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Abstract. This paper presents a statistical analysis of air temperature data from 32 stations in Italy and the UK
up to 2000 m above sea level from 2002 to 2021. The data came from both highland and lowland areas in order to
evaluate the differences due to both location and elevation. The analysis focused on detecting trends at annual and
monthly timescales, employing ordinary least-squares (OLS), robust S-estimator regression, and Mann–Kendall
(MK) and Sen’s slope methods. Hierarchical clustering (HCA) using dynamic time warping (DTW) was then
applied to the monthly data to analyze the intra-annual pattern similarity of trends within and across the groups.

Two different regions of Europe were chosen because of the different climate and temperature trends – namely,
the northern UK (smaller trends) and the northwest Italian Alps (larger trends). The main novelty of the work
is to show that stations with similar locations and altitudes have similar monthly slopes by quantifying them
using DTW and clustering. These results reveal the nonrandomness of different trends throughout the year and
between different parts of Europe, with a modest influence of altitude in wintertime. The findings revealed that
group average trends were close to the National Oceanic and Atmospheric Administration (NOAA) values for the
areas in Italy and the UK, confirming the validity of analyzing a small number of stations. More interestingly,
intra-annual patterns were detected commonly at the stations of each of the groups and are clearly different
between them. Confirming the different climates, most highland and lowland stations in Italy exhibit statistically
significant positive trends, while in the UK, both highland and lowland stations show statistically nonsignificant
negative trends. Hierarchical clustering in combination with DTW showed consistent similarity between monthly
patterns of means and trends within the group of stations and inconsistent similarity between patterns across
groups. The use of the 12 distance correlation matrices (dcor) (one for each month) also contributes to what is
the main result of the paper, which is to clearly show the different temporal patterns in relation to location and
(in some months) altitude. The anomalous behaviors detected at 3 of the 32 stations, namely Valpelline, Fossano,
and Aonoch Mòr, can be attributed, respectively, to the facts that Valpelline is the lowest-elevation station in its
group; Fossano is the southernmost of the Italian stations, with some sublittoral influence; and Aonoch Mòr has
a large number of missing values.

In conclusion, these results improve our understanding of temperature spatio-temporal dynamics in two very
different regions of Europe and emphasize the importance of consistent analysis of data to assess the ongoing
effects of climate change. The intra-annual time patterns of temperature trends could also be compared with
climate model results.

Published by Copernicus Publications.
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1 Introduction

The study of climate variability and its impact on our en-
vironment has garnered increasing attention in recent years
driven by growing concerns over the consequences of global
climate change. The study of air temperature is a crucial as-
pect of climatology that is widely examined worldwide, with
the Intergovernmental Panel on Climate Change (IPCC) stat-
ing that warming is not observed or expected to be spatially
or seasonally uniform (Collins et al., 2013). In fact, global
warming is modulated by external forcing (“signals”) and in-
ternal variability (“noise”) (Li et al., 2022). There are many
goals of comprehending its ever-changing nature in various
regions over different time frames, with many examples (Fa-
rooq et al., 2021; Khavse et al., 2015). Globally, there is a
consistent upward trend in air temperatures (Simmons et al.,
2021). This phenomenon is not limited to global observa-
tions alone; it is also evident at regional levels as seen, e.g.,
throughout Europe, where air temperatures have displayed
a continuous linear increase since 1985 (Twardosz et al.,
2021), and in the central Asian region (Farooq et al., 2021).
A time trend that appears to be mainly positive and reveals
a significant rise in temperature was detected by Gil-Alaña
et al. (2022) when aggregated monthly temperature data were
analyzed from 48 contiguous US states. Furthermore, when
disaggregated data on temperature anomalies were consid-
ered at the state level, a large number of states showed a
significantly positive temporal trend coefficient. Remarkably,
this trend turned out to include seven exceptions, all of which
occurred in the southeast. Also, 309 stations in Canada and
the US were examined in Isaac and Van Wijngaarden (2012),
revealing significant warming trends, particularly in the mid-
western US, Canadian prairies, and western Arctic, primar-
ily in winter and, to a lesser degree, in spring. A dataset
from 19 stations ranging from 1920 to 2006 was analyzed
in El Kenawy et al. (2012), and the result was a significantly
increased trend in maximum, minimum, and average temper-
atures, especially since 1960. The annual trend was explored
in Di Bernardino et al. (2022) using data obtained from three
stations in Rome (Italy) in the period from 2000–2020 and
identified a statistically positive trend of annual mean tem-
peratures.

