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Abstract. This paper develops a method for determining whether two vector time series originate from a com-
mon stochastic process. The stochastic process considered incorporates both serial correlations and multivariate
annual cycles. Specifically, the process is modeled as a vector autoregressive model with periodic forcing, re-
ferred to as a VARX model (where X stands for exogenous variables). The hypothesis that two VARX models
share the same parameters is tested using the likelihood ratio method. The resulting test can be further decom-
posed into a series of tests to assess whether disparities in the VARX models stem from differences in noise
parameters, autoregressive parameters, or annual cycle parameters. A comprehensive procedure for compressing
discrepancies between VARX models into a minimal number of components is developed based on discrim-
inant analysis. Using this method, the realism of climate model simulations of monthly mean North Atlantic
sea surface temperatures is assessed. As expected, different simulations from the same climate model cannot
be distinguished stochastically. Similarly, observations from different periods cannot be distinguished. However,
every climate model differs stochastically from observations. Furthermore, each climate model differs stochasti-
cally from every other model, except when they originate from the same center. In essence, each climate model
possesses a distinct fingerprint that sets it apart stochastically from both observations and models developed by
other research centers. The primary factor contributing to these differences is the difference in annual cycles.
The difference in annual cycles is often dominated by a single component, which can be extracted and illustrated
using discriminant analysis.

1 Introduction

Two fundamental questions arise repeatedly in climate
science. (1) Has climate variability changed over time?
(2) Do climate models accurately reflect reality? Answer-
ing these questions requires an objective procedure for de-
ciding whether two time series possess identical statistical
properties. Unfortunately, many procedures for deciding this
have crucial limitations. Specifically, many of these proce-
dures lack a significance test, do not account for serial corre-
lation, or do not generalize naturally to multivariate quanti-
ties. For instance, the recent report from the Intergovernmen-
tal Panel on Climate Change frequently employed a quantity
called RMSD (relative space–time root mean square devia-
tion, Eyring et al., 2021, Sect. 3.8.2) to quantify the differ-
ence between simulated and observed seasonal cycles. How-

ever, RMSD lacks a rigorous significance test. Without an
assessment of significance, one does not know whether a par-
ticular value of RMSD indicates genuine model deficiencies
or is merely a result of random variations. One might attempt
to adapt the F test to test significance, but many climate
time series exhibit serial correlations, whereas the F test and
other standard procedures assume that the data come from
white noise processes. Applying a procedure that assumes
white noise for a time series that is serially correlated leads
to biased type-I errors. Furthermore, RMSD is evaluated for
each physical variable separately. Often, RMSDs for differ-
ent models and variables are displayed together in a checker-
board format (e.g., Fig. 3.42 of Eyring et al., 2021). A cri-
terion for selecting a single winner when no single model
produces the best RMSD for all the variables is rarely given.
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The above limitations of RMSDs are also present in corre-
lation skill and probabilistic verification measures. Although
recent advancements in machine learning, as highlighted in
works by Labe and Barnes (2022) and Brunner and Sippel
(2023), have shown impressive capabilities for differentiat-
ing observations and simulations, these techniques also have
no corresponding significance tests. While rigorous tests for
comparing serially correlated, multivariate time series do ex-
ist (see Lund et al., 2009, for a lucid review), these too have
shortcomings when applied specifically to climate time se-
ries. For instance, spectral-domain tests have less statisti-
cal power than time-domain tests (for further discussion, see
DelSole and Tippett, 2020).

We have pursued an approach to comparing time series
that avoids the above limitations. Specifically, we assume
that each time series is generated by an autoregressive model.
Under this assumption, two time series are said to originate
from the same process if they share identical autoregressive
model parameters. This paper represents the fifth installment
in a series that develops this methodology. Part 1 laid the
foundation for our approach to comparing univariate time
series. Part 2 generalized this framework to multivariate pro-
cesses, incorporating bias corrections to obtain statistics with
chi-squared distributions. Part 3 developed methods to diag-
nose dissimilarities between two time series. This included a
hierarchical testing procedure to attribute differences to spe-
cific components of the autoregressive model and a discrim-
inant analysis technique to derive optimal diagnostics that
contain all relevant information about differences between
data sets. Part 4 incorporated annual cycles in the framework,
which required generalizing the hierarchical testing proce-
dure to include nonstationary forcing. However, this exten-
sion was limited to univariate time series.

In this paper, we generalize our test to account for mul-
tivariate periodic signals in the time series. To do this, we
add periodic forcing to a vector autoregressive model to con-
struct a VARX model, where X stands for exogenous vari-
ables such as periodic forcing. Then, the hypothesis that two
VARX models share the same parameters is tested using the
likelihood ratio method. If differences are detected, a step-
wise procedure is employed to assess whether disparities in
the VARX models stem from differences in noise parame-
ters, autoregressive parameters, or periodic forcing parame-
ters. To implement the test, we introduce three practical ad-
vances. First, we adjust maximum likelihood quantities to
eliminate the biases mentioned earlier, which are particu-
larly serious in multivariate problems. Second, we develop
a Monte Carlo technique to determine significance thresh-
olds. Third, diagnostics that maximally compress differences
in VARX models into the fewest number of components are
developed. Some of these diagnostics were developed in Del-
Sole and Tippett (2022a). The extension of these diagnos-
tics to arbitrary stepwise test procedures is completed in this
paper. The present paper incorporates all of our “lessons
learned” from previous parts into a single framework. Al-

though this paper builds on our previous papers (DelSole and
Tippett, 2020, 2021, 2022a, b), the present paper is nearly
self-contained and can be understood largely on its own.
Moreover, the code developed for this part supersedes our
previous codes, as the previous codes are mere special cases
of the general code provided with this paper.

2 Description of the problem and method

Our problem is to decide whether two multivariate time se-
ries originated from the same stochastic process. Let the two
time series be denoted as

YT =
[
y1 . . . yN ′

]
and Y∗T =

[
y∗1 . . . y∗

N ′∗

]
,

where yt and y∗t are S-dimensional vectors, denoted as yt ∈
RS and y∗t ∈ RS . Here, S is the spatial dimension andN ′ and
N ′∗ denote the number of time samples. The random ma-
trices Y and Y∗ are independent, but elements within each
matrix may be correlated. That is, each time series may be
spatially and serially correlated. We want to test the hypothe-
sis that Y and Y∗ were generated independently by the same
stochastic process.

A class of stochastic models that can capture multivariate
serial correlations is a vector autoregressive (VAR) model.
VAR models include linear inverse models (LIMs) as a spe-
cial case, where LIMs are used extensively in seasonal and
decadal prediction studies (Penland and Sardeshmukh, 1995;
Whitaker and Sardeshmukh, 1998; Alexander et al., 2008;
Vimont, 2012; Newman, 2013; Zanna, 2012). More gen-
eral VAR models have also been used to assess climate pre-
dictability and causality (Mosedale et al., 2006; Chapman
et al., 2015; Bach et al., 2019). Asymptotically, the statistics
of VAR models are stationary (i.e., independent of t). Sta-
tionarity is a reasonable assumption for certain climate time
series such as annual means (as analyzed in Parts 1–3). On
the other hand, stationarity is violated for sub-annual time
series that contain seasonal cycles or for multidecadal time
series that contain climate trends.

To capture variations in the mean, such as annual cycles,
we add deterministic forcing to the VAR model. The result-
ing model is called a VAR model with exogenous variables
and is denoted as VARX (Lütkepohl, 2005, p. 387). This
VARX model does not capture variations in covariances, al-
though it can be generalized to do so (Lütkepohl, 2005, chap-
ter 17). We will not pursue such generalizations here.

Mathematically, we assume each vector is generated by a
VARX model of order p, with a deterministic forcing term
f t ∈ RJ :

yt = A1yt−1+ . . .+Apyt−p +C f t + d + εt , (1)
y∗t = A∗1y

∗

t−1+ . . .+A∗py
∗
t−p +C∗f t + d

∗
+ ε∗t , (2)

Adv. Stat. Clim. Meteorol. Oceanogr., 10, 1–27, 2024 https://doi.org/10.5194/ascmo-10-1-2024



T. DelSole and M. K. Tippett: Comparing time series – Part 5 3

where the following matrices and vectors are constant for i =
1, . . .,p,

Ai ∈ RS×S, A∗i ∈ R
S×S, C ∈ RS×J , C∗ ∈ RS×J ,

d ∈ RS, d∗ ∈ RS,

and εt and ε∗t are independent S-dimensional Gaussian white
noise processes with respective covariance matrices 0 and
0∗. Because εt and ε∗t are independent, so are yt and y∗t (al-
though the latter vectors typically are separately serially cor-
related). The matrices {A1, . . .,Ap} are assumed to yield a
stable VAR process, and similarly the matrices {A∗1, . . .,A

∗
p}

are assumed to yield a stable VAR process (the precise condi-
tion for stability is Eq. 2.1.12 in Lütkepohl, 2005). The ma-
trices 0 and 0∗ will be identified as noise parameters, and
the matrices {A1, . . .,Ap} and {A∗1, . . .,A

∗
p} will be identified

as AR parameters.
In this paper, the deterministic term f t is associated with

the annual cycle, and therefore C may be called the annual
cycle parameters. These terms are simply sines and cosines
with a period of 12 months and the associated harmonics
(see Appendix A for an explicit definition). For such peri-
odic forcing, long-term solutions of Eqs. (1) and (2) have
the form of a time-periodic mean component accompanied
by stationary noise centered around the mean. Notably, the
nonstationarity is present solely in the means, while other
long-term aspects of the system are stationary. The AR pa-
rameters describe time dependencies and are associated with
the predictability or dynamics of the system. Thus, differ-
ences in AR parameters imply differences in dynamics or
in predictability. On the other hand, differences in annual
cycle parameters imply differences in annual cycle forcing,
which should be distinguished from the annual cycle re-
sponse, which depends on both the annual cycle and AR pa-
rameters. The annual cycle response for stable VAR parame-
ters is derived by finding a solution that is exactly periodic on
annual timescales and that can be expressed in closed form
(see DelSole and Tippett, 2022b). Finally, noise parameters
characterize variability after serial correlations and nonsta-
tionary signals have been removed. We call such variability
whitened variability (also called one-step prediction errors),
and hence differences in noise parameters imply differences
in whitened variability.

