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Abstract. Atmospheric rivers (ARs) are large, spatially coherent weather systems with high concentrations

of elevated water vapor. These systems often cause severe downpours and flooding over the western coastal

United States – and with the availability of more atmospheric moisture in the future under global warming we

expect ARs to play an important role as potential causes of extreme precipitation changes. Therefore, we aim

to investigate changes in extreme precipitation properties correlated with AR events in a warmer climate, which

are large-scale meteorological patterns affecting the weather and climate of California.

We have recently developed the TECA (Toolkit for Extreme Climate Analysis) software for automatically

identifying and tracking features in climate data sets. Specifically, we can now identify ARs that make landfall

on the western coast of North America. Based on this detection procedure, we can investigate the impact of ARs

by exploring the spatial extent of AR precipitation using climate model (CMIP5) simulations and characterize

spatial patterns of dependence for future projections between AR precipitation extremes under climate change

within the statistical framework. Our results show that AR events in the future RCP (Representative Concentra-

tion Pathway)8.5 scenario (2076–2100) tend to produce heavier rainfall with higher frequency and longer days

than events from the historical run (1981–2005). We also find that the dependence between extreme precipitation

events has a shorter spatial range, within localized areas in California, under the high future emissions scenario

than under the historical run.

1 Introduction

Atmospheric rivers (ARs) are narrow bands of elevated tro-

pospheric water vapor that are thousands of kilometers long

and hundreds of kilometers wide. ARs have generated recent

interest because they have been proven capable of produc-

ing extreme precipitation and flood damage over the western

coastal United States. Ralph et al. (2005) define ARs in Cali-

fornia as containing high amounts of water vapor and strong

winds that force this vapor to higher altitudes in coastal or

mountainous terrain resulting in heavy precipitation. Atmo-

spheric rivers often result in extreme winds and precipitation.

For instance, Ralph et al. (2006) document a specific AR

event that produced more than 10 in. of rainfall in 2 days and

caused extensive flooding near the Russian River in northern

California. One particularly damaging class of ARs, popu-

larly called the “pineapple express” has been implicated in

several recent major storms along the west coast of the US

(Dettinger, 2004; Neiman et al., 2008; Dettinger, 2011).

In order to collect statistics on AR events, we implemented

a pattern detection scheme in TECA (Toolkit for Extreme

Climate Analysis) (Prabhat et al., 2012; Byna et al., 2011).

Using high performance computing platforms, TECA en-

ables efficient extraction of climate patterns in large data

archives such as those generated by the Coupled Model Inter-

comparison Project Phase 5 (CMIP5). In this paper, we im-

plemented the AR detection procedure described by existing

literature (Ralph et al., 2004; Neiman et al., 2008; Wick et al.,

2013) and applied it to historical and future simulations in

CMIP5. The detection results presented in Wick et al. (2013)

are fairly convincing, and we did not feel the necessity to

innovate further on the detection procedure. Instead, we fo-

Published by Copernicus Publications.



46 S. Jeon et al.: Characterization of extreme precipitation within atmospheric river events over California

cused on the large-scale application of the existing technique

in TECA and on the characterization of the extreme precipi-

tation resulting from the simulated ARs.

There are relatively few studies concerning the spatial

variability of precipitation caused by the landfall of ARs and

the impact of ARs on extreme precipitation under a changing

climate. Leung and Qian (2009) investigated the influence

of ARs with respect to the spatial distribution of precipita-

tion for two events, Presidents’ Day (US) in 1986 and New

Year’s Day in 1997, when AR precipitation anomalies were

observed. Rutz et al. (2014) analyzed the spatial distribution

of AR duration, AR frequency, and fraction of precipitation

from land-falling ARs along the west coast of the United

States. Precipitation extremes in the CMIP5 ensemble in-

crease for some regions with global warming, and the return

periods of extreme precipitation events become shorter under

the higher radiative forcing scenarios by the end of the 21st

century, but the pattern of changes in extreme precipitation

properties varies with different regions and different models

(Sillmann et al., 2013b; Kharin et al., 2013). One might ex-

pect that the frequency and intensity of ARs would change

with the increasing atmospheric moisture caused by global

warming. In this study, our extreme precipitation metric is

the AR version of R× 1 day. This CMIP5 ensemble aver-

age of this field over California increases, particularly in the

northern and central portion of the state under CMIP5. North

American decreases in the indices by Sillmann et al. (2013b)

are more prominent in the dry subtropics and are especially

apparent in Mexico. Along these lines, Dettinger (2011) in-

vestigated seven global circulation models (GCMs) for his-

torical and future climate simulations and showed that AR

storms in California become more frequent and more severe

under a warming (A2 emissions) scenario in the future pro-

jections. Lavers et al. (2013) recently analyzed the projected

AR changes in five CMIP5 GCMs for the RCP (Represen-

tative Concentration Pathway)8.5 (high emissions) scenario

and showed that future Atlantic ARs exhibit increased water

vapor with a higher risk of heavy rainfall in Britain.

