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1 Secondary climate model evaluation results

Table S1 provides additional details about regional climate models (RMCs) discussed in the
paper.

Table S1: Regional climate models used to create NA-CORDEX data sets used in this paper.

Acronym Model Name References
CanRCM4 Canadian Regional Climate Model, version

4
Scinocca et al. (2016)

HIRHAM5 High-Resolution Limited Area Model with
ECHAM Physics, version 5

Christensen et al. (2007)

QCRCM5 Canadian Regional Climate Model, version
5 (contributed by University of Quebec at
Montreal)

Martynov et al. (2013),
Šeparović et al. (2013)

RCA4 Rossby Centre regional atmospheric
model, version 4

Samuelsson et al. (2011)

RegCM4 Regional Climate Model, version 4 Giorgi and Anyah (2012)
WRF Weather and Research Forecasting Model Skamarock et al. (2008)
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Climate model output produced by RCM-GCM combinations that use the same GCM
for initial conditions could be considered correlated. To assess whether this has an impact on
our previous analyses, we performed a secondary analysis using only NA-CORDEX climate
model output for models using different GCMs. Table S2 indicates the combination of models
used in the secondary analysis.

Table S2: RCM-GCM combinations used to produce the NA-CORDEX data sets used for
the secondary analysis.

CanRCM4 HIRHAM5 QCRCM5 RCA4 RegCM4 WRF
CanESM2 x x
EC-Earth x

GEMATM-Can x
GFDL-ESM2M x
HadGEM2-ES x
MPI-ESM-LR x
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We first examine distributional equality for the reanalysis and climate model data for
the subset of climate models. Our results for both the gridMET and Daymet bias-corrected
data sets are similar to the original analysis.
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Figure S1: Heat maps of the p-values at significant locations (α = 0.10) for the distributional
equality test after using the FDR-controlling procedure proposed by Benjamini and Yekutieli
(2001) for the (a) gridMET bias-corrected data, (b) Daymet bias-corrected data. Pixels with
insignificant test statistics are not colored.
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Figure S2: Heat maps of the p-values at significant locations (α = 0.10) after using the FDR-
controlling procedure proposed by Benjamini and Yekutieli (2001) for the (a) gridMET bias-
corrected data with a test of 55-year mean temperature equality, (b) Daymet bias-corrected
data with a test of 55-year mean temperature equality, (c) gridMET bias-corrected data
with a test of 55-year median temperature equality, (d) Daymet bias-corrected data with a
test of 55-year median temperature equality. Pixels with insignificant test statistics are not
colored.
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Next, we compare measures of center for the reanalysis and climate model data for the
subset of climate models. Our results for both the gridMET and Daymet bias-corrected data
sets are similar to the original analysis.
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Figure S3: Heat maps of the p-values at significant locations (α = 0.10) after using the FDR-
controlling procedure proposed by Benjamini and Yekutieli (2001) for the (a) gridMET bias-
corrected data with a test of 55-year standard deviation temperature equality, (b) Daymet
bias-corrected data with a test of 55-year standard temperature equality, (c) gridMET bias-
corrected data with a test of 55-year interquartile temperature equality, (d) Daymet bias-
corrected data with a test of 55-year interquartile range temperature equality. Pixels with
insignificant test statistics are not colored.
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Lastly, we compared functional characteristics of the reanalysis and climate data over
time at each spatial location. Specifically, we compared coefficients for b-splines fit to the
data available at each spatial location over time for both the reanalysis data and the subset
of climate model output. Our results for both the gridMET and Daymet bias-corrected data
sets are similar to the original analysis, though the p-values tend to be larger for the subset
of climate models.
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Figure S4: Heat maps of the p-values at significant locations (α = 0.10) after using the
FDR-controlling procedure proposed by Benjamini and Yekutieli (2001) for the (a) gridMET
bias-corrected data for a test of coefficient equality, (b) Daymet bias-corrected data for a
test of coefficient equality. Pixels with insignificant test statistics are not colored.

2 Additional comments about multiple comparisons and

power

The standard permutation procedure lacks testing power. One implementation of the Ben-
jamini–Yekutieli (BY) procedure (Benjamini and Yekutieli, 2001) takes the standard p-values
and adjusts them upward so that testing can be performed at a fixed significance level while
addressing the multiple comparisons problem. Since the BY-adjusted p-values are uniformly
larger than the unadjusted p-values, any location significant after the BY p-value adjust-
ment is automatically significant at the same significance level for the unadjusted p-values.
However, we would also expect additional significant locations when using the unadjusted
p-values; the locations significant for the unadjusted p-values will extend from the locations
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that are significant for the adjusted p-values. However, the standard permutation test may
lack power to detect any significant locations after adjusting for multiple comparisons.