To decide whether two multivariate time series came from
the same stochastic process, we test the null hypothesis that
the parameters of the two VARX(p) models are equal. More
precisely, we test the hypothesis

H0 : A1 = A∗1, . . ., Ap = A∗p, C= C∗, 0 = 0∗. (3)

The intercept terms d and d∗ are not included in H0. The
reason for excluding the intercept term in our particular com-
parison is that this term controls the climatological mean, and
climate models are known to have large biases. There is little
value in assessing the realism of a quantity that is known a
priori to be biased. After excluding the intercept fromH0, the

resulting comparison is equivalent to the routine procedure
of subtracting the mean of each time series prior to analysis
and then assessing the stochastic similarity of the anomalies
(provided the degrees of freedom are adjusted appropriately).

If H0 is rejected, then a natural question is how individ-
ual components of the VARX models contribute to this dif-
ference. In the remainder of this section, we describe our
procedure for testing and diagnosing differences in VARX
model components. The formal justification of this procedure
is given in the Appendices.

Hypothesis H0 is tested using a likelihood ratio test. The
exact sampling distribution of the test statistic is not available
in standard software packages, so we develop a Monte Carlo
technique to estimate the associated significance thresholds.
Asymptotic theory predicts that the test statistic will have a
chi-squared distribution in the limit of a large sample size.
However, known biases in maximum likelihood estimates
are found to produce serious biases in multivariate problems.
Fortunately, a simple bias correction virtually eliminates this
bias for the data considered in this paper. The resulting bias-
corrected test statistic is called a deviance. For our data, sig-
nificance thresholds computed from the chi-squared distri-
bution and from the Monte Carlo technique are very close.
For other data sets, particularly those with small or disparate
sample sizes, the chi-squared distribution may not be ade-
quate and the Monte Carlo technique may be required.

If H0 is rejected, then we conclude that one or more of the
VARX parameters differ, but which ones? A natural question
is whether the difference in VARX models is due to differ-
ences in noise, differences in AR parameters, or differences
in annual cycle parameters. This question is addressed by
the following stepwise procedure: first test for differences in
noise parameters, and if those are not significant, then test for
differences in AR parameters, and if those are not significant,
then test for differences in annual cycle parameters. This hi-
erarchy of hypotheses is summarized in Table 1. Further de-
tails about the stepwise procedure, including the family-wise
error rate and the reasons for choosing the particular order,
are given in Sect. B7.

The statistic for testing �i versus �i+1 is called sub-
deviance D�i:i+1 . Sub-deviance is small when the relevant
parameter differences are small and large when the parameter
differences are large. The associated significance thresholds
are computed using a Monte Carlo technique (see Sect. B6).
For our data, these thresholds are consistent with asymptotic
theory, which indicates that, if �i+1 is true, then asymptot-
ically D�i:i+1 is chi-squared distributed with Pi −Pi+1 de-
grees of freedom, which we denote as

D�i:i+1 ∼ χ
2
Pi−Pi+1

, (4)

where Pi is the number of parameters estimated under �i
and specified in Table 1. The stepwise procedure halts at the
first significant sub-deviance.
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Table 1. Summary of hypotheses in the stepwise test procedure for VARX(p) models. Parameters8i and Pi in the last two columns indicate
the number of predictors and the number of estimated parameters under Hypothesis �i , respectively.

0 A C 8i Pi
�0 Unrestricted Unrestricted Unrestricted 2SP + 2J S80+ S(S+ 1)
�1 0 = 0∗ Unrestricted Unrestricted 2SP + 2J S81+ S(S+ 1)/2
�2 0 = 0∗ {Ai = A∗

i
} Unrestricted SP + 2J S82+ S(S+ 1)/2

�3 0 = 0∗ {Ai = A∗
i
} C= C∗ SP + J S83+ S(S+ 1)/2

The deviance for testing the equality of all VARX param-
eters is the sum of the sub-deviances:

D�0:3 = D�0:1 + D�1:2 + D�2:3

total noise AR annual cycle. (5)

Decomposition (5) is satisfied regardless of the status of the
hypotheses in Table 1. Using these terms to quantify the frac-
tion of deviance due to differences in noise, AR, or annual
cycle parameters can be subtle. In particular, the largest term
may not dictate significance. For instance, one term on the
right-hand side might explain 90 % of the deviance and yet
still be insignificant, whereas another term explains only 5 %
of the deviance yet is significant. This issue should be kept
in mind when quantifying the contribution of particular com-
ponents of the VARX model to the total deviance.

The above procedure might attribute differences to a sin-
gle part of the VARX model, but that part still involves many
parameters, which hinders interpretation. To further isolate
VARX model differences, we seek the linear combination
of variables that maximizes the appropriate sub-deviance
D�i:i+1 . A procedure called covariance discriminant analysis
(CDA DelSole and Tippett, 2022a) can find this combination
and leads to a decomposition that can be viewed as a gener-
alization of principal component analysis. Specifically, CDA
decomposes each D�i:i+1 into S components such that the
first maximizes D�i:i+1 , the second maximizes D�i:i+1 sub-
ject to being uncorrelated with the first, and so on.

In the case of D�0:1 , the interpretation of discriminant
components is clear-cut: these components identify the spa-
tial structures that exhibit the greatest discrepancies in
whitened variances between the two data sets (see DelSole
and Tippett, 2022a). For D�1:2 and D�2:3 , however, the con-
nection between these components and differences in VARX
parameters is less apparent. In the Appendix, we clarify this
connection by showing that sub-deviances can be written as
an explicit function of differences in estimated regression pa-
rameters (see Sect. B8). To our knowledge, this result has
not been derived previously. To describe this relation, let the
matrix δ̂i+1 denote the difference between estimated regres-
sion parameters relevant to comparing hypotheses �i and
�i+1. For instance, to compare the�1 and�2 of a VARX(1)
model, δ̂T2 = Â1− Â∗1. Then, the Appendix shows that the
sub-deviance can be written as

D�i:i+1 = (ν+ ν∗) log |I+ δ̇Ti+1δ̇i+1| for i ≥ 1,

where δ̇i+1 is a linear transformation of δ̂i+1 (given explicitly
in Eq. B34). A singular value decomposition (SVD) of δ̇i+1
then yields the desired decomposition of D�i:i+1 . From the
SVD, one can either examine differences in regression pa-
rameters directly or examine their impact on the model. The
latter is often more informative. For instance, when diagnos-
ing differences in AR parameters, the decomposition can be
expressed as

PTX δ̂2 = SPTY , (6)

where δ̂2 is the difference in AR parameters under �1, S is
a diagonal matrix, and the columns of PX and PY define
initial condition and response patterns, respectively (all the
terms are defined precisely in Sect. B8). This decomposition
has the following form: the initial condition (PX) multiplied
by the difference in AR parameters (δ̂2) equals the differ-
ence in the response (PYS). This decomposition can be in-
terpreted as finding the initial condition, among all equally
likely initial states, that maximizes the disparity in one-step
responses. This decomposition is similar to the “optimal ini-
tial condition” discussed in previous studies (e.g., Penland
and Sardeshmukh, 1995; Alexander et al., 2008), except here
the initial and final vectors are constrained by norms associ-
ated with the deviance measure.

To diagnose differences in annual cycle parameters, the
above decomposition is not very meaningful because the pre-
dictor is a fixed function of time (e.g., sinusoidal functions
of time) rather than a random vector. In this case, we sim-
ply propagate parameter differences into the time domain by
multiplying by the associated predictors X, yielding a de-
composition that is similar to principal component analysis
in the form

X̂δi+1 =
̂̂QX S PTY

annual cycle time series amplitude spatial pattern.
differences

(7)

3 Application to North Atlantic variability

In this section, we apply the above method to compare the
variability of monthly mean North Atlantic sea surface tem-
perature (SST) between dynamical models and observations.
We analyze the Atlantic basin over 0–60◦ N, where the north-
ern boundary was chosen to avoid regions of sea ice. For ob-
servations, we use version 5 of the Extended Reconstructed
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Sea Surface Temperature (ERSSTv5) of Huang et al. (2017).
The earlier portion of this data set has sparse spatial cov-
erage, so we only analyze the more recent 50-year period
1969–2018.

For model simulations, we use data from Phase 5 of
the Coupled Model Intercomparison Project (CMIP5; Tay-
lor et al., 2012). Specifically, we use pre-industrial control
runs, which are simulations without year-to-year changes in
external forcing like atmospheric composition or solar inso-
lation. The associated initial condition is effectively random,
and hence these simulations are independent, consistent with
our assumptions in Eqs. (1) and (2). We select models only
if their control runs are at least 500 years long. This crite-
rion selects 36 models from the CMIP5 data set. We extract
the last 50 years of each simulation. We examine the last two
25-year segments of each simulation and compare them with
each other and with 25-year segments from observational
data. While our test can accommodate time series of vary-
ing lengths, we found that a duration of 25 years is sufficient
for detecting differences effectively.

In general, the above time series contain secular trends:
observations contain a global warming signal and control
runs contain model drift. These secular trends will be re-
moved by regressing out a polynomial in time. It is impor-
tant to remove the same-order polynomial from both obser-
vations and models; otherwise, a difference could arise sim-
ply as an artifact of processing the two time series differently.
It is known that greenhouse gas concentrations rise exponen-
tially over our analysis period (1969–2018), so if we were to
remove only a linear trend and then find a difference, that dif-
ference could be attributed to quadratic growth in the obser-
vations that is missing from control runs. In general, leaving
any kind of forced variability in time series leads to problems
of interpretation since our VARX model does not account
for secular forcing. On the other hand, over-removal of low-
frequency internal variability poses a lesser issue. While the
resulting analysis would not relate to low-frequency variabil-
ity (since it was removed), the conclusions regarding higher-
frequency variability would still retain their validity. Hence,
it is generally preferable to err on the side of removing a
higher-order polynomial than a lower-order one. For the re-
sults presented in the figures below, a second-order polyno-
mial in time was removed over the period 1969–2018. How-
ever, removing third-, fourth-, or higher-order polynomials
removes additional low-frequency variability from the time
series but does not alter any of our main conclusions regard-
ing significant differences between observations and CMIP5
models.

For the annual cycle term, we include five annual harmon-
ics encompassing all harmonics up to the Nyquist frequency.
This choice is motivated by the same reasoning as discussed
above for secular trends, i.e., that it is preferable to include
more harmonics rather than fewer. If we were to select an
insufficient number of harmonics, then unaccounted-for pe-
riodic signals would be misattributed as internal variability

in the VARX model, leading to erroneous conclusions. On
the other hand, if an excessive number of harmonics is cho-
sen, the VARX model may become overfitted, but this po-
tential overfitting is accounted for in the sampling distribu-
tion. By definition, overfitting implies the inclusion of pre-
dictors with vanishing regression coefficients, but the sam-
pling distribution is independent of the specific values of
the regression coefficients and therefore encompasses cases
where the coefficients are zero. The primary drawback of
overfitting is a reduction in statistical power. However, in
our specific application, low statistical power is not a con-
cern: our method demonstrates high effectiveness in detect-
ing differences when they truly exist. Therefore, the negative
consequences associated with overfitting, such as diminished
statistical power, are not a significant issue in this context.