Climate extremes can be analyzed via a specific statisti-

cal theory, the so-called extreme value theory, to quantify

the distribution of extreme values (e.g., annual maximum,

annual minimum, or excesses over high thresholds) and the

probability of the rare events (e.g., Coles, 2001). General-

ized extreme value (GEV) and peaks-over-threshold (POT)

techniques have been successfully applied to extreme meteo-

rological events to analyze the return values of extreme tem-

perature or precipitation events (Kharin et al., 2007; Coelho

et al., 2008; Kharin et al., 2013; Wehner, 2013). Statistical

methods (in particular point process approaches) based on

extreme value analysis have also been applied to the charac-

terization of trends in hot spells and heat waves (Furrer et al.,

2010).

In spatial extreme value analysis, multivariate extreme

value theory analyzes the dependence of extremes at mul-

tiple locations. Max-stable processes (in the framework of

stochastic processes) have been applied to model joint dis-

tribution of spatial extremes and their dependence (de Haan,

1984, Smith, unpublished data). Cooley et al. (2006) devel-

oped an estimator to measure the degree of spatial depen-

dence between extremes at two locations. In another study by

Bernard et al. (2013), heavy rainfall in France was spatially

clustered based on the measurement of spatial dependence.

Weller et al. (2012) investigated the tail dependence in daily

precipitation between reanalysis output and observations of

pineapple express events using bivariate extreme value the-

ory.

The novel aspects of our study follow from the statistical

analysis of extreme precipitation associated with ARs using

a concept of a spatial dependence structure. Here, we quan-

tify spatial extremal dependence to analyze extreme precipi-

tation events caused by ARs associated with large-scale co-

herent weather systems, focusing on the California region.

This study provides detailed characterizations of changes in

AR properties and the spatial dependence of extreme rainfall

under AR conditions in projections of future climate change.

Our principal motivation behind this study is to better un-

derstand the characteristics of extreme precipitation in ARs

in a warming scenario. As the physical mechanisms causing

different types of storms differ, it can be expected that their

statistical descriptions will differ as well. In Sect. 2, we in-

troduce the framework of TECA developed at the Lawrence

Berkeley National Laboratory as an AR identifier, describe

our methodology for spatial extreme value analysis, and in-

troduce our metric of spatial dependence. We focus on the

characterization of spatial properties in extreme precipita-

tion from ARs identified in ensembles of climate simula-

tions from CMIP5. Section 3 discusses overall trends in AR

events and extreme precipitation, as well as the results from

the analysis of spatial dependence between precipitation ex-

tremes during AR events. Our conclusions and further dis-

cussion are presented in Sect. 4.

2 Methodologies

2.1 Characteristics of atmospheric rivers

ARs play a prominent role in the climatology of inland pre-

cipitation over the western United States. Ralph et al. (2005)

investigated the structure of AR events over the eastern Pa-

cific Ocean using dropsonde observations. ARs are typically

2000 or more kilometers long and a few hundred kilome-

ters wide, and the integrated water vapor (IWV) in the at-

mosphere during AR events is greater than 20 mm, produc-

ing heavy rainfall; for example > 250 mm of rain in 60 h

for a storm in February 2004 in northern California (Ralph

et al., 2006; Neiman et al., 2008). Warner et al. (2012) used

National Climate Data Center (NCDC) daily precipitation

observations for 1950–2009 to investigate the top 50 storm

events in 2-day precipitation at six coastal stations (a total

of 207 events in the top 50 from 60 years and multiple sta-

Adv. Stat. Clim. Meteorol. Oceanogr., 1, 45–57, 2015 www.adv-stat-clim-meteorol-oceanogr.net/1/45/2015/



S. Jeon et al.: Characterization of extreme precipitation within atmospheric river events over California 47

Figure 1. Total daily precipitable water (prw) field (in kg m−2) from a sample of the CCSM4 model output. It shows a typical AR that

originated at the tropical region near Hawaii as it reaches the western coast of the US and is identified by the TECA detection procedure.

tions) along the Pacific northwest coast. From NCEP–NCAR

reanalysis data in Warner et al. (2012), most events are asso-

ciated with ARs and the extreme precipitation events typi-

cally occur in November, December, and January, producing

heavy rainfall for the periods from 16 to 86 h. Payne and

Magnusdottir (2014) characterized landfalling ARs along

the west coast of North America for the extended win-

ter (November–March) during 1979–2011 using Modern-

Era Retrospective Analysis for Research and Applications

(MERRA) reanalysis data. The largest number of landfalling

AR dates during the season occur in November (6.1 days,

averaged for total dates of the month), December (5.8 days),

and January (5.2 days). The most intense landfalling dates

occur in November (302.3 kg m−1 s−1, peak daily moisture

flux), with less intense AR dates later in the extended win-

ter over the western coastline of North America. Rutz et al.

