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Abstract. This study validates the near-surface temperature and precipitation output from decadal runs of eight

atmospheric ocean general circulation models (AOGCMs) against observational proxy data from the National

Centers for Environmental Prediction/National Center for Atmospheric Research (NCEP/NCAR) reanalysis tem-

peratures and Global Precipitation Climatology Project (GPCP) precipitation data. We model the joint distribu-

tion of these two fields with a parsimonious bivariate Matérn spatial covariance model, accounting for the two

fields’ spatial cross-correlation as well as their own smoothnesses. We fit output from each AOGCM (30-year

seasonal averages from 1981 to 2010) to a statistical model on each of 21 land regions. Both variance and

smoothness values agree for both fields over all latitude bands except southern mid-latitudes. Our results imply

that temperature fields have smaller smoothness coefficients than precipitation fields, while both have decreasing

smoothness coefficients with increasing latitude. Models predict fields with smaller smoothness coefficients than

observational proxy data for the tropics. The estimated spatial cross-correlations of these two fields, however,

are quite different for most GCMs in mid-latitudes. Model correlation estimates agree well with those for obser-

vational proxy data for Australia, at high northern latitudes across North America, Europe and Asia, as well as

across the Sahara, India, and Southeast Asia, but elsewhere, little consistent agreement exists.

1 Introduction

Atmospheric ocean general circulation models (AOGCMs or

simply GCMs) are being developed by various scientific or-

ganizations to study climate science, including the human

impact on climate change. Recently, the World Climate Re-

search Programme organized the Coupled Model Intercom-

parison Project Phase 5 (CMIP5; Taylor et al., 2012) to sup-

port the Intergovernmental Panel on Climate Change (IPCC)

Fifth Assessment Report (AR5). The goals of the CMIP5

project include a more complete understanding of limitations

and strengths of the various models.

Toward this end, we perform a bivariate spatial statisti-

cal analysis and validation of time-averaged output on two

climate variables, precipitation and temperature, from eight

GCM models plus one set of observational proxies. The sta-

tistical method we propose has a straightforward extension

for dealing with more than two (that is, multivariate) cli-

mate variables. Methodologically, our validation procedure

compares second-order spatial statistics from GCM output

against those from reanalysis temperatures (NCEP/NCAR)

and observed precipitation (Global Precipitation Climatol-

ogy Project, GPCP) data. We use the word “validate” to mean

that output from GCMs should match those from correspond-

ing real-world values, but limited by the contrapositive argu-

ment that if the output are inconsistent, the climate model

must be faulty (Oreskes et al., 1994).

There have been several works that validate climate model

output using various statistical methods. For instance, Jun

et al. (2008) quantify the “errors” of climate models (de-

fined as the difference between climate model output and

corresponding observation) using a spatial kernel averaging

method. They only considered temperature and they focused

on quantifying the dependence of these errors across dif-

ferent GCMs. Thorarinsdottir et al. (2013) proposed to use

proper divergence functions to evaluate climate models. They
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compared temperature extremes from 15 climate models to

those from reanalysis data. In this paper, we consider two

climate variables at the same time and use various covari-

ance parameters that represent not only marginal but cross-

spatial dependence structure of climate variables as a mea-

sure for the validation. We are performing “operational vali-

dation” as defined by Sargent (2013), which is to assess mod-

els’ output accuracy against the real system and against other

models. The comparisons are done for each parameter. Ulti-

mately, our goal is to leverage multivariate spatial statistics

to probe the differences and similarities of GCMs and obser-

vation proxies.

Precipitation and near-surface air temperature were cho-

sen for this study because they are two of the most important

climate model output fields, as well as the two variables most

commonly downscaled (Colette et al., 2012; Li et al., 2010;

Samadi et al., 2013; Zhang and Georgakakos, 2012). Precipi-

tation continues to pose challenges for climate models while

temperature is well studied and GCMs simulate it reliably

(Christensen et al., 2007; Stocker et al., 2013). Kleiber and

Nychka (2012) wrote that a “major hurdle for climate sci-

entists is to simultaneously model temperature and precipi-

tation”. Both precipitation and temperature are critical to un-

derstanding the impact of climate on Earth’s biosphere, espe-

cially those aspects directly impacting human activities such

as agriculture, forestry, wildfire, and even building design

(Khlebnikova et al., 2012). The most recent IPCC Assess-

ment concludes that changes in the global water cycle are

likely to be nonuniform with increasing variance, increasing

frequency and intensity (Stocker et al., 2013), while others

report trends of rainfall redistribution (Zhang et al., 2007).

The temporal relationship of temperature and precipitation

are well studied, but the time-averaged spatial characteristics

of these two fields is still not well understood (Trenberth and

Shea, 2005; Adler et al., 2008). Gaining a better understand-

ing of the bivariate spatial nature of these two fields should

aid in these research questions.

In the literature for statistical analysis with climate model

output and observations, climate variable fields are often con-

sidered individually as univariate spatial fields. For example,

Jun et al. (2008) quantified cross-correlation of the errors of

multi-model ensembles of the temperature field at each grid

point, accounting for the spatial dependence of each error

field. Sang et al. (2011) used parametric cross-covariance

models to build a joint spatial model of multiple climate

model errors for temperature. Lee et al. (2013) estimated lo-

cal smoothness of temperature using a composite local like-

lihood approach.

