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Abstract. Comparisons of observed and modeled climate behavior often focus on central tendencies, which
overlook other important distributional characteristics related to quantiles and variability. We propose two per-
mutation procedures, standard and stratified, for assessing the accuracy of climate models. Both procedures
eliminate the need to model cross-correlations in the data, encouraging their application in a variety of con-
texts. By making only slightly stronger assumptions, the stratified procedure dramatically strengthens the ability
to detect a difference in the distribution of observed and climate model data. The proposed procedures allow
researchers to identify potential model deficiencies over space and time for a variety of distributional charac-
teristics, providing a more comprehensive assessment of climate model accuracy, which will hopefully lead to
further model refinements. The proposed statistical methodology is applied to temperature data generated by the
state-of-the-art North American Coordinated Regional Climate Downscaling Experiment (NA-CORDEX).

1 Introduction

This paper is concerned with the comparison of predictions
of commonly used climate models to actual (reanalysis) cli-
mate data. Phillips (1956) is credited with introducing the
first successful climate model. In the subsequent 60+ years,
climate models have grown increasingly more complex and
popular for describing climate behavior, particularly for ex-
ploring the potential impact of humans on future climate.

Projections of future climate are typically based on general
circulation models (GCMs), which are sometimes referred to
as global climate models. One way to assess the reliability of
a climate model is to examine whether the model is able to
reproduce climate behavior observed in the past (Raäisaänen,
2007; Randall et al., 2007; IPCC, 2014; Garrett et al., 2023).
The deficiencies a model has in describing observed climate
are likely to be amplified in the future and may weaken their
usefulness in making decisions based on the available data.

Many comparisons have been made between climate
model projections of current climate and historical records.

Lee et al. (2019) compare mean near-surface air tempera-
ture and precipitation decadal trends from climate models to
historical trends over the continental USA. Jia et al. (2019)
compute statistics over the Tibetan Plateau (TP) for observa-
tional data and various climate models, including the sam-
ple mean, standard deviation, root-mean-square error, and
time- and space-based correlation coefficients, to assess the
accuracy of climate models in describing the behavior of
observed data. Kamworapan and Surussavadee (2019) com-
pare 40 GCMs to various observational and reanalysis data
sets using 19 performance metrics, including mean annual
temperature and precipitation, mean seasonal cycle ampli-
tude of temperature and precipitation, the correlation coef-
ficient between simulated and observed mean temperatures
and precipitation, and variance of annual average tempera-
ture and precipitation over a 99-year period. Oh et al. (2023)
compare the root-mean-square difference (RMSD) and Tay-
lor skill score statistics of 17 climate models with observa-
tional data for several variables and two ocean areas. These
approaches tend to focus on average behavior over certain
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time periods and partitions of the study area. They may not
be adequate in describing more detailed aspects of behavior
over time and space. Methods for evaluating climate models
from a functional data perspective are less common. Vissio
et al. (2020) proposed using a Wasserstein distance to mea-
sure the gap between a climate model and a reference dis-
tribution based on raw observations or reanalysis data. Their
goal was to rank the “nearness” of various climate model out-
puts to a reference data set. Garrett et al. (2023) extended this
idea to correct for “misalignment” of the time periods of the
data sets being compared. We cast the problem of evaluating
the agreement of a model with historical records into a sta-
tistical testing problem within the framework of functional
data analysis. In particular, since we consider whole curves
rather than averages, our approach allows us to detect shifts
in the seasonal cycle in the GCMs that do not match the ob-
served data. In contrast to the other functional approaches,
which seem to focus on ranking the similarity of individual
climate model outputs to a reference data set, our goal is to
assess whether a reference data set can be viewed as a real-
ization from a hypothetical climate distribution that produced
the collection of climate model outputs.

In what follows, we (i) describe a novel testing procedure
for spatiotemporal functional data and (ii) provide a comple-
mentary case study that expands the types of climate char-
acteristics considered in order to provide a more compre-
hensive evaluation of how a climate model output compares
to observed climate data (or, in our case, a close proxy).
We will compare daily temperature data for the fifth gen-
eration of the European Centre for Medium-Range Weather
Forecasts (Copernicus Climate Change Service (C3S), 2017)
to a climate model output provided by the North Ameri-
can Coordinated Regional Climate Downscaling Experiment
(NA-CORDEX; Mearns et al., 2017). For convenience, we
will refer to these data sets as the ERA5 data and NA-
CORDEX data, respectively. Our goal is to assess how well
NA-CORDEX climate model projections capture the behav-
ior of the observed climate, as characterized by the ERA5 re-
analysis data. In Sect. 2, we describe these data sets in more
detail as they directly motivate our methodology. In Sect. 3,
we describe the statistical approach for comparing the cli-
mate models. In Sect. 4, we perform a simulation study that
highlights the benefits of the proposed method over the stan-
dard procedure. In Sect. 5, we describe the results of our cli-
mate model comparisons. Lastly, we summarize our investi-
gation in Sect. 6.

2 Description of the ERA5 and NA-CORDEX data

2.1 General information about climate reanalysis data

A climate reanalysis feeds large amounts of observational
data into data assimilation models to provide a numerical
summary of recent climate across much or all of the Earth
at regular spatial resolutions and time steps (Dee et al.,

2016; European Centre for Medium-Range Weather Fore-
casts, 2023b). Typically, all available observational data are
fed into the data assimilation algorithm at regular hourly in-
tervals (e.g., every 6–12 h) to estimate the state of the cli-
mate at each time step (Dee et al., 2016). The resulting data
product typically provides information on numerous climate
variables such as surface air temperature, total precipitation,
and wind speed. A climate reanalysis data product is much
more manageable from a research standpoint, since the prod-
uct is uniform and since the researcher does not need to ac-
cess the many observational data sets or immense computa-
tional resources needed to produce the data (Dee et al., 2016).
However, Dee et al. (2016) point out that because climate re-
analysis data use many different types of data from different
sources, locations, and times, this can result in uncertainty in
the estimated climate at each time step and lead to phantom
data patterns.

2.2 ERA5 background information

The ERA5 global reanalysis is the fifth-generation reanal-
ysis produced by the European Centre for Medium-Range
Weather Forecasts (Hersbach et al., 2017, 2020a) and is made
freely available through the Copernicus Climate Change Ser-
vice Climate Data Store (Copernicus Climate Change Ser-
vice (C3S), 2017). The reanalysis data are available from
January 1940 to approximately the present day. The data as-
similate 74 data sources using a 4D-Var (four-dimensional
variational) ensemble data assimilation system (European
Centre for Medium-Range Weather Forecasts, 2023a; Hers-
bach et al., 2020a). The program produces many atmo-
spheric, land, and oceanic climate variables. Our analysis fo-
cuses on the monthly average daily maximum near-surface
air temperature from the ERA5 hourly data on single lev-
els from 1940 to the present (Hersbach et al., 2020b). Near-
surface temperature is the 2 m temperature, which is effec-
tively the temperature that humans experience.

