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Abstract. There is considerable demand for accurate air quality information in human health analyses. The spar-

sity of ground monitoring stations across the United States motivates the need for advanced statistical models to

predict air quality metrics, such as PM2.5, at unobserved sites. Remote sensing technologies have the potential

to expand our knowledge of PM2.5 spatial patterns beyond what we can predict from current PM2.5 monitoring

networks. Data from satellites have an additional advantage in not requiring extensive emission inventories nec-

essary for most atmospheric models that have been used in earlier data fusion models for air pollution. Statistical

models combining monitoring station data with satellite-obtained aerosol optical thickness (AOT), also referred

to as aerosol optical depth (AOD), have been proposed in the literature with varying levels of success in predict-

ing PM2.5. The benefit of using AOT is that satellites provide complete gridded spatial coverage. However, the

challenges involved with using it in fusion models are (1) the correlation between the two data sources varies

both in time and in space, (2) the data sources are temporally and spatially misaligned, and (3) there is extensive

missingness in the monitoring data and also in the satellite data due to cloud cover. We propose a hierarchical

autoregressive spatially varying coefficients model to jointly model the two data sources, which addresses the

foregoing challenges. Additionally, we offer formal model comparison for competing models in terms of model

fit and out of sample prediction of PM2.5. The models are applied to daily observations of PM2.5 and AOT

in the summer months of 2013 across the conterminous United States. Most notably, during this time period,

we find small in-sample improvement incorporating AOT into our autoregressive model but little out-of-sample

predictive improvement.

1 Introduction

Particulate matter (PM) in the atmosphere poses a danger-

ous public health risk worldwide with effects ranging from

reduced vision to respiratory and cardiovascular problems

(e.g., US Environmental Protection Agency, 2004; Pope III

and Dockery, 2006; Miller et al., 2007; Valavanidis et al.,

2008). It has been estimated that a reduction in PM in

metropolitan areas in the United States may increase over-

all life expectancy by as much as 15 % (Pope III et al., 2009).

Small PM, such as that with aerodynamic diameters less than

2.5 µg m−3 (PM2.5), has been shown to have high toxicity

(Valavanidis et al., 2008). New air quality regulations for

PM2.5 were put into effect by the US EPA in 1997. The EPA

designated Federal Reference Methods (FRMs) and Federal

Equivalent Methods (FEMs) are used to sample and analyze

PM2.5. In addition, the EPA worked with federal, state, local,

and tribal agencies to establish a network of ambient mass

monitoring methods nationwide.

Over the past decade, the demand for spatial models to

provide estimates of air quality for inputs in human health

analyses and to assess advances in air quality has grown

rapidly. Due to the spatial sparsity and varying monitoring

schedules of fine particulate monitoring stations, several is-
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sues, which rely on surface PM2.5 measurements, such as air

quality compliance, air quality trends, and daily air quality

indices, could benefit from improved spatial prediction of

PM2.5 in areas where PM2.5 is not observed. The use and

level of complexity of aerosol optical thickness (AOT), also

referred to as aerosol optical depth (AOD), in predicting sur-

face PM2.5 has steadily increased in recent years. Early ef-

forts focused solely on simple linear relationships (Wang

and Christopher, 2003; Engel-Cox et al., 2004), later ones

on multivariate regression (Al-Hamdan et al., 2009; Paciorek

and Liu, 2012; Kloog et al., 2011, 2014). Other investiga-

tors (Roy et al., 2007; van Donkelaar et al., 2012) use at-

mospheric model output such as the GEOS-Chem chemical

transport model and the Community Multi-Scale Air Quality

(CMAQ) model to develop empirical relationships between

AOD and PM2.5 and use them to calibrate observed AOD in

model-based prediction of PM2.5.

Of interest here is evaluation of the effectiveness of em-

ploying columnar measurements of AOT obtained using

passive satellite remote sensing in predicting PM2.5 over

the conterminous United States. The Geostationary Opera-

tional Environmental Satellite (GOES) Aerosols and Smoke

Product (GASP), the Moderate Resolution Imaging Spec-

troradiometer (MODIS) instrument on both NASA’s Terra

and Aqua satellites, and the Multi-angle Imaging Spectro-

radiometer (MISR) instrument, also on Terra, are custom-

ary sources of AOT data found in the literature. The Visi-

ble Infrared Imaging Radiometer Suite (VIIRS) instrument,

launched in October 2011 on board the Suomi National

Polar-orbiting Partnership satellite, a joint National Oceanic

and Atmospheric (NOAA)/NASA partnership, was designed

to provide continuity between the current MODIS instru-

ments and future VIIRS instruments.

The VIIRS data used for this analysis were obtained from

the NOAA Comprehensive Large Array-data Stewardship

System (CLASS) (Jackson et al., 2013). The Joint Polar

Satellite System Algorithm Engineering Review Board re-

leased the VIIRS Aerosol Optical Thickness Intermediate

Product (IP) and Environmental Data Record (EDR) to the

public with a validated stage 2 level maturity with an ef-

fective date of 23 January 20131 (Liu et al., 2014). The VI-

IRS AOT EDR data product has improved spatial resolution

over MODIS. The VIIRS AOT is derived from an aggrega-

tion of 8 m×8750 m IP pixels providing a final data product

at a 6 km spatial resolution versus the 10 km from MODIS,

both at nadir. Additionally, VIIRS, having a larger swath than

MODIS (3040 km versus 2330 km), has spatial resolution at

the edge of the swath of 12 km (2 times resolution at nadir),

whereas the resolution of MODIS is 40 km (4 times resolu-

tion at nadir).

1see http://www.nsof.class.noaa.gov/notification/pdfs/

VIIRSAerosolAOT_APSPEDRProvisionalReleaseReadme_

Final.docx for statement of maturity.

AOT satellite measurements have been shown to be a

proxy for surface PM2.5 with varying degrees of success. For

example, Liu et al. (2005) report a strong potential for satel-

lite remote sensing in air quality monitoring. Conversely, Pa-

ciorek and Liu (2009) found limited spatial association be-

tween the two data sources at daily, monthly average, and an-

nual average temporal resolutions. They conclude that AOT

provided little additional value in a model for monthly PM2.5

that already accounts for local emissions, meteorology, land

use, and regional variability.