There are few studies of the cross-dependence of two cli-

mate variables from climate model output. Tebaldi and Sansó

(2009) used a hierarchical Bayesian model to jointly model

temperature and precipitation data, but did not model the

spatial dependence between the fields. Jun (2011) developed

nonstationary cross-covariance models to jointly fit temper-

ature and precipitation data globally using output from a

single climate model. Sain et al. (2011) used a multivari-

ate Markov random field model to account for spatial cross-

dependencies between temperature and precipitation from

regional climate models. They used multiple regional climate

model output, though dependency between different regional

climate model output was not considered.

In this paper, our focus is to validate CMIP5 ensembles

by investigating bivariate properties of climate variables and

compare them across output from multiple climate models

as well as observation proxies. Our goal is to perform val-

idation on more than just means and variances of tempera-

ture and precipitation fields. In particular, we are interested

in how cross-correlation of surface temperature and precipi-

tation compares across model ensembles and observational

proxy data. Considering the cost of running each climate

model, validating climate models through various statistics

in addition to simple means and variances is valuable. To the

extent that each climate model accurately represents the true

nature of Earth’s climate, any statistics beyond means and

variances should be comparable across multi-model ensem-

bles, as well as corresponding observational proxies. Further-

more, smoothness and cross-correlation are among the key

important quantities in describing the underlying distribution

of the climate processes, so we also compare local smooth-

ness of each variable across model ensembles and proxies.

The rest of the paper is organized as follows. Section 2

describes the two types of data used in this study, observa-

tional proxy data and GCM output. Section 3 introduces the

statistical methodology used to estimate the statistical model

parameters. Section 4 summarizes results and Sect. 5 makes

recommendations for further study.

2 Data

2.1 Global observation proxies

Near-surface air temperature values for 1981–2010 are taken

from the NCEP/NCAR reanalysis data, provided by the Earth

System Research Laboratory in the National Oceanic and At-

mospheric Administration (http://www.esrl.noaa.gov/psd/).

This data set originated from a project where a wide va-

riety of data were assimilated from multiple sources in-

cluding weather stations, ships, aircraft, radar, and satellites

from 1957 onward (Kalnay et al., 1996). Data since that

time continue to be assimilated and quality controlled so

that complete data both in space and time are reliable and

readily available (Kistler et al., 2001). The data we use are

monthly averages on a 2.5◦× 2.5◦ resolution grid. Tempera-

tures range from −61 to 39 ◦C; temperature fields are shown

in the bottom half of Fig. 1 for seasonally averaged boreal

summer, June–August (JJA) and boreal winter, December–

February (DJF).

NCEP reanalysis data is based on a system that uses fore-

casts and hindcasts to fill in the gaps between missing data,

which works well for fields such as temperature. Kalnay et al.
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Figure 1. Temperature (◦C) from GFDL for (a) JJA and (b) DJF, and from NCEP for (c) JJA and (d) DJF.

(1996) claimed that reanalysis temperature data “provide an

estimate of the state of the atmosphere better than would be

obtained by observations alone”. Other fields, such as precip-

itation, have biases induced by the models. For this reason,

we used a different data source for precipitation data.

Precipitation data was taken from the GPCP (Adler

et al., 2003). Satellite and station data are compiled into

a 2.5◦× 2.5◦ resolution grid of observed monthly aver-

age precipitation values from 1979 through the present.

Values are reported in millimeters per day but are con-

verted to kilograms per square meter per second (to match

units of GCM output) assuming all precipitation has a

density of 1000 kg m−3, and range from zero to a max-

imum of 5.45×10−4 kg m−2 s−1, which is equivalent to

47.1 mm day−1.

The temperature values and precipitation values are de-

fined at slightly different grid points, so each field had to

be adjusted to reconcile them to the same 144× 72 grid.

This was done by interpolating precipitation longitudinally

and temperature values latitudinally. We compute 30-year

seasonal averages for boreal summer (JJA) and boreal win-

ter (DJF) for the years 1981–2010. Although the averaged

temperature seems to be approximately Gaussian distributed,

the averaged precipitation requires transformation to allevi-

ate skewness (Kleiber and Nychka, 2012); we use the cube-

root transformation. The transformed precipitation fields for

GPCP are shown in the bottom half of Fig. 2 for JJA and DJF.

2.2 General circulation models

Output from eight GCMs were obtained from the Program

in Climate Model Diagnosis and Intercomparison (PCMDI)

server (http://cmip-pcmdi.llnl.gov/cmip5/), which archives

the experimental results of the CMIP5 project. Specifically,

near-surface air temperature and precipitation from 30-year

decadal predictions were used (Meehl et al., 2009). The

names, abbreviations and spatial resolutions of these models,

all part of the CMIP5 project, are summarized in Table 1.

The data from these runs were used to compute 30-year

seasonal averages for boreal summer (JJA) and boreal winter

(DJF), again, for the years 1981–2010. Decadal runs were not

available for HAD-GEM2-ES, the high-resolution Hadley

Centre Earth Systems model, so data from part of one histor-

ical run was used, specifically December 1972–August 2003.

All precipitation values were cube-root transformed. The

seasonal average temperature fields from one GCM, that of

the Geophysical Fluid Dynamics Laboratory (GFDL), are

shown in the top half of Fig. 1, and the transformed seasonal

average precipitation fields for this same GCM are shown in

the top half of Fig. 2. Comparisons of GFDL fields to those of

the observation proxies (NCEP/GPCP) in Figs. 1 and 2 show

excellent agreement for both fields, though the details of the

distributions for precipitation are not as good as for temper-

ature, particularly in the extremes (JJA for the Amazon and

both JJA and DJF for the Sahara and Southeast Asia).