Figure S5 displays a comparison of the p-value spatial distributions for a test of distri-
butional equality based on the statistic in Eq. (3) of the main paper for both the gridMET
and Daymet biased corrected data sets using both standard and stratified permutation tests
and unadjusted and BY-adjusted p-values. The standard permutation tests do not have
enough power to detect any significant locations after adjusting for multiple comparisons.
When considering the stratified permutation tests, there are more significant locations when
using the unadjusted p-values than the BY-adjusted p-values, but the overall pattern of the
significant locations is similar.

3 Additional discussion about independence assump-

tions

We have provided additional details about some of the independence assumptions related to
the proposed methodology.

We assume that the observations in year n follow the model Xn(s, t) = µn(s, t)+ εn(s, t),
where t is time within a year. In our application, the variable t is a calendar month, t =
1, 2, . . . , 12, starting with January. The independence assumption means that the error
surfaces εn(·, ·) are independent and identically distributed across n. The mean surfaces
µn(·, ·) look similar for each year n and dominate the shape of the observations, cf. Figure
3 of the original paper.

We note that the division into years starting with January is arbitrary. The key is to use
any interval that includes the whole year to account for the annual periodicity. We also note
that we do not assume that the errors, say in January and July have the same distribution
or are independent. We only assume that the whole annual error curves are i.i.d.

We provide a more detailed explanation here. Suppose we have a multivariate time series
xi,k, where i indexes time and k indexes the component. In our case, we have i = 1, 2, . . . , 55
years, k = 1, 2, . . . 12 months. The theory to be presented applies to stationary time series,
so we first transform the temperature data (at a fixed location) to approximate stationarity
and work with

yi,k = xi,k − x̄k, x̄k =
1

N

N∑
i=1

xi,k, N = 55.

For h = 1, 2, 3, 4 ≈ ln 55 and k, l ∈ {1, 2, . . . , 12}, we define the cross-correlations

ρ̂kl(h) = corr (yi+h,k, yi,l) .

These are just the usual sample correlations. For example, if h = 2, k = 1 (January) and
l = 7 (July), we compute the correlation coefficient of

y3,1, y4,1, y5,1, . . . , y54,1, y55,1,

and
y1,7, y2,7, y3,7, . . . , y52,7, y53,7.

7



(a) gridMET standard permutation,
 unadjusted p−values

longitude

la
tit

ud
e

−150 −100 −50

20
30

40
50

60
70

(b) Daymet standard permutation,
 unadjusted p−values

longitude

la
tit

ud
e

−150 −100 −50

20
30

40
50

60
70

(c) gridMET standard permutation,
 BY−adjusted p−values

longitude

la
tit

ud
e

−150 −100 −50

20
30

40
50

60
70

(d) Daymet standard permutation,
 BY−adjusted p−values

longitude

la
tit

ud
e

−150 −100 −50

20
30

40
50

60
70

(e) gridMET stratified test,
 unadjusted p−values

longitude

la
tit

ud
e

−150 −100 −50

20
30

40
50

60
70

(f) Daymet stratified test,
 unadjusted p−values

longitude

la
tit

ud
e

−150 −100 −50

20
30

40
50

60
70

(g) gridMET stratified test,
 BY−adjusted p−values

longitude

la
tit

ud
e

−150 −100 −50

20
30

40
50

60
70

(h) Daymet stratified test,
 BY−adjusted p−values

longitude

la
tit

ud
e

−150 −100 −50

20
30

40
50

60
70

0.000 0.010 0.050 0.100

Tests of distributional equality

Figure S5: Heat maps of the p-values ≤ 0.10 for the distributional equality tests using com-
binations of data set (gridMET or Daymet bias-corrected data), testing procedure (standard
or stratified permutation test), and p-value (unadjusted or BY-adjusted). The combination
of data set, testing procedure, and p-value used for inference is specified in the panel label.
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Figure S6: Histograms of the proportion of the 12 × 12 cross-correlation values less than
or equal to 2/

√
55, where the proportions are computed for 3,357 spatial locations, for lags

h = 1, 2, 3, and 4.

Thus, for each h we have 12× 12 = 144 correlations.
If the vectors y1,y2,y3, . . . are independent, each ρ̂kl(h) is asymptotically normal with

mean zero and variance 1/
√
N . This follows, for example, from Theorem 11.2.2 of Brockwell

and Davis (1991). Thus, if the years are independent, about 95% of the 144 ρ̂kl(1) should
be smaller than 2/

√
55 ≈ 0.27 (i.e., approximately 137 of the 144 sample correlations). The

same should be true for h = 2, 3, 4.
The above argument applies to a fixed location s. Since in the study area we have over

3,300 locations, for some of them, due to random variability, the proportion will be lower than
95% for others higher. Figure S6 shows histograms of the proportion of cross-correlations
ρ̂i,j(s, h) ≤ 2/

√
55. Without random variability, in an infinite sample, and under perfect

independence, for every location the proportion should be 0.95. In our finite samples, the
vast majority are close 0.95.