As in many climate applications, the spatial dimension in
our data set exceeds the time dimension, leading to an un-
derdetermined estimation problem. Although several regu-
larization approaches are available, many of these have no
rigorous hypothesis test framework. Here, we regularize the
problem by reducing the spatial dimension, which retains
the regression model framework. The question arises as to
which low-dimensional space should be selected. Our choice
is guided by the fact that numerical solutions have less reli-
ability with a decreasing spatial scale, with the least reliable
results at the grid-point scale. These considerations suggest
that models are most reliable on the largest spatial scales,
and therefore a feature space should be chosen to emphasize
large spatial scales. A common approach is to use empirical
orthogonal functions (EOFs), but EOFs depend on data and
therefore raise the question as to which data should be used
to derive them. Also, there is no guarantee that the EOFs will
be strictly large scale. Furthermore, because EOFs depend
on data, their use leads to biases and random fluctuations
that are not straightforward to take into account in the fi-
nal statistical estimate. An attractive alternative basis set that
avoids these issues and satisfies the above requirement con-
tains the leading eigenvectors of Laplace’s equation. These
vectors form an orthogonal set of spatial patterns ordered by
the decreasing spatial scale. Familiar examples of Laplacian
eigenvectors include Fourier series and spherical harmon-
ics. The algorithm of DelSole and Tippett (2015) was used
to compute the Laplacian eigenvectors over the Atlantic do-
main. The first four eigenvectors are shown in Fig. 1. The first
Laplacian eigenvector is spatially uniform, and therefore pro-
jecting data onto the first vector yields the spatial mean. The
spatial mean of Atlantic SSTs after removal of human-caused
variations is often called the Atlantic Multidecadal Variabil-
ity (AMV) index. The second and third eigenvectors are
dipoles measuring the north–south and east–west gradients
across the basin. Subsequent vectors capture smaller-scale
spatial structures. Compared to the usual choice of EOFs,
Laplacian eigenvectors are particularly attractive because the
first component is the AMV index, a natural climate index,
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Figure 1. Laplacian eigenvectors 1, 2, 3, and 4 over the North Atlantic between the Equator and 60◦ N, where dark red and dark blue indicate
extreme positive and negative values, respectively.

and the set depends only on the domain geometry and hence
is independent of data and independent of the model.

How many Laplacian eigenvectors should be chosen? In
this study, our goal is to compare variability, not to make
predictions. Accordingly, our primary concern is to ensure
that the VARX(p) model is adequate. In practice, ade-
quacy means confirming that the residuals of the estimated
VARX(p) model are indistinguishable from white noise. The
multivariate Ljung–Box test was performed on the resid-
uals of the VARX(p) models to check for whiteness. For
p = 1, over half the VARX models exhibited significant non-
whiteness at the 5 % level, regardless of the number of eigen-
vectors S. For p = 2, only 16 % of the VARX models exhib-
ited significant non-whiteness for S = 4, with this percentage
increasing for S > 4. After a Bonferroni correction, signifi-
cant non-whiteness was detected in only 1 out of 37 VARX
models for S = 4, suggesting that the VARX(2) model with
S = 4 and 5 annual harmonics is adequate.

For reference, 10-year segments of time series for the first
four Laplacian eigenvectors are shown in Fig. 2. The strong
periodicity seen in Laplacian-1 reflects the fact that 99 % of
the variance is explained by the annual cycle. The strongest
discrepancies between time series are seen in Laplacian-3,
but this assessment is merely visual and subjective.

The total deviance between ERSSTv5 1994–2018 and
each CMIP5 model is shown in Fig. 3. The corresponding
1 % significance threshold computed from Eq. (4) is indi-
cated by the horizontal gray line. The first x-tick mark shows
the deviance between ERSSTv5 for the two periods 1969–
1993 and 1994–2018, which falls below the gray line, in-
dicating no significant difference in stochastic processes be-
tween the two observational periods. In contrast, the deviance
between observations and each CMIP5 model lies well above
the significance threshold, indicating strong differences be-
tween stochastic processes. The same conclusion is reached
when the reference period is switched from 1994–2018 to
1969–1993 (not shown).

The above examples are based on using 25 years of data
for both climate models and observations. Adding more data
merely makes the differences detected here even more sig-
nificant. An interesting question is whether differences can
be detected using shorter samples from climate models. Re-
computing deviances using only 3 years of data (but still us-
ing 25 years of observational data) yields the results shown
in Fig. 4. Remarkably, differences can still be detected, as in-
dicated by the fact that all the deviances lie above the signifi-
cance threshold. The same conclusion holds if we swap these
numbers, i.e., use only 3 years of observations and 25 years
of model data (not shown).
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Figure 2. Monthly time series of Laplacians 1–4 in observations (black curve at the bottom labeled “37”) and in CMIP5 models over a
10-year period. Each time series is offset by the same constant. No re-scaling is performed. Each time series is computed by projecting data
onto the appropriate Laplacian over the Atlantic domain. The year on the x axis corresponds to the observational data set ERSSTv5 but
otherwise is a reference label for the pre-industrial control simulations.

Two questions arise naturally here. First, do CMIP5 mod-
els differ from observations in a common way? This ques-
tion can be addressed by comparing one model to another
– a small deviance would indicate that the two models are
similar and therefore differ from observations in a common
way. Second, would the test correctly indicate that two time
series from the same CMIP5 model are stochastically simi-
lar? Intuitively, data generated by the same model ought to
be stochastically similar. However, this outcome is not as-

sured. For instance, CMIP5 models are nonlinear and high-
dimensional. There is no guarantee that variability from such
models can be captured by a low-dimensional linear model.
Also, our test assumes that sample sizes are sufficiently large
to invoke a linear regression framework for testing hypothe-
ses. Twenty-five years of data might not satisfy this require-
ment. These latter questions can be addressed by confirming
that independent segments from the same CMIP5 model are
stochastically indistinguishable. Both questions can be ad-
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Figure 3. The total deviance between ERSSTv5 1994–2018 and each CMIP5 model. The horizontal gray line shows the 1 % significance
threshold. Also shown is the deviance between ERSSTv5 for the two periods 1969–1993 and 1994–2018 (first x-tick mark on the left).

Figure 4. Same as Fig. 3 but using only 3 years of data from each CMIP5 model. Also shown is the deviance between ERSSTv5 for the two
periods 1969–1971 (3 years) and 1994–2018 (first x-tick mark on the left).

dressed by comparing one 25-year segment with a separate
25-year segment for all possible pairs of CMIP5 models and
observations. The result of comparing all possible pairs is
summarized in the matrix shown in Fig. 5.

As can be seen, values along the diagonal of this matrix
are insignificant. Diagonal elements correspond to compar-
ing time series from the same model or from the same ob-
servational data set. Thus, this test indicates that time se-

Adv. Stat. Clim. Meteorol. Oceanogr., 10, 1–27, 2024 https://doi.org/10.5194/ascmo-10-1-2024
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Figure 5. The total deviance between each 25-year segment from CMIP5 models and observations to an independent 25-year segment from
CMIP5 models and observations. The deviance is normalized by the 1 % significance threshold. Values that are insignificant, significant at
the 1 % level, and significant at the 0.2 % level are indicated by no shading, light gray shading, and dark gray shading, respectively.

ries from the same source are stochastically indistinguish-
able, confirming that the test performs as expected. Addi-
tional insignificant deviances are found in diagonal blocks.
For instance, the 2× 2 block in the upper-left corner indi-
cates that the two CNRM models are stochastically indis-
tinguishable. The next blocks include the HadGEM2, MPI,
NCAR, MIROC, and GISS models. In other words, models
from the same center can be stochastically indistinguishable.
Other than those cases, all other model–model deviances are
significant. In short, models differ not only from observa-
tions, but also from each other, unless they come from the
same center.

Although all the models are different, some models are
more similar to each other than to others. To identify clus-
ters, we compute a dendrogram from these deviances. The
dendrogram is computed in the following way. First, each el-
ement is assigned to its own cluster. Next, the pair with the
smallest deviance is clustered together using a “leaf” whose

edge aligns with the deviance indicated on the x axis. Next,
the pairs with the next smallest deviance are clustered to-
gether in the same way. Clusters themselves are joined to
other elements or clusters using the complete-linkage rule,
whereby the length of the leaf equals the maximum deviance
among all pairs of members of the cluster. Each new cluster
creates a new leaf further to the left corresponding to larger
deviances. The resulting dendrogram is shown in Fig. 6.

Remarkably, the majority of model names on the left-hand
side of the dendrogram are grouped into consecutive pairs,
indicating a consistent pairing of time series originating from
the same source. This suggests that each CMIP5 model sim-
ulation possesses a distinct “fingerprint” that can be quanti-
fied using the deviance measure. However, there are a few
exceptions to this pattern, i.e., HadGEM2-CC, FASTCHEM,
and CCSM4. These exceptions are paired with other mod-
els from the same modeling center, supporting the earlier
conclusion that models from the same center may exhibit
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Figure 6. A dendrogram based on the total deviance of monthly mean North Atlantic SST. The x axis is the deviance. Larger deviance values
imply stronger dissimilarities between the VARX models. All the time series are 25 years in length. Two separate 25-year segments from
CMIP5 models and from observations (ERSSTv5) are included in the cluster analysis. The vertical red line shows the 1 % significance level.

similarities that make them indistinguishable. Consequently,
CMIP5 models from the same modeling center tend to share
comparable fingerprints.

Which models are closest to the observations? According
to the dendrogram, after clustering the observational time se-
ries together, they are subsequently grouped with HadGEM2
models and then with NCAR models (CESM, CCSM, and
FASTCHEM). Importantly, the leaves connecting to obser-
vations surpass the significance threshold, consistent with the
findings shown in Fig. 4. This implies that the HadGEM2 and
NCAR models are the closest to the observations, although
they still clearly differ from observations.