However, a warming hiatus occurred in the period from
2004–2018 in the Northern Hemisphere, especially in au-
tumn and in more northern areas (Tang et al., 2022; Shen
et al., 2018). Before those years of hiatus, a study conducted
in the US did an interesting combined analysis of the pat-
tern of temperature trends during the months and during the
days (Vinnikov et al., 2002). The analyses of that paper were
not repeated in other papers, and, in our opinion, they de-
serve to be repeated with more recent data in order to see
if less noisy patterns can emerge. Instead, many papers ad-
dressed the topic of the trends in the diurnal temperature

range (DTR; for example, Shen et al., 2014). Annual and
seasonal averages of DTR and maximum and minimum tem-
peratures were considered by Sayemuzzaman et al. (2015)
using 249 stations (1950–2010) in North Carolina, and the
result showed a negative annual trend in the diurnal tem-
perature range and a positive trend for maximum and min-
imum temperatures, which were statistically significant. The
maximum temperature showed a negative trend during sum-
mer and spring and a positive trend during the autumn sea-
son, the minimum temperature showed an increasing trend in
all seasons, and the diurnal temperature range showed a de-
creasing trend in all seasons. Notably, temperature extremes
have become more frequent and intense throughout Europe
in recent decades (Patterson, 2023). According to Patterson
(2023), based on ERA5 reanalysis data from 1960 to 2021,
the hottest summer days in northwestern Europe are warm-
ing up at about twice the rate of average summer days. Ad-
ditionally, the pattern is relatively unique when compared
to the Northern Hemisphere. Another extensively addressed
topic is altitude-dependent warming. It occurs throughout
the world’s highland regions, with the Alps proving to be
a notable hotspot for global warming (MRI, 2015). A study
looking at the French Alps and adjacent areas in neighbor-
ing Italy and Switzerland found a clear overall trend indicat-
ing an increase of about 1 °C in annual air temperature over
44 years, with large variations in this trend for different alti-
tudes, seasons, and regions. The trends are most pronounced
between 1500 and 2000 m above sea level (a.s.l.) (Durand
et al., 2009). A recent paper describes in depth the physical
mechanisms driving elevation-dependent warming (EDW) in
the tropics and subtropics, highlighting some drivers and, in-
terestingly for our study, monthly variations (Byrne et al.,
2024). Available observations suggest that Mediterranean
mountains are experiencing seasonal warming rates that are
largely greater than the global land average. The identifica-
tion and attribution of human versus natural effects is beyond
the scope of this paper. For example, a human fingerprint
(Blackport et al., 2021) in the decreasing subseasonal near-
surface air temperature variability has recently emerged from
a reanalysis of the Northern Hemisphere extratropics. It fea-
tures decreased near-surface air temperature variability over
land in the high northern latitudes in autumn, further extend-
ing into mid-latitudes in winter. Therefore, using large en-
sembles of single-forcing model experiments, they attributed
the pattern of reduced temperature variability primarily to in-
creased anthropogenic greenhouse gas concentrations, with
anthropogenic aerosols playing a secondary role.

