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Abstract. Although, by now, ensemble-based probabilistic forecasting is the most advanced approach to
weather prediction, ensemble forecasts still suffer from a lack of calibration and/or display systematic bias, thus
requiring some post-processing to improve their forecast skill. Here, we focus on visibility, a weather quantity
that plays a crucial role in, for example, aviation and road safety or ship navigation, and we propose a parametric
model where the predictive distribution is a mixture of a gamma and a truncated normal distribution, both right
censored at the maximal reported visibility value. The new model is evaluated in two case studies based on vis-
ibility ensemble forecasts of the European Centre for Medium-Range Weather Forecasts covering two distinct
domains in central and western Europe and two different time periods. The results of the case studies indicate
that post-processed forecasts are substantially superior to raw ensembles; moreover, the proposed mixture model
consistently outperforms the Bayesian model averaging approach used as a reference post-processing technique.

1 Introduction

Despite the continuous improvement of autoland, autopilot,
navigation, and radar systems, visibility conditions are still
critical in aviation and road safety and in ship navigation
as well. Nowadays, visibility observations are obtained au-
tomatically; visibility sensors take the measurements of “the
length of atmosphere over which a beam of light travels
before its luminous flux is reduced to 5 % of its original
value”1, the quantity of which is called the meteorological
optical range.

Visibility forecasts are generated with the help of nu-
merical weather prediction (NWP) models either as direct
model outputs or by utilizing various algorithms (see, e.g.
Stoelinga and Warner, 1999; Gultepe et al., 2006; Wagh et
al., 2023) to calculate visibility from forecasts of related
weather quantities such as precipitation or relative humid-
ity (Chmielecki and Raftery, 2011). Nowadays, the state-of-
the-art approach to weather prediction is to issue ensemble
forecasts by running an NWP model several times with per-
turbed initial conditions or different model parameterizations

1https://www.metoffice.gov.uk/weather/guides/observations/
how-we-measure-visibility, last access: 12 July 2024

(Bauer et al., 2015; Buizza, 2018a). Hence, for a given lo-
cation, time point, and forecast horizon, instead of having a
point forecast, a forecast ensemble is issued. It opens the door
for estimating the forecast uncertainty or even the probabil-
ity distribution of the future weather variable (Gneiting and
Raftery, 2005) and provides an important tool for forecast-
based decision-making (Fundel et al., 2019). In particular,
several recent studies (see Pahlavan et al., 2021; Parde et al.,
2022) verify the superiority of probabilistic predictions in,
for example, fog forecasting, which is one of the most fre-
quent reasons for low visibility.

By now, all major weather centres operate ensemble pre-
diction systems (EPSs); however, only a few have visibility
among the forecasted parameters. For instance, since 2015,
visibility has been part of the Integrated Forecast System
(IFS; ECMWF, 2021) of the European Centre for Medium-
Range Weather Forecasts (ECMWF; ECMWF Directorate,
2012); nevertheless, it is an experimental product, and “ex-
pectations regarding the quality of this product should remain
low” (Owens and Hewson, 2018, Sect. 9.4). A further ex-
ample is the Short-Range Ensemble Forecast System of the
National Centers for Environmental Prediction, which covers

Published by Copernicus Publications.

https://www.metoffice.gov.uk/weather/guides/observations/how-we-measure-visibility
https://www.metoffice.gov.uk/weather/guides/observations/how-we-measure-visibility


106 Á. Baran and S. Baran: Parametric model for post-processing visibility ensemble forecasts

the continental US, Alaska, and Hawaii regions (Zhou et al.,
2009).

A typical problem with the ensemble forecasts is their
under-dispersive and biased feature, which has been ob-
served with several operational EPSs (see, e.g. Buizza et
al., 2005) and can be corrected with some form of post-
processing (Buizza, 2018b). In the last decades, a multitude
of statistical calibration techniques have been proposed for a
broad range of weather parameters; see Wilks (2018) or Van-
nitsem et al. (2021) for an overview of the most advanced
approaches. Non-parametric methods usually represent pre-
dictive distributions via their quantiles estimated by some
form of quantile regression (see, e.g. Friederichs and Hense,
2007; Bremnes, 2019), whereas parametric models such as
Bayesian model averaging (BMA; Raftery et al., 2005) or en-
semble model output statistics (EMOS; Gneiting et al., 2005)
provide full predictive distributions of the weather variables
at hand. The BMA predictive probability density function
(PDF) of a future weather quantity is the weighted sum of
individual PDFs corresponding to the ensemble members,
where the form of the predictive PDF might be beneficial in
situations when multimodal predictive distributions are re-
quired (see, e.g. Baran et al., 2019). In contrast, the EMOS
(also referred to as non-homogeneous regression) predictive
distribution is given by a single parametric family, where
distributional parameters are given functions of the ensem-
ble members. Furthermore, recently, machine-learning-based
approaches have gained more and more popularity in en-
semble post-processing, both in parametric frameworks (see,
e.g. Rasp and Lerch, 2018; Ghazvinian et al., 2021; Baran
and Baran, 2024) and in non-parametric contexts (Bremnes,
2020); for a systematic overview of the state-of-the-art tech-
niques, see Schultz and Lerch (2022). Finally, in the case of
discrete quantities, such as total cloud cover (TCC), the pre-
dictive distribution is a probability mass function, and post-
processing can be considered to be a classification problem,
where both parametric techniques (Hemri et al., 2016) and
advanced machine-learning-based classifiers can be applied
(Baran et al., 2021).