One of the main advantages of estimating ground-level

PM2.5 using satellite AOT data is that satellites often pro-

vide spatial coverage over the entire domain of interest in

comparison to the relatively sparse point location monitoring

data. We would hope to enhance prediction of PM2.5 at re-

mote locations by conditioning on observed AOT. However,

there are many challenges to this approach. First, the strength

of relationship between the two data sources varies greatly in

both time and space primarily due to the vertical structure

of AOT. When the concentration of AOT is close to the sur-

face, the correlation between AOT and PM2.5 will tend to be

high; when the concentration of AOT is higher in the column,

the correlation between AOT and PM2.5 will be low. Specifi-

cally, correlation tends to be strongest on days with low cloud

cover, low relative humidity, and good vertical mixing within

the atmosphere (Al-Hamdan et al., 2009). Hoff and Christo-

pher (2009) provided a detailed discussion of the theoretical

relationship between AOT and PM2.5, along with a compre-

hensive summary of studies.

More recently, researchers have used Light Detection And

Ranging (lidar) measurements, an active remote sensing

technique, to provide additional insights into the relation-

ship between the vertical-resolved aerosol extinction coeffi-

cient and PM2.5. The aerosol extinction coefficient provides a

range-resolved measure at which pulses of light, from a lidar,

are attenuated due to presence (loading) of aerosols in the at-

mosphere. Toth et al. (2014) showed that aerosol particle dis-

tributions tend to be more concentrated near the surface in the

eastern contiguous United States and more diffuse vertically

in the western contiguous. They report that the near-surface-

integrated extinction measured by the Cloud–Aerosol Lidar

with Orthogonal Polarization (CALIOP) flown aboard the

Cloud–Aerosol Lidar and Infrared Pathfinder Satellite Ob-

servations (CALIPSO) is not representative of total column-

integrated extinction (AOT) and that the relationship varies

spatially. Additionally, they find that near-surface CALIOP

extinction is more highly correlated with ground-level PM2.5.

This suggests that it is necessary to have knowledge of the ra-

tio of near-surface-integrated extinction to column-integrated

AOT in order to effectively capture the utility of satellite

AOT as a proxy for surface PM2.5. Unfortunately, there are

fewer than 100 pairs of collocated CALIOP and PM2.5 ob-

servations. Very recently, localized measures of the vertical

structure of aerosols, using a fixed site lidar, showed that

the total height of the aerosols, referred to as the haze layer
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height, can be used to normalize AOT (Chu et al., 2015).

However, these results are very localized in both time and

space.

Extensive missing data in both data sources pose a second

challenge and missingness is not necessarily missing at ran-

dom (Kloog et al., 2014). For satellite data, the presence of

clouds within a pixel prevents a valid retrieval of AOT and

can also impact retrieval of AOT on adjacent pixels due to

the scattering from the clouds. As a result, the use of cloud

masks and quality control flags to avoid bias in AOT from

nearby clouds can result in a high percentage of missing AOT

data. Additionally, the data sources are spatially and tempo-

rally misaligned. That is, polar-orbiting satellites obtain AOT

data only once per day and the observations are the integral

of the atmospheric column. The AOT observations are re-

ported on areal grid cells of varying resolution depending on

the satellite and processing. By comparison, PM2.5 monitor-

ing stations are given at fixed point locations, and allow for

various temporal summaries of ground-level PM2.5.

Correlation between data sources has been shown to be

better, leading to improved out-of-sample prediction, when

modeling daily data versus data aggregated to monthly or

yearly scales (Paciorek and Liu, 2012). Using satellite and

monitoring station data for five southeastern states in the year

2003, Al-Hamdan et al. (2009) found that including meteo-

rological data with remote sensing data in a multiple regres-

sion model increases the amount of explained variation in

PM2.5. Lee et al. (2012) modeled daily PM2.5 data from 69

monitoring sites in the northeast for years 2000–2008 using a

linear model that regresses PM on 10 km resolution MODIS

satellite AOT with a day-specific coefficient for AOT. Out-of-

sample prediction is done using the fitted regression model

when AOT is observed. When missing, PM2.5 is predicted

using the daily average observed value for PM2.5 along with

a location-specific random effect based on a K-means ap-

proach.

Kloog et al. (2014) proposed models to predict daily

PM2.5 at high resolution (1 km×1 km) across the northeast-

ern United States using the Multi-Angle Implementation of

Atmosphere Correction (MAIAC) algorithm. MAIAC is a

MODIS satellite data processing algorithm that performs

aerosol retrievals and atmospheric correction over both dark

vegetated surfaces and bright deserts based on a time se-

ries analysis and image-based processing (Lyapustin et al.,

2011). Hu et al. (2014) proposed a two-stage model using

both MAIAC-Aqua and MAIAC-Terra AOT 1 km resolution

data for the southeastern United States in 2003. At the first

stage they fitted a multiple linear regression model with day-

specific intercept and coefficient for AOT and include land

use and meteorological data as covariates. At the second

stage they regress the residuals of PM2.5 from the first stage

onto location-specific intercept and coefficient for AOT that

are obtained via a geographical weighting function. Under

these multiple-stage models, it is unclear how or if error is

propagated through to the final estimates of PM2.5. There-

fore, uncertainty may be underestimated.

Van Donkelaar et al. (2012) improved upon the predic-

tion of daily ground-level PM2.5 using AOT and daily-

generated scale factors from the GEOS-Chem chemical

transport model. That is, they apply a linearly interpo-

lated simulation ratio of ground-level PM2.5 and AOT from

GEOS-Chem to the observed MODIS and MISR AOT to

get a satellite-driven PM2.5 estimate followed by a clima-

tological ground-based regional bias correction factor de-

rived from a comparison with surface-based PM2.5 monitor-

ing data. Their model is fitted to data obtained between the

years 2004 and 2009 across North America. Model perfor-

mance is evaluated using R2 values by day and by region.