(2014) indicates that AR-related precipitation is strongly in-

fluenced by three factors: climatological characteristics of

ARs along the US west coast, water vapor depletion over

high mountain barriers, and increase in surface elevation and

decrease in pressure. Lavers et al. (2012) used atmospheric

reanalysis products for the detection of ARs, and linked the

steep slopes of basins and basin orientation to the high pre-

cipitation delivered by the ARs. Lundquist et al. (2010) dis-

cussed the formation of sierra barrier jets (SBJ) when the at-

mospheric flow is steered to be roughly parallel to the moun-

tain range.

2.2 Detection of atmospheric rivers

Our AR detection code (described in detail in Byna et al.,

2011) utilizes the following scheme for detecting ARs. We

first compute a 2-D total-column-integrated precipitable wa-

ter (prw) field by performing a vertical integral on the spe-

cific humidity (hus) field. The vertical integral of hus was

performed over all of the prescribed standard output pressure

layers as daily average values of prw were not part of the

CMIP5 protocols. The integration was done for the full ver-

tical extent of the modeled atmospheres, but any levels above

the tropopause contribute very little to prw. The integration

is performed on daily data, and the detections are reported

on a daily basis as well. We tracked AR only over the north-

ern Pacific Ocean region in order to focus our analysis on

ARs that intersect with the California coastline. Following

the definition of the physical features of an AR (Ralph et al.,

2004; Neiman et al., 2008), we conduct a thresholding op-

eration for identifying all grid points with prw> 2 cm, the

threshold taken from existing literature. We then use a con-

nected component labeling algorithm to find all of the con-

nected regions of grid points satisfying this criterion for ele-

vated precipitable water. Our implementation of connected

component labeling is based on a two-pass algorithm de-

scribed in Wu et al. (2009) and Byna et al. (2011). Finally,

we apply geometric constraints to the resulting merged poly-

gons (connected components), which represent a set of can-

didate atmospheric rivers. These geometric constraints trace

prw from a departure point from the tropics (at the west side

of the feature) to the intersection with the west coast of North

America. Hence, the ARs considered in this study are a sub-

set of all possible ARs across the globe. For all the polygons

satisfying these origination and termination conditions, we

first construct a medial axis, then compute the length par-

allel and width perpendicular to this axis, and finally check

whether the length of the AR> 2000 km and if the width of

the AR< 1000 km. If a polygon satisfies all of these geomet-

ric constraints, we identify it as an atmospheric river and note

the date of the occurrence. In Fig. 1, we show a sample AR

event detected in the CCSM4 model data (highlighted in the

red box) using the AR detection code of TECA. The AR is

identified on the simulated date of 17 December 2005, where

the landfall points of the AR are (29.686◦ N, 125.000◦W)

and (44.764◦ N, 126.250◦W) in the latitude and longitude

www.adv-stat-clim-meteorol-oceanogr.net/1/45/2015/ Adv. Stat. Clim. Meteorol. Oceanogr., 1, 45–57, 2015



48 S. Jeon et al.: Characterization of extreme precipitation within atmospheric river events over California

Table 1. The CMIP5 models, modeling groups, and ensemble member(s) used for historical (1981–2005) and RCP8.5 runs (2076–2100) in

the study.

Number Model Modeling group Ensemble runs

1 CanESM2 Canadian Centre for Climate Modelling and Analysis 4

2 CCSM4 National Center for Atmospheric Research 1

3 GFDL-ESM2M NOAA Geophysical Fluid Dynamics Laboratory 1

4 IPSL-CM5A-LR Institut Pierre-Simon Laplace 4

5 IPSL-CM5A-MR Institut Pierre-Simon Laplace 1

6 MIROC5 AORI (Atmosphere and Ocean Research Institute), 2

NIES (National Institute for Environmental Studies),

JAMSTEC (Japan Agency for Marine-Earth Science and Technology), Japan

7 MIROC-ESM-CHEM AORI (Atmosphere and Ocean Research Institute), 1

NIES (National Institute for Environmental Studies),

JAMSTEC (Japan Agency for Marine-Earth Science and Technology), Japan

8 MPI-ESM-LR Max Planck Institute for Meteorology 3

9 MRI-CGCM3 Meteorological Research Institute 1

10 NorESM1-M Norwegian Climate Centre 1

Totals 19

coordinates, the width of the AR is 657.713 km, and the

length of the AR is 7529.872 km. All further processing con-

siders analysis of precipitation values in California for those

specific dates in which ARs are detected.