3 Statistical method

Observed proxy data as well as climate model simulation

data are analyzed using a two-step process. First, we fit a

regression mean structure (Sect. 3.1) and, second, a six-

parameter bivariate cross-covariance model that assumes

both temperature and precipitation fields are isotropic. Here,
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Table 1. Names of modeling institutes and sources for observational proxy-data data.

Modeling Institute Abbreviation Realizations Resolution

Atmosphere and Ocean Research Institute at the University of Tokyo MIROC5 1 decadal 256× 128

Beijing Climate Center BCC-CSM1 2 decadal 128× 64

Geophysical Fluid Dynamics Laboratory GFDL-CM2 2 decadal 144× 90

Hadley Centre for Climate Prediction and Research HAD-CM3 3 decadal 96× 73

Hadley Centre for Climate Prediction and Research HAD-GEM2-ES 1 historical 192× 195

Max Planck Institute for Meteorology MPI ESM 2 decadal 192× 96

National Aeronautics and Space Administration NASA GEOS-5 2 decadal 144× 91

National Center for Atmospheric Research NCAR CCSM4 1 decadal 288× 192

National Centers for Environmental Prediction Reanalysis Data Set NCEP 1 144× 72

Global Precipitation Climatology Project GPCP 1 144× 72

Figure 2. 1000 (precipitation)1/3 from GFDL for (a) JJA and (b) DJF, and from GPCP for (c) JJA and (d) DJF. Precipitation values are in

kilograms per square meter per second.
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Figure 3. Region definitions (Giorgi and Francisco, 2000).

isotropic covariance structure implies that the covariance be-

tween two spatial locations only depends on the distance be-

tween the two locations (see Sect. 3.2 for more formal defi-

nition).

Clearly the isotropic assumption is not reasonable on the

globe as a whole due to the spatially varying nature of the

processes’ spatial dependence structure. Hence, the data are

first blocked into 31 regions, that is, 21 land regions as de-

fined by Giorgi and Francisco (2000) plus 10 rectangular

ocean regions (see Fig. 3 and Table 2). We assume that each

region is isotropic in isolation, which is reasonable because

the size of the regions are typically no more than a few thou-

sand kilometers in each direction. Each region was desig-

nated as equatorial, mid-latitude north, mid-latitude south, or

high-latitude north (labeled Equat, Mid-N, Mid-S, and North,

respectively. “North” because the only high-latitude land re-

gion in the southern hemisphere, Antarctica, is not included

in this study due to poor data coverage). Each region’s name,

latitude band designation, boundaries, and size, is summa-
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Table 2. Climate region definitions.

Name Zone Longitude Latitude Width× height

(km)

1 ALA North 180–255 60–70 3311× 1113

2 WNA Mid-N 230–255 30–60 1894× 3340

3 CNA Mid-N 255–275 30–50 1676× 2226

4 ENA Mid-N 275–290 25–50 1292× 2783

5 GRL North 255–350 60–85 2818× 2783

6 NEU North 350–40 50–75 2554× 2783

7 NAS North 40–180 50–70 6224× 2226

8 MED Mid-N 350–40 30–50 4145× 2226

9 CAS Mid-N 40–75 30–50 2921× 2226

10 TIB Mid-N 75–100 30–50 2093× 2226

11 EAS Mid-N 100–145 20–50 3932× 3340

12 SEA Equat 95–160 −10–20 6932× 3340

13 SAH Mid-N 340–65 15–30 8521× 1670

14 WAF Equat 340–20 −12–15 4323× 3006

15 EAF Equat 20–50 −12–15 3244× 3006

16 SAF Mid-S 12–50 −35–12 3789× 2560

17 CAM Mid-N 245–280 8–31 3591× 2560

18 AMZ Equat 280–325 −22–8 4793× 3340

19 SSA Mid-S 285–310 −54–22 2102× 3562

20 AUS Mid-S 115–155 −40–16 3822× 2672

21 SAS Equat 65–95 5–30 3105× 2783

22 ZSP Mid-S 179–278 −40–13 9288× 3006

23 ZEP Equat 179–265 −12–12 9316× 2672

24 ZNP Mid-N 149–234 13–40 8053× 3006

25 ZEA Equat 325–10 −20–0 4851× 2226

26 ZAE Equat 310–340 0–20 3237× 2226

27 ZAN Mid-N 300–340 20–40 3778× 2226

28 ZNA Mid-N 310–350 40–60 2787× 2226

29 ZSA Mid-S 320–10 −50–20 4360× 3340

30 ZEI Equat 50–100 −20–10 5343× 3340

31 ZSI Mid-S 50–110 −50–20 5207× 3340

rized in Table 2. The ocean regions were only included in the

exploratory data analysis phase to check our method.

3.1 Mean filtering

Before modeling the spatial dependence structure of the two

climate variables, we first filter the mean structure of each of

the two fields, temperature and cube-root transformed pre-

cipitation, for each region separately, using simple linear re-

gression. We write,

T = α0+α1Y +α2E+ZT ,

P 1/3
= β0+β1Y +β2E+ZP , (1)

where Y is latitude and E elevation. We assume that the

residuals are normally distributed with mean of zero.