Although, as mentioned, visibility forecasts are far less
reliable than ensemble forecasts of other weather parame-
ters (see, e.g. Zhou et al., 2012), only a few of the above-
mentioned methods are adapted to this particular variable.
Chmielecki and Raftery (2011) consider a BMA approach
where each individual predictive PDF consists of a point
mass at the maximal reported visibility and a beta distri-
bution, which models the remaining visibility values. Ry-
erson and Hacker (2018) propose a non-parametric method
for calibrating short-range visibility predictions obtained us-
ing the Weather Research and Forecasting Model (Ryer-
son and Hacker, 2014). Furthermore, since most synoptic-
observation (SYNOP) stations report visibility in discrete
values according to the WMO suggestions, in a recent
study, Baran and Lakatos (2023) investigated the approach
of Hemri et al. (2016) and Baran et al. (2021) and obtained

(discrete) predictive distributions of visibility with the help
of proportional odds logistic regression and multilayer per-
ceptron neural network classifiers.

In the present article, we develop a novel parametric post-
processing model for visibility ensemble forecasts where the
predictive distribution is a mixture of a gamma and a trun-
cated normal distribution, both right censored at the maxi-
mal reported visibility value. The proposed mixture model
is applied in two case studies that focus on ECMWF visibil-
ity ensemble forecasts covering two distinct domains in cen-
tral and western Europe and two different time periods. As
a reference post-processing approach, we consider the BMA
model of Chmielecki and Raftery (2011); nonetheless, we
report the predictive performance of climatological and raw
ensemble forecasts as well.

The paper is organized as follows. Section 2 briefly intro-
duces the visibility datasets considered in the case studies.
The proposed mixture model, the reference BMA approach,
training data selection procedures, and tools of forecast ver-
ification are provided in Sect. 3, followed by the results for
the two case studies presented in Sect. 4. Finally, concluding
remarks and the lessons learned can be found in Sect. 5.

2 Data

In the case studies of Sect. 4, we evaluate the mixture model
proposed in Sect. 3.1 using ECMWF visibility ensemble
forecasts (given in 1 m steps) and corresponding validating
observations (reported in 10 m increments) covering two dif-
ferent time periods and having disjointed but geographically
close ensemble domains. In fact, we consider subsets of the
datasets studied in Baran and Lakatos (2023) by selecting
only those locations where the resolution of the reported ob-
servations is close to that of the forecasts and can be treated
as continuous. The first dataset comprises the operational 51-
member ECMWF visibility ensemble forecasts for the calen-
dar years 2020 and 2021, whereas the second contains visi-
bility data of the EUPPBench benchmark dataset (Demaeyer
et al., 2023) for calendar years 2017–2018. The locations of
the investigated SYNOP stations are given in Fig. 1, while
Table 1 provides an overview of both studied datasets.

3 Parametric post-processing of visibility

As mentioned in the Introduction, EMOS is a simple and ef-
ficient tool for post-processing ensemble weather forecasts
(see also Vannitsem et al., 2021). However, as it fits a single
probability law to the forecast ensemble chosen from a given
parametric distribution family, EMOS is usually not flexible
enough to model multimodal predictive distributions. A nat-
ural approach is to consider a mixture of several probability
laws, which is also the fundamental idea of the BMA mod-
els. Furthermore, visibility is non-negative, and the reported
observations are often limited to a certain value (in our case
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Figure 1. Locations of SYNOP observation stations corresponding to (a) ECMWF forecasts for 2020–2021 and (b) EUPPBench benchmark
dataset.

Table 1. Overview of the studied datasets.

ECMWF data for 2020–2021 EUPPBench benchmark data

high-resolution forecast (HRES)

Ensemble members control forecast (CTRL)

50 members (ENS) generated using perturbations

Period (calendar years) 2020–2021 2017–2018

No. of SYNOP stations 13 32

Forecast horizon 240 h 120 h

Times step 6 h

Initialization 00:00 UTC

Missing observations none around 2 %

Missing forecasts two forecast cases none

studies to 75 and 70 km); this restriction should be taken into
account too. A possible solution is to censor a non-negative
predictive distribution from above or to mix a continuous law
and a point mass at the maximal reported visibility value. The
former approach appears in the mixture model proposed in
Sect. 3.1, whereas the reference BMA model of Chmielecki
and Raftery (2011) described briefly in Sect. 3.2 is an exam-
ple of the latter.

In the following sections, let f1,f2, . . .,f52 denote a 52-
member ECMWF visibility ensemble forecast for a given
location, time point, and forecast horizon, where f1 =

fHRES and f2 = fCTRL are the high-resolution and con-
trol members, respectively, whereas f3,f4, . . .,f52 corre-
spond to the 50 members generated using perturbed ini-
tial conditions. These members, which we will denote with
fENS,1,fENS,2, . . .,fENS,50, lack individually distinguishable
physical features; hence, they are statistically indistinguish-
able and can be treated as exchangeable. In what follows,
f ENS and SENS will denote the mean and standard devia-

tion of the 50 exchangeable ensemble members, respectively,
and following the suggestions of, e.g. Fraley et al. (2010) or
Wilks (2018), in the models presented in Sect. 3.1 and 3.2,
these members will share the same parameters.

3.1 Mixture model

According to the climatological histogram of Fig. 2, a uni-
modal distribution is clearly not appropriate in relation to
model visibility. One has to handle low-visibility values sep-
arately; there is a second hump at medium to large visibility,
and censoring is required at the maximal reported value xmax.

Let g(x|κ,θ ) and G(x|κ,θ ) denote the probability den-
sity function (PDF) and cumulative distribution function
(CDF) of a gamma distribution 0(κ,θ ), with shape κ > 0
and scale θ > 0, respectively, while the notations h(x|µ,σ 2)
and H (x|µ,σ 2) are used for the PDF and the CDF of a
normal distribution N0(µ,σ 2), with location µ and scale
σ > 0 left truncated at zero. Furthermore, denote the PDFs
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Figure 2. Climatological frequency histogram of visibility for cal-
endar years 2020–2021.

of the censored versions of these laws using gc(x|κ,θ ) and
hc(x|µ,σ 2), that is

gc(x|κ,θ ) := g(x|κ,θ )I{x<xmax}

+
(
1−G(xmax|κ,θ )

