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Abstract. Gaussian process (GP) regression is a flexible modeling technique used to predict outputs and to
capture uncertainty in the predictions. However, the GP regression process becomes computationally intensive
when the training spatial dataset has a large number of observations. To address this challenge, we introduce a
scalable GP algorithm, termed MuyGPs, which incorporates nearest-neighbor and leave-one-out cross-validation
during training. This approach enables the evaluation of large spatial datasets with state-of-the-art accuracy
and speed in certain spatial problems. Despite these advantages, conventional quadratic loss functions used
in the MuyGPs optimization, such as root mean squared error (RMSE), are highly influenced by outliers. We
explore the behavior of MuyGPs in cases involving outlying observations and, subsequently, develop a robust
approach to handle and mitigate their impact. Specifically, we introduce a novel leave-one-out loss function based
on the pseudo-Huber function (LOOPH) that effectively accounts for outliers in large spatial datasets within
the MuyGPs framework. Our simulation study shows that the LOOPH loss method maintains accuracy despite
outlying observations, establishing MuyGPs as a powerful tool for mitigating unusual observation impacts in
the large data regime. In the analysis of US ozone data, MuyGPs provides accurate predictions and uncertainty
quantification, demonstrating its utility in managing data anomalies. Through these efforts, we advance the
understanding of GP regression in spatial contexts.

1 Introduction

Gaussian process (GP) regression is widely known to be a
powerful and versatile framework for modeling non-linear
relationships in various fields. Particularly, in spatial data
analysis, GP regression’s capability to effectively account for
the correlation among all data points makes it an attractive
choice for interpolating highly non-linear targets (Williams
and Rasmussen, 2006; Cressie, 1993). The versatile prop-
erties of GPs along with the native uncertainty quantifica-
tion of their predictions have led to their adoption in differ-
ent domains, such as time series forecasting (Cunningham
and Ghahramani, 2012) and Bayesian optimization (Snoek
et al., 2012). Despite their advantages, the incorporation of
GPs in the presence of outliers remains an open challenge.
Stegle et al. (2008) address this challenge posed by noisy
data, outliers, and missing information by proposing a model
that combines unsupervised clustering and Bayesian regres-
sion. In the realm of robust GP regression, other researchers,

such as Jylänki et al. (2011), Park et al. (2022), Ranjan et al.
(2016), and Li et al. (2021), have explored alternative ap-
proaches, including methods such as Student’s t likelihood,
bias modeling, EM-based algorithms, and iterative trimming.

Fundamentally, in spatial data analysis, GP estimation
aims to learn the covariance model hyperparameters (de-
noted as θ ) and use these estimates for interpolation with
uncertainty quantification. However, the computational com-
plexity of GP regression escalates with the presence of
large sets of observations. GP regression scales cubically
with the number of observations, rendering it impractical on
large sets of observations. Further, it scales quadratically in
memory, where traditional methods require formation and
storage of the covariance matrix, which is prohibitive to
their computation. Numerous studies, including those led by
Foreman-Mackey et al. (2017), Csató and Opper (2002), Di-
etrich and Newsam (1997), and others, have aimed to effec-
tively address the challenge at hand. Methods such as fixed
rank kriging (Cressie and Johannesson, 2008), lattice kriging
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(Nychka et al., 2015), predictive processes (Banerjee et al.,
2008), and Vecchia (Katzfuss and Guinness, 2021) among
others have been proposed. For instance, the general Vec-
chia approach, as detailed by Katzfuss and Guinness (2021),
represents a GP method that includes many popular approxi-
mations within a unified framework, leading to new insights
regarding computational properties and allowing for signif-
icant improvements in approximation accuracy over Vec-
chia’s original method. Vecchia’s method, while computa-
tionally feasible, may still involve intricate sparsity struc-
tures and complex implementations, potentially leading to
less efficient hyperparameter optimization. The novel algo-
rithm MuyGPs, introduced by Muyskens et al. (2021), stands
out by achieving state-of-the-art fast prediction and hyperpa-
rameter optimization. MuyGPs, by contrast, provides a sim-
pler and more direct approach to maintaining prediction ac-
curacy and computational efficiency. This superior perfor-
mance of MuyGPs has been demonstrated in various appli-
cations like those conducted by Wood et al. (2022), Goumiri
et al. (2022), Dunton et al. (2022), Buchanan et al. (2022),
Muyskens et al. (2022), and Goumiri et al. (2020).

It is imperative to reinforce the MuyGPs algorithm against
potential outliers that could compromise the accuracy of
the GP predictions and associated uncertainties. Outliers are
present in numerous domains such as environmental data,
where variables such as air quality can exhibit outlying val-
ues. Researchers such as Knief and Forstmeier (2021) and
Wang and Mao (2019) demonstrate what happens when out-
liers are ignored and a GP is applied to data naively. The as-
sumptions of the GP model are violated by the outliers, dis-
rupting the underlying structure of the GP. Therefore, the hy-
perparameter estimates and predictions are affected, leading
to inaccurate inferences. These outliers offer larger errors,
which makes them overly influential in loss functions based
on squared error such as root mean squared error (RMSE).
Additionally, these outliers introduce extra variability into
the process and can lead to an overestimation of the vari-
ance, resulting in very wide prediction intervals. In our sim-
ulation study, fitting both conventional GP and local approx-
imate GP (LAGP) regression models further illustrates and
supports the points discussed in this paragraph. Addressing
outliers systematically is essential for not only ensuring the
robustness and accuracy of MuyGPs but also maintaining the
integrity of GP methods in applications where outliers are
prevalent. Exploring methodologies that explicitly account
for outliers within the context of GP remains an ongoing area
of interest for improving the reliability of predictions across
diverse datasets and domains (Stegle et al., 2008).