In the literature, trends of time variables can be detected,
estimated, and predicted using both parametric and nonpara-
metric methods. Parametric methods, such as linear regres-
sion, robust regression, moving averages, or multiple regres-
sion, require validation of assumptions about the underlying
distribution. For example, parametric methods were applied
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in Vinnikov et al. (2002) to study the diurnal and seasonal cy-
cles of trends in surface air temperature as well as in El Ke-
nawy et al. (2012) to quantify the seasonal and annual trends.
Nonparametric methods, on the other hand, do not require as-
sumptions about the underlying distribution but ensure the
robustness of the final conclusions. Among nonparametric
methods, the most widely used are the Mann–Kendall (MK)
test and Sen’s slope estimator (Di Bernardino et al., 2022;
Mohsin and Gough, 2010; Sayemuzzaman et al., 2015) since
these methods are particularly suited for non-normally dis-
tributed data even in the presence of missing values. Specif-
ically, the MK test is used to detect the presence of trends
in the investigated variables, and Sen’s slope estimator es-
timates the magnitude of these trends. These methods have
been widely used in numerous studies aimed at identify-
ing and estimating trends in annual, seasonal, and monthly
temperatures in various countries and regions. All these re-
sults show that the trends of increasing monthly, annual,
and seasonal temperatures are not homogeneous: in some
regions, the increase was statistically significant, while in
other regions, statistical significance was not reached. Clus-
ter analysis was performed by Rebetez and Reinhard (2008)
in Switzerland, showing a difference between low- and high-
elevation stations.

In this work, we considered a limited number of stations
(32) for the sake of clarity of the proposed method of analy-
sis. Regarding the limited number of years (20), we wanted to
limit inhomogeneities in instrumentation, land use, and non-
linearity of trends. The nonlinear behavior of the last few
decades is also confirmed by the fact that Brunetti et al.
(2006) have shown different Italian historical station trend
results, only adding 8 more recent years in the series in com-
parison with their previous analysis. In order to compare dif-
ferent areas and different altitudes, the attention is focused
on six groups of stations over the period from 2002–2021:
11 Italian highland stations (IH), 12 Italian stations at low
altitudes (IL), five UK highland stations (UKH), and four
low-altitude ones in the UK (UKL). Italian stations (both
lowlands and highlands) were further stratified by distin-
guishing between those in the Valle d’Aosta and those in
Piemonte for a total of six different regions. The highland
stations are between 1029 and 2017 m a.s.l. in Italy and be-
tween 773 and 1237 m a.s.l. in the UK. The lowland stations
are between 232 and 577 m a.s.l. in Italy and between 140
and 249 m a.s.l. in the UK. Temperature trends are analyzed
at annual and monthly timescales.

The objective of this study is preliminarily to assess trends
in six Italian and UK groups of stations, examining the dif-
ferences between parametric and nonparametric methods in
quantifying air temperature trends and exploring the implica-
tions of these different methods. For this purpose, Shapiro’s
test is applied to test the hypothesis of the normal distribu-
tion when necessary, as suggested by Royston (1982). After
that, the main objective is to analyze the intra-annual pattern
similarity of trends within and across these groups of sta-

tions in order to assess the role of elevation and geographical
location at small and large distances. Regarding elevation,
three of them are in the highland region and three are in the
lowland region. Regarding the geographical location, two are
from the UK, a region with low time variation in temperature,
and four are in the Alps, a hotspot of global warming. Also,
two different subregions in the Alps are considered in order
to see the effect of small geographical distance with respect
to the long distance between the UK and Italy. Finally, hier-
archical clustering (HCA) and distance correlation are used
to identify pattern similarity.

The paper is organized as follows: the dataset is presented
in Sect. 2 along with a brief summary of the methods em-
ployed for the analysis. Results and discussion are reported
in Sect. 3. Some concluding remarks are given in the final
section.

2 Material and methods

2.1 Study area and dataset

This study uses air temperature data obtained from 32 sta-
tions located in different geographical areas. The dataset in-
cludes observations from highland and lowland stations in
the UK and Italy. Specifically, five UK highland stations,
four UK lowland stations, 11 Italian highland stations, and 12
Italian lowland stations were chosen to examine and analyze
monthly and intra-annual patterns of air temperature trends.
The geographical area locations of the study are shown in
Fig. 1.

These observations cover the time frame from 2002 to
2021. Annual and monthly trends are calculated only over
20-year periods because of accelerated warming in the
Alpine region (Mudelsee, 2019), especially where trends are
larger. Also, in the 1990s, measurements shifted from me-
chanical instruments in shelters to small electronic sensors.
At all of these stations, temperature records were collected at
half-hourly intervals, totaling 350 640 records for the Italian
lowlands, and at 1-hourly intervals, totaling 175 320 records
for the highland stations in Italy and the UK as well as all
lowland stations in the UK. The location and altitudes of each
station in the dataset are given in Table 1.