2.3 Data description

In this analysis, we consider two variables from CMIP5 mod-

els for the historical and RCP8.5 (the most aggressive warm-

ing scenario considered in the CMIP5) experiments: (1) daily

hus (the mass fraction of water vapor in moist air, in kg kg−1)

to obtain total prw by integrating hus in the vertical dimen-

sion over all available vertical model levels for AR detec-

tion; and (2) daily precipitation (pr, precipitation flux, in

kg m−2 s−1) to characterize spatial properties of heavy rain-

fall under AR events. These two variables were extracted

from the Earth System Grid Federation (ESGF) archive for

10 CMIP5 multi-models (listed in Table 1) with all available

ensemble members, which were used to account for the un-

certainty of each model experiment. For each model, pr was

regridded to a common grid of resolution 1.25◦× 0.94◦ to aid

in comparison. The performance of CMIP5 models in simu-

lating extreme precipitation from all types of storms is eval-

uated in more detail (Sillmann et al., 2013a; Kharin et al.,

2013). Langford et al. (2014) examined mean precipitation

variability in CMIP5 historical simulations for the California

region. The CMIP5 models simulate higher mean precipi-

tation on average than reanalysis data sets, and some mod-

els (IPSL-CM5B-LR, MRI-CGCM3, and GISS) show high

temporal variability on average in the winter months, when

a peak in precipitation typically occurs in the California re-

gion. Therefore, discrepancies between model and observa-

tions or their proxy products would need to be assessed care-

fully before usage by decision makers.

Our goal in this study is to explore how the frequency and

duration of ARs change in future, warmer climates together

with the resulting changes in the spatial properties of extreme

precipitation events. Changes in the statistics of AR events

and extreme precipitations are explored by comparing two

25-year time periods spanning 1981–2005 and 2076–2100.

Here, we use the calendar year from 1 January to 31 De-

cember and treat an AR event that bridges the new year as

the event in the year in which it starts. We focus on the oc-

currence of ARs in California and note that most AR events

in California occur in winter and spring. For selected grid

points in California, we take the maximum value from the

time series of daily precipitation only for the dates in which

ARs are detected within a given year and define this as the

annual maximum AR precipitation. In order to compare AR-

related extreme precipitation against overall extreme precip-

itation driven by all sources of events, we also compute the

annual maximum precipitation by taking the maximum value

from daily precipitation during the entire year at each grid

point.

2.4 Spatial extreme value analysis

We use spatial extreme value analysis to quantify the rela-

tionships between extreme events occurring at different loca-

tions on different days in the same year. Dependence between

extremes is affected by the geographic location. Spatial co-

variance structure is useful for modeling the dependence be-

tween spatially distributed variables where the correlations

are defined as a function of distance. Under a spatial analy-

sis framework, one can characterize dependence between ex-

tremes at two locations by making the modeling assumption

regarding the covariance structure (the details of the covari-

ance structure are be described later on). Spatial dependence
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structure in this study describes whether extremes at different

sites, which may occur from distinct ARs during the whole

time period, show more or less similarity when the sites are

physically close to or far apart from each other.

One appropriate statistical methodology for modeling spa-

tial extremes is the max-stable process approach. Max-stable

processes have been used to stochastically model the joint

distribution of extreme values at multiple sites (de Haan,

1984; Schlather, 2002; Kabluchko et al., 2009, Smith, un-

published data). The process works as follows: let X(si) de-

note a spatial process in which climate variables such as daily

precipitation are observed at locations si (i = 1, . . .,n) on a

spatial domain. Then, after suitable normalization of X(s),

the maximum of the normalized process, for example annual

or seasonal maximum precipitation, converges in probability

distribution to a process Y (s):

max
i=1,...,n

X(si)− bn(s)

an(s)
→ Y (s), (1)

and the limit process Y (s) is called a max-stable process. In

the max-stable modeling approach, spatial dependence can

be characterized by a covariance structure between spatial

processes at different locations, which is specified by a var-

iogram. The variogram is a function of distance between

(typically two) spatial locations and is commonly used for

modeling the spatial variance and correlation in geostatistics.

Here, we assume an isotropy of spatial processes and the var-

iogram function depends only on the distance of locations. In

the modeling procedure, the covariance structure (referred as

dependence structure) is modeled by fitting max-stable pro-

cesses with a parametric form of the variogram function (i.e.,

a function of parameters), and we estimate the parameters

of the variogram to maximize the likelihood of a max-stable

model for extreme events.

For example, Kabluchko et al. (2009) show how a class

of max-stable processes known as Brown–Resnick processes

can be used to model extreme phenomena at multiple loca-

tions by the Brownian stochastic process. For the Brown–

Resnick process with the dependence structure modeled by a

variogram γ , the bivariate probability distribution is formu-

lated as follows:

P (Y (s1)≤ y1,Y (s2)≤ y2)

= exp

{
−

1

y1

8

(√
γ (h)

2
+

1
√
γ (h)

log
y2

y1

)
−

1

y2

8

(√
γ (h)

2
+

1
√
γ (h)

log
y1

y2

)}
, (2)

where 8 is the standard normal distribution function, and h

is the Euclidean distance between locations s1 and s2. When

an exponential variogram, i.e., γ (h)= θ0(1−e−h/θ1 ), is used

in the process of fitting the max-stable model, we parameter-

ize the variogram function with two parameters: (1) θ0, the

sill parameter, describing the variance in the random field;

and (2) θ1, the range parameter, representing the range of de-

pendence.