To address concerns in both hyperparameter estimation
and prediction from spatial datasets with outliers, we pro-
pose a refinement to the MuyGPs optimization algorithm.
First, we introduce a novel contribution called the leave-one-
out pseudo-Huber (LOOPH) loss function. The LOOPH loss
function combines ideas popularized by Huber (1964) with a
quadratic leave-one-out likelihood loss function inspired by

the Gaussian likelihood defined by Wood et al. (2022). We
show that LOOPH reduces the sensitivity of MuyGPs op-
timization to large residuals resulting from outlying spatial
data. Second, we explore augmenting the loss function by
computing the central value such as the median metric of the
distribution formed by repeatedly down-sampling nearest-
neighbor sets and evaluating the associated predictions. The
median, as a robust measure of central tendency, provides a
stable reference point less influenced by extreme values or
outliers. Therefore, the median value is used in the optimiza-
tion process to robustly tune hyperparameters, mitigating the
algorithm’s sensitivity to large residuals. Reich et al. (2011)
explored a modeling approach for skewed datasets by apply-
ing quantile regression (QR), but in cases where the focus is
examining the mean and the overall trend in the presence of
outliers, GP regression is a better option than QR. Therefore,
the refinement to the MuyGPs algorithm addresses the chal-
lenges posed by noisy data, outliers, and missing informa-
tion in GP models, ensuring accurate and reliable predictions
across the full range of data points and not just the extremes,
diverging from traditional extreme value methods discussed
by Smith (1989).

2 MuyGPs uncertainty calibration

In this section, we outline in detail the methodology behind
the robust approach applied to the MuyGPs algorithm. At the
core of our methodology lies the integration of the variance-
regularizing pseudo-Huber loss function, pioneered by Fil-
ipović (2021). This pivotal inclusion significantly enhances
the algorithm’s ability to manage outliers and noisy data, all
while maintaining efficient scalability. We detail the integra-
tion process and highlight its significance in achieving accu-
rate predictions across diverse datasets.

2.1 Background: MuyGPs overview

Consider a spatial GP regression of the form:

Y (x)= x>β + f (x)+ ε, (1)

where Y (x) represents the spatial observation vector, x is
the feature matrix, β is the linear coefficient, f (x) is the
underlying spatial function capturing the non-linear compo-
nents, and ε accounts for the measurement noise. We define
f (x) as a GP if the function’s values at any finite set of n
points x = (x1, . . .,xn) follow a multivariate normal distri-
bution with mean zero and a covariance kernel K(xi,xj ;θ ).
That is, the following applies:

f (x)= (f (x1), . . .,f (xn))T ∼N (0,K(xi,xj ;θ )), (2)

where θ represents a set of hyperparameters controlling
the behavior of the kernel. We parameterize a GP with a
Matérn covariance function using a set of parameters θ =
(σ 2,ν,`,τ 2)T , where σ 2 is the scale parameter, ν is the

Adv. Stat. Clim. Meteorol. Oceanogr., 10, 143–158, 2024 https://doi.org/10.5194/ascmo-10-143-2024



J. Mukangango et al.: A robust approach to Gaussian process implementation 145

smoothness parameter, ` represents the length-scale param-
eter, and τ 2 denotes the homoscedastic measurement noise
prior variance. We chose the Matérn covariance function over
the radial basis function (RBF) and other covariance func-
tions for its flexibility and ability to model environmental
processes. According to Stein (1999), the Matérn covariance
function is widely used in spatial modeling and represents
the pointwise limit of smoothness in the RBF. The Matérn
Covariance function is defined as

Cν(||h||)= σ 2 21−ν

0(ν)

(
√

2ν
||h||

`

)ν
Kν

(
√

2ν
||h||

`

)
, (3)

where h represents the distance between two locations and
Kν is the modified Bessel function of the second kind. Con-
ventional GP training consists of maximizing the log likeli-
hood of the training data given θ , which becomes very ex-
pensive in a large data regime. Muyskens et al. (2021) in-
troduced MuyGPs as a scalable GP regression algorithm de-
signed specifically to address the challenges posed by large
spatial datasets.

The methodology behind MuyGPs is derived from the
union of two concepts:

– Optimization with leave-one-out cross-validation. By
employing leave-one-out cross-validation, MuyGPs
avoids the need to evaluate expensive log-likelihood GP
functions for each prediction. This optimization strat-
egy significantly reduces computational costs, making
MuyGPs suitable for large spatial datasets where com-
putational efficiency is crucial.

– Kernel matrix restriction to nearest neighborhood.
MuyGPs restricts the kernel matrix to the k-nearest
neighbors of a prediction location. This restriction lim-
its the cost of kriging weights, further enhancing com-
putational efficiency without compromising model ac-
curacy. Hence, MuyGPs conditions xi on its k-nearest
neighbors, denoted XNi , yielding

µi = Ŷθ (xi |XNi )

=K(xi,XNi ;θ )K(XNi ,XNi ;θ )−1Y (XNi ), (4)

6ii = Var(Ŷθ (xi |XNi ))=K(xi,xi;θ )

−K(xi,XNi ;θ )K(XNi ,XNi ;θ )−1K(XNi ,xi;θ ) (5)

as the predictors of the response distribution.

While other researchers may have explored the above con-
cepts in different ways, the MuyGPs method is the first to
leverage both insights simultaneously to accelerate kernel
hyperparameter estimation by enforcing sparsity in the krig-
ing weights. This sparsity not only speeds up training but
also improves the scalability of MuyGPs for handling mas-
sive spatial datasets.