To choose the appropriate mean structure, in addition to

Eq. (1), we considered a variety of predictors, specifically

longitude X, as well as quadratic interaction terms such as

XY,XE,YE,X2,Y 2, etc. Figure 4 shows the residuals for

four different regression models for cube-root precipitation

(dashed black line) and temperature (solid gray line) for the
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Figure 4. Residuals after mean filtering from observational

proxy data (DJF), in eastern North America (ENA): (a) Y ∼ 1,

(b) Y ∼ elev, (c) Y ∼ elev+ lat, and (d) Y ∼ elev+ lat+ lon.

eastern North America (ENA) region in boreal winter (DJF)

for the observational proxy data. The abscissa is the index,

which is arranged in scan order from the western to eastern

boundaries of the region. Vertical lines denote indices where

the latitude jumps +2.5◦ and longitude jumps back to the

west boundary for a new scan back to the east. The increas-

ing width between vertical bars is due to the triangular shape

of ENA. As a result, the latitude dependence can be seen

grossly across the graph, while longitude dependence ap-

pears within each subsection. Clearly both temperature and

precipitation decrease with latitude and, at least for south-

ern strips, temperature rises with longitude (between vertical

lines). Toward the north end of this region, positive temper-

ature excursions are larger from west to east. These figures

imply that a simple mean subtraction as in Eq. (1), without

higher-order terms of X, Y , and E, is inadequate. Physically

it makes sense to subtract the linear elevation (lapse rate) and

latitude dependence (solar flux), leaving the relevant second-

order structure for the covariance estimation procedure. We

checked figures similar to Fig. 4 for all regions for both ob-

servational proxy data and GCMs and, generally, regardless

of which mean structure regression was used for filtering,

beyond that chosen Eq. (1), the remaining signals show very

similar second-order structure.

Figure 5 shows the results of the mean field filtering

process. Each plot is a specific coefficient from Eq. (1),

α0,α1, . . .β2, for each GCM as well as observation proxies.
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Figure 5. Mean filtering coefficients by region number (land regions only) for temperature intercept (a) JJA and (b) DJF, precipitation

intercept (c) JJA and (d) DJF. Temperature latitude coefficient (e) JJA and (f) DJF, and precipitation latitude coefficient (g) JJA and (h) DJF.

Temperature elevation coefficient (i) JJA and (j) DJF, and precipitation elevation coefficient (k) JJA and (l) DJF. Plots include results from

NCEP/GPCP plus all eight GCMs as separate lines.

Figure 6. North America and Greenland JJA residuals: GFDL

for (a) temperature and (b) 1000 (precipitation)1/3, and from

NCEP/GPCP for (c) temperature and (d) 1000 (precipitation)1/3.

Figure 7. North America and Greenland DJF residuals: GFDL

for (a) temperature and (b) 1000 (precipitation)1/3, and from

NCEP/GPCP for (c) temperature and (d) 1000 (precipitation)1/3.

In (c) and (d) there are a few pixels marked with an “X” with large

residuals which have actual values beyond those plotted.
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The abscissa is the region number (1=ALA, . . .,

21=SSA). The elevation coefficients have the least agree-

ment of the three coefficients, but generally agree well be-

tween NCEP/GPCP and GCMs. Note that only land regions

are included in this analysis, principally because the goal of

this study is to look at those regions defined in the Giorgi and

Francisco (2000) study.

Figures 6 and 7 show the residual fields for five regions:

Alaska, western, central, and eastern North America, plus

Greenland. The black lines in these figures delineate the

boundaries of these five regions. Figure 6 shows boreal sum-

mer (JJA) values while Fig. 7 shows boreal winter (DJF) val-

ues. Figure 6a and b show the residual temperature and pre-

cipitation fields for GFDL, while Fig. 6c and d show those

for observation proxies (NCEP/NCAR-GPCP). GFDL was

chosen for this example because it has the same spatial reso-

lution as the observation proxies. The other GCMs have very

similar residual plots.

3.2 Covariance model

We denote bivariate data consisting of the residuals from

Eq. (1) at location s as Z(s)= (ZT (s),ZP (s)). Such bivariate

data are assumed to be isotropic, that is,

Cov{Zi(s+h),Zj (s)} =Mij (||s+h− s||)=Mij (h), (2)

where h
.
= ||h|| is the distance between the two locations, s

and s+h, and i,j = T or P . The covariance models, Mij ,

are allowed to be different in each region to account for the

fact that the spatial cross-dependence structure may vary over

space on a large scale.

For modeling Mij we use the parsimonious bivariate

Matérn covariance structure developed in Gneiting et al.

(2010). The Matérn covariance function is widely used to

characterize the covariance of an isotropic spatial field be-

cause of its flexibility (Stein, 1999). For a univariate field, Z,

the Matérn covariance function can be written as

Cov{Z(s+h),Z(s)} =M(h)= σ 2 21−ν

0(ν)
(ah)νKν(ah), (3)

whereKν(·) is the Bessel function of the second kind of order

ν and 0(·) is the standard gamma function, a > 0,ν > 0.

The covariance parameters are the variance, σ 2, smooth-

ness, ν, and the inverse spatial scale, a, per kilometer. Gneit-

ing et al. (2010) offer a bivariate version of the function in

Eq. (3) in the following way. Marginal covariance of each

field, ZT or ZP , is given by the Matérn function in Eq. (3).

The cross-covariance of the two fields, ZT and ZP , is mod-

eled as

Cov{ZP (s+h),ZT (s)} (4)

= ρσP σT
21−νPT

0(νPT )
(aPT h)νPTKνPT (aPT h).