Our contribution is to address some of the foregoing mod-

eling challenges in predicting daily PM2.5 and apply formal

model comparison across competing candidate models. We

propose a daily hierarchical autoregressive spatially varying

coefficients model to jointly predict, at point level, daily aver-

age PM2.5 for consecutive days across the contiguous United

States, using AOT obtained from VIIRS. The model encom-

passes several important features. First, due to the high de-

gree of temporal dependence between daily measurements of

PM2.5, we include an autoregressive term in the model. This

was motivated by exploratory data analysis of daily PM2.5

observations from 18 June to 9 July 2013. For these 22 con-

secutive days, we found correlation between PM2.5 on adja-

cent days ranging between 0.52 and 0.91. Second, since cor-

relation between PM2.5 and AOT varies both in time and in

space depending on the vertical structure of AOT, our model

employs a day-specific spatially varying intercept and coef-

ficient for AOT. Third, due to missingness in the daily AOT

surfaces, we define our model hierarchically such that there

is a model for AOT at the second level. This allows us to

implement simultaneous model-based imputation of AOT at

missing grid cells through connection to a model for PM2.5

defined conditionally on AOT. The hierarchical modeling

framework also ensures that we propagate uncertainty in our

estimates of AOT to uncertainty in our estimates of PM2.5.

Lastly, the model includes meteorology data as covariates

since variables such as temperature, wind, absolute humidity,

and precipitation have strong effects on the concentration of

PM2.5 and speciated-PM2.5 (Dawson et al., 2007). Moreover,

meteorology data have been shown to help explain the verti-

cal structure of AOT, and thus, strengthen the relationship be-

tween AOT and PM2.5 and improve prediction at unobserved

locations (Al-Hamdan et al., 2009; Zeeshan and Oanh, 2014;

Wang et al., 2013).

For model comparison, we consider competing submodels

nested within our model in terms of fit (in-sample) and pre-

diction (out-of-sample) of PM2.5. Specifically, we evaluate

the predictive benefit of spatially varying coefficients, autore-

gression, and, perhaps of most interest, AOT. To our knowl-

edge, there is no work in the literature that includes such ex-

tensive model comparison over so many days and over such
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a large region. Unfortunately, atmospheric numerical model

output from the CMAQ2 was not available for the subject

time period of this analysis. Thus, we are unable to offer any

comparison of fusion with AOT to fusion with CMAQ as de-

scribed in, e.g., Berrocal et al. (2012).

The remainder of this paper is structured as follows. In

Sect. 2 we describe the PM2.5 and VIIRS satellite-obtained

AOT data. In Sect. 3 we define our autoregressive spatially

varying coefficients model and methods for obtaining infer-

ence in a Bayesian framework. In Sect. 4, the model and

three nested submodels are compared based on both model

fit and out-of-sample prediction using daily PM2.5 and AOT

for 18 June–9 July 2013. We end with a summary and direc-

tions of future work in Sect. 5.

2 PM2.5 and AOT data

2.1 Monitoring station PM2.5 data

We obtain PM2.5 data from the Environmental Protection

Agency’s (EPA) Air Quality System (AQS) Datamart3,

which is a repository of ambient air quality data. In com-

parison with the FRM PM2.5 monitoring network4, the AQS

monitoring data provide a larger number and better spatial

distribution of daily monitoring sites to use in this evalua-

tion of daily PM2.5 prediction using AOT data. The AQS data

consist of continuous, hourly non-FRM PM2.5 observations

at 764 unique monitoring sites throughout the conterminous

United States to which we convert to daily averages. Moni-

toring locations tend to be concentrated in areas of high pop-

ulation density (see Fig. 1) leaving large spatial areas with

few or no observations. Prediction using just AQS data may

rely on observed PM2.5 hundreds of kilometers away. Addi-

tionally, there is missingness in observed PM2.5 from these

monitoring stations. For the summer months of 2013, be-

tween 4 and 8 % of monitoring stations are missing obser-

vations on a given day.

2.2 VIIRS satellite-obtained aerosol optical thickness

The VIIRS AOT data product used for this study is the

validated stage 2 level maturity EDR AOT available at the

National Oceanic and Atmospheric (NOAA) Comprehen-

sive Large Array-data Stewardship System (CLASS)5. VI-

IRS EDR AOT is produced at a 6 km×6 km resolution at

nadir and expands to ≈ 12.8 km×12.8 km at the edge of the

2CMAQ data can be obtained at https://www.cmascenter.org/

cmaq/.
3The EPA’s AQS PM2.5 data can be obtained at https://ofmext.

epa.gov/AQDMRS/aqdmrs.html.
4FRM PM2.5 data can be obtained at http://www.epa.gov/

ttnamti1/pmfrm.html.
5The VIIRS aerosol EDRs are available at http://www.nsof.

class.noaa.gov.
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Figure 1. The 764 monitoring station locations of PM2.5 within the

AQS repository for the summer months of 2013.

swath. For additional details on the VIIRS data products, in-

cluding the EDR AOT, see Jackson et al. (2013). AOT is

the degree to which particles (dust, smoke pollution) prevent

the transmission of light by absorption or scattering of light.

AOT is the vertical integral of the aerosol extinction coeffi-

cient, a summary of several different measures of the absorp-

tion of light in the entire column of the atmosphere. There-

fore, AOT tells us how much direct sunlight is prevented

from reaching the ground by these aerosol particles and can

be used to infer about air quality. AOT is a dimensionless

number typically between 0 and 1 where a value of 0.01 cor-

responds to an extremely clean atmosphere and a value of

0.4 corresponds to a very hazy condition. On a typical day,

average AOT across the United States ranges from 0.10 to

0.15.