A natural question is whether the difference in VARX
models is due to differences in noise parameters, AR param-
eters, or annual cycle parameters. This question can be ad-
dressed by computing the decomposition in Eq. (5). The re-
sults are shown in Fig. 7. We see immediately that the largest
source of deviance is the annual cycle. In fact, if the annual
cycle deviance were computed for all possible pairs, virtually
the same structure as in Fig. 5 would emerge (not shown).
This confirms that the annual cycle of any CMIP5 model dif-
fers not only from observations, but also from other models
from different modeling centers. In other words, the annual
cycle is also an effective fingerprint.
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Figure 7. Decomposition of each deviance in Fig. 3 into differences in noise parameters (blue), differences in AR parameters (green), and
differences in annual cycle parameters (red). The associated 1 % significance thresholds are indicated by the blue, green, and red horizontal
lines, and sub-deviances that are insignificant according to the stepwise procedure are indicated by the dot, cross, and triangle, respectively.

Figure 8. Decomposition of annual cycle deviance by discriminant analysis. The horizontal gray line is the 1 % significance threshold for
the maximum deviance, computed as described at the end of Sect. B6.
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Figure 9. The spatial pattern (a) and time series (b) of the leading discriminant of the annual cycle deviance for NorESM1-M.

Figure 10. Same as Fig. 9 but for ACCESS1-3.

The above results show that the annual cycle in each
CMIP5 model differs from observations and from other
CMIP5 models, but they do not tell us how they differ. We
can anticipate from Fig. 5 that there is no common difference,
so any description of model error will be model-dependent.
Nevertheless, even for a single model, isolating key differ-
ences is difficult because the annual cycle lies in a high-

dimensional space. One could study plots of annual cycle
differences, but eye-catching features may not be the features
that contribute most to annual cycle deviance. This is where
covariance discriminant analysis proves useful. Discriminant
analysis decomposes sub-deviance into uncorrelated com-
ponents ordered such that the first explains the most sub-
deviance, the second explains the most sub-deviance subject
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Figure 11. Variance ratios from discriminant analysis of noise variance, where the ratio is CMIP5 model noise variance over observation
noise variance. The two horizontal gray lines indicate the upper and lower 0.5 % significance levels.

to being uncorrelated with the first, and so on. If a few com-
ponents explain all the sub-deviance, then discriminant anal-
ysis will find them. The result of applying discriminant anal-
ysis to decompose annual cycle deviance is shown in Fig. 8.
Since the VARX model is based on four Laplacian eigen-
vectors, discriminant analysis decomposes sub-deviance into
four components per model. The leading discriminant de-
viance is significant for all the CMIP5 models. In some mod-
els, the leading discriminant deviance exceeds the second by
a factor of 3 or more (e.g., NorESM1 models and ACCESS1-
3). The associated time series and pattern from decompo-
sition (7) for NorESM1-M and ACCESS1-3 are shown in
Figs. 9 and 10. Time series for observations and CMIP5 mod-
els separately are computed as described in Sect. B8 (see
Eq. B41). The two figures suggest that the two CMIP mod-
els underestimate the winter and summer peaks in the Gulf
Stream regions.

Sub-deviances that are insignificant according to the step-
wise procedure are indicated by the dot, cross, and trian-
gle for differences in noise, AR parameters, and annual cy-
cle parameters, respectively. Only two models have insignifi-
cant differences in noise and AR parameters: HadGEM2-CC
and GFDL-ESM2M. This means that the internal variability
of these models is consistent with observations. To be fair,
the noise and AR parameters of some other CMIP5 mod-
els are only marginally inconsistent with observations (e.g.,
the HadGEM2, MPI, and CMCC models). Also, if the ob-
servational reference is changed to the 1969–1993 period,

then HadGEM2 is no longer consistent (not shown). In all
the cases, the annual cycle of each CMIP5 model differs sig-
nificantly from observations.

For some CMIP5 models, differences in noise parame-
ters explain a large fraction of the total deviance. To as-
sess whether these models exhibit common discrepancies in
whitened variance, we calculate the noise deviance between
all possible combinations of models and observations. The
corresponding results are shown in Fig. 12. Relative to the
total deviance shown in Fig. 5, noise deviance exhibits more
cases of indistinguishable models. Still, many of these cases
involve models originating from the same research center.
Furthermore, each model remains distinctly different from
the majority of other models, indicating that whitened vari-
ance alone can serve as a distinguishing feature or finger-
print. It is rather remarkable that, even after removing se-
rial correlations, annual cycles, and trends, the remaining
variability contains sufficient information to differentiate a
model from most other models. Recall that the stepwise pro-
cedure begins by comparing whitened variances. This re-
sult shows that this first step already has large discriminative
power even before differences in AR or annual cycle param-
eters are considered.

We applied covariance discriminant analysis to deter-
mine whether a few spatial structures can explain the noise
deviance. The resulting discriminant ratios are shown in
Fig. 11. Ratios are shown instead of deviances because ratios
differentiate the direction of variance difference, whereas de-
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Figure 12. Same as Fig. 5 except for noise deviance.

viance is insensitive to direction as both smaller and larger
whitened variances contribute to positive deviances. Each
model yields four discriminant ratios since the VARX is
based on four Laplacian eigenvectors. The strongest sepa-
rations from one are those below one, indicating that CMIP5
models exhibit too little whitened variance compared to ob-
servations. Examination of the leading discriminant patterns
for noise deviance across CMIP5 models (not shown) reveals
no common bias structure, as one would anticipate from
Fig. 12.

According to Fig. 7, the sub-deviance of AR parameter
differences is relatively small. Nevertheless, for complete-
ness, we show the associated discriminants. The discriminant
deviances are shown in Fig. 13. As expected, most leading
values are insignificant. The largest leading value occurs for
ACCESS1-3. The associated AR parameter difference can be
expressed as an initial value problem using Eq. (6). Note that
this identifies the initial condition of a VARX(2) model, so
the initial condition is defined by two SST patterns, one at the
initial month and one at the antecedent month. The resulting

patterns are shown in Fig. 14. The figure suggests that, for
this initial condition, ACCESS1-3 responds with a stronger
amplitude than observations, although the amplitude discrep-
ancy is modest, consistent with the modest deviance level.

4 Conclusions

This paper presents a methodology for determining whether
two vector time series originate from the same stochastic
process. Such a procedure can be used to address various
climate-related questions, including assessing the realism of
climate simulations and quantifying changes in climate vari-
ability over time. The stochastic process under consideration
is assumed to be a vector autoregressive model with exoge-
nous variables, referred to as VARX. In this study, the exoge-
nous variable represents annual cycles in the mean. However,
in other applications, it could capture nonstationary signals
such as diurnal cycles, secular changes due to solar variabil-
ity, volcanic eruptions, or human-induced climate change.
This paper derives a likelihood ratio test for determining the
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Figure 13. Decomposed AR deviance from discriminant analysis. The horizontal gray line indicates the 1 % significance threshold. Models
on the x axis have been ordered by leading deviance.

Figure 14. The optimal initial condition of VARX(2) models (a, b) that maximizes the difference in response between ACCESS1-3 and
ERSSTv5 and the corresponding response in ACCESS1-3 (c) and ERSSTv5 (d).
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equality of VARX parameters. Additionally, an associated
stepwise procedure is developed to determine the equality
of noise parameters, autoregressive parameters, and annual
cycle parameters. The resulting procedure is not limited to
specific stochastic models employed in this study. Rather, the
procedure is general and can be applied to a broader class of
models, including non-periodic exogenous variables. Thus,
these procedures provide a comprehensive framework for an-
alyzing and comparing different aspects of climate time se-
ries.

Derivation of the above procedure follows an approach
that is similar to the univariate case, but it is extended here to
encompass multivariate applications. This extension necessi-
tates the incorporation of bias corrections and the utilization
of a Monte Carlo technique to estimate significance thresh-
olds accurately. The Monte Carlo algorithm developed here
is particularly efficient in that it uses eigenvalue methods to
evaluate the ratio of determinants and avoids solving regres-
sion problems by sampling directly from the Wishart distri-
bution. Discriminant techniques are employed to compress
differences between VARX models into the minimal num-
ber of components, facilitating a more concise description.
While similar techniques were introduced in previous parts
of this paper series, this paper generalizes them to multivari-
ate situations and to accommodate an arbitrary number of
steps in the stepwise procedure. Consequently, the procedure
and associated codes for this test supersede those discussed
in earlier parts of the series, offering an improved and more
comprehensive approach.

The above procedure was implemented to compare
monthly mean North Atlantic sea surface temperatures be-
tween CMIP5 models and observational data, taking into ac-
count their respective annual cycles. The analysis focused on
the variability projected onto the first four Laplacian eigen-
vectors over the North Atlantic basin, which highlight the
largest spatial scales within the region. To ensure that the
residuals exhibited properties akin to white noise, a VARX
model of at least second order was required for most CMIP5
models. The test results indicated that not only do CMIP5
models differ stochastically from the observational data, but
that they also display variations among themselves, except
when models originate from the same modeling center. Dif-
ferences among CMIP5 models are distinctive enough to
serve as a fingerprint that differentiates a given model from
any other model and from observational data.

The primary source of deviance from observations is dis-
parities in annual cycles. To gain insight into the character-
istics of these disparities, covariance discriminant analysis
was employed to decompose deviance associated with an-
nual cycles into uncorrelated components, ordered such that
the first explains the largest portion of annual cycle deviance,
the second explains the most deviance after the first has been
removed, and so on. For certain CMIP5 models, the leading
discriminant accounts for several times more annual cycle

deviance than subsequent components. Specific examples of
these leading discriminants were presented.

Although differences in annual cycles dominated the total
deviance, differences in whitened variance were also signifi-
cant across the majority of the models. Discriminant analysis
revealed that most CMIP5 models underestimate whitened
variance, with some models falling short by a factor of 5. A
few models were found to overestimate whitened variance by
a factor of 2 or more. The collective differences in whitened
variances and covariances between Laplacian eigenvectors
were sufficiently unique to serve as a secondary fingerprint.
It is remarkable that such distinctive identifying information
is encapsulated in time series even after removing serial cor-
relations, annual cycles, and all other nonstationary signals
such as trends.

Differences in autoregressive parameters accounted for
only a minor portion of the overall deviance. Approximately
two models displayed noise and AR parameters that aligned
with observations, suggesting that their internal variability
was realistically represented. However, all the models exhib-
ited unrealistic annual cycles despite this positive character-
istic.

The method discussed in this paper can analyze only rel-
atively low-dimensional systems (for instance, the VARX
model used to compare North Atlantic variability examined
only four Laplacian eigenfunctions). It may be possible to
combine some aspects of this approach with machine learn-
ing methods to greatly expand the number of variables that
can be compared.