2.3 NA-CORDEX background information

NA-CORDEX is focused on downscaling the climate model
output in the North American domain using boundary condi-
tions from the CMIP5 archive (Hurrell et al., 2011). It is part
of the broader CORDEX organized by the World Climate
Research Programme, which aims to organize regional cli-
mate downscaling through partnerships with research groups
across the globe (CORDEX, 2020). Figure 1a displays
the NA-CORDEX domain with the associated geopoliti-
cal boundaries. A regional climate model (RCM) receives
boundary conditions from a GCM and predicts (downscales)
the resulting climate behavior at a finer spatial scale than the
associated GCM, which allows researchers to investigate cli-
mate behavior at smaller spatial resolutions (e.g., at the city
level instead of county level).
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Climate model outputs typically exhibit bias compared to
observations. This bias can be corrected using various al-
gorithms by adjusting the data using a reference data set.
The NA-CORDEX program used the multivariate bias cor-
rection (MBCn) algorithm (Cannon et al., 2015; Cannon,
2016, 2018) to perform this correction. MBCn uses quan-
tile mapping to adjust the statistical distribution of the model
output to match the distribution of a reference data set.
MBCn makes this adjustment jointly for multiple variables
and not only for individual marginal distributions, which is
important because climate models produce many variables
simultaneously. The NA-CORDEX program bias-corrected
the original climate model output using two observational
data sets, i.e., Daymet and gridMET. Additional details are
discussed by McGinnis and Mearns (2021). Figure 1 dis-
plays heat maps of the average temperature (°C) of the raw
NA-CORDEX data, as well as the bias added to the raw data
for both reference data sets. The Daymet data set includes
substantially more spatial locations. All subsequent analy-
ses will be performed on bias-corrected data over the corre-
sponding domain.

The NA-CORDEX utilizes combinations of six different
GCMs to provide the boundary conditions for seven differ-
ent RCMs under two sets of future conditions, though not all
combinations are currently available. Our analysis will focus
on the monthly average of daily maximum near-surface air
temperature from the available combinations.

2.4 Details on comparing the ERA5 and NA-CORDEX
data

The ERA5 data are available at locations across the globe,
while the NA-CORDEX data are available in the areas
surrounding North America. Consequently, we restrict our
use of the ERA5 data to the same subdomain as the NA-
CORDEX data. Furthermore, we restrict our analysis to lo-
cations over the primary land masses around North America
(i.e., not small islands or the sea), as response behavior can
change dramatically between land and sea and the spatial res-
olution may not allow for adequate representation of small
land masses. Both ERA5 and NA-CORDEX data sets are
available at a common spatial resolution known as 44i. The
longitude and latitude locations of 44i data are available in
0.5° increments starting from ±0.25°. The “44” in 44i refers
to the fact that locations separated 0.5° in longitude along
the Equator are approximately 44 mi (miles) (about 70.8 km)
apart.

Additionally, since we have previously noted that variables
such as precipitation should be used with extreme caution in
the context of reanalysis data, we only consider temperature-
related data since they are provided by both the ERA5 and
NA-CORDEX programs.

Lastly, our goal is to compare the observed climate to cli-
mate model projections. The historical period for the NA-
CORDEX data runs from 1950–2005, while the reanalysis

data we consider runs from 1940 to the present day. However,
there are known issues with temperature in December 2005
for several NA-CORDEX models (NA-CORDEX, 2020), so
we restrict our analysis to monthly temperature for the com-
plete years 1950–2004.

For the available data with the above characteristics, there
is a single realization of the ERA5 data and 15 realizations of
NA-CORDEX data (or, more specifically, 15 combinations
of RCM–GCM models with available data). Six RCMs were
used to produce the NA-CORDEX data:

– CanRCM4 (Scinocca et al., 2016),

– HIRHAM5 (Christensen et al., 2007),

– QCRCM5 (Martynov et al., 2013; Šeparović et al.,
2013),

– RCA4 (Samuelsson et al., 2011),

– RegCM4, (Giorgi and Anyah, 2012), and

– WRF (Skamarock et al., 2008).

Additional details about the RCMs are provided in Table S1
in the Supplement. These RCMs were combined with eight
versions of GCMs:

– CanESM2 (Chylek et al., 2011),

– EC-Earth (Hazeleger et al., 2010),

– GEMATM-Can (Hernández-Díaz et al., 2019),

– GEMATM-MPI (Hernández-Díaz et al., 2019),

– GFDL-ESM2M (Dunne et al., 2012),

– HadGEM2-ES (Bellouin et al., 2011),

– MPI-ESM-LR (Giorgetta et al., 2013), and

– MPI-ESM-MR (Giorgetta et al., 2013).

Although there are 48 total RCM–GCM combinations pos-
sible, data were created for only 15 combinations. We sum-
marize the 15 RCM–GCM combinations used to produce the
data used in this analysis in Table 1.

3 Methods

3.1 Testing context

Our goal is to assess how well the NA-CORDEX climate
model projections capture the behavior of observed climate
using the ERA5 reanalysis data as a proxy. If the climate
model projections provide an accurate representation of the
observed data, then one can view the observed data as a re-
alization from the same climate distribution producing the
NA-CORDEX climate model projections. This will be for-
malized as the null hypothesis, keeping in mind the usual
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Figure 1. Temperature-related heat maps for the NA-CORDEX data: (a) the average temperature (°C) of the raw NA-CORDEX data from
1950–2004, (b) the temperature bias added to the raw NA-CORDEX data after performing the MBCn bias correction using the gridMET
data, and (c) the temperature bias added to the raw NA-CORDEX data after performing the MBCn bias correction using the Daymet data.

Table 1. RCM–GCM combinations used to produce the 15 NA-CORDEX data sets used in this paper.

CanRCM4 HIRHAM5 QCRCM5 RCA4 RegCM4 WRF

CanESM2 × × ×

EC-Earth × ×

GEMATM-Can ×

GEMATM-MPI ×

GFDL-ESM2M × ×

HadGEM2-ES × ×

MPI-ESM-LR × × ×

MPI-ESM-MR ×

caveats of the Neyman–Pearson paradigm. The alternative
hypothesis will be that the observed data follow a different
distribution than the model data. In what follows, we for-
mally describe the problem using appropriate mathematical
notation and propose a statistical methodology for making an
inference.

The data we consider are viewed as realizations of annual
spatiotemporal random fields, i.e., {Xn(s, t),s ∈D,t ∈ T },
where n denotes year, s spatial location, and t time within
the year. The spatial domain D ⊂ R2 is assumed to be a
known, bounded region. Both the spatial domain and time
domain can be continuous, but the data are observed on dis-
crete grids, both in space and time, which will be defined in
the following. The year domain N ⊂ Z+ is assumed to be a
known, fixed set of positive integer values. We use the short-
hand Xn to denote the spatiotemporal random field in year n,
and we use Fn to denote its distribution function. Similarly,
we use X = {Xn,n ∈N } to denote the set of the annual ran-
dom fields for all years in N , and we use F to denote the cor-
responding distribution function. Consider first a fixed year
n. The range of the function Fn is [0,1], and its domain is
the set of real-valued functions on D× T , which is denoted

F(D×T ). Thus, Fn : F(D×T )→ [0,1]. For f ∈ F(D×T ),

P (Xn(s, t)≤ f (s, t),s ∈D,t ∈ T )

= Fn (f (s, t),s ∈D,t ∈ T ) .