The VIIRS satellite orbits the earth roughly once per hour,

producing swaths of AOT data for each orbit. The orbit oc-

curs at roughly 14:30 LT during daylight savings time and

13:30 LT during non-daylight savings time. On each day, the

conterminous United States is observed by the compilation of

three or four orbits of the satellite, depending on the orbiting

pattern. As seen in Fig. 2, there is some overlap between con-

secutive swaths to ensure that all locations on the globe are

observed. The daily satellite observations across the United

States are aggregated to 6km grid boxes from 64 0.75 km grid

boxes in an 8×8 square. The latitude and longitude are given

for the center of each of the grid boxes. Each swath is made

up of panels with dimension 96× 400. Unfortunately, these

panels and grid boxes change across days. We obtain daily

VIIRS satellite data for 22 consecutive days during the sum-

mer of 2013 from 18 June to 9 July. For uniformity across

days, we aggregate the data to a common 12 km lattice. We

average AOT values for grid boxes containing more than one

observation.
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Figure 2. Three swaths covering the continental United States on an illustrative summer day.
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Figure 3. AOT on 3 July 2013.

While polar-orbiting satellites produce one measurement

of AOT per day across the entire globe, a large number of

areal grid cell observations are flagged and removed through

a quality assurance protocol (Jackson et al., 2013). Reasons

for removal include poor atmospheric conditions, such as

dense clouds, or troubling land surface conditions, such as

snow, ice, or sand. The highest quality AOT data have the

most missing observations and missingness varies both spa-

tially and temporally. Illustratively, observed AOT across the

contiguous United States on 3 July 2013 is shown in Fig. 3

where white indicates missing AOT. Here, AOT was ob-

served at 64 % of the grid cells containing one of the 764

monitoring stations. Over the summer months in 2013, the

observation rate of AOT at grid cells containing monitoring

stations ranges from 45 to 83 % on a given day.

Figure 4 shows a scatter plot of PM2.5 and AOT on

3 July 2013 where the Spearman’s ρ correlation between the

two variables is 0.47. Daily correlation between PM2.5 and

AOT in the summer months is extremely variable from day

to day and ranges between −0.14 and 0.56.
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Figure 4. PM2.5 vs. AOT on 3 July 2013. Spearman’s ρ correla-

tion is 0.47, which was computed using the 522 monitoring station

locations that had both PM2.5 and AOT observed on that day.

3 An autoregressive spatial varying coefficient

model

The model for daily PM2.5 is specified on the log-scale,

i.e., daily PM2.5 is log-transformed. Additionally, AOT is

on the square-root scale. Normal Q–Q plots of the log-

transformation of PM2.5 and square root transformation of

AOT are shown for 4 days in the Appendix A1. Both trans-

formations result in slight derivations from normality but the

deviations are minimal and the transformations agree with

previous work in the literature (e.g., Berrocal et al., 2010 for

PM2.5, Paciorek and Liu, 2012 for AOD.)

We propose a hierarchical model for PM2.5 that incorpo-

rates randomness for AOT in order to impute missing satel-

lite data. That is, we do model-based imputation for missing

AOT in the context of a conditional model for PM2.5 given

AOT. Let N denote the fixed number of grid cells in the spa-

tial lattice for AOT. Then, we define the vector of observed

AOT on day t asAt = {A1,t , . . .,Ant ,t }, where nt is the num-

www.adv-stat-clim-meteorol-oceanogr.net/1/59/2015/ Adv. Stat. Clim. Meteorol. Oceanogr., 1, 59–74, 2015
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ber grid cells with AOT observations on day t . We model

AOT as

At =Mtθ t + ηt , (1)

where θ t is a vector length N from an intrinsic conditional

autoregressive model (IAR) (Besag et al., 1991), Mt is an

nt ×N indicator matrix for the observed AOT grid cells for

day t , and ηt is a vector of nt i.i.d. errors. Therefore,At |θ t ∼

N (Mtθ t ,σ
2
AInt ) where Int is a nt × nt identity matrix. The

IAR model for θ t is defined such that

θt,i |θ t,−i,κ ∼N

(
1

pi

∑
j :j∼i

θt,j ,
1

piκ

)
,

where j ∼ i denotes that cells j and i are neighbors, κ is a

precision parameter and pi is the number of neighbors for

grid cell i. We employ a neighborhood structure on the reg-

ular lattice such that neighbors are the adjacent and diagonal

grid cells. The neighborhood structure is constant over time.

Let Pt (s) denote the observation of PM2.5 at location s on

day t . Our most general model for Pt (s) is defined conditional

on Ai,t where s is in grid cell i. We employ an autoregres-

sive, spatially varying coefficient model for Pt (s). The AR(1)

model conditional on AOT for t = 1, . . .,T is defined as

Pt (s)=α0,t +β0,t (s)+ (α1,t +β1,t (s))Ai,t (2)

+Xt (s)γ + ρPt−1(s)+ εt (s).

Here, α0,t and α1,t are the global intercept and AOT co-

efficients for day t , Xt (s) is a vector of location and day-

specific meteorological covariates, γ is a vector of coeffi-

cients, β0,t (s) and β1,t (s) are spatially varying intercept and

AOT coefficients for day t , and εt (s) is i.i.d. (independent

and identically distributed) error.

Van Donkelaar et al. (2012) proposed a priori adjustments

to AOT that rely on additional sources of computer model

output to try to account for the variability in the vertical pro-

file of AOT. Here, the processes β0,t (s) and β1,t (s) offer a

data-driven approach to adjust for the spatiotemporal vari-

ability in the relationship between columnar AOT at areal

grid cells and ground-level PM2.5 concentrations at point lo-

cations.

If AOT is missing at grid cell i on day t , it is im-

puted within the Markov chain Monte Carlo (MCMC) using

Eqs. (1) and (2). To initiate Eq. (2) we must specify a model

for P0(s) in order to predict at unobserved locations. Thus,

for t = 0, we define

P0(s)=α0,0+β0,0(s)+ (α1,0(s)+β1,0(s))Ai,0 (3)

+X0(s)γ + ε0(s),

where α0,0, α1,0, β1,0(s), β0,0(s), Ai,0, and ε0(s) are analo-

gous to above.