)
I{x=xmax},

hc(x|µ,σ 2) := h(x|µ,σ 2)I{x<xmax}

+
(
1−H (xmax|µ,σ

2)
)
I{x=xmax},

where IA denotes the indicator function of a set A.
The proposed predictive distribution of visibility is a mix-

ture of censored gamma and censored truncated normal dis-
tributions:

p(x|κ,θ,µ,σ 2,ω)= (1−ω)gc(x|κ,θ )+ωhc(x|µ,σ 2), (1)

where both the weight ω ∈ [0,1] and the parameters of the
component distributions depend on the ensemble forecast. In
particular,

ω = 1/
(
1+ exp(−γ f ENS)

)
,

which is a smooth monotone function of f ENS. We remark,
that this specific form of the weight is a result of a detailed
data analysis, where various parametric functions of the en-
semble forecast with range [0,1] had been tested, including
the forecast-independent weight (see, e.g. Baran and Lerch,
2016). Furthermore, the mean m= κθ and variance v = κθ2

of the uncensored gamma distribution 0(κ,θ ) are given as

m= a0+ a
2
1fHRES+ a

2
2fCTRL+ a

2
3f ENS

+ a4B1(d)+ a5B2(d)

and

v = b0+ b
2
1S

2
ENS,

while the location and scale of the truncated normal distribu-
tion N0(µ,σ 2) are expressed as

µ= α0+α
2
1fHRES+α

2
2fCTRL+α

2
3f ENS

+α4B1(d)+α5B2(d)

and

σ = β0+β
2
1SENS,

where functions B1(d) and B2(d) are annual base functions

B1(d) := sin
(
2πd/365) and (2)

B2(d) := cos
(
2πd/365)

addressing seasonal variations in the mean and location (see,
e.g. Dabering et al., 2017), and d denotes the day of the year.
Note that modelling location and scale parameters of a para-
metric predictive distribution as affine functions of the en-
semble members and the ensemble variance or standard de-
viation, respectively, is quite typical in post-processing; see,
e.g. Gneiting (2014); Hemri et al. (2014) or (Wilks, 2019,
Sect. 8.3.2). However, one should admit that model perfor-
mance is highly dependent on the choice of these link func-
tions.

Following the optimum-score principle of
Gneiting and Raftery (2007), model parameters
γ,a0,a1, . . .,a5,α0,α1, . . .,α5,b0,b1,β0,β1 ∈ R are es-
timated by optimizing the mean value of an appropriate
proper-scoring rule, namely the logarithmic score (see
Sect. 3.4), over an appropriate training dataset comprising
past forecast–observation pairs. In the case where the high-
resolution or control forecast is not available, one obviously
sets a1 = α1 = 0 or a2 = α2 = 0.

3.2 Bayesian model averaging

The BMA predictive distribution of visibilityX based on 52-
member ECMWF ensemble forecasts is given by

p
(
x|f1,f2, . . .,f52,θ1,θ2, . . .,θ52

)
(3)

=

52∑
k=1

ωkh
(
x|fk;θk

)
,

where ωk is the weight, and h
(
x|fk;θk

)
is the component

PDF corresponding to the kth ensemble member with pa-
rameter vector θk to be estimated with the help of the train-
ing data. Note that weights form a probability distribution
(ωk ≥ 0,k = 1,2, . . .,52 and

∑52
k=1ωk = 1), and ωk repre-

sents the relative performance of the forecast fk in the train-
ing data.

In the BMA model of Chmielecki and Raftery (2011), the
conditional PDF h

(
x|fk;θk

)
is based on the square root of

the forecast fk and consists of two parts. The first models
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the point mass at the maximal reported visibility xmax using
logistic regression as follows:

logitP
(
X = xmax|fk

)
= log

P
(
X = xmax|fk

)
P
(
X < xmax|fk

) (4)

= π0k +π1kf
1/2
k .

The second part provides a continuous model of visibility
given that it is less than xmax using a beta distribution with
shape parameters α,β > 0 and support [0,xmax] defined by
the following PDF:

q(x|α,β) :=

(
x/xmax

)α−1(1−x/xmax
)β−1

B(α,β)xmax
, x∈[0,xmax],

where B(α,β) is the beta function. Given the kth ensemble
member fk , the mean xmaxα/(α+β) and standard deviation
xmax
√
αβ/

(
(α+β)

√
α+β + 1

)
of the corresponding beta

distribution are expressed as

mk = %0k + %1kf
1/2
k and sk = c0+ c1f

1/2
k , (5)

respectively. Note that variance parameters in Eq. (5) are kept
constant for practical reasons. On the one hand, this form re-
duces the number of unknown parameters to be estimated and
helps in avoiding overfitting. On the other hand, as argued by
Sloughter et al. (2007) and Chmielecki and Raftery (2011),
in a more general model allowing member-dependent vari-
ance parameters c0k and c1k , these parameters do not vary
much from one forecast to another.

Now, the conditional PDF of visibility given the kth en-
semble member fk is

h
(
x|fk;θk

)
= P

(
X < xmax|fk

)
q(x|fk)I{X<xmax}

+P
(
X = xmax|fk

)
I{X=xmax},

where P
(
X = xmax|fk

)
is defined by Eq. (4), q(x|fk) denotes

the beta distribution with the mean and standard deviation
specified by Eq. (5), and θk :=

(
π0k,π1k,%0k,%1k,c0,c1

)
.

Parameters π0k and π1k are estimated from the training
data by logistic regression, and the mean parameters %0k and
%1k are obtained using linear regression connecting the visi-
bility observations of less than xmax to the square roots of the
corresponding ensemble members; on the other hand, for es-
timating weights ωk and variance parameters c0 and c1, one
uses the maximum-likelihood approach with the EM algo-
rithm to maximize the likelihood function. For more details,
we refer the reader to Chmielecki and Raftery (2011) and
note that, following, again, Fraley et al. (2010), we do not
distinguish between the exchangeable ensemble members
f3,f4, . . .,f52 and assume ω3 = ω4 = . . .= ω52 and θ3 =

θ4 = . . .= θ52. Furthermore, if some of the ensemble fore-
casts are missing then the corresponding weights should be
set to zero.