For mathematical consistency, F(D× T ) must be a subset
of a suitable Hilbert space of measurable functions (Horváth
and Kokoszka, 2012, Chap. 2). In our context, we consider
two functions for Fn, both unknown. The first one, denoted
FR
n , is the distribution function corresponding to real climate,

which is represented by the reanalysis data. Thus, the su-
perscript R can be associated with both “real” and “reanal-
ysis”. We observe only one realization from the distribution
FR
n . The second distribution function, denoted FM

n , describes
data generated by the climate model for year n. We generally
have a large number of realizations from this distribution. We
say that the model describes real data in year n satisfacto-
rily if we cannot reject the hypothesis FR

n = F
M
n . To evaluate

the model over all available years, we work with distribution
functions F defined by

P (Xn(s, t)≤ f (s, t,n), s ∈D,t ∈ T ,n ∈N )

= F (f (s, t,n), s ∈D,t ∈ T ,n ∈N ) , (1)
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where f is a real function overD×T ×N . We would ideally
consider testing

H0 : F
R
= FM versus Ha : F

R
6= FM. (2)

Effectively, this is assessing whether XR could plausibly be
viewed as a realization from FM.

Before describing our approach, we formulate the assump-
tions we will use. These assumptions must, on the one hand,
be realistic but, on the other hand, lead to feasible tests. We
use the notationMj to refer to the j th GCM–RCM combina-
tion from the NA-CORDEX program, with j = 1,2, . . .,NM ,
and we use XMj to denote the spatiotemporal field associ-
ated with climate model Mj . In our analysis, NM = 15. We

assume that XMj
i.i.d.
∼ FM, i.e., that the climate model real-

izations are independent and identically distributed (i.i.d.).
The above assumption is realistic when the model runs use
different initial parameters for each run or when model runs
come from a different combination of models. The initial pa-
rameters are the initial conditions from which an RCM be-
gins its model run. Since the RCMs are programmed differ-
ently, their outputs are independent of each other. If different
RCMs use the same initial conditions, then the model out-
puts may present some autocorrelation since they are being
forced by the same process. Thus, GCM–RCM combinations
that share the same GCM may not satisfy the assumption of
independent model runs. We will address this concern in the
Supplement.

Additionally, X
Mj
n (s, t) denotes the random variable ob-

served at location s and time t in year n for model combi-
nation Mj . To reflect real data like temperature or precipi-
tation (or statistics derived from them), we cannot assume
that the random field {Xn(s, t), s ∈D,t ∈ T } is stationary or
Gaussian. We thus do not assume that the Xn fields have the
same distribution, so various trends or changes in n are al-
lowed. Independence of errors is commonly assumed in sta-
tistical models, and we also assume independence of annual
error functions around potential decadal trends or changes.
We emphasize that we do not assume spatial or temporal in-
dependence within the fields; that is, we do not assume that
Xn(s1, t1) is independent of Xn(s2, t2) if s1 6= s2 or t1 6= t2.
The annual fields are viewed as functional objects with a
complex spatiotemporal dependence structure.

In the context of the ERA5 and NA-CORDEX data, it
is reasonable to assume that realizations of XR and XMj

are observed at identical spatial locations s, time points
t , and years n, so we do so in what follows. Let S =
{s1, . . .,sNs } ⊂D be the set of observed spatial locations,
T = {t1, t2, . . ., tNt } ⊂ T denote the set of observed time
points, and N = {n1,n2, . . .,nNn} denote the set of observed
years.

3.2 Tests of equality of distributions

We first consider a test assessing whether the distribution of
the reanalysis data matches that of the model data. Formally,
we consider the testing problem stated in Eq. (2). We con-
struct the test statistic using the distance between the real
and model data values. For a fixed location s and model Mj ,
set

DR,Mj
(s)=

1
Nn

1
Nt

Nn∑
n=1

Nt∑
t=1

∣∣∣XR
n (s, t)−X

Mj
n (s, t)

∣∣∣ ,
j = 1,2, . . .,NM .

The test statistic at location s is

T̂ (s)=
1
√
NM

NM∑
j=1

DR,Mj
(s). (3)

We can avoid the problem of multiple testing by considering
the distance over the whole space; that is,

DR,Mj
=

1
Ns

1
Nn

1
Nt

∑
s∈S

Nn∑
n=1

Nt∑
t=1

∣∣∣XR
n (s, t)−X

Mj
n (s, t)

∣∣∣ ,
=

1
Ns

∑
s∈S
DR,Mj

(s), j = 1,2, . . .,NM .

The global test statistic is then

T̂ =
1
√
NM

NM∑
j=1

DR,Mj
. (4)

We explain the approximation of the null distribution in
Sect. 3.4.1 and 3.4.2.

While the statistic in Eq. (4) solves the problem of multiple
testing, the information that can be drawn from the test based
on it is limited; if the null hypothesis is rejected, the test does
not indicate over which spatial regions the differences occur
and which characteristics contribute to them. These issues
are addressed in the following sections.

3.3 Distributional characteristics

As noted above, testing the equality of distributions is use-
ful, but such tests do not indicate how the distributions differ
if the null hypothesis is rejected. We therefore also propose
tests to assess whether certain characteristics of FR (e.g., re-
lated to center, dispersion, skewness, and extremes) are con-
sistent with the same characteristics of FM. In this section,
we define the characteristics we consider as population pa-
rameters and introduce their estimators. Recall that XM

n (s, t)
is the value of a scalar random field indexed by n,s, and t .
For a fixed s, we have a scalar random field indexed by n and
t . This random field has an expected value (a real number)
which we denote by µM(s). We estimate it by

µ̂M(s)=
1

NMNnNt

NM∑
j=1

∑
n∈N

∑
t∈T

X
Mj
n (s, t).
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The expected value µM(s) ignores any possible changes in
the mean between years or within a year but varies with spa-
tial location.

Naturally, we could consider other central tendency char-
acteristics such as the median; dispersion characteristics such
as the standard deviation, interquartile range, or total range;
or more extremal characteristics such as the 0.025 or 0.975
quantiles, though special care must be taken to ensure that
these characteristics are well-defined. These characteristics
may not be defined over space, time, or year domains be-
cause of trends or other factors. They are to be interpreted as
parameters of the populations of all, infinitely many, model
or real data replications for a fixed spatiotemporal domain.
One may, for example, consider the 0.05 quantile function of
the model distribution defined by

q0.05 = inf{x ∈ R : P (Xn(s, t)≥ x,s ∈D,t ∈ T ,

n ∈N )≥ 0.95}.

Within the context described above, in addition to the hy-
potheses in Eq. (2), we may test more specific hypotheses of
the general form

H0 : θ
R
= θM versus Ha : θR

6= θM, (5)

assuming that the parameter is well-defined, which allows us
to assess the ways in which the distributions of FM and FR

might differ. For example, while the means may be similar,
the dispersion may differ. In Sect. 3.4, we discuss how the
tests are practically implemented.