The spatial processes, β0,t (s) and β1,t (s), are defined

through a linear model of co-regionalization. That is, for

t = 0, . . .,T[
β0,t (s)

β1,t (s)

]
=

[
C11 0

C21 C22

][
W0,t (s)

W1,t (s)

]
,

where W0,t (s) and W1,t (s) are independent mean 0 Gaus-

sian processes with exponential covariance functions and

day-specific spatial decay parameters φ0,t and φ1,t , re-

spectively. The diagonal elements of the lower-triangular

co-regionalization matrix, C11 and C22, are non-negative.

Lastly, the spatial processes are modeled independently in

time as we believe the autoregression will capture the major-

ity of the temporal dependence in the model.

The hierarchical model is fitted within the Bayesian frame-

work, enabling convenient Gibbs sampler loops for imputa-

tion. That is, we update the missing AOTs given the param-

eters and update the parameters given the missing and ob-

served AOTs. We assign prior distributions to all model pa-

rameters. When possible, conjugate, non-informative priors

are used. For t = 0, . . .,T , α0,t and α1,t are assigned inde-

pendent normal prior distributions with mean 0 and variance

104. The conjugate prior distribution for the meteorology co-

efficient vector γ is MVN(0,1000Ip), where p is the number

of covariates in the model.

The diagonal elements of the C matrix, C11 and C22, are

assigned independent, diffuse half-normal prior distributions

with parameter λ= 0.5, where the mean is 1/λ and variance

is (π − 2)/2λ2. The off-diagonal element, C21, is assigned a

diffuse mean 0 normal prior with variance 10. These three

parameters are updated in a block Metropolis–Hastings step.

The day-specific spatial decay parameters, φ0,t and φ1,t , are

assigned uniform prior distributions such that the effective

range is less than half the maximum distance. Locations are

given in easting and northing coordinates under the Albers

conic equal-area projection and distances are computed as

Euclidean. The maximum distance between location is 0.8

in Albers standard units. Both error terms, ηi,t and εt (s), are

i.i.d. normal random variables with mean 0 and variance pa-

rameters σ 2
A and σ 2

P , respectively. The variance parameters

σ 2
P and σ 2

A are each assigned IG(2,2) (inverse-gamma) prior

distributions. Lastly, the precision parameter κ is assigned

a Gamma(2,2) prior distribution. These are vague since the

priors for σ 2
P , σ 2

A, and 1/κ have infinite variance.

4 The application

The model is applied to data from 510 monitoring stations

located across the conterminous United States that have con-

secutive daily PM2.5 observations from 18 June to 9 July.

This region is spanned by N = 88 500 areal 12 km grid cells

of satellite-obtained AOT. The number of grid cells with ob-

served AOT, nt , ranges from 40 870 to 54 230. Meteorology

covariates included in the model are daily average temper-

ature and relative humidity obtained at the monitoring sta-
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tions6. Additionally, 209 monitoring stations are used for

out-of-sample prediction. The number of daily PM2.5 obser-

vations at these out-of-sample locations ranges from 172 to

203.

We compare our proposed Eq. (2) to three nested submod-

els, given in detail below. The three submodels are (1) an

autoregressive model with daily global intercept and daily

spatial-varying coefficients for AOT, (2) a non-autoregressive

daily spatially varying coefficients model, and (3) a daily

spatial-varying intercept autoregressive model without AOT.

We do not consider an autoregressive model with daily spa-

tially varying intercept rather with global daily slope, since

we have noted above that there is considerable spatial vari-

ability in the association between AOT and PM2.5.

Autoregressive model with daily global intercept and daily

spatially varying coefficient for AOT

Submodel (S1) is an autoregressive model with only one spa-

tially varying coefficient. Here, the day-specific intercept is

global and a spatially varying coefficient for AOT is em-

ployed to capture the spatially varying relationship between

PM2.5 and AOT. The model is written as

Pt (s)=α0,t + (α1,t +β1,t (s))Ai,t (4)

+Xt (s)γ + ρPt−1(s)+ εt (s).

The model for AOT is the same as in Eq. (1).

Non-autoregressive daily spatially varying coefficients

model

Submodel (S2) is non-autoregressive. That is, both intercept

and AOT coefficient are spatially varying and day-specific

but there is no temporal dynamics for PM2.5. The model is

written

Pt (s)=α0,t +β0,t (s)+ (α1,t +β1,t (s))Ai,t (5)

+Xt (s)γ + εt (s)

and is fitted analogously to the autoregressive model but with

ρ = 0.

Daily spatially varying intercept autoregressive model

without AOT

To assess the significance of AOT in our proposed model, we

consider a submodel (S3) without AOT. This model still has

a spatial random effect to capture the spatial heterogeneity in

PM2.5 as well as the autoregressive term. That is,

Pt (s)= α0,t +β0,t (s)+Xt (s)γ + ρPt−1(s)+ εt (s), (6)

where we drop the model for AOT given in Eq. (1).

6The meteorological data are reported by the EPA at the AQS

monitoring stations and can be obtained at http://aqsdr1.epa.gov/

aqsweb/aqstmp/airdata/download_files.html.
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Figure 5. Daily MSE for in-sample locations for 18 June–

9 July 2013 under the competing models (Eqs. 2–6).

4.1 Model comparison results

We obtain inference for all model parameters in the Bayesian

framework using MCMC and a hybrid Metropolis-within-

Gibbs algorithm. Additional details regarding the sampling

algorithm are included in Appendix A2. Each of the chains

are run for 30 000 iterations and the first 10 000 are discarded

as burn-in. We computed Monte Carlo standard errors using

the batch means procedure (Flegal et al., 2008) to assess con-

vergence of the chains.

We present the results comparing our proposed model

(Eq. 2) and the three submodels, (Eqs. 4–6). In-sample mean

square error (MSE) by day is given for the four models in

Fig. 5. Additionally, Fig. 6 reports the median absolute devi-

ation (MAD) by day for each of the four models where MAD

is computed on the original scale of the data (as opposed

to log-transformed). The spatial coefficients model (Eq. 2)

reports the lowest MSE and MAD across most days while

model (Eq. 6) is very similar. Equation (5) reports the high-

est MSE and MAD across all days.