3.3 Temporal and spatial aspects of training

The parameters of the mixture and BMA predictive PDFs de-
scribed in Sect. 3.1 and 3.2, respectively, are estimated sep-
arately for each individual lead time. For a given day d and
lead time `, the estimation is based on training data (observa-
tions and matching forecasts with the given lead time) from
an n d long time interval between calendar days d−`−n+1
and d − `; that is, one considers data of the latest n calen-
dar days when the date of validity of the ` days ahead fore-
casts precedes the actual day d . The optimal length of the
rolling training period is determined by comparing the pre-
dictive performance of post-processed forecasts for various
lengths n.

As both investigated datasets consist of forecast–
observation pairs for several SYNOP stations, one can con-
sider different possibilities for the spatial composition of
the training data. The simplest and most parsimonious ap-
proach is regional modelling (Thorarinsdottir and Gneiting,
2010), where all investigated locations are treated together
and share a single set of model parameters. Regional models
allow extrapolation of the predictive distribution to locations
where only forecasts are available (see, e.g. Baran and Baran,
2024); nonetheless if the ensemble domain is too large and if
the stations have quite different characteristics then this ap-
proach is not really suitable and, as demonstrated by, e.g.
Lerch and Baran (2017) or Baran et al. (2020), might even
fail to outperform the raw ensemble. In contrast, local mod-
els result in distinct parameter estimates for different loca-
tions as they are based only on the training data of each par-
ticular site. In this way, one can capture local characteristics
better so that local models usually outperform their regional
counterparts as long as the amount of training data is large
enough. Thus, one needs much longer training windows than
in the regional case. For instance, Hemri et al. (2014) sug-
gest 720, 365, and 1816 d rolling training periods for EMOS
modelling of temperature, wind speed, and precipitation ac-
cumulation, respectively. Finally, the advantages of regional
and local parameter estimations can be combined through
the use of semi-local techniques, where either the training
data of a given location are augmented with the data of sites
with similar characteristics or the ensemble domain is di-
vided into more homogeneous subdomains, following which,
within each subdomain, regional modelling is performed. In
the case studies of Sect. 4, besides local and regional param-
eter estimation, we also consider the clustering-based semi-
local approach suggested by Lerch and Baran (2017). For a
given date of the verification period, to each observation sta-
tion, we first assign a feature vector depending on both the
station climatology and the forecast errors of the raw ensem-
ble mean over the training period. In particular, similarly to
Lerch and Baran (2017), we consider 24-D feature vectors
comprising 12 equidistant quantiles of the empirical CDF of
the training observations and 12 equidistant quantiles of the
empirical CDF of the mean of the corresponding exchange-
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able members. Based on these feature vectors, the stations
are grouped into homogeneous clusters using k-means clus-
tering (see, e.g. Wilks, 2019, Sect. 16.3.1), and, within each
cluster, regional estimation is performed, resulting in a sepa-
rate set of model parameters for each cluster. As the training
period rolls ahead, the feature vectors are updated, and the
locations are dynamically regrouped.

3.4 Model verification

It is advised that forecast skill be evaluated with the help of
proper-scoring rules (see, e.g. Gneiting and Raftery, 2007),
which can be considered to be loss functions aiming to max-
imize the concentration (sharpness) of the probabilistic fore-
casts subject to their statistical consistency with the corre-
sponding observations (calibration). One of the most used
proper-scoring rules is the logarithmic score (LogS; Good,
1952), which is the negative logarithm of the predictive PDF
evaluated at the validating observation. The other very pop-
ular proper score is the continuous ranked probability score
(CRPS; Wilks, 2019, Sect. 9.5.1). For a forecast provided in
the form of a CDF F and a real value x representing the ver-
ifying observation, the CRPS is defined as

CRPS(F,x) :=

∞∫
−∞

[
F (y)− I{y≥x}

]2dy (6)

= E|X− x| −
1
2
E|X−X′|,

where IH denotes the indicator function of a set H , while X
and X′ are independent random variables distributed accord-
ing to F with the finite first moment. Both the LogS and the
CRPS are negatively oriented scores; that is, smaller values
mean better predictive performance. In most applications, the
CRPS has a simple closed form (see, e.g. Jordan et al., 2019);
however, this is not the case for the predictive distributions
corresponding to the mixture and BMA models of Sect. 3.1
and 3.2, respectively. In such cases, based on the represen-
tation on the right-hand side of Eq. (6), which also implies
that the CRPS can be reported in the same units as the obser-
vation, one can consider the Monte Carlo approximation of
the CRPS based on a large sample drawn from F (see, e.g.
Krüger et al., 2021). In the case studies of Sect. 4, the predic-
tive performances of the various forecasts with a given lead
time are compared using the mean CRPS over all forecast
cases in the validation period.

Furthermore, the forecast skill of the competing forecasts
with respect to dichotomous events can be quantified with the
help of the mean Brier score (BS; Wilks, 2019, Sect. 9.4.2).
For a predictive CDF F and in the event where the observed
visibility x does not exceed a given threshold y, the BS is
defined as

BS(F,x;y) :=
[
F (y)− I{y≥x}

]2
.

Thus, the CRPS is just the integral of the BS over all possible
thresholds.

For a probabilistic forecast F , one can assess the improve-
ment with respect to a reference forecast Fref in terms of
a score S by using the corresponding skill score (Murphy,
1973), defined as

SSF := 1−
SF
SFref

,

where SF and SFref denote the mean score values corre-
sponding to forecasts F and Fref, respectively. Skill scores
are positively oriented (the larger the better), and, in our case
studies, we report the continuous ranked probability skill
score (CRPSS) and the Brier skill score (BSS).

Calibration and sharpness can also be investigated
by examining the coverage and average width of (1−
α)100%, α ∈]0,1[, central prediction intervals (intervals be-
tween the lower and upper α/2 quantiles of the predictive
distribution). Coverage is defined as the proportion of vali-
dating observations located in this interval, and, for a prop-
erly calibrated predictive distribution, this value should be
around (1−α)100%. Note that level α is usually chosen to
match the nominal coverage of (K − 1)/(K + 1)100% of a
K-member ensemble, which allows a direct comparison with
the raw forecasts.