3.4 Permutation tests

In this section, we propose solutions to the testing problems
in Eqs. (2) and (5). In Sect. 3.4.1, we explain how standard
permutation tests can be applied, and we discuss their draw-
backs. Section 3.4.2 focuses on an approach we propose to
construct useful tests.

3.4.1 Standard permutation tests

First introduced by Fisher (1935), permutation tests are a
popular approach for hypothesis tests comparing charac-
teristics of two (or more) groups while requiring minimal
distributional assumptions. In contrast to parametric tests,
the weakened assumptions typically come at the expense of
greater computational effort. Instead of assuming that the
null distribution can be approximated by a parametric distri-
bution, the null distribution is approximated using a resam-
pling procedure. Specifically, the responses are permuted for
all observations that are exchangeable under the null hypoth-
esis, and a relevant test statistic quantifying the discrepancy
between the relevant groups is computed for the permuted
data. The null distribution is determined by considering the
empirical distribution of the statistics computed for all pos-
sible permutations of the data (or approximated if a subset

of all permutations is used). A statistical decision is made by
comparing the observed statistic to the empirical distribution
and quantifying the associated p value. Good (2006) pro-
vides details of the theory and practice of permutation tests.

The use of permutation tests in the framework of func-
tional data seems to have been introduced by Holmes et al.
(1996) for comparing functional brain-mapping images and
has been developed in many directions; see Nichols and
Holmes (2002), Reiss et al. (2010), Corain et al. (2014), and
Bugni and Horowitz (2021), among many others. These tests
assume that the functions in two or more samples are i.i.d.
or form i.i.d. regressor–response pairs. As explained above,
this is not the case in the context of spatiotemporal functions
we consider. We now elaborate on the potential application
of permutation tests in our framework.

Let X= {XR1 , . . .,XRNR ,XM1 , . . .,XMNM } denote the ob-
served data, where (motivated by our application) the super-
scripts R and M denote responses from two different groups
and where NR and NM denote the number of observations in
each group. Let T (X) denote a statistic for assessing whether
θR
= θM. Let T (X̃(1)), . . .,T (X̃(B)) denote the test statistics

for all possible permutations of X under the null hypothesis.
The null hypothesis is that the characteristics of interest in
both samples are the same, so all B = (NR +NM )! permu-
tations can be used in general. The upper-tailed p value for
this test would be

p =
1+

∑B
j=1I (T (X̃(j ))≥ T (X))

B + 1
.

Although the standard permutation test can be used in a vari-
ety of testing contexts, including for functional data, it has
limited utility in our present context because of the data
structure. Specifically, since there is only a single realization
of reanalysis data and there are 15 realizations of model data
while there are 16! permutations of the indices, there are only
16 unique combinations of the data leading to different test
statistics. For example, the sample mean of the model group
will not change if the 15 models are permuted. Thus, even if
testing at a significance level of 0.10, the test statistic for the
observed data will have to be more extreme than every test
statistic resulting from a data permutation in order to con-
clude statistical significance. This will lead to a severe lack
of power for testing the equality of distributional character-
istics from the reanalysis and climate model data.

3.4.2 Stratified permutation tests

In order to overcome the limitations of a standard permuta-
tion test in our present context, we propose a novel stratified
permutation test for functional data. Matchett et al. (2015) in-
troduced a general stratified permutation test to test whether
rare stressors had an impact on certain animal species after
controlling for certain covariates. Essentially, after classify-
ing their data into different strata, Matchett et al. (2015) as-
sumed that the responses within each stratum were exchange-
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able under the null hypothesis. This allowed for independent
permutations of the data within each stratum, which could
then be used to perform tests within or across strata. We
propose a similar approach in the context of spatiotemporal
functional data.

Our particular context has a number of nuances that must
be accounted for. We are quantifying distributional charac-
teristics of our functional data across space over the course
of an annual cycle over many years. Recalling our assump-
tions from Sect. 3.1, we allow the observations to be de-
pendent across space and time within a year but assume
that they are independent (but potentially non-stationary) be-
tween years. More precisely, we assume that the observa-
tions in year n follow the modelXn(s, t)= µn(s, t)+εn(s, t),
where t is time within a year. In our application, the variable
t is a calendar month, t = 1,2, . . .,12, starting with January.
The independence assumption means that the error surfaces,
εn(·, ·), are independent and identically distributed across n.
The mean surfaces, µn(·, ·), look similar for each year n and
dominate the shape of the observations (see Fig. 2). The va-
lidity of this assumption has been verified by computing sam-
ple cross-correlations and comparing them to critical values
under the null hypothesis of white noise. We note that the di-
vision into years starting with January is arbitrary. The key is
to use any interval that includes the whole year to account for
the annual periodicity. We also note that we do not assume
that the errors, say in January and July, have the same dis-
tribution or are independent. We only assume that the whole
annual error curves are i.i.d.

To preserve the spatial and temporal dependence between
responses within a year, we permute whole spatiotemporal
random fields within the same year across climate models
instead of permuting data across space or time. A similar
approach was proposed by Wilks (1997) in the context of
bootstrapping spatial random fields, with a similar idea be-
ing used in the context of spatial time series in Dassanayake
and French (2016). As eloquently described by Wilks, “Si-
multaneous application of the same resampling patterns to
all dimensions of the data vectors will yield resampled statis-
tics reflecting the cross-correlations in the underlying data,
without the necessity of explicitly modeling those cross-
correlations.” Directly applying this approach to the spa-
tiotemporal random fields we consider would result in a func-
tional version of the standard permutation test described in
Sect. 3.4.1. We extend the standard test to a stratified ver-
sion using years as strata. Since we assume the data are in-
dependent across years but are independent and identically
distributed across models within a year under the null hy-
pothesis, the random fields within a year are exchangeable
under the null hypothesis. The advantage of this approach in
our present testing context is as follows: instead of having
only 16 effective permutations (i.e., unique combinations)
with which to perform a test, we instead have 1655 > 2×231

effective permutations. In practice, we implement the test us-

ing a large, random subset of the effective permutations to
approximate the null distribution.

To explain our methodology, we describe the stratified per-
mutation test for functional data in more detail by assuming a
fixed spatial location s and year n. For simplicity, we assume
NR = 1, NM = 2, and Nt = 3. The data may be written as

Xn(s)=

 XR
n (s)

X
M1
n (s)

X
M2
n (s)


=

 XR
n (s, t1) XR

n (s, t2) XR
n (s, t3)

X
M1
n (s, t1) X

M1
n (s, t2) X

M1
n (s, t3)

X
M2
n (s, t1) X

M2
n (s, t2) X

M2
n (s, t3)

 .
A possible permutation (i) of the data would relabelXR

n (s) as
X

M1
n (s), XM1

n (s) as XM2
n (s), and XM2

n (s) as XR
n (s), resulting

in

X̃n(s)(i) =

 X̃R
n (s)(i)

X̃
M1
1 (s)(i)

X̃
M2
1 (s)(i)


≡

 X
M1
n (s, t1) X

M1
n (s, t2) X

M1
n (s, t3)

X
M2
n (s, t1) X

M2
n (s, t2) X

M2
n (s, t3)

XR
n (s, t1) XR

n (s, t2) XR
n (s, t3)

 .
The permutation respects spatial location and time within the
year while reordering the data label with respect to model.
While this example fixed the spatial location s, the exact
same permutation of the data labels would be used for all
spatial locations s ∈ S within a specific year n. However, the
data label ordering would be chosen independently across
year.