Here, ρ gives the spatially co-located correlation coeffi-

cient satisfying a complex condition related to aP , aT , aPT ,

νP , νT , and νPT (see Theorem 3 of Gneiting et al., 2010) to

guarantee a positive definite bivariate covariance function.

A parsimonious version of the bivariate Matérn function

imposes a condition on the covariance parameters: a = aP =

aT = aPT and νPT = (νP + νT )/2. The condition on ρ re-

duces to |ρ| ≤
√
νP νT

1
2

(νP+νT )
(Gneiting et al., 2010). Therefore,

the six covariance parameters to be estimated are σ 2
T , σ 2

P ,

a, νT , νP , and ρ. We use a maximum likelihood estima-

tion method to estimate these parameters (refer to the Ap-

pendix for details on this procedure). We compute the asymp-

totic standard error for each parameter estimate, and Table 3

shows those for just one region as an example. Western North

America (WNA) was chosen for this example because it is

an intermediate sized region. Tables S1–S21 of the Supple-

ment contain point estimates and asymptotic standard errors

for all land regions for both seasons. Gneiting et al. (2010)

argue that the assumption of common range parameter for

the parsimonious version is not restrictive and may even be

preferred due to the difficulty in estimating some of the pa-

rameters in Matérn class. In our case, it is not unreasonable to

assume that temperature and precipitation have similar spa-

tial scales.

Co-located correlation is the spatial correlation between

the precipitation and temperature fields after having been av-

eraged over time, which is fundamentally distinct from the

more commonly computed temporal correlation at each lo-

cation (as in Trenberth and Shea, 2005, Adler et al., 2008,

Tebaldi and Sansó, 2009, or Wu et al., 2013). As such, sev-

eral observations are in order. First, this correlation can be

computed given just one realization. Temporal correlation re-

quires multiple time points to determine the extent to which

the two fields correlate over time at each point in space. Sec-

ond, the spatial cross-correlation coefficient can be thought

of as quantifying the degree to which the residuals of the two

fields share the same spatial pattern. The distinction, in terms

of interpretation, is that temporal correlation tells us how the

two fields compare as time unfolds for each point in space,

while spatial correlation tells us how the two time-averaged

fields “unfold” in space. Since we are assuming isotropic

fields for each region separately, the direction separating two

points is ignored, only the distance, or spatial lag, matters.

We emphasize this because, while our results share features

with previous studies involving temporal correlations, they

also differ in important ways.

4 Results

Many of the results are presented using box plots of point

estimates; Figs. 8–10 show the median as a dark center

line with a box running from the first to third quartile, and

whiskers extending out to the farthest data point that is no

more than 1.5 times the box height (the interquartile range)

from the box. In all cases, outliers (defined as points that fall

outside of the end points of whiskers) are not displayed to re-
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Table 3. Sample region (WNA) parameter point estimate (asymptotic standard error) values.

σP σT νP νT 1/a ρ

JJA WNA (Mid-N)

NCEP/GPCP 6.6 (2.3) 4.4 (1.6) 0.93 (0.15) 0.99 (0.16) 944 (469) 0.031 (0.105)

BCC 13.7 (5.1) 6.3 (2.4) 1.22 (0.15) 1.11 (0.18) 1124 (478) −0.884 (0.031)

GEMS 6.3 (1.3) 2.9 (0.5) 1.67 (0.16) 1.36 (0.16) 288 (68) −0.735 (0.029)

GEOS 14.9 (6.3) 10.1 (4.5) 0.72 (0.08) 0.70 (0.11) 2287 (1522) −0.717 (0.047)

GFDL 10.5 (3.0) 6.0 (1.8) 1.16 (0.18) 1.09 (0.21) 625 (262) −0.851 (0.030)

HAD 6.2 (2.0) 3.3 (1.0) 0.71 (0.15) 0.63 (0.19) 1173 (784) −0.461 (0.095)

MIROC 18.5 (7.6) 16.3 (7.0) 1.00 (0.07) 1.05 (0.06) 1545 (713) −0.786 (0.023)

MPI 9.7 (2.9) 2.4 (0.3) 1.57 (0.19) 0.50 (0.30) 466 (157) −0.417 (0.060)

NCAR 16.5 (6.2) 10.5 (3.5) 1.11 (0.07) 1.02 (0.07) 913 (363) −0.69 (0.024)

DJF WNA (Mid-N)

NCEP/GPCP 13.7 (5.9) 5.5 (2.3) 0.57 (0.09) 0.58 (0.09) 2904 (2417) 0.416 (0.086)

BCC 30.0 (16.8) 8.5 (2.5) 1.98 (0.14) 0.95 (0.20) 1595 (595) −0.690 (0.061)

GEMS 11.8 (3.3) 2.7 (0.4) 1.97 (0.16) 0.86 (0.19) 457 (115) 0.178 (0.059)

GEOS 14.7 (5.6) 18.5 (11.0) 0.48 (0.07) 0.78 (0.06) 4480 (3440) −0.405 (0.079)

GFDL 8.8 (2.2) 2.5 (0.3) 2.15 (0.35) 0.74 (0.40) 329 (100) 0.148 (0.090)

HAD 13.4 (6.0) 5.6 (2.1) 0.66 (0.12) 0.56 (0.13) 2598 (1961) 0.109 (0.117)

MIROC 6.9 (1.2) 3.6 (0.4) 2.06 (0.11) 1.00 (0.15) 335 (51) 0.540 (0.041)