The MuyGPs training process then minimize several loss
functions such as the mean squared error (MSE), the cross

entropy loss and the leave-one-out likelihood (LOOL) loss
over a randomly sampled batch of training points, B. These
loss functions play a significant role in defining the objective
function for hyperparameter optimization during training,
thereby having a big impact on the training results. Because
MuyGPs method’s success depends on the combination of
the leave-one-out cross-validation and nearest-neighbor ap-
proximations, we naturally choose the LOOL loss function
as a primary loss function for the optimization process. The
LOOL loss function lets us use both the above features while
keeping our predictions accurate and varied.

For a randomly selected training batch B with b elements,
the hyperparameter θ minimizes the following loss function:

Q(θ )=
∑
i∈B

(
(µi − yi)2

6ii
+ log6ii

)
, (6)

where µi and 6ii are the posterior mean and variance of
the ith batch point as defined in Eqs. (4) and (5), respec-
tively. The loss function, denoted as Q(θ ), is referred to as
the LOOL loss function (Wood et al., 2022), which in typ-
ical scenarios achieves favorable performance for MuyGPs.
However, its efficacy can be compromised when the spatial
dataset at hand includes outliers. In the subsequent subsec-
tion, we provide a comprehensive breakdown of the integra-
tion process of the variance regularized robust function into
the MuyGPs algorithm.

2.2 Robust process

In the context of GP regression, addressing outliers is pivotal
for ensuring model robustness and reliable predictions. To
tackle this challenge, we turn to the pseudo-Huber loss func-
tion, which has garnered recognition for its effectiveness in
reducing the impact of outliers (Filipović, 2021). This loss
function serves as a smooth approximation to the Huber loss
(Huber, 1992), a widely known method for handling outliers
in various statistical and machine learning applications. The
pseudo-Huber loss function is defined as follows:

b∑
i=1

δ2

√1+
(
µi − yi

δ

)2

− 1

 , (7)

where δ is the boundary-scale parameter which controls the
amount of robustness of the loss function and µi and yi are
the same quantities as in Eq. (6). Figure 1 illustrates that
the pseudo-Huber loss displays quadratic behavior for small
residuals and linear behavior for larger residuals, depending
on the chosen δ value. This dual nature makes it less sensitive
to the influence of outliers.

To enhance the loss function’s sensitivity to variance-
affecting parameters, we introduce a novel method, the
LOOPH. This method scales and regularizes the pseudo-
Huber loss, ensuring that it reacts more strongly to param-
eters influencing variance. The formulation of the LOOPH is
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Figure 1. The pseudo-Huber loss function for different boundary-
scale values. Each curve represents a different boundary scale,
demonstrating the transition from quadratic behavior for small
residuals to linear behavior for large residuals.

as follows:

b∑
i=1

2δ2

√1+
(µi − yi)2

δ26ii
− 1

+ log6ii . (8)

The LOOPH loss explicitly depends on the posterior vari-
ance, 6ii , which makes the loss more sensitive to variance
parameters due to penalizing large variances. The constant
δ is auto-normalized to set the boundary between quadratic
and linear behavior of the residual. This addresses one of the
major problems with the Huber and pseudo-Huber losses by
assigning directly interpretable units to the boundary-scale
parameter. In the LOOPH loss function, the boundary-scale
parameter is interpreted as the number of standard deviations
from the posterior mean beyond which residual losses are
linearized. In our analysis, we selected δ to 3 to ensure that
penalties for residuals beyond 3 standard deviations from the
target are linearized. This choice aligns with the common as-
sumption that approximately 99.7 % of data falls within this
range under the normality assumption. Setting δ = 3 strikes
a suitable balance for most applications and provides a stan-
dardized approach without requiring frequent adjustments. In
their works, Ronchetti and Huber (2009) and Rousseeuw and
Leroy (2005) discuss the rarity of data points greater than 3
standard deviations away in a normal distribution, supporting
the use of this cutoff as an effective outlier criterion.

Our comprehensive set of visualizations in Fig. 2 includes
heatmaps that depict the loss surface across a range of δ,
µi − yi , and 6ii values. These heatmaps provide a two-
dimensional (2D) view of the loss surface, with colors rep-
resenting loss magnitude. Additionally, we employ cross-
sectional line plots to showcase how the loss changes with
varying residuals for different values of 6 and vice versa.

The graphs presented in Fig. 2 illustrate that the steepness
of the loss curve increases notably when the residuals get
larger. However, this heightened slope does not surpass the
impact of variability within the loss. For values of δ that are
too small, as exemplified by the top row of Fig. 2, the loss at-
tributed to the residual becomes excessively linearized. This
tendency encourages an overestimation of the variance. Im-
portantly, in practical scenarios, both aspects of the LOOPH
loss may necessitate more training iterations to converge to a
stable solution compared to alternative methods.

To compare LOOL and LOOPH loss functions, we tested
them with different ν values while keeping δ fixed at 3. When
we did this comparison, we found that even when there were
no outliers in the dataset, the LOOPH optimization surface
remained steeper than the LOOL surface, as showcased in
Fig. 3. The difference in steepness is significant because it
reflects the sensitivity of the optimization process to changes
in the input, highlighting that LOOPH responds more swiftly
to variations in ν values. This heightened responsiveness
can impact the model’s adaptability and overall performance.
Additionally, we found faster convergence empirically for
simple problems with no outliers.