We illustrate the differences between the standard and
stratified permutation tests for (time series) functional data
in Fig. 2. The original data have three observations (indicated
by unique colors). The first observation is part of the “reanal-
ysis” group, while the next two are part of the “model” group.
The original data are shown at monthly intervals over 3 years
in panel (a). A standard permutation of the functional data
simply relabels the group associated with each observation.
In panel (b), the standard permutation shows that observa-
tion 2 has been relabeled as reanalysis data, while observa-
tion 1 has been relabeled as model data. The original struc-
ture of the data is completely preserved; the group labels are
simply reassigned. In panel (c), we see a stratified permuta-
tion of the data. The data labels are randomly permuted in
each year, but the data structure is completely preserved. In
panel (c), we see that in year 1 observation 2 has been rela-
beled into the reanalysis group, while observation 1 has been
relabeled into the model group. In year 2, observation 3 has
been relabeled into the reanalysis group, while observation 1
has been relabeled into the model group. In year 3, the re-
labeling process results in the data residing in the original
groups. These permuted data are treated in the same way as
original data.
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Figure 2. A comparison of the standard and stratified permutation
for functional data with the original data.

The stratified permutation test for functional data results
in substantially more permutations, correcting the power
problem resulting from having a small number of available
permutations. Its validity depends on the assumption that

XM
j

i.i.d.
∼ FM. The independence of the fields XMj and XMj ′

for j 6= j ′ means that any functional computed from XMj

is independent of any functional computed from X
Mj ′ . An

analogous statement is true for the equality of the distribu-
tions of these fields. The i.i.d. assumption cannot, thus, be
fully verified. However, it is possible to provide some evi-
dence to support it. One can proceed as follows. Choose at
random K = 100 locations, and for each year n compute

Gj,n =
1
K

K∑
k=1

1
12

12∑
i=1

X
Mj
n (sk, ti), j = 1,2, . . .15.

That is, we average the temperature values in year n across
100 randomly selected spatial locations for all 12 months in
year n. The function Gj,n is an example of a relevant func-
tional of the field XMj of our infinitely many possible func-
tionals. After computing cross-correlations and applying the
Cramér–von Mises test of the equality in the distribution, we
found strong support for the assumption of independence and
a somewhat weaker, but still convincing, piece of evidence
for the equality of distributions.

4 Simulation study

We created a simulation study to better understand the prop-
erties of the proposed stratified permutation test compared
to a standard permutation test. We set up the study with two
goals in mind. First, we wanted to confirm that the proposed
method controls the type I error rate for individual tests. This
is a minimum requirement for almost any statistical test, so
we verify it for the proposed procedures. Second, we wanted
to investigate power-related properties of the two tests after
adjusting for multiple comparisons. In practice, our testing
procedure will be used to perform an inference for a large
number of spatial locations. If we only control the type I error
rate for individual tests, then definitive statistical conclusions
cannot be drawn from the results of many tests since we are
unable to quantify the number of errors to expect. Thus, we
must use an appropriate multiple comparisons procedure to
draw definitive conclusions from our tests. We will make the
appropriate adjustments to the multiple comparisons proce-
dure and then compare the power of the two testing proce-
dures.

4.1 Simulation setup

We desired to create simulation data that approximated the
kind of data we will be investigating later in this paper. As a
first step, we determined the mean and standard deviation of
each spatial location for each month across the years 1950–
2004 (660 time steps) for the MBCn bias-corrected gridMET
data. We then focused on a 32× 42 subgrid in the study
area for the 300 months between January 1980 and Decem-
ber 2004. Figure 3 displays a heat map of the average tem-
perature of the gridMET data in January 1980 for the 32×42
subgrid. We represent each spatial location by a grid cell for
plotting purposes.

We considered three main simulation scenarios. For each
distinct simulation scenario, we generated 100 different
replications of the scenario. Each replication utilizes 10 data
realizations: 9 playing the role of climate model output and
the last 1 playing the role of reanalysis data. In the first
scenario, all 10 data realizations came from the same data-
generating “null” distribution. In the second scenario, the
mean of the reanalysis data was shifted by some amount each
month for all time steps (described in more detail below). In
the third scenario, the mean of the reanalysis data was shifted
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Figure 3. A map providing information about the domain of the
simulated data. The colors of the rectangular heat map indicate the
average temperature (°C) in January 1980 for the gridMET data.
The domain of the heat map also indicates the domain over which
data were simulated. The grey rectangle indicates a subarea whose
mean changes only for years 21–30 of the simulation study. See the
text in Sect. 4.1 for a detailed explanation of the simulation struc-
ture.

by some amount each month, starting two-thirds of the way
through the time steps (described in more detail below) for a
subset of the spatial locations.

For each null data set, we simulated AR(1) (autoregressive
model of order 1) temporal processes at each spatial location
with correlation parameter ρ = 0.1 and means and standard
deviations equal to the corresponding time step of the grid-
MET data. To induce spatial correlation at each time step,
each simulated response was averaged with the response of
the four neighbors that its grid cell shared a border with.
To avoid edge effects, we then restricted our analysis to the
30×40 interior grid of the 32×42 subgrid for a total of 1200
spatial locations.

We generated two types of non-null data sets. We gener-
ated them using the same basic process as the null data except
that the monthly mean temperatures of the reanalysis data
sets differ from the monthly mean temperatures for the cli-
mate model output data sets. The means differ for the reanal-
ysis data sets in one of the following ways compared to the
climate model output data sets: (i) the mean for each month is
mt+c×SDt , wheremt and SDt are the temperature mean and
standard deviation for that month, respectively, computed
from the gridMET data, and where c is a scaling constant, or
(ii) starting in January of the 21st year and in each subsequent
month, the mean for each month ismt+c×SDt in a contigu-
ous subsection of the study area. We depict this subsection in
Fig. 3. In this way, we are able to assess the performance
of the procedures when there is a change in the data struc-

ture for only a part of the time period considered and for all
of the time period considered. Non-null data sets were gen-
erated with scaling constants c = 0.15,0.20,0.25,0.30, and
0.35 for the first non-null scenario and c = 1,1.25,1.5, and
2 for the second non-null scenario.

Two types of tests were performed using each permutation
procedure: (i) a test of distributional equality at each spatial
location using the distributional equality statistic defined in
Eq. (3) and (ii) a test of the difference in mean temperature
between the reanalysis and climate model data at each spatial
location. More specifically, let

θ̂ (s)=
1

30× 12

30∑
n=1

12∑
t=1

Xn(s, t)

denote the 30-year average temperature for a particular set
of functions. We tested whether there is a difference in the
mean temperature between the reanalysis and climate model
data using the following statistic:

T̂ (s)=
1

10

10∑
j=1
|θ̂Mj (s)− θ̂R(s)|,

where Mj and R denote the functions for a specific climate
model and the reanalysis data, respectively. The smallest pos-
sible p value for the standard permutation test was 0.10 since
there are only 10 possible permutations of the data. Con-
versely, the smallest possible p value for the stratified per-
mutation test was 0.001 since those tests were implemented
with B = 999 permutations.