MPI 9.6 (2.1) 2.4 (0.2) 2.21 (0.20) 0.83 (0.26) 284 (56) 0.084 (0.075)

NCAR 11.8 (2.7) 3.7 (0.4) 1.47 (0.10) 0.89 (0.15) 330 (77) −0.282 (0.040)

duce clutter. Typically 2–6 % of the point estimates are iden-

tified as outliers, and they appear for each of the six parame-

ters. There are more outliers in Equatorial and Mid-North lat-

itude bands than Mid-South, and North bands because there

are more Mid-North and Equatorial regions. All box plots in-

clude only point estimates for land regions aggregated across

latitude bands and sources (either NCEP/GPCP alone or all

eight GCMs). Note that oceans are not included in the aggre-

gated data. For Figs. 9 and 10, the variation within each box

is due to the number of regions within a particular latitude

band (5, 9, 3, and 4 points for Equatorial, Mid-N, Mid-S, and

North, respectively). For Fig. 8, the dark gray NCEP/GPCP

box contains this same variation, but the light gray box con-

tains the variation over all eight GCMs and regions (40, 72,

24, and 32 points for Equatorial, Mid-N, Mid-S, and North,

respectively).

4.1 Temperature variance, σ2
T

Figure 8a and b show the estimates of σT versus latitude band

for observational proxy data (NCEP/GPCP) and GCMs over

land only.

Note that box plots for σT have a logarithmic ordinate

axis. The pattern of both observed and modeled values shows

the recognized pattern that there is very little temperature

variation in the tropics throughout the year and for any lati-

tude during the summer months, whereas there is much more

temperature variation for mid-latitude and high-latitude loca-

tions during the winter months compared to summer months

due to mid- to high-latitude storms (G. R. North, personal

communication, 2014). This pattern is appropriately reversed

for mid-latitude Southern Hemisphere regions (SAF, SSA,

AUS), which show larger variance in summer (DJF) than

winter (JJA) for both reanalysis data and GCMs.

Figure 9a and b give the estimates of σT versus lati-

tude band for reanalysis data (in red) and each GCM sep-

arately. The variation within each box is due to the multi-

ple regions within a latitude band and multiple realizations

within GCMs. Note that for most models, the variance in-

creases with latitude during winter, but not nearly as much

during the summer. The distribution of σT values for GEOS

and MIROC, especially during boreal winter, are much more

spread than other models. Equatorial regions consistently

give smaller variance during DJF than JJA. Generally, the

GCM models tend to overestimate the variability somewhat,

particularly for high-latitude JJA.

4.2 Precipitation variance, σ2
P

Figure 8c and d show the estimates of σP for observations,

GPCP data and GCMs by latitude band. Models and GPCP

data follow the same basic pattern, where precipitation vari-

ance decreases with increasing latitude during the summer.

This pattern is expected because the tropics have larger rain-

fall, especially during the summer, and high-latitude sites

have limited precipitation due to reduced water holding ca-

pacity of air at lower temperatures (Trenberth and Shea,

2005). Mid-S regions break this pattern, however, because
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Figure 8. Parameter estimates for observational proxy data and GCMs for each season by latitude band. (a) JJA and (b) DJF for σ̂T , (c) JJA

and (d) DJF for σ̂P , (e) JJA and (f) DJF for ν̂T , (g) JJA and (h) DJF for ν̂P , (i) JJA and (j) DJF for ρ̂, and (k) JJA and (l) DJF for 1/â (in log

scale).

they show nearly as much variance as equatorial JJA. GCMs

and GPCP data differ more for Mid-S regions than other lat-

itude bands for both JJA and DJF, suggesting that GCMs dif-

fer from one another more in mid-latitude southern land areas

than in northern and equatorial land regions.

For Mid-S JJA and North DJF, GCMs underestimate pre-

cipitation variance, consistent with Zhang et al. (2007), but

models overestimate variance for DJF Equat, Mid-N, and

Mid-S, with all other combinations essentially equal. In all

cases except Mid-S, the spread of parameter estimates over-

lap well.

To explore precipitation variance for individual institute’s

GCMs, Fig. 9c and d show the estimates of σP for GPCP

data, (in red) and each institute’s GCMs separately by lat-

itude band. This shows the same patterns as Fig. 8c and

d. Again, the largest discrepancies are for Mid-S summer

(DJF), where all of the models except HAD and MPI over-

estimate the precipitation variance, and Mid-S winter (JJA),

where BCC, HAD, and MPI underestimate, while MIROC

and possibly GEOS and NCAR overestimate the precipita-

tion variance.

4.3 Temperature smoothness, νT

When fit simultaneously with precipitation residuals using a

common spatial scale, the NCEP temperature residual field

tends to have a smoothness coefficient of about 1.0, con-

sistent with results of previous studies (North et al., 2011;

Jun, 2011). Because we constrain the spatial scale to be

the same for temperature and precipitation, the smoothness

coefficients not only characterize the traditional concept of

smoothness, but also any true spatial-scale difference be-
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Figure 9. Parameter estimates by source for each season by latitude band, for JJA (left column) and DJF (right column). (a) JJA and (b) DJF

for σ̂T , (c) JJA and (d) DJF for σ̂P , and (e) JJA and (f) DJF for 1/â (in log scale).

tween the fields. Figure 8e and f show reanalysis data sub-

stantially smoother in the tropics in JJA and southern sum-

mer mid-latitudes (Mid-S DJF). Figure 10a and b show indi-

vidual GCM values by region and season. BCC and MIROC

tend to have the smoothest fields, while GEOS and HAD the

roughest fields.