Appendix A: Likelihood ratio test

A standard method for testing hypotheses in VAR models
is the maximum likelihood method (Brockwell and Davis,
1991; Box et al., 2008; Lütkepohl, 2005). The extension of
this method to VARX models is straightforward. Specifically,
the likelihood of Eq. (1) is

L=
(

LP

(2π )S |0|

)(N ′−P )/2

exp

[
−

N ′∑
t=p+1

ε̂Tt 0
−1ε̂t/2

]
, (A1)

where LP represents terms that depend on the first p values
of the process, and

ε̂t = yt −A1yt−1− . . .−Apyt−p −Cf t − d.

Similarly, the likelihood of Eq. (2) is

L∗ =
(

L∗P

(2π )S |0∗|

)(N ′∗−P )/2

exp

[
−

N ′∗∑
t=p+1

ε̂∗Tt 0∗−1ε̂∗t /2

]
, (A2)

where

ε̂∗t = y
∗
t −A∗1y

∗

t−1− . . .−A∗py
∗
t−p −C∗f t − d

∗.
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Since {yt } and {y∗t } are independent, the likelihood of both
models is the product of the two individual likelihoods:

L�0 = LL∗.

For the alternative hypotheses listed in Table 1, the likelihood
is obtained by constraining the population parameters as in-
dicated in Table 1. As an example, the likelihood under �3
is

L�3 =

(
LP

(2π )S |0|

)(N ′−P )/2( L∗P

(2π )S |0|

)(N ′∗−P )/2

exp

[
−

N ′∑
t=p+1

ε̂Tt 0
−1ε̂t/2−

N ′∗∑
t=p+1

ε̂∗Tt 0
−1ε̂∗t /2

]
,

where ε̂t and ε̂∗t take on the values

ε̂t = yt −A1yt−1− . . .−Apyt−p −Cf t − d,
ε̂∗t = y

∗
t −A1y

∗

t−1− . . .−Apy∗t−p −Cf t − d
∗.

Maximum likelihood estimates are obtained by finding the
parameters that maximize the likelihood in question. Un-
fortunately, this procedure is complicated by the terms Lp
and L∗p, which depend nonlinearly on the population param-
eters. However, for large N ′ and N ′∗, the contribution of Lp
and L∗p to the likelihood is small in comparison to other
terms. A common approximation is to ignore Lp and L∗p
when computing the maximum likelihood estimates, which
is tantamount to maximizing the conditional likelihood and
leads to the familiar least-squares estimates (Box et al., 2008,
Sects. 7.1.2 and A7.4). Moreover, for asymptotically large
sample sizes, the sampling distributions converge to those as-
sociated with linear regression theory. For example, see the-
orem 8.1.2 and Sect. 8.9 of Brockwell and Davis (1991) and
Appendix A7.5 of Box et al. (2008) for the univariate case
as well as Sect. 3.4 of Lütkepohl (2005) for the multivari-
ate case. Accordingly, we assume that sample sizes are suffi-
ciently large to justify asymptotic theory and therefore justify
using linear regression theory to test hypotheses in VARX
models. The problem of testing differences in VARX models
is then addressed by appropriately mapping the parameters of
the VARX model to the parameters of the regression model.
This mapping can be performed in the following way. First,
define

{yt }
U
L =


yL
yL+1
...

yU

 ,
where L and U denote the lower and upper limits of a time
series, respectively, with L < U . Then, the N ′ samples from
model (1) are related as

Y= X2B2+X3B3+X4B4+E, (A3)

where

Y= {yTt }
N ′

p+1, X2 =
(
{yTt }

N ′−1
p . . . {yTt }

N ′−p

1

)
,

X3 = {f
T
t }
N ′

p+1, X4 = {1}N
′

p+1,

and

B2 =
(
A1 A2 . . . Ap

)T
, B3 = CT , and B4 = d

T .

In the context of comparing annual cycles,

X3 =
(
c̃1 s̃1 c̃2 s̃2 . . . c̃H s̃H

)
,

where

c̃h = {cos(2πh/12t)}N ′p+1

s̃h = {sin(2πh/12t)}N ′p+1.

Similarly, in an obvious notation,

Y∗ = X∗2B∗2+X∗3B∗3+X∗4B∗4+E∗. (A4)

In this way, the problem of comparing VARX models (1)
and (2) is re-parameterized as the problem of comparing
Eqs. (A3) and (A4). In the next section, we describe the pro-
cedure for comparing Eqs. (A3) and (A4). For this descrip-
tion, it proves convenient to define

N =N ′−p and N∗ =N ′∗−p. (A5)

Appendix B: Multivariate test of the equality of
regression models

B1 Regression model framework

Although our goal is to describe the procedure for comparing
the regression models (A3) and (A4), it turns out to be more
efficient to describe the procedure in the context of the more
general problem of comparing the models:

Y= X2B2+X3B3+ . . .+XκBκ +E, (B1)
Y∗ = X∗2B∗2+X∗3B∗3+ . . .+X∗κB∗κ +E∗, (B2)

where Xk and X∗k are predictor matrices, each having linearly
independent columns; Bk and B∗k are regression coefficients;
and E and E∗ are independent random matrices whose rows
are drawn from a multivariate normal distribution with zero
mean and covariance matrices 0 and 0∗, respectively. These
terms have the following dimensions:

Y ∈ RN ×S, Xk ∈ RN ×Kk , Bk ∈ RKk×S, E ∈ RN ×S,
Y∗ ∈ RN∗×S, X∗k ∈ R

N∗×Kk , B∗k ∈ R
Kk×S, E∗ ∈ RN∗×S,

where k = 2, . . .,κ , and N and N∗ are defined in Eq. (A5).
S is the number of variables (i.e., the dimension of yt
in Eq. 1). K2,K3, . . .,Kκ are the number of predictors in
X2,X3, . . .,Xκ .
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Samples from VARX(p) models (1) and (2) can be writ-
ten in the regression model forms (B1) and (B2) as discussed
in Appendix A. The partitioning of parameters in models (1)
and (2) into the Bi matrices in Eqs. (B1) and (B2) is highly
adaptable and allows for considerable flexibility. To test the
hypotheses in Table 1, B2 would be identified with the AR
parameters {A1, . . .,Ap}, B3 would be identified with the ex-
ogenous parameters C, and B4 would be identified with the
intercept. It is a matter of choice whether to test the equality
of B4. In Sect. 3, equality of climatological means was not
tested, and hence the equality of B4 was not tested. Under
this identification, K2 = pS, K3 = J , and K4 = 1. The iden-
tification of starred variables follows the same pattern. The
null hypothesis H0 in Eq. (3) corresponds to the hypothesis
that Bi = B∗i for i = 1, . . .,κ − 1 and 0 = 0∗.

B2 Stepwise testing procedure

If H0 is rejected, then one or more of the equalities in
Eq. (3) is false, but which ones? To address this question,
we test hypotheses about subsets of parameters. The hypoth-
esis 0 = 0∗ is tested first for reasons discussed in DelSole
and Tippett (2022b). Then, hypotheses about other param-
eter subsets are tested. Seber (2015) describes an elegant
procedure for testing hypotheses in a stepwise manner. This
procedure was adopted in DelSole and Tippett (2022b) and
will be generalized further in this Appendix to include mul-
tivariate models. The least restrictive hypothesis is denoted
as �0, and subsequent hypotheses �1, . . .,�κ are nested as
�κ ⊂�κ−1 ⊂ . . .⊂�0. The first few hypotheses are indi-
cated in Table B1. Note that Hypothesis H0 is not �0. Also,
model (B1) deliberately excludes X1 and B1, so that hypothe-
ses �2,�3,�4 in Table B1 correspond to restricting B2,B3,
and B4, respectively. Had the subscripts of B started at one,
the resulting subscripts on � and B would have differed by
one, leading to an awkward notation.

A key quantity in the stepwise procedure is the number
of parameters estimated under the ith hypothesis, denoted as
Pi . Table B1 summarizes the number of parameters Pi and
the number of predictors 8i associated with each hypothe-
sis. For instance, the population parameters in Eq. (B1) are
B1, . . .,Bκ ,0. Each Bi contains Ki predictors and therefore
SKi parameters, and 0 contains S(S+ 1)/2 independent pa-
rameters. Model (B2) contains the same number of param-
eters. Therefore, the total number of parameters estimated
under �0 is

P0 =

κ∑
h=2

2SKh+ S(S+ 1).

Under �1, the population parameters are
B1,B∗1, . . .,Bκ ,B

∗
κ ,0. In particular, there is only one

noise covariance matrix, so

P1 =

κ∑
h=2

2SKh+ S(S+ 1)/2.

As the stepwise procedure marches from �i to �i+1, there
are Ki+1 fewer predictors estimated. Thus, in general, the
number of parameters estimated under �i for 1≤ i ≤ κ is

Pi =
κ∑
h=2

(1+H (h− i))SKh+ S(S+ 1)/2,

where H (x) is a step function, which equals 0 when x ≤ 0
and equals 1 when x > 0 (note that H (0)= 0).

B3 Equality of noise covariance matrices

The initial hypothesis in the stepwise test procedure is �1,
which asserts the equality of noise covariance matrices. This
test shares similarities with the conventional test for equal-
ity of covariance matrices (e.g., Anderson, 1984, Chap. 10).
However, certain adjustments are made, as discussed in more
detail below, including an adjustment in the degrees of free-
dom to accommodate regression and the implementation of
a bias correction. We start by expressing Eq. (B1) in the fol-
lowing form:

Y= XB+E, (B3)

where

Y= Y, X=
[
X1 . . . Xκ

]
, and B=

B1
...

Bκ

 .
By standard theorems, the maximum likelihood estimate of
B is

B̂=
(
XTX

)−1
XTY,

the maximum likelihood estimate of 0 is

0 =
(
Y−XB̂

)T (
Y−XB̂

)
/N, (B4)

and the distribution of 0 is

N0 ∼WS (ν,0) , (B5)

where the right-hand side denotes an S-dimensional Wishart
distribution with ν degrees of freedom and covariance matrix
0. The degrees of freedom for model (B1) is

ν =N −K1−K2− . . .−Kκ . (B6)

Analogous results hold for model (B2), where the associated
estimates are distinguished by asterisks. In particular, the es-
timated noise covariance matrix has distribution

N∗0
∗
∼WS

(
ν∗,0∗

)
, (B7)

where

ν∗ =N∗−K1−K2− . . .−Kκ . (B8)
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Table B1. Summary of the first few hypotheses in the stepwise procedure. Parameters8i and Pi in the last two columns indicate the number
of predictors and the number of estimated parameters under Hypothesis �i , respectively.