An extremal coefficient provides numerical values in a

specific interval for the measurement of dependence between

extremes, while the estimation of variogram functions pro-

vide information on the covariance structure of spatial pro-

cesses for extremes. The extremal coefficient quantifies the

degree of spatial dependence for extremes at different lo-

cations and is based on the multivariate extreme value the-

ory (Schlather and Tawn, 2003). The pairwise extremal co-

efficient, widely used for expressing the dependence be-

tween a pair of extremes at two locations, takes values be-

tween 1 (complete dependence) and 2 (complete indepen-

dence). Smith (unpublished data) proposed a naive estimator

of the pairwise extremal coefficient. Cooley et al. (2006) and

Naveau et al. (2009) investigated a non-parametric approach

in characterizing the pairwise dependence among maxima.

In this study, we apply the approach by Cooley et al. (2006)

to assess pairwise dependence.

To summarize our methodology, we first identify those AR

events, via the TECA detection procedure, that make land-

fall in California in the CMIP5 simulations. We then char-

acterize the changes in total AR days and AR frequency by

comparing the intensity of extreme precipitation in present-

day and future runs conditioned on the occurrence of ARs.

We also characterize the spatial patterns of dependence for

future projections under climate change within the frame-

work of extreme value theory. For the application of spatial

tail dependence, we fit the Brown–Resnick max-stable pro-

cesses with a power law variogram, γ (h)= θ1 h
θ2 , and quan-

tify the dependence structure by estimating the parameters,

θ1 (range parameter) and θ2 (smoothing parameter, repre-

senting the smoothness of the variogram function). We also

estimate the extremal coefficients using the madogram es-

timator developed by Cooley et al. (2006) to determine the

pairwise dependence of extreme AR precipitation between a

focal point and other grid points. The analysis of spatial de-

pendence provides useful information of how extreme values

measured at different locations will be correlated spatially.

We can also find changes in spatial dependence between ex-

tremes induced by AR events in a changing climate, imply-

ing changes in spatial coherence of dependence structure be-

tween extremes within a warmer climate.

3 Results

3.1 Overall trend in atmospheric river events

We examine changes in the overall behavior of ARs using

CMIP5 multi-model ensemble simulations in a changing cli-

mate under the RCP8.5 emissions scenario. When an AR

satisfying the conditions – length and width of merged poly-

gons, and prw exceeding a certain threshold – is detected and

it overlaps any portion of the California region, we treat it as

an individual AR event. If the detected event lasts more than
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Figure 2. Boxplot summaries of annual values of atmospheric river

days (AR days, unit: days yr−1) for the California region from each

CMIP5 model during the 25 years, spanning 1981–2005 (blue box-

plot) and 2076–2100 under RCP8.5 (red boxplot). Blue and red tri-

angles represent the ensemble mean of AR days for the historical

and RCP8.5 runs, respectively.

1 day, it is counted as a single AR event. AR days (i.e., to-

tal days of ARs in a year) are counted for two 25-year time

periods. The boxplots of AR days for each model, including

multi-model ensemble means of AR days, are shown for his-

torical (blue) and RCP8.5 (red) runs in Fig. 2. Changes in the

median of the boxplots for each model represent the differ-

ences in the median in a warmer climate for the model. Only

IPSL-CM5A-MR shows a decrease (2 days yr−1) in AR days

while NorESM1-M shows the largest increase (17 days yr−1)

of AR days in a warmer scenario. Under the RCP8.5 scenario

in years 2076–2100, the ensemble mean of AR days shows

substantial increases – on average of 33 % – compared to his-

torical runs in years 1981–2005.

Figure 3 shows boxplots of the number of AR events in

historical (blue boxplot) and RCP8.5 (red boxplot) runs for

each model. AR frequencies (i.e., total AR events in a year)

also increase for all models within the RCP8.5 scenario by

the end of the 21st century, as indicated by median values of

boxplots. The NorESM1-M simulation projects the largest

change in the number of ARs with 19 events yr−1 for the

period 2076–2100 compared to 11 events yr−1 for the period

1981–2005, representing a 73 % increase in AR frequency.

Most models show 2–6 more AR events per year under the

RCP8.5 scenario than in the historical run.

Yearly statistics of ARs show ∼ 12–13 events between

2002 and 2010 from observations by AMSR-E (Advanced

Figure 3. Boxplot summaries of annual numbers of atmospheric

river events (AR frequency, unit: events yr−1) for the California re-

gion from each CMIP5 model during the 25 years, spanning 1981–

2005 (blue boxplot) and 2076–2100 under RCP8.5 (red boxplot).