4.2 Simulation results

We begin by verifying that the standard and proposed strati-
fied permutation tests satisfy the minimum standard of con-
trolling for the type I error rate at individual locations. We
compute the empirical type I error rate at individual locations
using the 100 simulated null data sets described in Sect. 4.1.
To reduce the dependence between tests for a particular data
set, we randomly selected 20 spatial locations from each
replication and then computed the empirical type I error rates
for the associated tests across the 100× 20= 200 tests for
various significance levels. Since the tests are applied to the
null data, a false positive occurs anytime the p value for a test
is less than the nominal significance level. Figure 4 displays
the empirical type I error rates associated with each signifi-
cance level for the standard and stratified permutation tests.
Different colored symbols are used to distinguish the results
for each permutation procedure. The vertical black lines in-
dicate the 95 % tolerance intervals for the empirical type I
error rates associated with each significance level. The stan-
dard permutation tests can only have associated p values of
0.1,0.2, . . .,1. The empirical type I error rates are close to
the associated significance level, as expected. One of the 10
empirical type I error rates for the standard permutation tests
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is outside the tolerance intervals. Zero of the 20 empirical
type I error rates are outside the tolerance envelopes for the
stratified permutation tests.

Next, we evaluated the power of the standard and proposed
stratified permutation tests after adjusting for multiple com-
parisons. The previous results were only meant to confirm
that the testing procedures we utilized satisfied a minimum
acceptable standard for a statistical test. When performing
many statistical tests, such as in the present context, it is im-
perative that an appropriate adjustment is made to control a
relevant error rate for the many tests, such as the familywise
error rate (FWER) or the false discovery rate (FDR). Con-
trolling the FWER in the context of many tests often leads
to undesirably low statistical power. Conversely, statistical
power is greater when the FDR is controlled instead. Ben-
jamini and Hochberg (1995) proposed a simple procedure for
controlling the FDR in the context of multiple comparisons.
Benjamini and Yekutieli (2001) proposed a simple procedure
for controlling the FDR when test statistics are correlated in
a multiple testing context, which we call the BY procedure.
Because there was at least some spatial dependence in the
tests we performed, we adjusted the p values for our tests
using the BY procedure before determining significance. For
a specific non-null scenario with a fixed level of c, we com-
puted the empirical power for a specified significance level
by determining the proportion of spatial locations across the
100 replicated data sets that had an adjusted p value less than
the significance level.

We first summarize the power results for the first non-null
scenario, in which there is a difference in the mean temper-
ature of the reanalysis and climate model data for all spatial
locations and times. We computed results for both the stan-
dard and stratified permutation tests. Figure 5 displays the
power results for this scenario when the procedure proposed
by Benjamini and Yekutieli (2001) is used to adjust for mul-
tiple comparisons. The empirical power of the standard per-
mutation test was zero for all levels of significance, so we
do not show the results. When c = 0.15 for the stratified per-
mutation test, the power is low to begin with but starts to
increase with the significance level. As c increases to 0.35,
the power of the stratified tests increases to 1 for all levels of
significance. Conversely, because its p values were bounded
below by 0.1, the standard permutation test was never able
to identify a single location where the distribution of the re-
analysis and climate model data differed, regardless of how
large the difference was.

Next, we summarize the results of the second non-null sce-
nario, in which the mean is shifted for only 121 of the loca-
tions for the last 10 years of available data. Figure 5 displays
the empirical power when the BY procedure is used to ad-
just for multiple comparisons. Because the difference in the
average temperature was only present for the last 10 years
of time, it was more difficult to identify a significant dis-
tributional difference at the non-null locations. When c = 1,
the stratified procedure struggled to detect any differences at

usual significance levels, but it was still able to identify some
differences for larger significance levels. As c increased to
1.25, 1.5, and 2, the empirical power of the stratified permu-
tation test continued to improve. The empirical power for the
standard permutation test was zero for all c and significance
levels for this non-null scenario, so its results are not shown
in Fig. 5.

In our simulation study, the stratified permutation test ex-
hibits satisfactory power when adjustment is made for the
multiple comparisons through the BY procedure. We con-
clude that if we want adequate power to discover distribu-
tional differences between the reanalysis and climate model
data sets, the standard permutation test is inadequate. The
application of the proposed stratified functional permutation
test is required.

5 Climate model evaluation results

We now compare different distributional aspects of the 15
climate model data sets produced by the NA-CORDEX pro-
gram and the ERA5 reanalysis data, both of which are
discussed in more detail in Sect. 2. We perform separate
comparisons for each bias-corrected data set (gridMET and
Daymet).

We first examine distributional equality for the reanaly-
sis and climate model data. We initially test global distribu-
tional equality between FR and FM using the test statistic in
Eq. (4). For both bias-corrected data sets, the standard per-
mutation tests both return a p value of 0.0625, the lowest
possible value for the 16 effective permutations. The strati-
fied permutation test, using a random sample of 999 stratified
permutations, returns a p value of 0.001. Next, we consider
the spatial test of distributional equality using the test statis-
tic in Eq. (3). We emphasize that we adjust for the multiple
comparisons problem using the BY procedure. Figure 6 dis-
plays heat maps of the p values less than 0.10 since that is
widely used as the largest acceptable level of significance
for a hypothesis test. We do not color locations where the
p value is more than 0.10. We follow this same pattern in
other graphics for this section. For both bias-corrected data
sets, substantial portions of the domain exhibit evidence that
the distributions of the reanalysis and climate model data are
not in agreement.

Next, we identify ways in which the distributions differ.
We test the hypotheses in Eq. (5) regarding θR(s)= θM(s) for
several characteristics: the 55-year mean temperature, me-
dian temperature, temperature standard deviation, and tem-
perature interquartile range.

As mentioned in Sect. 3.4.1, we need to determine a suit-
able test statistic for testing these hypotheses. In our con-
text, we wish to assess discrepancies in the 55-year behav-
ior of the climate model characteristics in comparison to the
reanalysis characteristics. Thus, it seems sensible to begin
by summarizing the characteristics of the 55-year functional
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Figure 4. Scatterplots of the empirical type I error rate versus the associated significance level for the two permutation tests. The vertical
black lines indicate the 95 % tolerance intervals for the empirical type I error rates associated with each significance level. Panel (a) displays
the results for the test of distributional equality between the reanalysis and climate model data, while panel (b) displays the test of mean
equality for the reanalysis and climate model data.