2.3 Down-sampling process

To enhance the robustness and predictive reliability of the
MuyGPs algorithm, we consider an innovative strategy that
incorporates down-sampling of nearest neighbors and re-
peated evaluations to derive a central value of the distribution
such as the median. This technique aims to strengthen the
stability and accuracy of the MuyGPs training and predic-
tion process, particularly when confronted with outliers and
other perturbations. In our analysis, we assume that we know
the true ` parameter value, and we estimate the ν parameter.
σ 2 as an additional hyperparameter is treated differently than
others, and we optimize it separately by invoking a function
based upon the mean of the closed-form σ 2 solutions associ-
ated with each of its batched nearest-neighbor sets. We illus-
trate a few steps at the heart of the down-sampling method to
train ν in Algorithm 1.

The validation of the described robust approach will be
presented in the subsequent section, where we delve into the
numerical results and performance analysis. We will then test
a hybrid method, where we only use the down-sample strat-
egy for σ 2 parameter and use the full batch to estimate all
other parameters.

3 Numerical studies

To assess the effectiveness of the proposed LOOPH method
and batch sub-sampling technique, we conducted a series
of experiments using a simulated dataset and a real dataset.
Throughout these experiments, we followed the structure be-
low:
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Figure 2. Plots of the LOOPH function (a, d), the LOOPH function against residuals (b, e), and the LOOPH function against variance (c, f)
for δ = 0.5 (a–c) and δ = 3.0 (d–f).

Figure 3. Comparison of loss functions for different values of ν. Panel (a) shows the LOOL loss against various ν values, while panel (b)
displays the LOOPH loss against the same ν values.

– We fitted MuyGPs models using the following three
methods:

– regular sampling method, which is the traditional
MuyGPs implementation;

– hybrid method, which involves the down-sampling
of nearest-neighbor indices only for σ 2;

– down-sampling method (see Algorithm 1).

– For each MuyGPs model, we applied the LOOL (Eq. 6)
and LOOPH (Eq. 8) loss functions.

– We fitted three additional models that employ the neg-
ative log likelihood (NLL) as the underlying loss func-
tion. The models are as follows:

– conventional GP, a conventional GP model fit using
Fields R package (Douglas Nychka et al., 2021);
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Algorithm 1 Down-sampling algorithm.

1. Begin by selecting the k-nearest-neighbor counts, batch count,
and down-sampling size and then sample batches of data.

2. Down-sample the nearest-neighbor points and compute the
objective function using Bayesian optimization to obtain pre-
dictions for the ν parameter. Repeat this process for a fixed
number of iterations and obtain the median value of the asso-
ciated distribution.

3. Fix the robust ν obtained from the median metric in the opti-
mization and prediction process for accurate and robust infer-
ence.

4. Estimate the σ 2 parameter using the down-sampled indices
of the nearest neighbors to minimize variability in inference.
Compute σ̂ 2 as follows:

σ̂ 2
=

1
b∗k∗

med(Y Tnn∗K
−1
nn∗Ynn∗ ), (9)

where Ynn∗ and Knn∗ are the target and kernel matrices with
respect to the down-sampled nearest neighbors. k∗ is the sub-
set of the nearest-neighbor counts, and b∗ is the subset of the
batch count.

5. Down-sample the nearest neighbors again to predict the re-
sponse of the test data at a fixed number of iterations. Each
iteration results in a distribution of predictions. Compute the
median of these predictions to obtain a central value, con-
tributing to robustness and predictive reliability, especially
when dealing with outliers and other sources of variability.

– LAGP, a local approximate GP regression model
for large spatial datasets;

– Student’s t GP, a GP regression model with Stu-
dent’s t likelihood (see Jylänki et al., 2011).

– For all of the models, we used pure (non-outlying) and
outlying data for comparison and varied three ν values.

3.1 Simulation experiment

The simulation study employs a simple two-dimensional
curve generated from f (x). The domain is defined as a sim-
ple grid on a one-dimensional surface, and 90 % of the obser-
vations is partitioned into a training set and 10 % into a test
set. Each dimension of the dataset consists of 100 data points,
which results in a data size of 10 000 observations. We as-
sume that the true data are produced with no noise, so we
specify a very small noise prior to ensure numerical stabil-
ity, i.e., a minimal noise level of 1× 10−14. The training ob-
servations are perturbed with heteroscedastic Gaussian noise
with a variance of ε = 1×10−7. The kernel hyperparameters,
including different values of the smoothness parameter, i.e.,
ν = 0.1,0.5,1.0, and the length-scale parameter, `= 1.0, are
then specified. These parameters collectively define a Matérn
kernel GP for our sampling procedure. Figure 4 displays our

sampled surface from the GP prior and shows the training
and testing observations.

In order to investigate the robustness of our model to out-
liers, we introduce anomalous data points into the training
set. This is achieved by randomly selecting a subset of train-
ing data indices and multiplying the corresponding target val-
ues by a specified factor. Specifically, we randomly choose
10 % of the training data points and scale their target values
by a factor of 2. This operation effectively injects outliers into
the dataset, simulating situations where extreme observations
may exist, as seen in Figs. 5 and 6. Particularly, in Fig. 5, the
two box plots illustrate distinct characteristics of the training
datasets they represent. The first box plot displays a tightly
clustered distribution of values with no outliers, indicating a
more consistent and predictable dataset. In contrast, the sec-
ond box plot reveals a wider spread of values and the pres-
ence of outliers, highlighting the dataset’s increased variabil-
ity and potential for extreme observations. These plots un-
derscore the significance of outliers in data analysis, empha-
sizing the need for careful consideration when interpreting
results or applying statistical methods to datasets with out-
liers.