Further simple tools for assessing the calibration of prob-
abilistic forecasts are the verification rank histogram (or Ta-
lagrand diagram) of ensemble predictions and the probabil-
ity integral transform (PIT) histogram of forecasts given in
the form of predictive distributions. The Talagrand diagram
is the histogram of the ranks of the verifying observations
with respect to the corresponding ensemble forecasts (see,
e.g. Wilks, 2019, Sect. 9.7.1), and, in the case of a properly
calibratedK-member ensemble, the verification ranks should
be uniformly distributed on {1,2, . . .,K + 1}. The PIT is the
value of the predictive CDF evaluated for the verifying obser-
vation with possible randomization in the points of disconti-
nuity (see, e.g. Wilks, 2019, Sect. 9.5.4). The PIT values of
calibrated predictive distributions follow a standard uniform
law, and, in this way, the PIT histogram can be considered
to be the continuous counterpart of the verification rank his-
togram.

Furthermore, the mean and the median of the predictive
distributions, as well as the ensemble mean and median,
can be considered to be point forecasts for the correspond-
ing weather variable. As the former optimizes the root mean
squared error (RMSE) while the latter optimizes the mean
absolute error (MAE), we use these two scores to evaluate
the accuracy of point predictions (Gneiting, 2011).

Finally, some of the skill scores are accompanied by 95 %
confidence intervals based on 2000 block bootstrap sam-
ples obtained using the stationary bootstrap scheme, with
mean block length derived according to Politis and Romano
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Figure 3. Mean CRPS of post-processed, raw, and climatological visibility forecasts for the calendar year 2021 (a) and CRPSS of post-
processed forecasts with respect to climatology (b) as functions of the lead time.

(1994). In this way, one can get insight into the uncertainty in
verification scores and the significance of score differences.

4 Case studies

The predictive performance of the novel mixture model intro-
duced in Sect. 3.1 is tested on the two datasets of ECMWF
visibility ensemble forecasts and the corresponding observa-
tions described in Sect. 2. As a reference, we consider the
BMA approach provided in Sect. 3.2, climatological fore-
casts (observations of a given training period are considered
to be a forecast ensemble), and the raw ECMWF ensem-
ble. Both parametric post-processing models require rather
a lot of training data to ensure reliable parameter estima-
tion; moreover, seasonal variations in visibility should also
be taken into account during the modelling process. In the
case of the mixture model, this latter requirement is ad-
dressed with the use of the annual base functions (Eq. 2)
in the locations of the component distributions. Hence, one
can consider long training periods, which, besides regional
modelling, allows clustering-based semi-local or even local
parameter estimation too. In the following sections, regional,
clustering-based semi-local, and local mixture models are re-
ferred to as Mixed-R, Mixed-C, and Mixed-L, respectively.
In contrast to the mixture model, there is no seasonality in-
cluded in the BMA predictive distribution; thus, short train-
ing periods are preferred, allowing only regional modelling.
The BMA models of both Sect. 4.1 and 4.2 are based on 25 d
rolling training periods, the lengths of which are a result of
detailed data analysis (comparison of various BMA verifica-
tion scores for a whole calendar year for training periods of
20, 25, 30, 35, and 40 d). Note that this training-period length
is identical to the one suggested by Chmielecki and Raftery
(2011). Furthermore, as mentioned, for both calibration ap-
proaches, separate modelling is performed for each lead time.
Finally, in both case studies, the sizes of the climatological
forecasts match the sizes of the corresponding raw ensemble
predictions; that is, in Sect. 4.1, observations of 51 d rolling

Figure 4. CRPSS with respect to climatology of the best-
performing mixed model and the BMA approach (together with
95 % confidence intervals) for the calendar year 2021 as functions
of the lead time.

Table 2. Overall mean CRPS of post-processed and climatological
visibility forecasts for the calendar year 2021 as a proportion of the
mean CRPS of the raw ECMWF ensemble.

Mixed-L Mixed-C Mixed-R BMA Climatology

73.44 % 73.60 % 75.41 % 77.85 % 79.34 %

training periods (see Sect. 3.3) are considered, whereas, in
Sect. 4.2, climatology is based on 52 past observations.

4.1 Model performance for 51-member visibility
ensemble forecasts

In this case study, the predictive performances of the com-
peting forecasts are compared using data of the calendar year
2021. For the 51-member ECMWF ensemble (control fore-
cast and 50 exchangeable members), the mixture model has
15 free parameters to be estimated, and the comparison of
the forecast skill of regional models based on training pe-
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Figure 5. BSS of raw and post-processed visibility forecasts for the calendar year 2021 with respect to climatology for thresholds of 1 km
(a), 3 km (b), 5 km (c), and 10 km (d) as functions of the lead time.

riods with lengths of 100, 150, . . . , 350 d reveals that the
longest considered training period results in the best predic-
tive performance. This 350 d training window is also kept for
local and semi-local modelling, where the 13 locations are
grouped into six clusters. Semi-local models with three, four,
and five clusters have also been tested; however, these models
slightly underperform compared to the chosen one. Further-
more, as mentioned, the 11 parameters of the BMA model
are estimated regionally using 25 d rolling training periods,
which means a total of 325 forecast cases for each training
step. Hence, the data-to-parameter ratio of the regional BMA
approach (325/11= 29.5) is slightly above the correspond-
ing ratio of the local mixture model (350/15= 23.3). Note
that, in this case study, validating visibility observations are
reported up to 75 km; hence, the support of all investigated
post-processing models is limited to the 0–75 km interval
with a point mass at the upper bound.