There are instances of missing values in the dataset, and
their proportions in relation to each station can be found in
the final column of Table 1. The occurrence of missing val-
ues at Italian stations is minimal, while highland stations in
the UK have a relatively higher percentage of missing values.
Despite these variations, the total number of air temperature
observations is sufficiently large, and the limited presence of
missing values and their random occurrence in the dataset
ensures that their influence on the analysis remains marginal.
Given the small number of missing values, the classic sea-
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Figure 1. The geographical distribution of all stations of (a) Italian highland and lowland and (b) UK highland and lowland considered in
this study.

sonally segmented missing-value imputation technique1 was
employed. When used as a pre-processing step, this method
involves segmenting the time series into seasonal blocks after
which imputation is performed individually for each block
using interpolation algorithms. After incorporation of the im-
puted values, the dataset was further processed into monthly
and annual time series as presented in the following section.

2.2 Methods

2.2.1 Parametric and nonparametric methods for
temperature trends

In this section, we briefly recall the parametric and nonpara-
metric methods used to detect and quantify monthly or an-
nual mean temperature trends as set out in the second part.

1The function R na_seasplit() of the package imputeTS
(version 0.3) was used to restore the missing information (Moritz
and Bartz-Beielstein, 2017).

For linear regression2, the monthly and annual mean tem-
perature yt (in degrees Celsius) is regressed on the ex-
planatory variable t (month or year, respectively). That is,
yt = β t + ε; see, for example, Hyndman and Athanasopou-
los (2018). Positive values of slope β show increasing trends,
while negative values indicate decreasing trends. The coef-
ficient of determination, R2, measures how much the tem-
perature variability is attributable to the time period. Usu-
ally, if the residuals are independent and normally distributed
around zero, a classical hypothesis test assesses a significant
trend if the null hypothesis, β = 0, is rejected at the 0.05 level
(Wooldridge, 2015). A widespread method to compute an es-
timate of β is the ordinary least-squares (OLS) procedure.
However, this method has a twofold drawback. First, the hy-
pothesis of the normal distribution of residuals needs to be
validated. Secondly, a single outlier can have a significant ef-
fect on the estimation to the point of invalidating the trend
interpretation (Rousseeuw, 1984).

2The R function lm() was used.
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Table 1. Location, latitude, longitude, altitude (in meters), and missing-value percentage of the weather stations where the air temperature
was registered.

Group Region Station location Latitude Longitude Altitude % of missing
(in meters) values

UK highland Cairngorm (CR) 57.0607° −3.6066° 1237 10.94
Aonach Mòr (AN) 56.8168° −4.9603° 1130 23.33
Cairnwell (CW) 56.8793° −3.4213° 928 13.60
Great Dun (GD) 54.6833° −2.4500° 847 7.74
Bealach (BL) 57.4167° −5.7167° 773 3.88

UK lowland Aviemore (AR) 57.2005° −3.8282° 228 0.58
Aboyne (AY) 57.0767° −2.7803° 140 1.46
Tulloch (TH) 56.8667° −4.7067° 249 0.29
Warcop Range (WR) 54.5344° −2.3900° 227 0.85

Italian lowland

Saint-Christophe (SC) 45.7393° 7.3634° 545 0.58
Champdepraz Ponte Dora (CP) 45.6818° 7.6737° 370 1.7

Valle d’Aosta St. Marcel Surpian (MS) 45.7366° 7.4446° 540 0.75
Donnas Clapey (DC) 45.5966° 7.7664° 318 0.58
Aosta Mont Fleury (MF) 45.7305° 7.2990° 577 0.32

Luserna (LS) 44.80844° 7.24601° 475 0.08
Susa (SS) 45.1386° 7.0484° 470 0.09
Costigliole (CT) 44.7866° 8.1822° 440 0.03