Blue and red triangles represent the ensemble mean of AR counts

for the historical and RCP8.5 runs, respectively.

Microwave Scanning Radiometer) satellite data (Fig. 6 in

Byna et al., 2011). The ensemble mean of AR counts

(10.6 events yr−1) for historical run matches up well with the

statistics from the observational data, and the multi-model

ensembles show more frequent AR events (14.7 events yr−1,

average of 39 % increase) in the future under the RCP8.5 sce-

nario. In any case, to evaluate model performance in CMIP5

with more accurate detection of ARs, more comparisons of

climate simulations and observational data sets need to be

performed for consistent time periods. As shown in Figs. 2

and 3, AR events are consistently longer and more frequent

under the RCP8.5 scenario (2076–2100) than in the historical

run (1981–2005). Lavers et al. (2013) also showed that AR

frequency in the northern Atlantic has approximately dou-

bled under the RCP8.5 scenario for the period 2074–2099.

3.2 Characterization of spatial properties in extreme AR

precipitation

We turn now to the characterization of extreme precipita-

tion during ARs making landfall in California. Figure 4

shows boxplots of the annual maximum AR precipitation (in

mm day−1) for each of CMIP5’s historical and future RCP8.5

runs. The AR extreme precipitation increases as tempera-

ture increases for most of the models. The ensemble mean

of the annual maximum AR precipitation changes from 45.1
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Figure 4. Boxplot summaries of annual maximum AR precipitation

(unit: mm day−1) in California from each CMIP5 model, during the

25 years spanning 1981–2005 (blue boxplot) and 2076–2100 under

RCP8.5 (red boxplot). Blue and red triangles represent the ensemble

mean of AR precipitation extremes for the historical and RCP8.5

runs, respectively.

(blue triangle) to 51.3 mm day−1 (red triangle), showing a

14 % increase on average. However, the individual models

exhibit both increases and decreases. Five models (CCSM4,

IPSL-CM5A-LR, IPSL-CM5A-MR, MIROC-ESM-CHEM,

and NorESM1-M) show decreases while the other five mod-

els (CanESM2, GFDL-ESM2M, MIROC5, MPI-ESM-LR,

and MRI-CGCM3) show increases in median values of this

AR-related precipitation extreme.

Now we investigate changes in the spatial properties of

extreme precipitation associated with ARs in a warmer cli-

mate. To find spatial variability between AR extreme precipi-

tations, we summarize the ensemble means of maximum pre-

cipitation amounts within the AR events at each grid point.

Nine grid points on the common grid are selected among all

34 grid points in California (Fig. 5a) – to represent the spatial

pattern of the extreme precipitation throughout southern Cal-

ifornia (stations 2, 9, and 11), central California near sierras

(stations 16 and 18) and northern California (stations 23, 25,

29, and 31). In Fig. 5b, we show boxplots of overall maxi-

mum precipitation (i.e., annual maximum precipitation) ver-

sus maximum precipitation associated with AR events during

25-year time periods at nine grid points in California.

Increases in maximum precipitation during AR events are

consistent with a general pattern toward a warmer climate in

the region, but the amount of increases vary spatially – show-

ing relatively larger changes in the extreme rainfall amounts

Table 2. Multi-model ensemble means of range and smoothing pa-

rameter estimates, standard deviations, and 95 % confidence inter-

vals for parameters from modeling of Brown–Resnick processes.

Range parameter estimates decrease under the future RCP8.5 sce-

nario.

Historical period

Mean Standard 95 % confidence

deviation interval

Range, θ1 4.56 (1.39) (3.94, 5.18)

Smoothing, θ2 1.47 (0.23) (1.36, 1.57)

RCP8.5

Mean Standard 95 % confidence

deviation interval

Range, θ1 3.72 (1.19) (3.18, 4.25)

Smoothing, θ2 1.59 (0.27) (1.47, 1.71)

for northern California compared to those for southern Cali-

fornia. Figure 5b also illustrates the differences between ex-

treme precipitation amounts within AR and non-AR events

by grid point. We find that the median values for maximum

AR precipitation are always lower than those for annual max-

imum precipitation in both the historical and future RCP8.5

runs. This is an indication that the AR storms identified by

the TECA algorithm do not produce the most extreme pre-

cipitation events in the models. It is likely that extratropi-

cal cyclones, with cyclogenesis near the Aleutian Islands are

responsible for the highest annual daily precipitation totals

despite the fact that they are generally colder storms than are

ARs of tropical origins. This result may not hold for the aver-

ages of all storms in these two classes because of this temper-

ature difference. However, for extreme precipitation events,

dynamical considerations can be as important as the thermo-

dynamical. A more detailed analysis of the differences be-

tween storm types is outside the scope of this paper (Warner

et al., 2012; Grotjahn and Faure, 2008).