Figure 3a indicates that, in terms of the mean CRPS, all in-
vestigated forecasts considerably outperform the raw visibil-
ity ensemble. Note that the clearly recognizable oscillation in
the CRPS can be explained by the four different observation
times per day, and the raw ensemble exhibits the strongest
dependence on the time of the day, having the highest skill
at 06:00 UTC. Parametric models are superior to climatol-
ogy only for shorter forecast horizons, and their advantage
gradually fades with the increase in the lead time. The dif-
ference between post-processed forecasts and climatology is

more visible in the CRPSS values of Fig. 3b. Skill scores of
the locally and semi-locally trained mixture models are posi-
tive for all lead times, and the difference between these fore-
casts is negligible. Up to 192 h, the Mixed-R approach also
outperforms climatology, and it is clearly ahead of the BMA,
which results in positive CRPSS values only for shorter fore-
cast horizons (6–126 h). This ranking of the competing meth-
ods is also confirmed by Table 2, providing the overall mean
CRPS values of calibrated and climatological forecasts as
proportions of the mean CRPS of the raw ECMWF visibil-
ity ensemble. We remark that a similarly good performance
in terms of climatology with respect to raw and BMA post-
processed visibility forecasts of the University of Washing-
ton mesoscale ensemble was observed by Chmielecki and
Raftery (2011).

In Fig. 4, the CRPSS values of the best-performing locally
trained mixture model are accompanied by 95 % confidence
intervals, which helps in assessing the significance of the dif-
ferences in CRPS. The superiority of the Mixed-L forecast
over climatology in terms of the mean CRPS is significant at
a 5 % level up to 150 h, and between 42 and 174 h, it signifi-
cantly outperforms the BMA model as well. We remark that,
for the latter approach, after 96 h, the CRPSS with respect to
climatology fails to be significantly positive (not shown).

The analysis of the Brier skill scores plotted in Fig. 5
slightly tones the picture of the performance of post-
processed forecasts. For visibility not exceeding 1 km, none
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Figure 6. PIT histograms of post-processed and verification rank histograms of climatological and raw visibility forecasts for the calendar
year 2021 for lead times of 6–60, 66–120, 126–180, and 186–240 h.
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Figure 7. Coverage (a) and average width (b) of nominal 96.15 % central prediction intervals of raw and post-processed visibility forecasts
for the calendar year 2021 as functions of the lead time. In panel (a), the ideal coverage is indicated by the horizontal dotted line.

Figure 8. RMSE of the mean forecasts for the calendar year 2021 (a) and difference in RMSE compared to climatology (b) as functions of
the lead time.

of the competitors outperform climatology (Fig. 5a), and cal-
ibrated predictions are superior to raw ensemble forecasts
only for short lead times. With the increase in the thresh-
old, the positive effect of post-processing is getting more and
more pronounced, and the ranking of the different models
starts matching the one based on the mean CRPS. From the
competing calibration methods, the locally and semi-locally
trained mixed models consistently display the highest skill,
and, for the largest threshold value of 10 km, they outperform
climatology up to 204 h (Fig. 5d).

The verification rank and PIT histograms of Fig. 6 again
illustrate the primacy of climatology over the raw ensem-
ble and the improved calibration of post-processed forecasts.
Raw ECMWF visibility forecasts are under-dispersive and
tend to overestimate the observed visibility; however, these
deficiencies improve with the increase in the forecast hori-
zon. Climatology results in almost-uniform rank histograms
with just a minor under-dispersion, and there is no visible
dependence on the forecast horizon. Unfortunately, none of
the four investigated post-processing models can completely
eliminate the bias of the raw visibility forecasts, which is
slightly more pronounced for longer lead times.

Furthermore, the coverage values of the nominal 96.15 %
central prediction intervals depicted in Fig. 7a are fairly con-
sistent with the shapes of the corresponding verification rank
and PIT histograms. The under-dispersion of the raw ensem-
ble is confirmed by its low coverage, which shows an increas-
ing trend and a clear diurnal cycle and ranges from 25.58 %
to 65.21 %. As one can observe from the corresponding curve
of Fig. 7b, the improvement of the ensemble coverage with
the increase in the forecast horizon is a consequence of the
increase in spread, which results in expanding central pre-
diction intervals. The price of the almost-perfect coverage of
climatology with a mean absolute deviation from the nomi-
nal value of 0.53 % is the much wider central prediction in-
terval. The coverage values of post-processed forecasts de-
crease with the increase in the lead time; the correspond-
ing mean absolute deviations from the nominal 96.15 % are
3.55 % (Mixed-L), 3.21 % (Mixed-C), 3.55 % (Mixed-R),
and 3.39 % (BMA). However, this negative trend in coverage,
especially in the case of the locally and semi-locally trained
mixed models, is combined with increasing average width,
which can be a consequence of the growing bias.

Finally, in terms of the RMSE of the mean forecast, all
post-processing approaches outperform both the raw ensem-
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Figure 9. Mean CRPS of post-processed, raw, and climatological EUPPBench visibility forecasts for the calendar year 2018 (a) and CRPSS
of post-processed forecasts with respect to climatology (b) as functions of the lead time.

Figure 10. CRPSS with respect to climatology of the best-
performing mixed model (together with 95 % confidence intervals)
and the BMA approach for the calendar year 2018 as functions of
the lead time.

ble and the climatology for all lead times (see Fig. 8a); how-
ever, their advantage over climatology is negatively corre-
lated with the forecast horizon. Mixed-L and Mixed-C ap-
proaches result in the lowest RMSE values, followed by the
Mixed-R and BMA forecasts (see also Fig. 8b), the order
of which perfectly matches the ranking based on the mean
CRPS (Fig. 3b) and the mean BS for all studied thresholds
(Fig. 5).

4.2 Model performance for EUPPBench visibility
ensemble forecasts

Since, in the EUPPBench benchmark dataset, the 51-member
ECMWF ensemble forecast is augmented with the determin-
istic high-resolution prediction, the mixture model (Eq. 1)
has 17 free parameters to be estimated, whereas, for the BMA
predictive PDF (Eq. 3), the parameter vector is 16-D. As
mentioned, BMA modelling is based on 25 d regional train-
ing, while, to determine the optimal training-period length
for mixed models, we again compare the skill of the region-

Table 3. Overall mean CRPS of post-processed and climatologi-
cal EUPPBench visibility forecasts for the calendar year 2018 as a
proportion of the mean CRPS of the raw ECMWF ensemble.