We predict PM2.5 at the unobserved locations for all 22

days by drawing from the joint posterior predictive distribu-

tion. Daily R2 computed using the out-of-sample locations

under Eq. (2) ranges from 0.22 to 0.63. Figure 7 gives daily

median absolute prediction deviation (MAPD) for the 209

out-of-sample locations for each of the four models. Note

that MAPD is computed using only locations in which PM2.5

was observed for that given day. We also compare the mod-

els based on the continuous rank probability score (CRPS),

a strictly proper scoring rule that evaluates the concentration

of a predictive distribution for an observation around that ob-

servation (Gneiting and Raftery, 2007). Daily average CRPS

are given in Fig. 8. In terms of out-of-sample prediction,

Eqs. (2)–(6) are nearly indistinguishable. In terms of large

spatial scale dynamic prediction, this suggests that there may
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Figure 6. Daily MAD for in-sample locations for 18 June–

9 July 2013 under the competing models, (Eqs. 2–6), where MAD

is given in units of µg m−3.
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Figure 7. Daily MAPD for the out-of-sample locations under the

competing models.

be little benefit in using VIIRS satellite-obtained AOT when

predicting PM2.5.

4.2 Inference results

Focusing on Eq. (2), we investigate the variability in param-

eter estimates both temporally and spatially. The day-to-day

variability of the global intercept and AOT coefficient terms

are shown in Fig. 9. The solid line denotes the posterior mean

of the parameter and the dashed lines denote the upper and

lower quantities of the 90 % credible interval. The estimates

of the daily global coefficients of AOT are generally positive

indicating that PM2.5 is increasing with AOT, conditional on

the effects of the meteorology data and the previous day’s

PM2.5.

Spatial maps of the posterior mean estimates for α0+β0(s)

and α1+β1(s) for 3 consecutive days are shown in Fig. 10.
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Figure 8. Daily average CRPS for the out-of-sample locations un-

der the competing models.

These processes are capturing the spatial dependence in

PM2.5 and the spatially varying effect of AOT, respectively,

after accounting for the meteorological covariates and au-

toregression.

There do not appear to be any obvious temporal patterns

between consecutive days of either of the spatial processes;

this is likely captured by the autoregression. Also, the es-

timates of α1+β1 appear uniformly larger on 2 July 2013

than on either the previous or subsequent day.

The proportion of AOT coefficient estimates by day (left)

and across space (right) that are significantly different than 0

based on the 90 % credible interval are given in Fig. 11. Here,

we consider an estimate significantly different from 0 if the

90 % credible interval does not include 0. We note that here,

significance is determined marginally; we are not doing si-

multaneous inference. The daily proportion of locations hav-

ing coefficient estimates that are significantly different than

0 is heavily skewed and is between 0 and 0.84. There is un-

doubtedly spatial confounding between the spatial processes

β0 and β1. That is to say, the numerous days with few to no

locations having significant AOT coefficients does not mean

that the linear effect of AOT on PM2.5 is insignificant.

Equation (4) only has one spatial process resulting in

the proportion of β1 estimates that are significantly differ-

ent from 0 to be much larger (Fig. 12). Therefore, to cap-

ture the spatially varying significance of AOT, we compute

an adjusted estimate of the AOT coefficient under the pro-

posed spatial coefficients Eq. (2). First, notice that at time t ,

α0,t +β0,t (s)+ (α1,t +β1,t (s))Ai,t can be rewritten in vector

form as

1α0,t +β0,t +DA(1α1,t +β1,t ), (7)

where DA is an n× n diagonal matrix with the Ai,t ’s on the

diagonal. Equation (7) can be rewritten as

1α0,t +DA(D−1
A β0,t + 1α1,t +β1,t ), (8)
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Figure 9. Mean and 90 % credible interval by day for the (left) global intercept, α0, and (right) coefficient for AOT, α1, for Eq. (2).
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Figure 10. Posterior mean estimates of the coefficients, α0+β0(s) and α1+β1(s) for 3 consecutive days from Eq. (2).
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Figure 11. The proportion of α1+β1(s) estimates by day (left) and across space (right) that are significantly different than 0, i.e., 90 %

credible interval does not include 0, under Eq. (2).
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Figure 12. The proportion of α1+β1(s) estimates by day (left) and across space (right) that are significantly different than 0, i.e., 90 %

credible interval does not include 0, under Eq. (4).
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Figure 13. The proportion of pseudo-estimates by day (left) and across space (right) that are significantly different than 0.

where D−1
A β0,t + 1α1,t +β1,t is an adjusted estimate of

1α1,t+β1,t . We computed the posterior mean and 90 % cred-

ible interval for this adjusted parameter. The significance of

these estimates over time and space are shown in Fig. 13

where now the significance more closely resembles that from

Eq. (4). The daily proportion of significant estimates is be-

tween 0.23 and 0.63. Spatially, the midwest and central part

of the United States tend to have more days with significant

spatially varying adjusted estimates.

Posterior estimates and 90 % credible intervals for the re-

maining model parameters are given in Table 1. In general,

PM2.5 is increasing with average daily temperature and rela-

tive humidity although the effect of relative humidity is not

significant. The autocorrelation parameter is significant with

mean estimate 0.671 indicating that PM2.5 on day t − 1 is

very informative for PM2.5 on day t .

Illustratively, Figs. 14 and 15 give spatial maps of the

mean and standard deviation of the posterior predictive dis-

tribution of PM2.5 for 28 June and 3 July 2013, respectively.

On 28 June, with the exception of Florida, estimates of PM2.5

are higher in the southern half of the country than the north-

ern half. Standard deviations are higher in parts of Nevada,

North Dakota, and along the Atlantic coast in North Carolina

and Florida. The points on the map indicate the monitoring
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Figure 14. Mean and standard deviation estimates of the posterior predictive distribution of PM2.5 for 28 June 2013. The units of the mean

are given in µg m−3 whereas the standard deviation units are on the log-scale. The dots on the standard deviation map are the locations of

the monitoring stations for the observed data used in fitting the model.
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Figure 15. Mean and standard deviation estimates of the posterior predictive distribution of PM2.5 for 3 July 2013. The units of the mean

are given in µg m−3 whereas the standard deviation units are on the log-scale. The dots on the standard deviation map are the locations of

the monitoring stations for the observed data used in fitting the model.