From fitting the Brown–Resnick max-stable process to

maximum AR precipitation, the range (θ1) and smoothing

(θ2) parameters in the power law variogram are estimated

from each CMIP5 model for modeling of the process, and the

ensemble means of those estimates, standard deviations, and

95 % confidence intervals for the parameters are shown in Ta-

ble 2. The range parameter estimates decrease in the RCP8.5

scenario relative to the present-day simulation, representing

less spatially correlated AR precipitation extremes in the fu-

ture. In other words, the distances over which AR extreme

precipitation amounts are correlated decreased, suggesting

that correlation between intense AR precipitation patterns are

reduced in size. However, the changes in range parameter

estimation are not statistically significant under a two-sided

permutation test at a 5 % significance level (p value= 0.051).

In Fig. 6, we illustrate changes in the spatial extent of

dependence between AR precipitation extremes from multi-
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Figure 5. (a) Grid points of CMIP5 models in California, USA, and (b) boxplot summaries of annual maximum precipitation (left pair of

box and whiskers at each indicated grid point) and maximum precipitation within AR events (right pair of box and whiskers at each indicated

grid point) during 25-year time periods at nine grid points in California. Blue and red boxplots represent the historical and RCP8.5 runs,

respectively, and the station numbers are used to identify grid points in red (a).
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Figure 6. Ensemble means of pairwise extremal coefficients of annual maximum AR precipitation from a focal grid point (black triangle;

grid locations 23, 16, and 9 from top to bottom) to other locations in California for CMIP5 multi-models. Changes are shown over two

25-year time periods – (a) 1981–2005 and (b) 2076-2100 – as well as (c) the difference.

model ensembles. Pairwise extremal coefficients (which

range from 1 to 2) are estimated between the black triangle

point and the other grid points and plotted with a color gradi-

ent for the grid points 23, 16, and 9 in Fig. 5a. The coefficient

is 1 (green) in the case of perfect dependence and increases

to 2 (tan–white) when two locations are completely indepen-

dent, i.e., not spatially correlated. Extremal coefficients from

the focal grid point to areas beyond the grid points are esti-

mated using kriging, a method of statistical interpolation, and

colors corresponding to the extremal coefficient estimates are

plotted all over the California region. Differences in the en-

semble average between the historical run (1981–2005) and

the future run (2076–2100) are illustrated in Fig. 6c. Blue

and red colors represent decreases (negative values in range

of −0.17 to 0) and increases (positive values in range of 0–

0.02) in spatial dependence under global warming, respec-

tively. The decreases (blue) in spatial dependence represent

AR precipitation extremes that are spatially less correlated

under the high future emissions scenario, while the increases

(red) represent more spatially correlated AR extreme precip-

itation than in the historical run.

The range of spatial dependence (green area) is concen-

trated within a smaller localized area in California for the fu-

ture under the highest emissions scenario than for the current

climate. In particular, the range of strong dependence from

a focal grid point in northern California to other points be-

comes narrower than the range of dependence from the focal

grid points in central or southern California under RCP8.5.

Though we arbitrarily selected three focal locations as rep-

resentative of the three regions of California, the decreas-

ing pattern of dependence range is true for other focal lo-

cations as well. The blue colors in the difference plots of

Fig. 6 show a less spatially correlated pattern of annual max-

imum AR precipitation between a focal grid point and other

grid points in California in a warming scenario. Small areas

of grid points near focal grid points show increases (i.e., red

colors in the difference plots of Fig. 6) in spatial dependence.

Therefore, we postulate that future extreme precipitation dur-

www.adv-stat-clim-meteorol-oceanogr.net/1/45/2015/ Adv. Stat. Clim. Meteorol. Oceanogr., 1, 45–57, 2015



54 S. Jeon et al.: Characterization of extreme precipitation within atmospheric river events over California

Figure 7. Lower ((a) for historical run and (c) RCP8.5 run) and upper bounds ((b) for historical run and (d) RCP8.5 run) of 95 % confidence

intervals for the ensemble means of pairwise extremal coefficients in Fig. 6 for CMIP5 multi-model ensembles. Black triangle points represent

the grid locations 23, 16, and 9 from top to bottom.

ing ARs will be less spatially correlated than in the current

climate. However, the negative changes in multi-model en-

semble means of spatial dependence are not statistically sig-

nificant at the 5 % significance level and the changes of de-

pendence pattern remain uncertain.

Figure 7 shows the lower and upper bounds of the 95 %

confidence interval for ensemble means of pairwise extremal

coefficients from both the historical and RCP8.5 runs. The

confidence interval to account for the uncertainty in point

estimation of extremal coefficients is obtained from 500

bootstrap samplings with all possible multi-model ensem-

ble members and time replication. The confidence interval

is narrower for areas near a focal location representing small

uncertainty, whereas the confidence interval is wider in dis-

tant areas from the focal grid point. Compared to the upper

bounds in Fig. 7, trends in decreases of spatial dependence

are more obvious at a focal grid point near northern Califor-

nia than near southern California.