Mixed-L Mixed-C Mixed-R BMA Climatology

66.90 % 64.96 % 67.41 % 66.80 % 67.28 %

ally estimated forecasts based on rolling training windows of
100, 150, . . . , 350 d. In the case of the EUPPBench visibil-
ity data, the skill of the different models is compared with the
help of forecast–observation pairs for the calendar year 2018.
In contrast to the previous case study, where the longest
tested training period of 350 d is preferred, here, the 100 d
window results in the best overall performance. Using the
same training-period length, we again investigate local mod-
elling and semi-local estimation based on four clusters. Tak-
ing into account the maximal reported visibility observation
in the EUPPBench benchmark dataset, now the mixed and
BMA predictive distributions have point masses at 70 km.

Again, Fig. 9a shows the mean CRPS of post-processed,
raw, and climatological EUPPBench visibility forecasts as
functions of the lead time, while in Fig. 9b, the CRPSS values
of the mixed and BMA models with respect to the 52 d cli-
matology are plotted. Similarly to the case study of Sect. 4.1,
climatological and post-processed forecasts outperform the
raw ensemble by a wide margin; however, now the advantage
of post-processing over climatology is not so obvious, and
the ranking of the calibration methods also differs. From the
four investigated models, the Mixed-C model results in the
lowest mean CRPS for all lead times but 12 h; nevertheless,
even this approach shows negative skill against climatology
for lead times corresponding to 12:00 UTC observations. Lo-
cal modelling (Mixed-L) is competitive only for short fore-
cast horizons, which might be explained by the short training
period leading to numerical issues during parameter estima-
tion due to the low data-to-parameter ratio. In general, the
skill scores of all post-processing methods show a decreasing
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Figure 11. BSS of raw and post-processed EUPPBench visibility forecasts for the calendar year 2018 with respect to climatology for
thresholds of 1 km (a), 3 km (b), 5 km (c), and 10 km (d) as functions of the lead time.

trend, with the BMA having the mildest slope. Based on Ta-
ble 3, providing the improvement in the overall mean CRPS
over the raw ECMWF ensemble, one can establish a ranking
of Mixed-C – BMA – Mixed-L – Climatology – Mixed-R.
Note that the improvements provided here are much larger
than the ones in Table 2. In terms of the mean CRPS, the 52-
member EUPPBench visibility forecasts are behind the more
recent 51-member ensemble predictions studied in Sect. 4.1.
This dissimilarity in forecast performance is most likely due
to the consecutive improvement in the ECMWF IFS; how-
ever, it might also be related to the difference in the forecast
domains (see Fig. 1).

Furthermore, according to Fig. 10, even for 00:00, 06:00,
and 18:00 UTC observations, the advantage of the best-
performing Mixed-C model over climatology is significant
at a 5 % level only up to 48 h, whereas the difference in skill
from the BMA approach is significant at 6, 24, and 30 h only.
Note that the CRPSS of the BMA model with respect to cli-
matology is significantly positive at 5 % only for lead times
of 18, 24, 40, and 48 h (not shown).

The Brier skill scores of Fig. 11 lead us to similar conclu-
sions as in the previous case study. For the lowest threshold
of 1 km, all forecasts underperform in relation to climatol-
ogy (Fig. 11a); however, the skill of post-processed predic-
tions improves when the threshold is increased. For the 3, 5,
and 10 km thresholds, the ranking of the various models is
again identical to the ordering based on the mean CRPS (see

Fig. 9b), with the Mixed-C approach exhibiting the best over-
all predictive performance, closely followed by the BMA
model. For the largest threshold of 10 km, up to 54 h, cli-
matology is outperformed even by the least skilful Mixed-
L approach (see Fig. 11d), whereas the leading semi-locally
trained mixed model results in a positive BSS up to 102 h.

The verification rank histograms of the raw EUPPBench
visibility forecasts depicted in Fig. 12 show a much stronger
bias than the corresponding panel of Fig. 6, while the im-
provement with the increase in the forecast horizon is less
pronounced. Climatology is also slightly biased but in the
opposite direction, whereas the verification rank histograms
of all post-processed forecasts are closer to the desired uni-
form distribution than in the case study of Sect. 4.1. Here the
locally trained mixed model exhibits the strongest bias; how-
ever, neither the verification rank histograms of climatology
nor the PIT histograms of the calibrated forecasts indicate a
visible dependence on the forecast horizon.

The fair calibration of climatological and post-processed
forecasts can also be observed in Fig. 13a, displaying the
coverage values of the nominal 96.23 % central prediction
intervals. Semi-locally and regionally trained mixed models
and climatology result in almost perfect coverage, closely
followed by the BMA model; the corresponding mean ab-
solute deviations from the nominal value are 0.69 %, 0.90 %,
0.72 %, and 1.81 %. The Mixed-L model is slightly behind
its competitors, with a mean absolute deviation of 3.00 %,
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Figure 12. PIT histograms of post-processed and verification rank histograms of climatological and raw EUPPBench visibility forecasts for
the calendar year 2018 for lead times of 6–30, 36–60, 66–90, and 96–120 h.
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Figure 13. Coverage (a) and average widths (b) of nominal 96.23 % central prediction intervals of raw and post-processed EUPPBench
visibility forecasts for the calendar year 2018 as functions of the lead time. In panel (a), the ideal coverage is indicated by the horizontal
dotted line.