Table 1. The posterior mean and 90 % credible interval for param-

eters.

Parameter Mean 90 % credible interval

γ1 4.03∗ (3.25∗, 4.92∗)

(avg. daily temp)

γ2 0.07∗ (−0.37∗, 0.51∗)

(avg. daily relative humidity)

ρ 0.671 (0.660, 0.682)

C11 0.405 (0.382, 0.435)

C21 −0.038 (−0.094, −0.003)

C22 0.098 (0.051, 0.184)

σ 2
P

0.035 (0.034, 0.037)

σ 2
A

0.325∗ (0.320∗, 0.330∗)

κ 27.92 (27.85, 27.99)

∗ denotes ×10−3.

stations used in model fitting, noting that the areas of ele-

vated uncertainty correspond to regions with few or no sta-

tions. On 3 July, the posterior mean surface of PM2.5 is quite

different from that on 28 June while the standard deviation

surface is quite similar. Here, estimates of PM2.5 are greater

than 10 µg m−3 in much of the central United States. A simi-

larity between the 2 days is that PM2.5 estimates are lower in

Washington than most of the country.

5 Summary and future work

A hierarchical autoregressive model with daily spatially

varying coefficients was employed to jointly model consec-

utive day average PM2.5 across the United States using AOT

data obtained from VIIRS, previous day PM2.5, and mete-

orological covariates. The model allows for missingness in

AOT data and carries out model-based imputation for AOT

at missing grid cells using a Gaussian Markov random field

(GMRF). Several submodels are considered for quantifying

any improvement in daily PM2.5 prediction using AOT ver-

sus predictions based solely on ground-monitoring data.

Our analyses show small in-sample improvement incor-

porating AOT into our autoregressive model for daily PM2.5

prediction during this time period, but little predictive out-of-

sample improvement. Paciorek and Liu (2009) found similar

results in that AOT does not improve the monthly and yearly

prediction of PM2.5. Thus, models without AOT perform al-

most as well as models that incorporate AOT.

www.adv-stat-clim-meteorol-oceanogr.net/1/59/2015/ Adv. Stat. Clim. Meteorol. Oceanogr., 1, 59–74, 2015
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We considered further modeling efforts involving multi-

ple sources of PM2.5 data. Daily FRM PM2.5 data showed

similar correlation levels with AOT as the continuous PM2.5

data. Thus, there seemed little to be gained by incorporating

another source of PM2.5 data. Further, the models proposed

here assume the independent error arises from the process

model and does not account for measurement error in PM2.5.

While the model could be modified to account for this ad-

ditional source of error, this would weaken the explanatory

power of the model. We believe that the predictive perfor-

mance of the models is not penalized by this simplification.

The significance of AOT in out-of-sample prediction may

be suppressed by the fact that AOT is a vertically and spa-

tially integrated measure while PM2.5 is observed at point lo-

cations and, hence, reflects small-scale variability. One might

expect more benefit from AOT when predicting PM2.5 at the

areal scale of the AOT data. Our objective here is point-level

prediction using AOT. Areal PM2.5 at continental scale with

more than 40 000 AOT grid cells presents a computation-

ally challenging upscaling problem. The spatial and temporal

misalignment between PM2.5 and AOT could also be a cause

for low correlation and insignificance of AOT. We are investi-

gating additional covariates, such as distance to nearest road,

that might further explain local variability of PM2.5 beyond

the meteorological variables currently being considered.

Capturing the vertical profile of AOT is a critical compo-

nent in evaluating the utility of AOT in predicting PM2.5. We

are exploring spatially and temporally varying adjustments

for AOT that utilize both computer model output and covari-

ate information about the vertical profile. It has been demon-

strated that physical measures from lidar, or the use of atmo-

spheric models, can be used to account for a portion of the

vertical structure. This may aid in the use of AOT to better

predict PM2.5 in the future (Toth et al., 2014; Zeeshan and

Oanh, 2014; Chu et al., 2015; Hutchison et al., 2008).

Due to the quality assurance protocol of AOT from VIIRS,

there is a lot of missing AOT data, which may also contribute

to the ineffectiveness of AOT in our model in terms of out-of-

sample prediction. Improvement in AOT retrieval algorithms,

particularly with regard to surface reflectivity, and improved

cloud screening may lead to lower levels of missingness in

the future. The GOES-R Advanced Baseline Imager (ABI)

scheduled to launch in March of 2016 will provide an AOD

data product at 2 km×2 km spatial resolution every minute of

the continental United States (Huff et al., 2012). The GOES-

R AOD will allow for hourly composites of AOD, which may

help alleviate the missingness of data as seen with the current

polar-orbiting instruments.

Adv. Stat. Clim. Meteorol. Oceanogr., 1, 59–74, 2015 www.adv-stat-clim-meteorol-oceanogr.net/1/59/2015/
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Figure A1. Normal Q–Q plots of the log-transformed PM2.5 on 4

consecutive days.

Appendix A

A1 Data transformations

Normal Q–Q plots of the log-transformation of PM2.5 and

square root transformation of AOT are shown for 4 days in

Figs. A1 and A2, respectively. Both figures seem to suggest a

slight derivation from normality although the deviations are

minimal and the transformations agree with previous work

in the literature (e.g., Berrocal et al., 2010; Paciorek and Liu,

2012).

A2 Posterior derivations

Full posterior inference is obtained using a hybrid

Metropolis-within-Gibbs sampler. Let Ãi,t denote AOD at

grid cell i on day t . This value is either observed such

that Ãi,t = Ai,t or is predicted within the algorithm. Then,

define Zt = [1,Ãt ] and Kt = [I,diag(Ãt )]. Additionally, let

αt = [αt,0,αt,1] and β t = [β t,0,β t,1].

The full conditional distributions are given in details be-

low.