To summarize pairwise spatial dependence visually over

the entire grid, we transform the extremal coefficients to the

values between 0 (complete independence) and 1 (complete

dependence) by a simple calculation. We propose an arbi-

trary value, 1.3, as a threshold of strong dependence, and

count the number of values with strong dependence (< 1.3)

at each grid point. The strong dependence (< 1.3) shows big-

ger changes which are easier to capture than mild depen-

dence, about 1.5, so the arbitrary threshold of 1.3 is chosen

as the value of strong dependence. The count takes the val-

ues between 0 and the number of grid points, not including

the focal grid point in the model. Then, we normalize the

count by the total number of points to attain the same scale

for all models and color the grid box based on the fraction, as

shown in Fig. 8. For example, the value 0 represents any lo-

cation that does not show strong dependence (relative to the

threshold) with the grid point in question. If the grid point

is strongly dependent for all other 33 locations (showing ex-

tremal coefficients smaller than 1.3), the fraction is 1.

Figure 8 shows color changes as more orangish, yellowish,

and yellowish green over the region, representing more inde-

pendent patterns among maximum AR precipitation within a

warmer climate. Specifically, the decreases (more orangish

and yellowish color in the warmer future) in spatial de-

pendence are obvious in northern California from multi-

model ensemble means. There are also some squares near
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Table 3. Summary: Change in atmospheric river properties from multi-model ensemble outputs under late 21st century RCP8.5 forcing

compared to the recent past (historical). There are increases in AR days, AR frequency, and heavy rainfall associated with ARs, while spatial

dependence between the annual maximum AR precipitation decreases in the future under a warming scenario. The 95 % confidence interval

(CI) is calculated for the difference in means (RCP8.5 run− historical run) of each AR property.

Historical (1981–2005) RCP8.5 (2076–2100) Changes (%) 95 % CI

AR days (days yr−1) 14.5 19.3 +33 (2.57,7.07)

AR frequency (events yr−1) 10.6 14.7 +39 (2.54,5.68)

AR precipitation extremes (mm day−1) 45.1 51.3 +14 (0.94,11.73)

Range of dependence (θ1) 4.6 3.7 −20 (−1.73, 0.04)

Figure 8. A summary of the changes in pairwise spatial dependence from (a) 1981–2005 to (b) 2076–2100 for multi-model ensemble

simulations. Discrete colors at each location represent the number of locations with strong dependence (i.e., extremal coefficient< 1.3). The

values in parenthesis at each color box represent lower and upper bounds of the 95 % confidence interval for the number of locations.

the coast and southern squares showing decreases (changes

from greenish to yellowish green color) under the RCP8.5

scenario. Based on a two-sample permutation test, this anal-

ysis provides statistically significant evidence of the changes

in ensemble mean of the number of locations showing strong

dependence (p value= 0.005). The values in parenthesis in

each color box in Fig. 8 represent the lower and upper bounds

of the 95 % confidence interval for the count of locations

showing strong dependence. The bounds of the interval rep-

resent the uncertainty in estimating the number of locations

related to strong dependence. Here, interpreting the upper

bound is more valuable than interpreting the lower bound,

as it provides a suggestion of possible limits of the values.

Upper bounds in the RCP8.5 scenario are also smaller than

those in the historical run in the northern California area.

4 Conclusions

We have studied the influence of ARs on the spatial coher-

ence of extreme precipitation under a changing climate. We

have detected AR events using the TECA framework and

investigated changes in properties of ARs such as total AR

days, frequency, intensity of precipitation extremes associ-

ated with ARs, and spatial dependence patterns of extreme

rainfall in multi-model ensemble means from CMIP5 sim-

ulations. A brief summary is provided in Table 3. We find

there are significant increases in AR days, AR frequency, and

occurrence of heavy rainfall under future RCP8.5 scenarios.

We show that the spatial dependence between extreme pre-

cipitations during ARs decreases in future, warmer climates.

Although future ARs produce more severe rainfall, different

AR events might bring extreme rainfall intensity that is less

spatially correlated under the warming scenario. However,

the changes in spatial dependence are not significant, which
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implies large uncertainty regarding the decreases of spatial

dependence between AR extreme precipitations from model

outputs.

Our current analysis remains preliminary due to the lim-

ited data availability from the CMIP5 models. More GCM

simulations need to be considered to characterize changes

in AR properties and the behavior of tail dependence

across models. Furthermore, simulated extreme precipitation

amounts from the relatively coarse horizontal resolutions of

the CMIP5 models are substantially lower than in the real

world (Wehner et al., 2014). Lavers et al. (2013) discussed

projected changes in ARs, suggesting that these changes are

thermodynamic responses to a warming climate from anthro-

pogenic radiative forcing. Further studies on the physical and

dynamical processes of ARs are necessary to better under-

stand the changes in these storms in warmer climate ARs as

well as in their impacts on California.
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