Figure 14. RMSE of the mean EUPPBench forecasts for the calendar year 2018 (a) and difference in RMSE compared to climatology (b)
as functions of the lead time.

whereas the maximal coverage of the raw EUPPBench en-
semble does not reach 60 %. Note that the ranking of the vari-
ous predictions, the increasing coverage of the raw ensemble,
and the lack of a visible trend in the coverage values of post-
processed forecasts and climatology are pretty much in line
with the shapes of the corresponding histograms of Fig. 12.
In general, the average widths of the investigated 96.13 %
central prediction intervals (Fig. 13b) are rather consistent
with the matching coverage values. Nevertheless, one should
remark that the best-performing Mixed-C model results in
sharper predictions than climatology and the Mixed-R and
BMA approaches.

Finally, according to Fig. 14, in terms of the RMSE of the
mean, we see a similar behaviour and ranking of the different
forecasts as in the case of the mean CRPS (see Fig. 9), while
the raw ensemble is clearly behind the other forecasts, with
the increase in the lead time climatology becoming more
and more competitive, especially at forecast horizons corre-
sponding to 12:00 UTC observations. However, up to 30 h,
both locally and semi-locally trained mixed models result
in a lower RMSE than the climatological forecast, and the

Mixed-C approach consistently outperforms all other calibra-
tion methods for all lead times but 12 h.

5 Conclusions

We propose a novel parametric approach to calibrating visi-
bility ensemble forecasts, where the predictive distribution is
a mixture of a gamma and a truncated normal law, both right
censored at the maximal reported visibility. Three model
variants that differ in the spatial selection of training data
are evaluated in two case studies, where, as a reference post-
processing method, we consider the BMA model of Chmi-
elecki and Raftery (2011); however, we also investigate the
skill of climatological and raw ensemble forecasts. While
both case studies are based on ECMWF visibility predic-
tions with a 6 h temporal resolution, they cover distinct ge-
ographical regions and time intervals, and only one of them
uses the deterministic high-resolution forecast. The results
presented in Sect. 4 indicate that all post-processing models
consistently outperform the raw ensemble by a wide mar-
gin, and the real question is whether statistical calibration re-
sults in improvement compared to climatology. In the case
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Figure 15. Boxplots of visibility forecasts of various lead times for Wasserkuppe mountain (Germany) for 06:00 UTC (a), 12:00 UTC (b),
18:00 UTC (c), and 24:00 UTC on Christmas Eve of 2021, together with the median forecasts of the Mixed-L model. The observed visibility
is indicated by the horizontal dashed line, and the dots denote the Mixed-L medians.

of the 51-member operational ECMWF ensemble, e.g. in
terms of the mean CRPS of the probabilistic forecast and the
RMSE of the mean forecasts, the best-performing locally and
semi-locally trained mixed models outperform climatologi-
cal predictions for all investigated lead times. For the EUPP-
Bench dataset, the situation is far from being so obvious;
post-processing can result in consistently positive skill with
respect to climatology only up to 30 h. In general, the ad-
vantage of post-processed forecasts over climatology shows
a decreasing trend with the increase in the forecast horizon,
locally and semi-locally trained mixed models are preferred
compared to the regionally estimated one, and the BMA ap-
proach is slightly behind the competitors.

All in all, the proposed mixed model provides a pow-
erful tool for improving continuous visibility forecasts. As
an illustration, consider Christmas Eve of 2021 at the
Wasserkuppe mountain in Germany. The visibility was, at
most, 100 m during the whole day. According to Fig. 15, in
most of the reported forecast cases, the median of the best-
performing Mixed-L approach had a smaller absolute error
than the ensemble median, and the same applies for the cor-
responding mean forecasts (not shown).

Note that the general conclusions about the effect of post-
processing and the behaviour and ranking of the raw, clima-
tological, and calibrated visibility forecasts are almost com-
pletely in line with the results of Baran and Lakatos (2023),

where classification-based discrete post-processing of visi-
bility is studied based on extended versions of the current
visibility datasets (more observation stations from the same
geographical regions). However, there is an essential differ-
ence between the approach of Baran and Lakatos (2023) and
the models investigated here. In the earlier study, visibility is
considered to be a discrete quantity reported in the following
values:

Y = {0,100,200, . . .,4900,5000,6000,7000, . . .,
29000,30000,35000,40000, . . .,65000,70000},

which reduces post-processing to a classification problem re-
sulting in predictive distributions that form probability mass
functions (PMFs) on Y . Here, we model visibility as a con-
tinuous variable, which allows much finer predictions and
calculations of the probabilities of various events (e.g. vis-
ibility is between 120 and 180 m). Naturally, with the help of
a predictive CDF, one can easily create a PMF on Y; thus,
both the presented mixed models and the BMA approach of
Chmielecki and Raftery (2011) generalize the classification-
based discrete post-processing.

The results of this study suggest several further direc-
tions for future research. One possible option is to consider
a matching distributional regression network (DRN) model,
where the link functions connecting the parameters of the
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mixture predictive distribution with the ensemble forecast are
replaced by an appropriate neural network. This parametric
machine-learning-based approach has proved to be success-
ful for several weather quantities, such as temperature (Rasp
and Lerch, 2018), precipitation (Ghazvinian et al., 2021),
wind gust (Schultz and Lerch, 2022), wind speed (Baran and
Baran, 2021), or solar irradiance (Baran and Baran, 2024).

Furthermore, one can also investigate the impact of the
introduction of additional covariates on the forecast skill of
parametric models based on the proposed predictive distribu-
tion of censored gamma–truncated and censored normal mix-
tures. In the DRN setup, this step is rather straightforward
and might result in significant improvement in predictive per-
formance (see, e.g Rasp and Lerch, 2018; Schultz and Lerch,
2022). A natural choice can be any further visibility forecast
(for instance, the one of the Copernicus Atmospheric Moni-
toring Service); however, forecasts of other weather quanti-
ties affecting visibility can also be considered.

Finally, using two-step multivariate post-processing tech-
niques, one can extend the proposed mixture model to ob-
tain spatially and/or temporally consistent calibrated visibil-
ity forecasts. For an overview of the state-of-the-art multi-
variate approaches, we refer the reader to Lerch et al. (2020)
and Lakatos et al. (2023).
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