Piemonte Fossano (FS) 44.5496° 7.7251° 403 0.06
Borgone (BG) 45.1229° 7.2380° 400 0.22
Avigliana (AG) 45.0841° 7.4071° 340 0.12
Carmagnola (CM) 44.8462° 7.7177° 232 0.16

Italian highland

Val Clarea (VC) 45.1477° 6.9567° 1068 0.11
Prarotto (PR) 45.1490° 7.2370° 1431 0.14

Piemonte Niquidetto (NI) 45.1937° 7.3692° 1416 0.10
Coazze (CO) 45.0515° 7.3039° 1130 0.15
Barcenisio (BA) 45.188° 6.9774° 1525 0.79

Gressoney (GR) 45.7796° 7.8258° 1642 0.29
Cogne (CG) 45.6083° 7.3561° 1682 0.48
Valgrisenche (VG) 45.6297° 7.0640° 1859 0.24

Valle d’Aosta Ollomont (OL) 45.8494° 7.3102° 2017 0.42
Lillianes (LL) 45.6337° 7.8442° 1256 0.13
Valpelline (VP) 45.8263° 7.3273° 1029 0.34

On the other hand, the effect of outliers is tolerated by
the robust regression3, which allows for a different distri-
bution of residuals (Rousseeuw and Yohai, 1984). In the
dataset considered here, the hypothesis of normal distribu-
tion is also sometimes violated due to the presence of out-
liers (see Fig. 2). Therefore, a robust regression procedure
was applied to assess the temperature trends of the 32 sta-
tions. As before, a p value of less than 0.05 assesses that an
estimated slope β is significantly different from zero. There
are various methods to estimate the slope robustly. In this
paper, the estimation was carried out using the so-called S
estimator. Suppose (t1,y1), . . ., (tn,yn) is the sample dataset.
Let ρ be a symmetric, continuously differentiable function

3The R function lmrob() of the package robustbase (ver-
sion 0.99-0) was used (Maechler et al., 2023a).

with ρ(0)= 0, such that ρ is strictly increasing in [0,c] and
is constant in [c,∞), with c being a suitable positive con-
stant. Suppose f (x) is the standard normal probability den-
sity function and set k =

∫
∞

−∞
ρ(x)f (x)dx. The S estimator

of β is

β̂ = argminβs[r1(β), . . ., rn(β)], (1)

with ri(β)= yi −βti and s[r1, . . ., rn] being the solution of

1
n

n∑
i=1

ρ
( ri
s

)
= k. (2)

The results obtained from the previous methods have been
further verified using the MK test and Sen’s slope estimator
method. The MK test is one of the most widely used non-
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parametric methods to detect trends in time series, with ap-
plications in different fields of research such as hydrology
and climatology (Radhakrishnan et al., 2017). The magni-
tude of the trend is usually measured by Sen’s slope estima-
tor (Bhuyan et al., 2018; Radhakrishnan et al., 2017). Both
of these nonparametric methods might be appropriately used
for non-normally distributed censored time series including
missing values. In the MK test4, the following assumptions
hold: (i) in the absence of a trend, observations are inde-
pendent and identically distributed; that is, the observations
are not serially correlated over time. (ii) Observations are
representative of actual conditions at the time of sampling;
(iii) sample collection, management, and measurement meth-
ods provide unbiased and representative observations of un-
derlying populations over time. Therefore, for the two-sided
test, the zero hypothesis is that the time series has no mono-
tonic trend. If N is the sample size, the MK test statistic is
calculated according to Mann (1945):

S =

N−1∑
i=1

N∑
j=i+1

sgn(Xj −Xi), (3)

where sgn is an indicator function taking values of −1, 1, or
0 according to its negative, positive, or equal-to-0 (tie) argu-
ment. Thus, the MK statistic returns the sum of the number
of positive differences with the number of negative differ-
ences subtracted for all the considered differences. Note that
E[S] = 0 and that the variance including the correction term
for ties is

var(S)=
[
N (N − 1)(2N + 5)−

∑n
k=1tk(tk − 1)(2tk + 5)

18

]
, (4)

where n is the number of tied groups and tk is the size of
the kth tied group. The statistic S is approximately normally
distributed, with a score of

Z =


S−1
√

var(S)
if S > 0,

0 if S = 0,
S+1
√

var(S)
if S < 0.