Because each GCM is evaluated at its native resolution

(Table 1), we tested the dependence of this smoothness es-

timate on the grid resolution. We tested for, and failed to see,

association between temperature smoothness and the resolu-

tion of the GCM. Large smoothness values occur for coarse

models such as BCC as well as fine-gridded models such

as MIROC, and vice versa. An additional test was run us-

ing GEMS at its full resolution, 288× 192, versus the same

model at one-quarter its native resolution, 144×96, with little

change in final parameter estimates for most cases.

4.4 Precipitation smoothness, νP

The estimates for the smoothness parameter of the precipi-

tation field in Fig. 8g and h show excellent agreement be-

tween GPCP and GCMs, with roughness generally increas-

ing with latitude. Figure 10c and d show the same trends by

individual model. BCC has much more variation and gen-

erally smoother fields, while GEOS and HAD show smaller

smoothness coefficients. Again, as for temperature smooth-

ness, grid resolution does not seem to be associated with pre-

cipitation smoothness.

Comparing the smoothness coefficients for temperature

and precipitation, those for precipitation are mostly larger

than those for temperature, consistent with results of Jun

(2011) and Jun (2014). Only for observational proxy data in

southern mid-latitudes DJF and high-latitude DJF is temper-

ature clearly smoother, and the two are essentially equal for

proxy data in equatorial JJA and GCMs for high-latitude JJA
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Figure 10. Parameter estimates by source for each season by latitude band, for JJA (left column) and DJF (right column). (a) JJA and (b) DJF

for ν̂T , (c) JJA and (d) DJF for ν̂P , and (e) JJA and (f) DJF for ρ̂.

and DJF. Both coefficients are probably biased upward some-

what, a conclusion based on a simulation study of the parsi-

monious bivariate Matérn model (Apanasovich et al., 2012).

Where we fix the spatial scale and allow both smoothness co-

efficients to be fitted, Kleiber and Nychka (2012) fixed both

temperature smoothness and precipitation smoothness values

to 2.0, consistent with the range of values estimated here.

However, the specific values are not our principle interest,

but rather the comparison between estimates for GCMs and

those for observational proxies. With that in mind, GCMs

tend to predict less smooth fields for both temperature and

precipitation in the tropics and also for southern mid-latitude

summer (DJF).

4.5 Co-located cross-correlation, ρ

Estimates for the co-located cross-correlation parameter be-

tween precipitation and temperature fields are given in Fig. 8i

and j, and for GCM-specific plots in Fig. 10e and f. Values

for proxy data and models agree very well for high-latitude

regions in both seasons. Only GEOS and HAD fail to cap-

ture the correct sign for this latitude band. Equatorial regions

have good agreement in JJA and fair agreement for DJF. All

GCMs tend to predict negative correlations over land for both

seasons except high-latitude winter. Observational proxies

differ most dramatically from the GCM predictions for mid-

latitudes, especially during winter (DJF for Mid-N and JJA

for Mid-S). Of the models considered, only a few generate

positive correlations in mid-latitudes: BCC, GEMS, HAD,

MIROC and, to a limited extent, GFDL and MPI.

Maps of these correlation estimates are shown for obser-

vational proxy data and two GCMs (GFDL and NCAR) in
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Figure 11. Correlation coefficient maps: (a) JJA and (b) DJF for NCEP/GPCP, (c) JJA and (d) DJF for GFDL, and (e) JJA and (f) DJF for

NCAR.

Fig. 11. The maps of these, plus the other six GCMs’ cor-

relation estimates are shown in Figs. S1, S2, and S3 of the

Supplement. Most GCMs agree with proxy data for both JJA

and DJF for Alaska (ALA), northern Europe (NEU), north-

ern Asia (NAS), Southeast Asia (SEA), Sahara (SAH), Aus-

tralia (AUS), and India (SAS). The Mediterranean (MED),

Caspian (CAS), and Amazon (AMZ) agree only for JJA, but

not DJF. The remaining regions, including ocean regions, do

not match well between models and observational proxies.

The values for the maps in Fig. 11 may be visualized by

comparing temperature residuals and precipitation residuals

from pairs of maps from Fig. 6 or 7. Consider, for exam-

ple, the Greenland region (GRL) for GFDL DJF, Fig. 11d,

which has positive temperature residuals (Fig. 7a) where its

precipitation residuals are also positive (Fig. 7b) and negative

temperature residuals where its precipitation residuals are

negative, indicating a positive spatial cross-correlation. Note

though that the corresponding case of observation proxies for

DJF (Fig. 7c, d) leads to a small negative cross-correlation for

the GRL region due to the competing effects of same-sign

residuals with opposite-sign residuals (including a few large

residuals which have actual values beyond those plotted, but

marked with an “X”). Many of the pixel pairs in this region

indicate positive cross-correlations, but there are pixel pairs

– in Saskatchewan, in the southern tip of Greenland, in the

northern half of Qaasuitsup, and eastern Baffin Island – that
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appear negatively correlated. The net result is a small nega-

tive spatial cross-correlation for this region, indicated by the

negative (blue) region in Fig. 11b. These values are tabulated

in Table S5.

4.6 Correlation length, 1/a

Finally, the estimated correlation length, which is con-

strained to be the same for both fields’ covariance as well

as the cross-covariance function, ranges from about 200 to

2000 km (see Figs. 8k and l and 9e and f), which is some-

what smaller than North et al. (2011) reports, but comparable

to values from Jun (2011).