The plots illustrated in Fig. 6 serve as valuable tools for
gaining insights into our findings regarding outlier effects.
In the left column, we analyze the residuals computed from
three models. Notably, the model trained on data with out-
liers exhibit considerably larger residuals, which could po-
tentially impact the validity of our inferences. In the middle
column, we examine the size of the 95 % confidence interval
calculated for all the models. The presence of outliers tends
to significantly widen the 95 % confidence interval, indicat-
ing decreased confidence in the model’s predictions. The
average confidence interval size in the model with outlier-
affected data is approximately 2.25, notably higher compared
to the average size observed in the model with outlier-free
data, which averages around 0.55. Lastly, the right column
illustrates the difference between the 95 % confidence inter-
val length and the magnitude of residuals for all the models.
Any points exceeding zero lie outside the confidence inter-
val, providing insight into our coverage distribution. While
approximately 95 % of the differences in confidence inter-
vals and residuals for the outlying data do not exceed zero as
expected, the majority are significantly negative. This sug-
gests that the learned confidence intervals are made exces-
sively large to accommodate the outlying data. Overall, these
results highlight the significant impact outliers can have on
model performance and the importance of robust methods
to mitigate these effects. For clear visual interpretation, we
specifically report plots of predictions made using larger test
sets.

3.2 Simulation results

The simulation results are all based on 100 replications, and
for each simulated dataset, we computed the RMSE, the con-
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Figure 4. (a–c) Two-dimensional sampled surface from a GP, 90 % training observations, and 10 % testing observations.

Figure 5. Comparison of the spatial training data after injecting
outliers. The first box plot represents the data with no outliers, while
the second box plot shows the data after injecting 10 % outliers.

tinuous ranked probability score (CRPS), the median abso-
lute deviation (MAD), the median diagonal variance (MDV),
the median confidence interval (CI) size, and the coverage
probability to analyze our fitted models. Table 1 summarizes
the key findings from our simulation study in the absence of
outliers. For brevity, we report only RMSE, MDV, and me-
dian CI size; the rest are presented in the Appendix. RMSE
was chosen because it provides a clear measure of model ac-
curacy, showing how closely the predictions match the true
values. MDV is useful for assessing the variability in predic-
tions, offering insights into the stability of the model. Me-
dian CI size is essential for understanding the uncertainty in
the predictions, indicating the precision of the model’s esti-
mates. While MDV measures how spread out the predictions
are, reflecting the model’s consistency, median CI size eval-
uates the range within which the true values are likely to fall,
highlighting the confidence in the predictions. Thus, MDV
and CI size provide complementary information about the
model’s performance. The bold values represent the best ac-
curacy and uncertainty quantification (UQ) statistics for each
ν setting.

We next summarize the results of our simulation study in
Table 2, demonstrating our models’ effectiveness in captur-
ing underlying data patterns and their robustness in handling
outliers.

Examining the outcomes presented in Tables 1 and 2 re-
veals several noteworthy insights. It is important to remem-
ber that traditional implementation of the MuyGPs method
is noted here as regular sampling with the LOOL loss func-
tion. All other rows indicate a novel method that we propose,
with either a new loss function or novel use of data in or-
der to account for the outliers along with conventional GP
methods and one existing robust method for comparison. Our
models exhibit exceptional accuracy when applied to clean
data for both loss methods. This is evident in the form of
low RMSE, especially when ν = 1.0, indicating precise point
predictions. We can observe a small MDV and precise confi-
dence intervals when looking at the results in Table 1 for all
the MuyGPs methods. Surprisingly, our LOOPH loss model
even outperforms the LOOL loss function in this clean data
case in a majority of these statistics and scenarios. In con-
trast, the conventional GP method, evaluated with NLL loss,
achieves the lowest RMSE values across all ν levels but at
the cost of higher MDV and CI sizes. LAGP and Student’s t
GP methods show higher RMSE values, particularly at lower
ν levels, with LAGP achieving lower CI sizes than Student’s
t GP. Overall, the hybrid method with LOOPH loss stands
out due to its performance with low MDV and CI sizes. The
introduction of outliers has a profound impact on MuyGPs
models’ accuracy when using the LOOL loss method, result-
ing in significantly enlarged variances and broader, overly
conservative confidence intervals. RMSE values are higher
than in Table 1 due to the influence of outliers, but they re-
main commendably low, particularly when ν = 1.0 for all
of our methods. Conversely, when assessing the results ob-
tained using the LOOPH loss method in the presence of out-
liers, we still observe a small MDV and small median CI
sizes. The down-sampling method exhibits improved robust-
ness to outliers for the LOOL loss, delivering competitive in-
ferential outcomes regardless of the presence of outliers. This
is highlighted by a substantially lower RMSE, diminished
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Figure 6. Analysis of outlier effects across three models. Panels (a), (d), and (g) depict residuals; panels (b), (e), and (h) show the confidence
interval (CI) magnitude; and panels (c), (f), and (i) illustrate the difference between the residuals and CI (|Residual| −CI). The first row
presents a model trained on pure data with no outliers using the regular sampling method with LOOL loss. The second row shows a model
trained on data with 10 % outliers using the regular sampling method with LOOL loss. The third row displays a model trained on data with
10 % outliers using the down-sampling approach with LOOL loss. The comparison highlights the impact of outliers on different MuyGPs
models.

MDV values, and accurate confidence intervals. In contrast,
the conventional GP and LAGP methods present significantly
wider confidence intervals and increased MDV values when
outliers are present, likely due to their sensitivity to outliers
and the resultant increase in uncertainty. This increased vari-
ability and broader CI sizes for these methods indicate less
stable performance, with RMSE values also notably higher,
showcasing their reduced robustness compared to methods
specifically designed to handle outliers. Although Student’s
t GP method is robust to outliers, it still could not measure
up to our developed methods in terms of maintaining low
RMSE and variability. Our simulation analysis, supported by
the conclusions derived from the earlier-mentioned tables, is
further reinforced by the information presented in Fig. 6.