If the p value of the test is below an appropriate significance
level (0.05 and 0.01), then there is statistically significant
evidence of the presence of a trend in the time series data.
Before applying the MK test, the data were tested for serial
correlation, which can severely affect the results and con-
firmed that there was no serial correlation in the annual and
monthly mean temperature. Indeed, positive auto-correlation
among the data would increase the chances of rejecting the
null hypothesis even if there is the absence of a trend (Cox
and Stuart, 1955).

The magnitude of the trend is estimated with the help of
Sen’s slope estimator5 (Bhuyan et al., 2018). The null hy-

4The R function mk.test() of the package trend (ver-
sion 1.1.5) was used (Pohlert, 2023).

5The R function sens.slope() of the package trend (ver-
sion 1.1.5) was used (Pohlert, 2023).

pothesis indicates no trend in the time series against a two-
sided alternative. Indeed, first, the slope Ti of all data pairs is
computed as follows:

Ti =
Xj −Xk

j − k
for i = 1,2, . . ...,N. (5)

Sen’s slope estimator is then calculated as the median of all
slopes; that is, the following applies:

Q=

{
TN+1

2
if N is odd,

1
2

(
TN

2
+ TN+2

2

)
if N is even.

(6)

Positive values of Q indicate an upward or increasing trend,
whereas negative values indicate a downward or decreasing
trend.

In this study, nonparametric methods were used because
data from some stations have non-normal distributions (see
Table 2 ). As discussed in Sect. 3.1, this hypothesis fails due
to the presence of outliers. Therefore, we took the opportu-
nity to assess how much the presence of outliers might in-
fluence significant trends. This assessment was done by ap-
plying all the previously described methods regardless of the
assumption of normal distributions and discussing a posteri-
ori (see Sect. 3) the slopes of the trends and their coefficients
of determination.

2.2.2 Hierarchical clustering with dynamic time warping

This section summarizes the dynamic time warping (DTW)
procedure for determining the distance matrix between any
two-time series and shows how hierarchical clustering is used
to find clusters exhibiting unique patterns of behavior.

A warping path, W , is an alignment between two se-
quences, X = {x1,x2, . . .,xn} and Y = {y1,y2, . . .,ym}, also
with n 6=m, entailing a one-to-many mapping for every pair
of elements. Thus, the DTW procedure is a distance mea-
sure used to measure the similarity between two time series
by finding the optimal warping path between them. To this
aim, a distance measure is used; that is, DTW looks for the
optimal alignment minimizing the distance between corre-
sponding points (Shen and Chi, 2017).

The algorithm firstly constructs a cost matrix, C, where
each element C(i,j ) represents the cost of the pair (xi,yj )
determined by utilizing a distance function, such as the Man-
hattan distance, d(xi,yj )= |xi − yj |, or the Euclidean dis-

tance, d(xi,yj )=
√

(xi − yj )2, between two points of the
time series. The Manhattan distance was chosen because
it is more robust in the presence of outliers in the data,
and most of the stations examined have outliers, as shown
in Fig. 2. In contrast, the Euclidean distance amplifies the
effect of outliers by squaring their differences. Addition-
ally, the Manhattan distance is preferred over the Euclidean
distance with high-size samples. Then, a second matrix,
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DTW, is set up with the same dimension of the cost ma-
trix. Its (i,j )th element gives the distance between two sub-
sequences, {x1, . . .,xi} and {y1, . . .,yj }. Matrix DTW is ini-
tialized as follows: DTW(0,0) := 0 as the distance between
two empty sequences is 0, or DTW(i,0)=DTW(0,j ) :=
+∞ for i > 0,j > 0, and i 6= j as no direct alignment is pos-
sible. The cost matrix values are then calculated recursively,
taking into account the following constraints on the warping
paths:

(a) the alignment starts at pair (1,1) and ends at pair
(N,M);

(b) the order of the elements in X and Y ’s path should be
maintained constant;

(c) a pair (xi,yj ) can be followed by the three possible pairs
(xi+1,yj ), (xi,yj+1), and (xi+1,yj+1).