We provide additional discussion regarding the yearly distributions of the models to

support the assumption that XMj
i.i.d∼ FM . The independence of the fields XMj and XMj′
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for j ̸= j′ means that any functional computed from XMj is independent from any functional
computed from XMj′ . An analogous statement is true for the equality of the distributions
of these fields. The i.i.d. assumption cannot thus be fully verified. However, it is possible to
provide some evidence to support it.

One can proceed as follows. Choose at random K = 100 locations and for each year n
compute

Gj,n =
1

K

K∑
k=1

1

12

12∑
i=1

XMj
n (sk, ti), j = 1, 2, . . . 15,

i.e., we average the temperature values in year n across 100 randomly selected spatial loca-
tions for all 12 months in year n. The function Gj,n is an example of a relevant functional
of the field XMj our of infinitely many possible functionals. Next, we compute the 15×15
correlation matrix for the above variables. If 95% of the off-diagonal entries are smaller in
absolute value than 2/

√
Nn ≈ 0.27, then there is evidence to support the assumption of

independence.
We created the 15 × 15 correlation matrix below. We see that almost all off-diagonal

values are within ±2/
√
n.

Table S3: The matrix of estimated correlations between the Gj,n for j = 1, 2, . . . , 15. About
95% of the values should be less than 0.27 if the XMj are independent, j = 1, 2, . . . , 15.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
1 1.00 0.11 -0.06 0.04 0.05 0.28 -0.05 0.18 0.20 0.06 0.02 -0.16 0.06 0.13 0.32
2 0.11 1.00 -0.01 0.28 -0.03 0.22 0.18 -0.03 0.38 -0.03 0.20 0.07 0.04 0.22 0.24
3 -0.06 -0.01 1.00 0.32 0.10 0.25 -0.10 0.66 0.24 -0.09 0.19 0.15 0.19 0.19 0.01
4 0.04 0.28 0.32 1.00 0.17 0.46 0.10 0.30 0.23 -0.03 0.35 0.01 0.34 0.27 0.30
5 0.05 -0.03 0.10 0.17 1.00 0.23 0.42 0.06 0.31 0.10 0.21 -0.05 0.15 0.02 0.09
6 0.28 0.22 0.25 0.46 0.23 1.00 -0.09 0.21 0.21 0.06 0.21 0.04 0.10 0.23 0.68
7 -0.05 0.18 -0.10 0.10 0.42 -0.09 1.00 -0.10 0.10 0.05 0.28 -0.09 0.19 -0.01 0.04
8 0.18 -0.03 0.66 0.30 0.06 0.21 -0.10 1.00 0.26 0.09 0.11 0.04 0.09 0.23 0.03
9 0.20 0.38 0.24 0.23 0.31 0.21 0.10 0.26 1.00 0.08 0.15 0.11 0.17 0.37 0.09

10 0.06 -0.03 -0.09 -0.03 0.10 0.06 0.05 0.09 0.08 1.00 0.18 0.49 0.10 0.01 0.00
11 0.02 0.20 0.19 0.35 0.21 0.21 0.28 0.11 0.15 0.18 1.00 0.16 0.56 0.06 0.24
12 -0.16 0.07 0.15 0.01 -0.05 0.04 -0.09 0.04 0.11 0.49 0.16 1.00 0.20 0.05 0.02
13 0.06 0.04 0.19 0.34 0.15 0.10 0.19 0.09 0.17 0.10 0.56 0.20 1.00 0.17 0.10
14 0.13 0.22 0.19 0.27 0.02 0.23 -0.01 0.23 0.37 0.01 0.06 0.05 0.17 1.00 0.16
15 0.32 0.24 0.01 0.30 0.09 0.68 0.04 0.03 0.09 0.00 0.24 0.02 0.10 0.16 1.00

To verify the assumption of equality in distribution between the XMj , j = 1, 2, . . . , 15,
one can perform (15 × 14)/2 = 105 Cramér-von Mises tests of the equality in distribution.
Without any multiple testing adjustment, we expect 5% of them to reject the null hypothesis
of identical distribution. We performed (15 × 14)/2 = 105 Cramér-von Mises tests; 15% of
the p-values were less than 0.05, so the evidence for an identical distribution is weaker.
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