– α0| ·MVN(U−1V,U−1),

where

U= Z′06
−1
P Z0+6

−1
α ,

V= Z′06
−1
P (P0−X0γ −K0β0),

6P = σ
2
P I, and 6α is the prior covariance matrix of α.

– For t = 1, . . .,T ,αt | ·MVN(U−1V,U−1),

Figure A2. Normal Q–Q plots of the square root-transformed AOT

on 4 consecutive days.

where

U= Z′t6
−1
P Zt +6

−1
α ,

V= Z′t6
−1
P (Pt −Xtγ −Ktβ t − ρPt−1).

– γ | ·MVN(U−1V,U−1),

where

U=

T∑
t=1

X′t6
−1
P Xt +6

−1
γ ,

V=X′06
−1
P (P0−Z0α0−K0β0)

+

T∑
t=1

X′t6
−1
P (Pt −Ztαt −Ktβ t − ρPt−1),

and 6γ is the prior covariance matrix of γ .

– β0| ·MVN(U−1V,U−1),

where

U=K′06
−1
P K0+6

−1
β0
,

V=K′06
−1
P (P0−Z0α0−X0γ ),

and 6β0
= [C⊗ I]

[
R0,0 0

0 R1,0

]
[C′⊗ I].

– For t = 1, . . .,T ,β t | ·MVN(U−1V,U−1),

www.adv-stat-clim-meteorol-oceanogr.net/1/59/2015/ Adv. Stat. Clim. Meteorol. Oceanogr., 1, 59–74, 2015
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where

U=K′t6
−1
P Kt +6

−1
βt
,

V=K′t6
−1
P (Pt −Ztαt −Xtγ − ρPt−1),

and 6βt = [C⊗ I]

[
R0,t 0

0 R1,t

]
[C′⊗ I].

– σ 2
P |· ∼ I.G.(aP +

(T+1)m
2

,

bP +
1
2

(P0−Z0α0−X0γ −K0β0)′

(P0−Z0α0−X0γ −K0β0)

+
1
2

∑T
t=1(Pt −Ztαt −Xtγ −Ktβ t − ρPt−1)′

(Pt −Ztαt −Xtγ −Ktβ t − ρPt−1)),

where m= number of monitoring stations.

– σ 2
A|· ∼ I.G.(aA+

∑T
t=0nt
2

,

bP +
1
2

∑T
t=0(At −Mtθ t )

′(At −Mtθ t )),

where nt is the number grid cells with AOD observa-

tions on day t .

– κ|· ∼ Gamma(aκ +
(T+1)N

2
,

bκ +
1
2

∑T
t=0θ

′
tQθ t ),

where Q is the second-order neighborhood matrix and

N denotes the fixed number of grid cells in the spatial

lattice for AOD.

– Sampling (φ0,t ,φ1,t ) for t = 0, . . .,T requires a

Metropolis–Hastings algorithm. The candidate values,

denoted φc0,t and φc1,t are accepted with probability

min

1,

∏T
t=0p(βt |C,φ

c
0,t
,φc

1,t
)π (φc

0,t
,φc

1,t
)g(φ0,t ,φ1,t |φ

c
0,t
,φc

1,t
)∏T

t=0p(βt |C,φ0,t ,φ1,t )π (φ0,t ,φ1,t )g(φc
0,t
,φc

1,t
|φ0,t ,φ1,t )

 ,
where π (·) denotes the prior distribution and g(·|·) de-

notes the proposal distribution.

– Sampling C also requires a Metropolis–Hastings algo-

rithm. The three parameters, C11, C21, and C22 are up-

dated in a block where the candidate, denoted Cc =[
Cc11 0

Cc21 Cc22

]
is accepted with probability

min

(
1,

∏T
t=0p(β t |C

c,φ0,t ,φ1,t )π (Cc)g(C|Cc)∏T
t=0p(β t |C,φ0,t ,φ1,t )π (C)g(Cc|C)

)
.

– The autoregressive parameter, ρ, requires a Metropolis–

Hastings step where ρc is accepted with probability

min

(
1,

∏T
t=0p(P t |αt ,γ ,β t ,τ

2
P ,Ãt ,ρ

c)π (ρc)g(ρ|ρc)∏T
t=0p(P t |αt ,γ ,β t ,τ

2
P ,Ãt ,ρ)π (ρ)g(ρc|ρ)

)
.

– Recall that we must infill AOD on the fly for grid

cells that contain monitoring stations but are missing

AOD. When AOD is observed at grid cell i on day t ,

Ãi,t = Ai,t . For each grid cell that is missing AOD but

contains a monitoring station, we must predict AOD.

Let {Jt } denote the set of grid cells that contain a mon-

itoring station but are missing AOD on day t . Further,

for j ∈ Jt , let sj denote the location of the monitoring

station in the grid. Then, for each j , we sample Ãj,t by

sampling from the posterior predictive distribution. That

is, for t = 0 and j ∈ {J0},

Ãj,t |· ∼ N(U−1V,U−1),

where

U =
α1+β1(sj )2

σ 2
T

+
1

σ 2
A

,

V =
α1+β1(sj )

σ 2
T

(P0(sj )−α0−X0(sj )γ

−β0(sj ))+
θj,0

σ 2
A

.

For t = 1, . . .,T and j ∈ {Jt },

Ãj,t |· ∼ N(U−1V,U−1),

where

U =
α1+β1(sj )2

σ 2
T

+
1

σ 2
A

,

V =
α1+β1(sj )

σ 2
T

(Pt (sj )−α0−Xt (sj )γ

−β0(sj )− ρPt−1(sj ))+
θj,t

σ 2
A

.

– If grid cell i contains a monitoring station,

θi,t |θ j 6=i,t , · ∼N

( 1

σ 2
A

+ κpi

)−1(
1

σ 2
A

Ãi,t + θ̄i,tκpi

)
,

(
1

σ 2
A

+ κpi

)−1
 ,

where pi is the number of neighbors of cell i and θ̄i,t =
1
pi

∑
j∼iθj,t .

If grid cell i does not contain a monitoring station,

θi,t |θ j 6=i,t , · ∼N

(
θ̄i,t ,

1

κpi

)
.
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