3.3 Analysis of US ozone data

In this subsection, we analyze the US air quality data from
various locations within Los Angeles (LA), CA, in 1988. We
considered the region’s historical ozone levels, which have
been notably high due to its status as a large metropolitan
area. Throughout the 1980s and 1990s, LA recorded ozone
levels exceeding 200 parts per billion (ppb). Although this
dataset does not contain significant outliers, it is still critical
to use a robust approach for accurate environmental anal-
ysis to account for potential future outliers that could be
caused by climate change. Ozone levels are typically influ-
enced by numerous factors, including weather patterns, emis-
sions from various sources, and chemical reactions in the
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Table 1. Results for model evaluation using RMSE, MDV, and median CI size metrics for non-outlying data. The ν column represents the
true ν values under which the simulated data were generated. Bold values represent the best accuracy and UQ statistics for each ν.

Model Method Loss ν RMSE MDV CI size

MuyGPs Regular sampling LOOL 0.1 0.59 0.349 2.31
0.5 0.089 0.0077 0.344
1.0 0.009 8.0× 10−5 0.034

LOOPH 0.1 0.581 0.342 2.293
0.5 0.0887 0.007 0.336
1.0 0.0092 6.8× 10−5 0.032

Hybrid LOOL 0.1 0.612 0.344 2.29
0.5 0.095 0.0078 0.347
1.0 0.0098 0.0001 0.035

LOOPH 0.1 0.6002 0.319 2.216
0.5 0.089 0.0068 0.324
1.0 0.0096 7× 10−5 0.0326

Down-sampling LOOL 0.1 0.611 0.397 2.47
0.5 0.089 0.0082 0.355
1.0 0.0096 0.0001 0.038

LOOPH 0.1 0.603 0.329 2.25
0.5 0.089 0.0075 0.34
1.0 0.0095 8× 10−5 0.035

Benchmarks Conventional GP NLL 0.1 0.017 0.475 2.703
0.5 0.003 0.883 3.683
1.0 0.0005 0.523 2.836

LAGP NLL 0.1 0.947 0.704 3.2895
0.5 0.958 0.214 1.812
1.0 0.725 0.032 0.703

Student’s t GP NLL 0.1 0.944 0.456 5.82
0.5 0.747 0.385 5.099
1.0 0.349 0.225 3.875

atmosphere. Our robust modeling approach ensures that the
analysis remains reliable even when data variability is high
or when there are subtle anomalies that traditional methods
might overlook. By applying our robust techniques, we can
better account for the complex nature of this dataset and im-
prove the reliability of predictions and interventions aimed at
mitigating air pollution.

We collected meteorological data from the National Cli-
matic Data Center (NCDC), which provides 1096 daily
records of average temperature and maximum wind speed
from three monitoring stations in LA. Additionally, we ob-
tained maximum daily 8 h average ozone levels from the
US Environmental Protection Agency (EPA) Air Explorer
database. Our analysis primarily focused on daily ozone con-
centrations recorded at 15 monitoring sites in LA, totaling
6995 observations as shown in Fig. 7. To narrow down the
datasets, we filtered for the summer months (June, July, and
August), resulting in 1799 ozone and 276 meteorological ob-
servations.

We followed a modeling approach almost similar to our
simulation study using temperature and wind speed as vari-
ables in our feature matrix and daily ozone concentration as
our target variable. The feature variables were normalized
using min–max scaling to transform the values to a range
of [0,1]. However, in the ozone data analysis, we only esti-
mated the ν parameter during the model training process due
to the complex underlying characteristics and structures of
these data and opted out of specifying its values. We consid-
ered ozone values above the air quality standard as potential
outliers. However, these values were not extreme enough to
significantly affect the accuracy of our inference when us-
ing the LOOL loss method. Therefore, we randomly selected
10 % of the training ozone data and replaced their values
with extreme outlier values within a specified range to thor-
oughly test our methodology. Based on our simulation study,
which showed that conventional GP, LAGP, and Student’s t
GP methods do not perform well due to scalability issues and
lack of robustness (with only Student’s t GP being somewhat
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Table 2. Results for model evaluation using RMSE, MDV, and median CI size metrics for data with 10 % outliers in it. The ν column
represents the true ν values under which the simulated data were generated. Bold values represent the best accuracy and UQ statistics for
each ν.

Model Method Loss ν RMSE MDV CI size

MuyGPs Regular sampling LOOL 0.1 0.625 0.569 2.957
0.5 0.206 0.243 1.93
1.0 0.21 0.278 2.065

LOOPH 0.1 0.618 0.475 2.704
0.5 0.126 0.044 0.819
1.0 0.058 0.031 0.685

Hybrid LOOL 0.1 0.6012 0.527 2.846
0.5 0.176 0.119 1.35
1.0 0.227 0.292 2.118

LOOPH 0.1 0.606 0.468 2.682
0.5 0.155 0.061 0.971
1.0 0.085 0.023 0.593

Down-sampling LOOL 0.1 0.619 0.488 2.74
0.5 0.143 0.067 1.016
1.0 0.0587 0.014 0.466

LOOPH 0.1 0.6011 0.506 2.78
0.5 0.15 0.055 0.922
1.0 0.062 0.016 0.503

Benchmarks Conventional GP NLL 0.1 0.941 0.869 3.656
0.5 0.998 1.609 4.972
1.0 0.869 0.968 3.857

LAGP NLL 0.1 1.027 2.697 6.438
0.5 1.14 3.958 7.799
1.0 0.998 3.217 7.03

Student’s t GP NLL 0.1 0.9411 0.846 7.92
0.5 0.927 0.885 8.85
1.0 0.869 0.769 7.465

robust), we opted out of fitting these methods in the analysis
of US ozone data. Instead, we compared our method’s per-
formance to the regular MuyGPs method by computing the
RMSE, CRPS, MAD, MDV, median CI size, and coverage
probability. Tables 3 and 4 only present RMSE, MDV, and
median CI size metrics, while the rest of the metrics are in-
cluded in the Appendix. The results presented in these tables
confirmed our earlier observations from the simulation study,
favoring the LOOPH loss and the down-sampling approach.