0 B2 B3 8i Pi
�0 Unrestricted Unrestricted Unrestricted 2K2+ 2K3 S80+ S(S+ 1)
�1 0 = 0∗ Unrestricted Unrestricted 2K2+ 2K3 S81+ S(S+ 1)/2
�2 0 = 0∗ B2 = B∗2 Unrestricted K2+ 2K3 S82+ S(S+ 1)/2
�3 0 = 0∗ B2 = B∗2 B3 = B∗3 K2+ K3 S83+ S(S+ 1)/2

The likelihood ratio for testing �1 versus �0 is

L�1

L�0

=

(
|0|N |0

∗
|
N∗

|0�1 |
N+N∗

)1/2

,

where | · | denotes the determinant of a matrix and 0�1 is the
maximum likelihood estimate of 0 under �1, i.e.,

0�1 =
N0+N∗0

∗

N +N∗
. (B9)

The corresponding sub-deviance statistic is therefore

D′�0:1
= (N +N∗) log |0�1 | −N log |0| −N∗ log |0

∗
|.

We have found that the sampling distribution of the above
statistic is grossly inconsistent with asymptotic theory, par-
ticularly for disparate N and N∗. This inconsistency is most
likely due to the well-known fact that the maximum likeli-
hood estimate in Eq. (B4) is biased. In principle, an unbi-
ased estimate could be obtained simply by replacing N in
Eq. (B4) with ν. Previous studies have shown that replac-
ing maximum likelihood estimates with unbiased estimates
yields a likelihood ratio for finite samples that is more consis-
tent with asymptotic sampling theory (Cordeiro and Cribari-
Neto, 2014). This correction becomes even more critical with
larger S. A suitable bias-corrected deviance can be obtained
by replacingN andN∗ with the degrees of freedom ν and ν∗,
replacing the maximum likelihood estimate of 0 in Eq. (B4)
with the unbiased estimate

0̂ =
(
Y−XB̂

)T (
Y−XB̂

)
/ν

and making a similar replacement of the maximum likeli-
hood estimate 0

∗
with the unbiased estimate 0̂∗. Further-

more, an unbiased estimate of 0 under �1 is

0̂�1 =
ν0̂+ ν∗0̂∗

ν+ ν∗
. (B10)

The resulting bias-corrected sub-deviance is

D�0:1 = (ν+ ν∗) log |0̂�1 | − ν log |0̂| − ν∗ log |0̂∗|. (B11)

B4 Equality of regression parameters

Procedures for testing hypotheses �2,�3, . . .,�κ are stan-
dard (e.g., Anderson, 1984, Sect. 8.3–8.4) and are sometimes
referred to as testing a subset of explanatory variables (Fu-
jikoshi et al., 2010, p191). The procedure we follow is simi-
lar, except that we employ estimates of noise covariance ma-
trices that connect appropriately to the bias-corrected esti-
mates defined in Sect. B3.

Under hypotheses �2,�3, . . .,�κ , models (B1) and (B2)
have a common noise covariance matrix, and thus the models
can be combined in the form Y= X�kB�k +E, where

Y=
[

Y
Y∗

]
, E=

[
E
E∗

]
,

and X�k and B�k are defined based on the hypothesis
in question. For instance, for κ = 3, the identifications for
�1,�2, and �3 would be

X�1 =

[
X2 X3 0 0
0 0 X∗2 X∗3

]
,

X�2 =

[
X2 X3 0
X∗2 0 X∗3

]
,

X�3 =

[
X2 X3
X∗2 X∗3

]
,

and

B�1 =


B2
B3
B∗2
B∗3

 , B�2 =

B2
B3
B∗3

 , B�3 =

[
B2
B3

]
. (B12)

The maximum likelihood estimate of 0 under �i is

0i = Ei/(N +N∗),

where

Ei =
(
Y−X�iB�i

)T (Y−X�iB�ik
)
.

The corresponding (maximum likelihood) sub-deviance for
testing �i+1 against �i is

D′�i:i+1
= (N +N∗)

(
log |0i+1| − log |0i |

)
for i ≥ 1.
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As in Sect. B3, we modify the noise covariance matrix
estimate and the sub-deviance to satisfy certain properties.
Accordingly, consider the modified noise covariance matrix
estimate

0̂�i = Ei/bi for i ≥ 1 (B13)

and the corresponding sub-deviance

D�i:i+1 = ai+1 log |0̂i+1| − ai log |0̂i | for i ≥ 1,

where the coefficients ai and bi are to be determined. In gen-
eral, sub-deviance should vanish when the regression coef-
ficients under �i and �i+1 are identical. In this case, the
sum square errors are identical, i.e., Ei+1 = Ei , and the sub-
deviance is

D�i:i+1 = Sai logbi − Sai+1 logbi+1+ (ai+1− ai) log |Ei |.

For sub-deviance to vanish for all Ei , we must have ai =
ai+1, which in turn implies bi = bi+1. Furthermore, the case
i = 1 is known from Sect. B3. In particular, Eq. (B10) im-
plies bi = ν+ ν∗. Substituting this into Eq. (B13) yields

0̂�i =
(
Y−X�iB�i

)T (Y−X�iB�i
)
/(ν+ ν∗). (B14)

Also, consistency with Eq. (B11) requires ai = ν+ν∗, which
implies that the sub-deviance for testing �i+1 against �i is

D�i:i+1 = (ν+ ν∗)
(

log |0̂�i+1 | − log |0̂�i |
)

for i ≥ 1.

(B15)

In general, deviance D�0:j is the telescoping sum of the ap-
propriate sub-deviances:

D�0:j =D�0:1 +D�1:2 + . . .+D�j−1:j . (B16)

Estimate Eq. (B14) is biased for i > 1 because the degrees
of freedom associated with�i is N+N∗−8i , which differs
from ν+ν∗ for i > 1. Despite this bias, we use Eq. (B14) be-
cause, as shown above, it ensures that each sub-deviance van-
ishes when the appropriate regression parameter estimates
are equal.

B5 Numerical evaluation of sub-deviances

This section describes the computation of sub-deviances us-
ing eigenvalue methods. These methods effectively handle
underflow and overflow issues and seamlessly integrate with
the diagnostic procedures discussed in Sect. B8.

To evaluate D�0:1 in Eq. (B11), we solve the eigenvalue
problem

0̂q = λ0̂∗q. (B17)

Let the resulting eigenvalues be denoted as λ1,λ2, . . .,λS . A
classical result (Seber, 2008, Sect. 16.8) is that, since 0̂ and

0̂∗ are positive definite, then 0̂ and 0̂∗ are simultaneously
diagonalizable and can be written in the forms

0̂∗ = PPT and 0̂ = P3PT , (B18)

where P is nonsingular and3 is a diagonal matrix with diag-
onal elements equal to the eigenvalues of Eq. (B17). Substi-
tuting Eq. (B18) into (B11) and using standard properties of
determinants to cancel P yields

D�0:1 =

S∑
j=1

{
(ν+ ν∗) log

(
νλj + ν

∗

ν+ ν∗

)
− ν logλj

}
. (B19)

Similarly, to evaluate D�i:i+1 in Eq. (B15), one could solve

0̂�i+1q = θ 0̂�iq. (B20)

However, for consistency with the calculations discussed
later, we solve

(0̂�i+1 − 0̂�i )q = s
20̂�iq. (B21)

There is no material difference between solving Eqs. (B20)
and (B21): each one is solved by the same eigenvector q,
and the associated eigenvalue is related as s2

= θ−1. Let the
eigenvalues of Eq. (B21) be s2

1 , . . ., s
2
S . Then

D�i:i+1 = (ν+ ν∗)
S∑
j=1

log(1+ s2
j ) for i ≥ 1.

Sub-deviance depends only on the eigenvalues of the rele-
vant matrices. The corresponding eigenvectors q1, . . .,qS are
not needed for computing sub-deviance, but we will show in
Sect. B8 that they are useful for diagnosing the cause of the
deviance.

B6 Significance testing

For sufficiently large N and N∗, asymptotic theory (Hogg
et al., 2019) implies that

D�i:i+1 ∼ χ
2
Pi−Pi+1

. (B22)

We have checked this distribution against Monte Carlo es-
timates and found that the above asymptotic distribution is
reasonable for our data set, provided that unbiased deviances
are used. In contrast, if maximum likelihood estimates are
used, then the critical value from asymptotic theory can be
grossly inaccurate. Once the bias correction is performed,
the Monte Carlo algorithm is not essential for the results de-
scribed in this paper. However, for other data sets with small
or disparate N or N∗, the asymptotic distribution may break
down and the Monte Carlo algorithm may be required, so we
summarize the algorithm here. The Monte Carlo technique
proposed here is particularly efficient in that it avoids explicit
solution of regression problems and instead samples directly
from Wishart distributions.
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The distributions of 0̂, 0̂∗, and 0̂�i are known from stan-
dard regression analysis (e.g., see Mardia et al., 1979) and
are given by

ν0̂ ∼WS (ν,0C) under �1,

ν∗0̂∗ ∼WS

(
ν∗,0C

)
under �1,

(ν+ ν∗)0̂�i ∼WS

(
ν�i ,0C

)
under �i,

where WS(ν,0C) denotes an S-dimensional Wishart distri-
bution with ν degrees of freedom and covariance matrix 0C .
Importantly, 0̂�i and 0̂�i+1 appearing in Eq. (B15) are not
independent. Rather, 0̂�i and 0̂�i+1 − 0̂�i are independent
(this is proven in Sect. C). Accordingly, it proves convenient
to define

1i:i+1 = 0̂�i+1 − 0̂�i for i ≥ 1

and to write Eq. (B15) equivalently as

D�i:i+1 = (ν+ ν∗)
(

log |0̂�i +1i:i+1| − log |0̂�i |
)

for i ≥ 1. (B23)

Section C shows that the distribution of1i:i+1 under�i+1 is

(ν+ ν∗)1i:i+1 ∼WS(8i −8i+1,0C).

Importantly, each sub-deviance D�i:i+1 is invariant to invert-
ible linear transformations of the variables. Therefore, with-
out loss of generality, we may choose 0C = I. Note that most
mathematical packages provide a function to sample directly
from the Wishart distribution (e.g., rWishart in R). Sam-
pling directly from the Wishart distribution is much more ef-
ficient than repeatedly solving regression problems.