Figure 5. Scatterplots of the empirical power of each permutation procedure versus the associated significance level after using the FDR-
controlling procedure proposed by Benjamini and Yekutieli (2001) for the two non-null scenarios. The top panels display the results for
non-null scenario 1: panel (a) displays the results for the test of distributional equality, while panel (b) displays the results for the test of
mean equality for non-null scenario 1. The bottom panels display the results for non-null scenario 2: panel (c) displays the results for the test
of distributional equality, while panel (d) displays the results for the test of mean equality. Note that c indicates the proportional increase in
the mean of the reanalysis data.

time series. Specifically, for the partial realization of X(s),
we compute a statistic that summarizes some characteristic
of the distribution over the 55 years. For example, the mean

behavior would be summarized by

θ̂ (s)=
1

55× 12

55∑
n=1

12∑
t=1

Xn(s, t),
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Figure 6. Heat maps of the BY-adjusted p values ≤ 0.10 for the distributional equality test based on the statistic in Eq. (3) for (a) the
gridMET bias-corrected data and (b) the Daymet bias-corrected data.

which we use to summarize the average temperature
over the specified time frame. Similarly, since there are
55× 12= 660 observed values in each time series, the 0.50
quantile statistic would be the empirical 0.50 quantile of
the 660 observed data values at location s, i.e., of the set
{x1(s,1),x1(s,2), . . .,x1(s,12), . . .,x55(s,1), . . .,x55(s,12)}.
In order to quantify the discrepancy of the test statistics
across the reanalysis and climate model data, we use the
average absolute difference between statistics across the
reanalysis and climate model groups. Formally, we compute
the statistic

T̂ (s)=
1
NM

NM∑
j=1
|θ̂R(s)− θ̂Mj (s)| (6)

for each spatial location and assess the significance using
standard and stratified permutation tests. For all tests below,
we evaluate the significance of the test at each spatial loca-
tion after using the BY procedure to control the FDR. In the
following discussion, we will typically drop the “55-year”
qualifier for parameters and statistics for brevity.

We first examine the results related to measures of center.
We test equality of the mean temperature of the reanalysis
and climate model data at each spatial location, and similarly,
we test equality of the median temperature. Figure 7 displays
heat maps of the BY-adjusted p values≤ 0.10 for these tests.
The temperature means for the reanalysis and climate model
data tend to differ in the western part of the United States and
along the eastern coastline of the United States. We also see
evidence of mean temperature differences in much of Canada
and Mexico for the Daymet data. There are fewer locations
exhibiting a difference in median temperature along the east-
ern coastline of the United States compared to a difference
in mean temperature, though the opposite pattern is observed
in the middle part of the United States. For the Daymet data,
the locations exhibiting a mean or median temperature dif-

ference in Mexico tend to be similar, though there are fewer
locations in Canada exhibiting a difference in median tem-
perature.

Next, we consider tests for dispersion-related parameters,
specifically the standard deviation and interquartile range
(IQR) of the data. We test equality of the temperature stan-
dard deviation for the reanalysis and climate model data
at each spatial location, and similarly, we test equality of
the temperature interquartile range. Figure 8 displays heat
maps of the BY-adjusted p values for the locations where
the p value ≤ 0.10 for these tests. Overall, we see similar
patterns for a fixed characteristic (standard deviation or in-
terquartile range) across both bias-corrected data sets. Simi-
larly, if we fix the data set (gridMET or Daymet), we see sim-
ilar p-value patterns across the measure of spread. However,
there are noticeably fewer locations with adjusted p values
≤ 0.10 for the tests of equality of the temperature interquar-
tile range compared to tests for standard deviation.

Lastly, we focus on the results of tests related to character-
izing the functional nature of the data. We want to formally
compare the functional behavior of the reanalysis and cli-
mate data over time at each spatial location. Consequently,
we fit a B-spline with 276 equidistant knot locations over
the 660 months of temperature data available at each spatial
location (essentially five knots per year), resulting in 276 es-
timated coefficients for each spatial location. We then com-
pared whether the coefficients associated with the reanaly-
sis data were equal to the coefficients for the climate model
data. Such a test allows us to determine the times when the
climate model data patterns disagree with the reanalysis data.
For each spatial location, we computed the statistic

T̂ (s)=
1

276NM

NM∑
j=1

276∑
k=1
|θ̂R
k (s)− θ̂

Mj

k (s)|, (7)
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Figure 7. Heat maps of the BY-adjusted p values ≤ 0.10 when performing the test of equality of (a) mean temperature using the gridMET
data, (b) mean temperature using the Daymet data, (c) median temperature using the gridMET data, and (d) median temperature using the
Daymet data.

where θ̂R
k (s) is the kth estimated coefficient for the reanaly-

sis data at location s, and θ̂
Mj

k (s) is the kth estimated coef-
ficient for the j th climate model data set at location s. Fig-
ure 9 displays heat maps of the p values for the locations
where the test is significant at α = 0.10. Perhaps unsurpris-
ingly, the results for this test are similar to those for the test
of distributional equality. We see significant differences in
the coefficients for the reanalysis and climate model data in
the western part of the United States, as well as the northern
parts of Canada and the central parts of Mexico.

Comparison of our results with previous results is diffi-
cult as the studies we are familiar with focus on evaluating
specific distributional characteristics of climate models com-
pared to observational data in specific places. Additionally,
the reference data sets may differ, making it difficult to com-
pare analyses. Lee et al. (2019) provide the most similar com-
parison to our present analysis, in which they compare tem-

perature trends between reference and climate model data
over seven regions in the continental United States. This
comparison was made for summer and winter seasons for
three time periods: 1895–1939, 1940–1979, and 1980–2005.
Lee et al. (2019) aggregate their results over seven large re-
gions, whereas we make an inference at a finer spatial scale.
The time periods of our comparison also differ. Additionally,
Lee et al. (2019) separate summer and winter behavior so that
they can look at trends, whereas we consider behavior over
the entire year. A key difference in our comparisons is that
we use the ERA5 data as our reference data set, while Lee
et al. (2019) use the Global Historical Climatology Network
– Daily (GHCN-Daily) data set (Menne et al., 2012). Those
caveats aside, our analysis tends to find the most agreement
between the temperature distributions of the reference data
and the climate model data in the middle part of the United
States with less similarity in the eastern and western parts.
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Figure 8. Heat maps of the BY-adjusted p values ≤ 0.10 when performing the test of equality of (a) temperature standard deviation using
the gridMET data, (b) temperature standard deviation using the Daymet data, (c) temperature interquartile range using the gridMET data,
and (d) temperature interquartile range using the Daymet data.

The analysis by Lee et al. (2019) tended to find more sim-
ilar temperature trends in the eastern and western parts of
the United States and less similarity in the middle part of the
United States (see Fig. 7 of Lee et al., 2019). However, little
can be concluded from this disagreement, because our anal-
yses differ in approach, reference data set, and temperature
characteristic; their similarity is limited to the variable of in-
terest (temperature) and location (continental United States).

6 Discussion

We have presented a new stratified permutation test appropri-
ate for comparing the distributional characteristics of climate
model and reanalysis data. In our context, a standard permu-
tation test, even when adjusted to preserve spatial and tempo-
ral dependence, is not effective for performing comparisons
because there are few unique permutations, limiting the dis-

criminating power of the test. The proposed permutation pro-
cedure allows for the creation of millions of unique permu-
tations, which substantially improves the power of the test-
ing procedure for usual significance levels. Additionally, the
new testing procedure makes it possible to apply proven ap-
proaches for addressing the multiple comparisons problem,
which are ineffective in the context of standard permutation
tests.