The recursive functions corresponding to the three possible
moves are

DTW(i,j )=min


DTW(i− 1,j )+wh×C(i,j ) (horizontal move),
DTW(i,j − 1)+wv×C(i,j ) (vertical move),
DTW(i− 1,j − 1)+wd×C(i,j ) (diagonal move),

where wh, wv, and wd are the weights for the horizontal, ver-
tical, and diagonal move. When all weights are equal, i.e.,
(wh,wv,wd)= (1,1,1), the recursive function facilitates di-
agonal alignment because the cost of one step is lower than
the cost of two steps combining the vertical and horizontal
alignments. One way to balance this bias is to choose weights
of (wh,wv,wd)= (1,1,2).

The final DTW distance6 is the total cost of the optimal
warping path, which measures how well the two sequences
can be aligned while minimizing the overall cost. Smaller
DTW distances indicate greater similarity between the se-
quences as they require less distortion to align optimally.
DTW is susceptible to overfitting, which can occur, for exam-
ple, if the warping window is not chosen appropriately in se-
quences of equal length, leading to inflated similarity scores
between sequences. To overcome this drawback, a regular-
ization technique can be introduced by adding a penalty term
to the cost function, aiming to penalize excessive or large
warping steps. This penalty term can be added to the orig-
inal DTW cost function as follows: DTWregularized(i,j )=
DTW(i,j )+λ×γ (i,j ), where λ is the regularization parame-
ter, tuning the strength of the regularization, and γ (i,j ) is the
regularization term. We have set γ (i,j )= (i− j )2. With this
choice, alignment steps that have a large difference in indices
are penalized, discouraging the alignment from jumping too
far off the diagonal.

6The R function proxy::dist() of the package proxy (ver-
sion 0.4-27) was used (Meyer and Buchta, 2022). This distance is
produced by the R function dtwDist of the package dtw (ver-
sion 1.23-1) (Giorgino, 2009) and registered as a distance function
in the database of distances pr_DB of proxy.

Hierarchical clustering (HCA) is an algorithm for group-
ing similar objects into groups called clusters. The distances
between these objects are initially given by the regularized
DTW distance matrix. The output is a set of clusters, where
every cluster has different characteristics from others and the
objects within it are broadly similar to one another. The al-
gorithm7 initially splits the sample into clusters, each con-
taining only one sample point. A proximity matrix,D, is ini-
tialized asD(Ci,Cj )= DTWregularized(i,j ), i ∈X and j ∈ Y.
The two clusters with a smaller proximity index are then
merged in a new cluster called, for example, Cnew. After
merging, the proximity matrix, D, is updated by recalculat-
ing the proximity index between the newly formed cluster,
Cnew, and the remaining cluster, Ck , using the complete link-
age criterion. This criterion picks the two farthest (most dis-
similar) points such that one point lies in one cluster and the
other point lies in a different cluster and defines the proxim-
ity index between these two clusters as the maximum regu-
larized DTW between these two data points. The procedure
continues by identifying the next pair of clusters with the
smallest proximity index, merging them, and updating the
matrix, D, still using the complete linkage criterion. This
procedure is repeated until all clusters are merged into one
or until the desired number of clusters is obtained. The fi-
nal output is a hierarchical tree (dendrogram) that shows the
sequence of merges and the distances at which each merge
occurred. Although a classical way to analyze the result of
HCA is to use the dendrogram, we chose a table representa-
tion (Tables 5 and 6 for monthly mean air temperatures and
their slopes, respectively) to highlight which stations devi-
ate from the geographic group they belong to. Tables 5 and 6
show the analysis for four clusters that correspond to the four
geographic areas considered. A sensitivity analysis was per-
formed (Table 4) that confirms the choice of the four clusters
as the optimal choice.