Accordingly, we draw random matrices
D,D∗,F1:2,F2:3, . . . from

D∼WS (ν,I) , (B24)
D∗ ∼WS

(
ν∗,I

)
, (B25)

Fi:i+1 ∼WS (8i −8i+1,I) for 1≤ i ≤ κ − 1. (B26)

Then, Monte Carlo samples of the sub-deviances are gener-
ated as

DMC
�0:κ
=DMC

�0:1
+DMC

�1:2
+ . . .+DMC

�κ−1:κ
, (B27)

where the first three terms are

DMC
�0:1
= (ν+ ν∗) log |D/ν+D∗/ν∗| − ν log |D/ν|

− ν∗ log |D∗/ν∗|,

DMC
�1:2
= (ν+ ν∗)

(
log |D+D∗+F1:2| − log |D+D∗|

)
,

DMC
�2:3
= (ν+ ν∗)

(
log |D+D∗+F1:2+F2:3|

− log |D+D∗+F1:2|
)
.

A straightforward Monte Carlo algorithm draws samples
from Eqs. (B24) to (B26), computes each sub-deviance in

Eq. (B27), and repeats enough times (e.g., 5000) to ac-
curately estimate the 95th percentile of the desired sub-
deviance. Here, each sub-deviance is computed using the
eigenvalue methods of Sect. B5. Furthermore, individual
eigenvalues are retained from the Monte Carlo algorithm, so
that they can be used to estimate the sampling distribution of
the leading eigenvalues as part of the discriminant analysis
discussed in Sect. B8.

B7 Additional comments about the stepwise procedure

Because the hypotheses in Table B1 are nested, there exists a
natural stepwise testing procedure. This procedure has been
described elegantly by Hogg (1961) and Seber (2015) for
univariate regression, which formed the basis of the proce-
dure in DelSole and Tippett (2022b). The procedure for mul-
tivariate regression is identical. These steps are described in
DelSole and Tippett (2022b) and are repeated below for con-
venience. First,D�0:1 is tested for significance. If it is signif-
icantly large, then we decide that�1 is false and stop testing.
On the other hand, if D�0:1 is not significant, then D�1:2 is
tested for significance. If it is significant, then we decide that
�1 is true but�2 is false and stop testing. On the other hand,
if D�1:2 is not significant, then D�2:3 is tested for signifi-
cance. If it is significant, then we conclude that�2 is true but
�3 is false. If D�2:3 is not significant, then we conclude that
no significant difference in VARX models is detected.

Because sub-deviances are stochastically independent, the
family-wise error rate associated with multiple testing can
be constrained. In this paper, we fix the type-1 error rate of
each sub-test to 1− (1− 0.01)1/3

≈ 0.0033, which gives a
1 % family-wise error rate for the difference-in-VARX model
test.

The preferred order of testing the hypotheses listed in Ta-
ble 1 is discussed in DelSole and Tippett (2022b). This order
is recommended for several reasons. First,�1 is tested to en-
sure that the noise covariance matrices are equal before test-
ing other hypotheses. Otherwise, if �1 is false and the noise
covariance matrices differ, the sampling distribution of the
regression parameters becomes dependent on the unknown
population noise covariances. This dependency makes the
computation of the sampling distribution challenging, similar
to the Behrens–Fisher problem. Next, if differences in noise
covariances are not significant, it is recommended to test the
equality of AR parameters (Hypothesis �2). This simplifies
the interpretation of the subsequent Hypothesis �3. For in-
stance, the periodic response of Eq. (1) depends on the AR
parameters. As a result, differences in the annual cycle re-
sponse could be due to differences in either the annual cycle
parameters or the AR parameters. Testing AR parameters be-
fore other parameters resolves this ambiguity, as differences
in other parameters are tested only if the differences in AR
parameters are not significant.
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B8 Diagnosing differences in regression parameters

If D�i:i+1 is significant, then we conclude that there is a sig-
nificant difference between the relevant parameters of the
VARX models. However, this conclusion does not tell us
the nature of those differences. DelSole and Tippett (2022a)
proposed diagnosing differences in model parameters based
on finding the linear combination of variables that maxi-
mizes sub-deviance. This optimization problem leads to an
eigenvalue problem whose solutions can be used to compress
the sub-deviance into the fewest number of components. In
the case of D�0:1 , the interpretation of these components is
straightforward: they identify spatial patterns whose ratio of
whitened variances is optimized. Further details of this de-
composition can be found in DelSole and Tippett (2022a).
In contrast, the relationship between the decomposition of
D�1:2 and differences in AR parameters, as well as the de-
composition of D�2:3 and differences in annual cycle param-
eters, is not as straightforward. This section aims to clarify
the connection between these decompositions and the corre-
sponding parameter differences.

We seek the linear combination of variables that maxi-
mizes the sub-devianceD�i:i+1 for i ≥ 1. Let the coefficients
of the linear combination be denoted by qY ∈ RS×1, so that
the associated variates are

r = YqY and r∗ = Y∗qY . (B28)

Let us define the variance

σ 2
k = q

T
Y 0̂�kqY

and the variance ratio

s2
i:i+1 =

σ 2
i+1− σ

2
i

σ 2
i

.

Because the hypotheses are nested, the residual variances in-
crease with each step in the stepwise procedure, and hence
s2
i:i+1 is non-negative. Then the sub-deviance due to regres-

sion parameter differences (B23) is

D�i:i+1 (ωi:i+1)= (ν+ ν∗) log(1+ s2
i:i+1) for i ≥ 1. (B29)

The stationary value of D�i:i+1 (s2
i:i+1) occurs at

∂s2
i:i+1/∂qY = 0, which leads to the eigenvalue problem

1i:i+1qy = s
20̂�iqY . (B30)

This eigenvalue problem is identical to Eq. (B21), which
shows that eigenvalue problem (B21) is useful both for nu-
merical evaluation and for diagnosing differences in regres-
sion parameters. Also, eigenvalue problem (B30) is precisely
the eigenvalue problem that arises in covariance discriminant
analysis (CDA; DelSole and Tippett, 2022a). The properties
of the solutions have been discussed in detail in DelSole and
Tippett (2022a). Here we merely summarize the properties

that are relevant to diagnosing differences in regression pa-
rameters.

Let the eigenvalues of Eq. (B30) be ordered from largest
to smallest (s2

1 ≥ s
2
2 ≥ . . .≥ s

2
S), let the corresponding eigen-

vectors be qY,1,qY,2, . . .,qY,S , and define pY,j = 0̂�iqY,j .
The vectors pY,1,pY,2, . . .,pY,S are called loading vectors.
Collect the eigenvectors and loading vectors into the matri-
ces

QY =
[
qY,1 qY,2 . . . qY,S

]
,

PY =
[
pY,1 pY,2 . . . pY,S

]
.

Without loss of generality, the eigenvectors are normalized
to satisfy

QT
Y 0̂�iQY = I.

Since PY = 0̂�iQY , the normalization implies that the
columns of QY and PY form a bi-orthogonal set: PTYQY = I.
Then, CDA decomposes the covariance matrices into the
forms

0̂�i = PYPTY and 1i:i+1 = PYS2PTY , (B31)

where S is a diagonal matrix with diagonal elements
s1, . . ., sS . Substituting these decompositions into the sub-
deviance (B23) and using standard properties of determi-
nants yields

D�i:i+1 = (ν1+ ν2)
S∑
j=1

log(1+ s2
j ) for i ≥ 1.

Comparison with Eq. (B29) shows that each term in the sum
is a deviance between variates.

The above results show that CDA decomposes sub-
deviance into a sum of deviances between variates. The sam-
pling distribution of the leading eigenvalue s2

1 can be esti-
mated as a byproduct of the Monte Carlo simulations dis-
cussed in Sect. B6. However, the interpretation of the de-
composition in terms of differences in regression parameters
Bi+1−B∗i+1 is not apparent. In Appendix C, we show that

1i:i+1 = δ̂
T
i+12i:i+1δ̂i+1, (B32)

where

δ̂i+1 = B̂i+1− B̂∗i+1 under �i (B33)

and 2i:i+1 is a positive definite matrix defined in Eqs. (C13)
and (C17). As a result,1i:i+1 vanishes when δ̂i+1 = 0 and is
positive otherwise.

Substituting Eq. (B32) into (B30) yields

δ̂Ti+12i:i+1δ̂i+1qY = s
20̂�iqY .

2i:i+1 and 0̂�i are each positive definite and therefore pos-
sess symmetric square roots 21/2

i:i+1 and 0̂1/2
�i

that are invert-
ible. Thus, the eigenvalue problem can be manipulated into
the form

δ̇T δ̇q̃Y = s
2q̃Y ,
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where

δ̇ =2
1/2
i:i+1δ̂i+10̂

−1/2
�i

and q̃Y = 0̂
1/2
�i
qY . (B34)

Recall that the eigenvalues of δ̇T δ̇ are the squared singular
values of δ̇. Let the SVD of δ̇ be

δ̇ = USVT , (B35)

where U and V are orthogonal matrices and S is a diagonal
matrix with non-negative diagonal elements s1, s2, . . ., sS .

Solving Eq. (B35) for δ̂i+1 yields

δ̂i+1 =QXSPTY , (B36)

where, following DelSole and Tippett (2022a), we define

QX =2
−1/2
i:i+1U, QY = 0̂

−1/2
�i

V,

PX =2
+1/2
i:i+1U, PY = 0̂

+1/2
�i

V.

These quantities satisfy the identities in Table B2.
A particularly instructive decomposition that follows from

Eq. (B36) is

PTX δ̂ = SPTY . (B37)

Let pX,j and pY,j denote the j th columns of PX and PY ,
respectively. Then Eq. (B37) may be interpreted as multiply-
ing the “initial condition” pX,j by the difference in regres-
sion parameters δ̂ to produce a difference in the “one-step
response” sjpY,j . Furthermore, the initial condition and re-
sponse vectors satisfy

pTX,j2
−1
i:i+1pX,j = I and pTY,j 0̂

−1
�i
pY,j = I (B38)

(see Table B2). Identities (B38) imply that the initial condi-
tion pX,j has a constant probability density from a normal
distribution with covariance matrix 2i:i+1, and the response
pY,j has a constant probability density from a normal distri-
bution with covariance matrix 0̂�i . In this sense, the initial
condition and response are “equally likely” realizations from
appropriate populations. Then, CDA may be interpreted as
finding the initial condition among all equally likely vectors
that maximizes the response difference due to the difference
in regression parameters.

The above decomposition is sensible when Xi+1 is ran-
dom, e.g., when the associated coefficients Bi+1 correspond
to the autoregressive part of the VARX model. However, if
Xi+1 is deterministic, e.g., when it describes the annual cy-
cle, then the predictors are fixed and are usually the same in
both data sets (e.g., X3 = X∗3 for annual cycle differences). In
this case, a more instructive approach is to propagate regres-
sion parameter differences into the time domain as

̂̂
δi+1 = Xi+1δ̂i+1. (B39)

In terms of decomposition (B36),

̂̂
δi+1 =

̂̂QXSPTY , (B40)

where we definê̂QX = Xi+1QX.