The above findings in Tables 3 and 4 provide a comprehen-
sive view of the performance evaluation metrics for different
batch sampling methods. It demonstrates how the models re-
spond to various conditions, including the presence of out-
liers and the choice of loss functions (LOOL and LOOPH).
Generally, these results highlight the trade-offs between ac-
curacy and robustness in GP modeling. Even without injec-
tion of outliers, our LOOPH loss method demonstrates im-
proved uncertainty quantification, where smaller variances
better represent the true uncertainty in the data. Further,

Table 3. Results for MuyGPs models evaluation using RMSE,
MDV, and Median CI size. Bold values represent the best accuracy
and UQ statistics for each metric setting.

Method Loss RMSE MDV CI size

Regular sampling LOOL 0.034 8.6× 10−4 0.115
LOOPH 0.0336 7× 10−5 0.033

Hybrid LOOL 0.0336 3.51× 10−3 0.232
LOOPH 0.0336 0.001 0.127

Down-sampling LOOL 0.033 0.0005 0.086
LOOPH 0.0339 9× 10−5 0.0379

the hybrid sampling method with the LOOPH loss func-
tion emerges as the most favorable approach for the ozone
dataset with 10 % outliers generated into it. This method
yields the lowest values across multiple metrics, including
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Figure 7. Panel (a) displays the time series of ozone concentration over time. Panel (b) shows the histogram of summertime ozone concen-
trations. Panels (c) and (d) plot ozone concentration against daily average temperature and maximum wind speed.

Table 4. Results for MuyGPs models evaluation using RMSE,
MDV, and Median CI size for Ozone data with 10 % outliers gener-
ated in it. Bold values represent the best accuracy and UQ statistics
for each metric setting.

Method Loss RMSE MDV CI size

Regular sampling LOOL 0.5412 1.599 4.95
LOOPH 0.489 0.114 1.323

Hybrid LOOL 0.54 2.611 6.334
LOOPH 0.489 0.094 1.204

Down-sampling LOOL 0.556 0.149 1.51
LOOPH 0.509 0.156 1.548

RMSE, MDV, and median CI size. These findings specifi-
cally recommend adopting the hybrid sampling method with
the LOOPH loss function for optimal model performance on
this dataset.

4 Conclusions

In this study, we investigated the behavior and robustness
of GP regression models, particularly focusing on a scalable
GP algorithm called MuyGPs, when confronted with outlier-
affected spatial datasets. We proposed a novel leave-one-out
pseudo-Huber (LOOPH) loss method and a down-sampling
strategy to enhance the algorithm’s robustness and improved
prediction capability. Our numerical studies, conducted on
both simulated and real-world datasets, provided valuable in-
sights into the capabilities of MuyGPs in handling outliers
and improving the reliability of GP regression models.

The simulation experiments revealed that MuyGPs, when
featuring the LOOPH loss method, maintains low RMSE,
small MDV, and accurate confidence intervals even in the
presence of extreme observations. Additionally, the down-
sampling approach further improved the model’s robustness
and predictive capabilities, especially when dealing with
outlier-affected data, highlighting its potential as a powerful
tool for mitigating the adverse effects of unusual observa-
tions.
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Analyzing real-world US ozone data from LA in 1988,
we observed that MuyGPs using the LOOPH loss method
provides accurate predictions and uncertainty quantification,
even when outliers are present. The down-sampling strategy
reinforced the algorithm’s robustness, making it an attractive
choice for applications involving large spatial datasets with
potential outliers.

Our study underscores the importance of considering the
impact of outliers when employing GP regression models
and highlights the potential of the MuyGPs algorithm, espe-
cially when featuring the proposed LOOPH loss method and
down-sampling techniques. These tools offer practitioners a
means of maintaining predictive accuracy and reliable un-
certainty quantification even in challenging and large spatial
data scenarios. Overall, this work contributes to advancing
the understanding of GP regression in the spatial context and
offers practical solutions to enhance its applicability in the
presence of outliers in the large spatial data regime.

Appendix A: Simulation results

Below we illustrate all the metrics computed to evaluate dif-
ferent GP models during the simulation study.

A1 Non-outlying results

Table A1. Results for model evaluation using RMSE, CRPS, MAD, MDV, median CI size, and coverage. The ν column represents the true
ν values using which the simulated data were generated.

