of our approach are that (1) it is observation-

driven, using the model output to suggest how to modify the

existing observations, and (2) it considers changes in both

mean and covariance structures; and this modification of co-

variance structure, by taking place in the frequency domain,

involves modifying quantities that are at least approximately

independent. We anticipate many opportunities to extend our

framework to generate more realistic simulations for use in

impacts assessment, and suggest that any extensions should

seek to maintain these features when feasible. Society’s ob-

vious need for better impacts assessment begins with a bet-

ter understanding of how climate will change in the future.

Our conceptual approach provides a valuable framework for

quantifying climate change and simulating future climate in

order to meet that need.
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Appendix A: Model and model experiments

All model output shown here is from the Community Cli-

mate System Model Version 3 (CCSM3), a fully coupled

general circulation model developed at the National Center

for Atmospheric Research (NCAR), with the full represen-

tation of the atmosphere, land, sea ice, and ocean (the mod-

ules CAM3, CLM3, CSIM5, and POP 1.4.3, respectively)

(Collins et al., 2006). The model is run at T31 resolution

(∼ 3.75◦×3.75◦) and all runs shown are initialized from year

410 of the NCAR b30.048 preindustrial control run with ini-

tial CO2 concentration at 270 ppm (parts per million). The

“baseline” run maintains this preindustrial CO2 concentra-

tion for an additional 2800 years to ensure that we are sam-

pling an equilibrated state. (The control run begins slightly

out of equilibrium.) The “scenario” run uses historical forc-

ings until 2010, then increases CO2 piecewise linearly to

700 ppm in 2100 and continues at this stabilized value for an

additional 6000 years until climate is fully equilibrated. We

take the last 100 years of each run to represent equilibrated

climate at 270 and 700 ppm CO2.

We use two data sets for observational comparisons. In

Fig. 1 we use global mean temperature from the Global His-

torical Climatological Network (GHCN), a historical recon-

struction of temperature anomalies based on weather sta-

tion data and managed by the National Climatic Data Cen-

ter. In Fig. 1 we show GHCN archived temperature anoma-

lies plus an added climatological mean of 14 ◦C (Vose et al.,

1992). In the remainder of the paper we show output from

the NCEP-DOE (National Centers for Environmental Predic-

tions – Department of Energy) Climate Forecast System Re-

analysis, which combines measurements from ground-based

stations and satellites, assimilating them into a weather pre-

diction model to produce gridded output that synthesizes

available observations. We use 2.5 km resolution output, re-

gridded with an area-conserving remapping function to T31

resolution.
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The Supplement related to this article is available online

at doi:10.5194/ascmo-1-1-2015-supplement.
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