We applied our stratified permutation test in comparing the
distributional characteristics of bias-corrected NA-CORDEX
climate model data output to the ERA5 reanalysis data for
monthly temperature data over the years 1950–2004. We
used the testing procedure proposed by Benjamini and Yeku-
tieli (2001) to control the FDR of our tests. The tempera-
ture distributions of the NA-CORDEX and ERA5 data sets
tended to be most similar in the middle and eastern parts
of the United States, with distributions tending to signifi-
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Figure 9. Heat maps of the BY-adjusted p values ≤ 0.10 for (a) the gridMET bias-corrected data for a test of coefficient equality and for (b)
the Daymet bias-corrected data for a test of coefficient equality.

cantly differ in parts of Canada and most of Mexico. Our
analysis focused mostly on simple characteristics of the data
like the 55-year mean, median, standard deviation, and in-
terquartile range of the temperatures. We also considered a
broader test of distributional equality and a comparison of
the coefficients of a functional representation of the tem-
perature time series. However, these tests could be done for
more refined characteristics of the data such as looking at
features for particular seasons (average temperature in a par-
ticular month), looking at distributional changes over partic-
ular time periods (the decadal changes in the interquartile
range of temperature) or looking at smaller-scale character-
istics (rate of change characteristics for hourly level data). A
possible critique of our analysis is that the NA-CORDEX cli-
mate model data sets may not be independent. Specifically,
several of the data sets use conditions from the same GCM,
so one could argue that the data for RCM–GCM combina-
tions sharing the same GCMs are not independent. To assess
the impact of this, we ran a secondary analysis using only the
NA-CORDEX climate model output for models using dif-
ferent GCMs. The results for the secondary analysis, shown
in the Supplement, are very similar to the results discussed
in Sect. 5. Another reasonable critique might be that differ-
ent GCMs do not follow the same probability distribution.
However, without this assumption, no replications could be
considered, and statistical inference would be practically in-
feasible. Based on the similarity of the power results for tests
of distributional equality and mean equality in Sect. 4.2, one
may wonder whether one test is preferred over the other. The
choice only depends on the goals of the researcher. A test
of distributional equality can only inform the researcher of
whether the overall distribution of the reanalysis data is sim-
ilar to the climate model output; rejecting the null hypothe-
sis does not tell the researcher how the distributions differ.
Do they differ with respect to center, spread, quantile be-

havior, and so on? Conversely, a test based on specific dis-
tributional attributes like the mean, median, or interquartile
range only evaluates whether the distributions differ with re-
spect to a single characteristic. Failing to reject the null hy-
pothesis does not mean that the distributions being compared
do not differ; it only means they do not differ significantly
with respect to that single characteristic. Ultimately, the tests
provide complementary information, and the researcher must
choose the information that is most important for their study.

Angélil et al. (2016) recommend using multiple reanal-
ysis data sets when performing climate model evaluation,
so one could augment the presented analysis by including
reanalysis data from NASA’s MERRA2 (Modern-Era Ret-
rospective analysis for Research and Applications, Version
2) program and the Japanese 55-year Reanalysis (JRA-55;
Kobayashi et al., 2015). Those data sets have different spa-
tial domains and time periods over which the data are avail-
able, so adjustments would have to be made to account for
these differences. However, we hope to provide a more thor-
ough analysis involving these additional reanalysis data sets
to investigate the similarity of behavior between the reanal-
ysis data and the climate model output data. Additionally,
our present investigation focused only on temperature, which
tends to behave well in the sense of having a relatively sym-
metric, bell-shaped distribution when considering observa-
tions at a similar time and place. Another variable of great
scientific interest is precipitation, which behaves very dif-
ferently from temperature. Precipitation data can be highly
skewed and zero-inflated, which can require additional anal-
ysis considerations that are beyond the scope of this paper,
even when minimal distributional assumptions are made with
respect to the proposed test. Additionally, Dee et al. (2016)
warn that “Diagnostic variables relating to the hydrological
cycle, such as precipitation and evaporation, should be used
with extreme caution”. However, we hope to investigate the
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behavior of precipitation for reanalysis and climate model
output data in future efforts.

Some readers may be interested in comparing the spatial
patterns of p values for the BY-adjusted p values of the strat-
ified permutation test with the unadjusted and BY-adjusted
p values of the standard permutation test as well as the un-
adjusted p values of the stratified permutation test. The stan-
dard permutation procedure has much lower testing power
than the stratified permutation test. While one can have sig-
nificant results at many locations when using the standard
p values, the BY-adjusted p values will have zero significant
locations. One implementation of the Benjamini–Yekutieli
(BY) procedure takes the standard p values and adjusts them
upward so that testing can be performed at a fixed signifi-
cance level while addressing the multiple comparisons prob-
lem. Since the BY-adjusted p values are uniformly larger
than the unadjusted p values, any location significant after
the BY p-value adjustment is automatically significant at the
same significance level for the unadjusted p values. How-
ever, we would also expect additional significant locations
when using the unadjusted p values; the locations significant
for the unadjusted p values will extend from the locations
that are significant for the adjusted p values. Figure S5 in
the Supplement provides a visual comparison of this behav-
ior for a test of distributional equality based on the statistic
in Eq. (3).

Our stratified permutation test is highly scalable since tests
can be parallelized across permutations or spatial locations.
In the analyses we considered, the time needed to perform the
tests increased linearly with the number of spatial locations
and time steps. We analyzed monthly rather than daily data
in order to reduce the run time and because our focus was
on decadal climate patterns. However, especially for shorter
time periods, there could be distributional characteristics that
can only be studied through the examination of daily or even
hourly data. If the data sets cannot be held in memory at one
time, then the stratified permutation test can still be applied
by summarizing statistics one location at a time, assuming
that the spatiotemporal data are structured so that the re-
sponses for specific spatial locations at specific time steps
for a specific model can be accessed conveniently. This mod-
ified implementation of the test would likely be slower than
when the data can be held in memory, but this would allow
for the analysis of much larger data sets. Alternatively, one
could first represent the data in a functional form prior to
analysis, e.g., using the spatiotemporal sandwich smoother
of French and Kokoszka (2021), which would dramatically
reduce the memory space needed to represent the data struc-
ture or smoothed values. Tests could then be performed using
the smoothed data, the functional parameters, or the related
characteristics. We hope that the methodology we developed
and the insights we presented will stimulate related research
on comparing model and historical climate data using the in-
creasingly available data products.

Code and data availability. The original NA-CORDEX
data are available at https://doi.org/10.5065/D6SJ1JCH
(Mearns et al., 2017). The ERA5 data are available at
https://doi.org/10.24381/cds.adbb2d47 (Hersbach et al., 2023).
Due to the large volume of data that need to be acquired, pro-
cessed, and analyzed, providing an easily reproducible analysis
is impossible. However, we have attempted to make our code
(French, 2024) as simple and generalizable as possible to repro-
duce our analysis. The French (2024) code may be accessed at
https://doi.org/10.5281/zenodo.13228244.

Supplement. The supplement related to this article is available
online at: https://doi.org/10.5194/ascmo-10-123-2024-supplement.
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