Method Loss ν RMSE CRPS MAD MDV Median CI size Coverage

Regular sampling LOOL 0.1 0.59 0.339 0.415 0.349 2.31 0.94
0.5 0.089 0.051 0.06 0.0077 0.344 0.948
1.0 0.009 0.005 0.0056 8.0× 10−5 0.034 0.945

LOOPH 0.1 0.581 0.346 0.413 0.342 2.293 0.949
0.5 0.0887 0.0506 0.057 0.007 0.336 0.942
1.0 0.0092 0.0053 0.006 6.8× 10−5 0.032 0.921

Hybrid LOOL 0.1 0.612 0.344 0.413 0.344 2.29 0.934
0.5 0.095 0.049 0.06 0.0078 0.347 0.934
1.0 0.0098 0.005 0.0061 0.0001 0.035 0.939

LOOPH 0.1 0.6002 0.344 0.4078 0.319 2.216 0.927
0.5 0.089 0.053 0.064 0.0068 0.324 0.931
1.0 0.0096 0.0052 0.0063 7× 10−5 0.0326 0.923

Down-sampling LOOL 0.1 0.611 0.377 0.402 0.397 2.47 0.959
0.5 0.089 0.053 0.067 0.0082 0.355 0.957
1.0 0.0096 0.0053 6.45e−3 0.0001 0.038 0.955

LOOPH 0.1 0.603 0.332 0.4023 0.329 2.25 0.942
0.5 0.089 0.053 0.063 0.0075 0.34 0.943
1.0 0.0095 0.0051 0.0059 8× 10−5 0.035 0.939

Conventional GP NLL 0.1 0.017 0.054 0.063 0.475 2.703 0.957
0.5 0.003 0.004 0.059 0.883 3.683 0.9502
1.0 0.0005 0.0027 0.0036 0.523 2.836 0.968

LAGP NLL 0.1 0.947 0.387 0.625 0.704 3.2895 0.978
0.5 0.958 0.381 0.592 0.214 1.812 0.972
1.0 0.725 0.305 0.365 0.032 0.703 0.905

Student’s t GP NLL 0.1 0.944 0.481 0.626 0.456 5.82 0.975
0.5 0.747 0.381 0.592 0.385 5.099 0.932
1.0 0.349 0.297 0.404 0.225 3.875 0.948
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A2 Outlying results

Table A2. Results for model evaluation using RMSE, CRPS, MAD, MDV, median CI size, and coverage for data with 10 % outliers in them.
The ν column represents the true ν values using which the simulated data were generated.

Method Loss ν RMSE CRPS MAD MDV CI size Coverage

Regular sampling LOOL 0.1 0.625 0.348 0.415 0.569 2.957 0.985
0.5 0.206 0.097 0.087 0.243 1.93 0.998
1.0 0.21 0.094 0.056 0.278 2.065 0.999

LOOPH 0.1 0.618 0.345 0.405 0.475 2.704 0.974
0.5 0.126 0.087 0.073 0.044 0.819 0.994
1.0 0.058 0.081 0.025 0.031 0.685 0.98

Hybrid LOOL 0.1 0.6012 0.355 0.413 0.527 2.846 0.985
0.5 0.176 0.095 0.082 0.119 1.35 0.998
1.0 0.227 0.093 0.038 0.292 2.118 1.0

LOOPH 0.1 0.606 0.354 0.422 0.468 2.682 0.971
0.5 0.155 0.079 0.0787 0.061 0.971 0.985
1.0 0.085 0.0743 0.021 0.023 0.593 0.988

Down-sampling LOOL 0.1 0.619 0.348 0.408 0.488 2.74 0.976
0.5 0.143 0.076 0.0835 0.067 1.016 0.984
1.0 0.0587 0.074 0.037 0.014 0.466 0.988

LOOPH 0.1 0.6011 0.348 0.412 0.506 2.78 0.985
0.5 0.15 0.086 0.078 0.055 0.922 0.987
1.0 0.062 0.075 0.047 0.016 0.503 0.976

Conventional GP NLL 0.1 0.941 0.672 0.904 0.869 3.656 0.992
0.5 0.998 0.556 0.632 1.609 4.972 0.998
1.0 0.869 0.4002 0.443 0.968 3.857 0.9989

LAGP NLL 0.1 1.027 0.534 0.687 2.697 6.438 0.985
0.5 1.14 508 0.587 3.958 7.799 0.997
1.0 0.998 0.463 0.422 3.217 7.03 0.986

Student’s t GP NLL 0.1 0.9411 0.6702 0.891 0.846 7.92 0.997
0.5 0.927 0.56 0.651 0.885 8.85 0.988
1.0 0.869 0.384 0.407 0.769 7.465 0.985
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Appendix B: US ozone data analysis results

Here we report the results obtained from fitting different
MuyGPs models for the US ozone data.

Table B1. Results for MuyGPs models evaluation using RMSE, MDV, and Median CI size. Bold values represent the best accuracy and UQ
statistics for each metric setting.

Method Loss RMSE CRPS MAD MDV CI size Coverage

Regular sampling LOOL 0.034 0.019 0.025 8.6× 10−4 0.115 0.917
LOOPH 0.0336 0.023 0.0251 7× 10−5 0.033 0.968

Hybrid LOOL 0.0336 0.0209 0.0252 3.51× 10−3 0.232 0.939
LOOPH 0.0336 0.0191 0.025 0.001 0.127 0.956

Down-sampling LOOL 0.033 0.0199 0.0247 0.0005 0.086 0.961
LOOPH 0.0339 0.0232 0.02466 9× 10−5 0.0379 0.979

Table B2. Results for MuyGPs models evaluation using RMSE, MDV, and Median CI size for Ozone data with 10 % outliers generated in
it. Bold values represent the best accuracy and UQ statistics for each metric setting.

Method Loss RMSE CRPS MAD MDV CI size Coverage

Regular sampling LOOL 0.5412 0.384 0.389 1.599 4.95 0.98
LOOPH 0.489 0.283 0.341 0.114 1.323 0.983

Hybrid LOOL 0.54 0.448 0.389 2.611 6.334 0.98
LOOPH 0.489 0.286 0.342 0.094 1.204 0.993

Down-sampling LOOL 0.556 0.322 0.407 0.149 1.51 0.936
LOOPH 0.509 0.282 0.268 0.156 1.548 0.953
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