The columns of ̂̂QX give the time series by which one should
multiply the columns of PY to reconstruct the difference in
responses. Thus, decomposition (B40) is similar to principal
component analysis. For example, the columns of ̂̂QX are
time series, and the columns of PY are spatial patterns. Time
series for individual models are obtained by computing

Xi+1Bi+1QY = RY and Xi+1B∗i+1QY = R∗Y , (B41)

so that

RY −R∗Y = Xi+1Bi+1QY −Xi+1B∗i+1QY = Xi+1δ̂i+1QY

=
̂̂QXS.

Appendix C: Additional properties of sample noise
covariance matrices

The purpose of this Appendix is to prove that 0̂�i and
0̂�i+1 − 0̂�i are independent, to derive their distributions,
and to show that the latter matrix is a quadratic form of dif-
ferences in regression parameters for i ≥ 1. The latter result
does not seem to have been demonstrated previously. We be-
gin by noting that the noise covariance matrix (B14) can be
written equivalently as

0̂�i = YT (I−Pi)Y/(ν+ ν∗) for i ≥ 1, (C1)

where I is the identity matrix and Pi is an orthogonal projec-
tion matrix appropriate to Hypothesis �i , i.e.,

Pi = X�i
(
XT�iX�i

)−1
XT�i .

The projection matrices satisfy (DelSole and Tippett, 2022b)

Pi+1Pi = PiPi+1 = Pi+1. (C2)

Consider the telescoping identity

I−Pκ = (I−P1)+ (P1−P2)+ . . .+ (Pκ−1−Pκ ) . (C3)

Multiplying this identity by YT on the left and by Y on the
right and dividing it by (ν+ ν∗) gives

0̂�κ = 0̂�1 +11:2+12:3+ . . .+1κ−1:κ , (C4)

where

1i:i+1 = YT (Pi −Pi+1)Y/(ν+ ν∗).

https://doi.org/10.5194/ascmo-10-1-2024 Adv. Stat. Clim. Meteorol. Oceanogr., 10, 1–27, 2024



24 T. DelSole and M. K. Tippett: Comparing time series – Part 5

Table B2. Summary of stochastic decomposition of Di:i+1.

PX =2i:i+1QX Compute PX from QX .

PY = 0̂�iQY Compute PY from QY .

PT
X

QX = I PX and QX are bi-orthogonal.

PT
Y

QY = I PY and QY are bi-orthogonal.

δ̂i+1 =QXSPT
Y

Decomposition of propagator differences

PT
X
δ̂i+1 = SPT

Y
Initial condition times propagator
difference equals the response difference.

QT
X
2i:i+1QX = I and QT

Y
0̂�iQY = I Normalize projection vectors.

PT
X
2−1
i:i+1PX = I and PT

Y
0̂−1
�i

PY = I Response vectors are equally likely.

1= PY S2PT
Y

Decomposition of the response-difference
covariance matrix

Because of Eq. (C2), the product of any two terms in paren-
theses on the right of Eq. (C3) vanishes (i.e., they are “or-
thogonal”). It follows from Cochran’s theorem (Fujikoshi
et al., 2010, Sect. 2.4) that 0̂�1 ,11:2,12:3, . . .,1κ−1:κ are
independent and that

(ν+ ν∗)0̂�1 ∼WS(N +N∗−81,0C),
(ν+ ν∗)1i:i+1 ∼WS(8i −8i+1,0C).

We now show that 1i:i+1 can be written as an explicit
function of regression parameter differences. Describing pa-
rameter differences through B�1 turns out to be awkward be-
cause the dimension of B�1 depends on �i . Accordingly,
we define a regression parameter matrix β�1

= B�1 con-
taining all the regression coefficients, and then β�2

,β�3
, . . .

have the same dimension as B�1 but inherit the constraints
�2,�3, . . .. For instance, for i = 1,2,3 corresponding to
Eq. (B12),

β�1
=


B2
B3
B∗2
B∗3

 , β�2
=


B2
B3
B2
B∗3

 , β�3
=


B2
B3
B2
B3

 . (C5)

Note that X�1β�i = X�iB�i . Estimates of β�1
,β�2

,β�3

are denoted as β̂�1
, β̂�2

, β̂�3
, respectively.

In this notation, PiY= X�1 β̂�i , and therefore

(Pi −Pi+1)Y= X�1

(
β̂�i − β̂�i+1

)
.

Furthermore, since Pi satisfies Eq. (C2),

1i:i+1 = YT (Pi −Pi+1)Y/(ν+ ν∗)

=

(
β̂�i+1

− β̂�i

)T
XT�1

X�1

(
β̂�i+1

− β̂�i

)
/(ν+ ν∗), (C6)

which shows explicitly that1i:i+1 measures the difference in
regression parameters. Nevertheless, the interpretation is still

obscure because 1i:i+1 involves a difference of regression
parameters under two hypotheses rather than a difference un-
der a single hypothesis. Our goal now is to write 1i:i+1 in
terms of differences in regression parameters under a single
hypothesis.

Hypothesis �i can be expressed as

Wiβ�1
= 0, (C7)

where Wi is a suitably chosen matrix with linearly indepen-
dent rows. For instance, for�2, the constraint is B2 = B∗2 and

W2 =
[
IK2×K2 0K2×K3 −IK2×K2 0K2×K3

]
. (C8)

Also, hypotheses �1,�2, . . . are nested, and therefore

Wi+1 =

(
Wi

Wi:i+1

)
(C9)

for a suitable matrix Wi:i+1. For example, for �3, the con-
straints are B2 = B∗2 and B3 = B∗3, and therefore

W3 =

(
W2

W2:3

)
and

W2:3 =
[
0K3×K2 IK3×K3 0K3×K2 −IK3×K3

]
.

Seber and Lee (2003) show that the least-squares estimate of
β�i under constraint (C7) is

β̂�i =Mi β̂�1
, (C10)

where, for i > 1,

Mi = I−
(
XT�1

X�1

)−1
WT
i

(
Wi

(
XT�1

X�1

)−1
WT
i

)−1

Wi . (C11)

As a consistency check, we note that WiMi = 0, and there-
fore Wi β̂�i =WiMi β̂�1

= 0, as required. We define M1 =
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I. Using this notation, Eq. (C6) may be written as

1i:i+1 = β̂
T
�1

(Mi+1−Mi)TXT�1
X�1 (Mi+1−Mi)

· β̂�1
/(ν+ ν∗). (C12)

For i = 1, this expression becomes

11:2 = δ̂
T
1:221:2δ̂1:2,

where

δ̂1:2 =W2β̂�1
= B̂2− B̂∗2 under �1

and

21:2 =

(
1

ν+ ν∗

)(
W2

(
XT�1

X�1

)−1
WT

2

)−1

=

(
1

ν+ ν∗

)(
(XT2 X2)−1

+ (X∗T2 X∗2)−1
)−1

. (C13)

For i > 1, it proves convenient to define these matrices.

G=Wi

(
XT�1

X�1

)−1
WT
i

H=Wi

(
XT�1

X�1

)−1
WT
i:i+1

J=Wi:i+1

(
XT�1

X�1

)−1
WT
i:i+1

L=
(

J−HTG−1H
)−1

Z=
(
XT�1

X�1

)−1
MT
i WT

i:i+1L

We now show that

Mi+1 =Mi −ZWi:i+1Mi . (C14)

From Eq. (C11), Mi+1 is

Mi+1 = I−
(
XT�1

X�1

)−1
WT
i+1

(
Wi+1

(
XT�1

X�1

)−1
WT
i+1

)−1

Wi+1.

By a simple matrix product,

Wi+1

(
XT�1

X�1

)−1
WT
i+1 =

(
G H

HT J

)
.

Recall the standard matrix inverse identity:(
G H

HT J

)−1

=

(
G−1 0

0 0

)
+

(
−G−1H

I

)
L
(
−HT G−1 I

)
.

It follows that

WT
i+1

(
Wi+1

(
XT�1

X�1

)−1
WT
i+1

)−1

Wi+1

=WT
i G−1Wi +

(
−WT

i G−1H+WT
i:i+1

)
L
(
−HT G−1Wi +Wi:i+1

)
=WT

i G−1Wi +

(
−WT

i G−1Wi

(
XT�1

X�1

)−1
+ I
)

WT
i:i+1LWi:i+1

·

(
−

(
XT�1

X�1

)−1
WT
i G−1Wi + I

)
=WT

i G−1Wi +MT
i WT

i:i+1LWi:i+1Mi ,

and therefore

Mi+1 = I−
(
XT�1

X�1

)−1 (
WT
i G−1Wi +MT

i WT
i:i+1LWi:i+1Mi

)
=Mi −

(
XT�1

X�1

)−1
MT
i WT

i:i+1LWi:i+1Mi

=Mi −ZWi:i+1Mi ,

which is the desired result.
Substituting Eq. (C14) into (C12) yields

1i:i+1 = δ̂
T
i+12i:i+1δ̂i+1, (C15)

where

2i:i+1 = ZT (XT�1
X�1 )Z/(ν+ ν∗) for i > 1 (C16)

and

δ̂i+1 =Wi:i+1β̂�i = B̂i+1− B̂∗i+1 under �ifor i > 1.

The quadratic form can be simplified further using the fact
that

Wi:i+1Mi =Wi:i+1

(
I−

(
XT�1

X�1

)−1

·WT
i

(
Wi

(
XT�1

X�1

)−1
WT
i

)−1

Wi

)
=Wi:i+1−HTG−1Wi .

Specifically,

ZT (XT�1
X�1 )Z= LWi:i+1Mi

(
XT�1

X�1

)−1
MT
i WT

i:i+1L

= L
(

Wi:i+1−HT G−1Wi

)(
XT�1

X�1

)−1

·

(
WT
i:i+1−WT

i G−1H
)

L

= L
(

J−HT G−1H−HT G−1H+HT G−1H
)

L

= L
(

J−HT G−1H
)

L= LL−1L

= L.

Therefore,

2i:i+1 = L/(ν+ ν∗) for i > 1. (C17)

This completes the proof of Eq. (C15), which shows that
1i:i+1 can be written explicitly as a quadratic form in δ̂i+1.

Code availability. R codes for performing the statistical test de-
scribed in this paper are available at https://github.com/tdelsole/
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