5 Discussion

We present an approach for statistical models of the joint

distribution of temperature and precipitation accounting for

spatial dependence structure. Using a parsimonious bivariate

covariance model, we compute spatial coefficients describing

variation and smoothness for each field individually, as well

as spatial scale and co-located correlation between the fields.

Our results generally agree with previous work with sev-

eral notable exceptions. Temperature variance increases with

latitude in boreal winter while remaining small in summer;

GCMs track these well, though with some tendency to over-

estimate the variance of reanalysis data. Precipitation vari-

ance decreases with increasing latitude and GCMs match ob-

served values well except for southern mid-latitudes. For DJF

GPCP data, precipitation variance seems to increase slightly

with latitude, but decreases with latitude for GCMs. It is not

clear for any latitude band or season that GCMs consistently

underestimate or overestimate this variance. Smoothness es-

timates for temperature fields tend to be smaller than cor-

responding smoothness estimates for precipitation, and both

tend to decrease with increasing latitude. Observational prox-

ies, particularly in the tropics, tend to have a wider range,

and smoother fields, than GCMs. Smoothness estimates for

precipitation are almost entirely larger than those for temper-

ature, both for proxies and all models collectively. For high

latitudes, GCMs are collectively estimated to have about the

same smoothness for precipitation and temperature. Overall,

GCMs tend to predict smoothness coefficients near those pre-

dicted by observation proxies except in the tropics, where

GCMs tend to predict less smooth fields for both tempera-

ture and precipitation.

Co-located cross-correlations from GCMs largely agree

among models but differ from estimates from observation

proxies in many regions, particularly in equatorial and mid-

latitude zones. Temporal correlations are sensitive to any

mean, seasonal variation, or trend that may not have been

fully removed and, to some extent, this is true for spatial cor-

relation estimates, though we have worked hard to minimize

this. Since the aim of this study is to validate GCMs against

observational proxy data, having the “right” mean structure

model is not the dominant concern, but rather the consistent

application across all GCMs and proxy data. Given this per-

spective, it is clear that GCMs are not fully consistent with

one another or with proxies, except for a few regions. Ex-

ploration of this aspect of this modeling effort deserves addi-

tional attention, as well as a more complete treatment of all

ocean regions.

To improve the latitudinal resolution and minimize the ef-

fects of specific mean structure filters, it may be possible to

redefine spatial regions to smaller, more geographically ap-

propriate areas, but only as GCM model resolution grows.

Using some form of non-stationary covariance formulation

would be a more elegant way than regional “chunking” to

address this problem.

Several parameter estimates for equatorial zones show dif-

ferences between JJA and DJF, notably σT andσP , but also

the smoothness coefficients, νT ,νP , and possibly the cross-

correlation, ρ. While this may be due to noise, we think

that because there are significant annual cycles in the trop-

ics (Xie, 1994; DeWitt and Schneider, 2010; Yu et al., 2013)

and the fact that we consider land-only regions, it seems

likely that annual temperature and precipitation effects may

arise. We are not aware of any work specifically on land-

only equatorial-region annual cycle effects, but our statistical

method identifies these.

Finally, the statistical methods used here for two fields can

be naturally extended to multivariate climate variables, for

example, to quantify the cross-correlations of more than two

variables, accounting for their spatial dependence.
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Appendix A: Details on maximum likelihood

estimation

Once the mean structure from each field (cube-root precip-

itation or temperature) is subtracted separately as done in

Sect. 3.1, we assume that the residuals are a joint Gaus-

sian random variable. Each variable is assumed to have

a zero mean. Let {s1, . . .,sn} denote the location of grid

points on a particular local region. Then, we have Z=

(ZT ,ZP )∼N2n(0,6(θ )), with Zj = (Zj (s1), . . .,Zj (sn)),

j = T or P , 6, a 2n× 2n covariance matrix, and θ =

(σT ,σP ,a,νT ,νP ,ρ) the vector of covariance parameters.

Here, Np denotes the p dimensional multivariate Gaussian

random variable.

6 =

(
6T T 6T P
6TT P 6PP

)
, (A1)

where elements of 6T T and 6PP are given by Eq. (3) and

those of 6T P are given by Eq. (4).

The log-likelihood function,

log(L(θ ))=−
2n

2
log(2π )−

1

2
det(6(θ ))−Z6−1(θ )ZT , (A2)

is maximized at θ̂ , which gives the estimates for the pa-

rameters. Practically, the negative log-likelihood function

is minimized numerically using the R function optim()

(R Core Team, http://www.R-project.org/). To automate this

process, simulated annealing was used to explore the param-

eter space, followed by the quasi-Newton algorithm Nelder–

Mead, which computes the Hessian matrix, from which

asymptotic errors were computed for each parameter esti-

mate.

In general, the Hessian matrix is defined as

Hi,j =
∂2L(θ )

∂θi∂θj
(A3)

and the Fisher information matrix,

I(θ )i,j =−E
[
Hi,j

]
, (A4)

which, when evaluated at θ̂ , gives the asymptotic variance

of θ̂ ,

var(θ̂ )= [I(θ̂ )]−1. (A5)

Practically, the Nelder–Mead algorithm returns the ob-

served Fisher information, so the asymptotic standard errors

are obtained by computing the square root of the diagonal

elements of its inverse.
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