Clustering performance with a given number of clusters
was measured using the silhouette score (Rousseeuw, 1987).
This index measures how similar a data point is to its cluster
compared to other clusters. For this purpose, the mean intra-
cluster distance, a, is compared with the mean nearest-cluster
distance, b, for each data point. In detail, the mean distance
between the ith data point, xi , in CI and all other data points
in the same cluster (CI ) is defined as follows:

a(i)=
1

|CI | − 1

∑
j∈CI ,i 6=j

d(i,j ),

where |CI | is the cardinality of the cluster and d(i,j ) is the
distance between xi and xj in cluster CI . The normaliza-
tion is done with respect to |CI | − 1 as distance d(i, i) is not
included in the sum. Therefore, the smaller the value a(i),
the better the assignment of xi to CI . Similarly, the mean

7The R function hclust() was used. Equivalently, the R func-
tion tsclust() from the R package dtwclust can be used
(Sardá-Espinosa, 2017).
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dissimilarity, d(i,Cj ), of xi to some other cluster CJ 6= CI
is defined as the mean of the distance between xi and each
xj ∈ CJ ; that is, the following applies:

d(i,Cj )=
1
|CJ |

∑
j∈CJ

d(i,j ).

The minimum b(i)=minJ 6=Id(i,Cj ) of these dissimilarity
indexes identifies the “neighboring cluster” of xi because it
is the next-best-fit cluster for point xi . Thus, the silhouette
score8 corresponding to xi is defined as follows:

S(i)=


b(i)− a(i)

max(a(i),b(i))
if |Ci |> 1,

0 if |Ci | = 1.

An overall silhouette score, S, is computed by taking the
mean of all S(i) values. As S(i) ∈ (−1,1) for all data points,
the same happens for S ranging from−1 to 1. Hence, a value
of S close to 1 suggests that the data points are well clustered,
and each one is more similar to a neighboring point in its own
cluster as opposed to those within another cluster. A value
of S of about 0 indicates that data points are located at or
near the boundary between clusters. A negative value of S is
likely to suggest that data points may be better allocated in a
neighboring cluster rather than their current cluster.

Distance correlation (Székely and Rizzo, 2009) is a depen-
dency measure used to examine and quantify relationships
between the temperature data collected for the 32 stations.
Distance correlation is invariant to not only linear transfor-
mations but also some nonlinear transformations and, un-
like traditional methods, does not require assumptions of
normality. As with other correlation measures, distance cor-
relation ranges from 0 to 1, where 0 means no correla-
tion and 1 means perfect correlation. For the calculation of
the distance correlation9, suppose we have a random sam-
ple, (X,Y)= {(Xk,Yk) : k = 1, . . .,n}, of n random vectors
i.i.d to (X,Y ) of dimension p and q, respectively. First, for
j,k = 1,2,3, . . .,n, the Euclidean distance is computed be-
tween different samples as follows:

aj,k = ‖Xj −Xk‖p and bj,k = ‖Yj −Yk‖q

with ‖.‖ denoting the Euclidean distance. Then, the follow-
ing is defined:

Aj,k = aj,k− āj.− ā.k+ ā.. and Bj,k = bj,k− b̄j.− b̄.k+ b̄..,

where

āj. =
1
n

n∑
l=1

aj l ā.k =
1
n

n∑
l=1

alk ā.. =
1
n

∑
k,l=1

akl,

8The R function silhouette() was used from the package
clusters (version 2.1.5) (Maechler et al., 2023b).

9The R function dcor.test() of the package energy (ver-
sion 1.7-11) was used (Rizzo and Szekely, 2022).

and a similar set of steps for b̄j., b̄.k,, and b̄.. is performed.
These values are then used to compute the distance covari-
ance (dcov) using

dcov2(X,Y )=
1
n2

n∑
j=1

n∑
k=1

Aj,kBj,k

and the distance correlation (dcor) by

dcor2(X,Y )=
dcov2(X,Y )√

dvar2(X)dvar2(Y )
,

where dvar2(X)= dcov2(X,X) and dvar2(Y )= dcov2(Y,Y ).

3 Results and discussion

In the following, annual and monthly trends are explored us-
ing the parametric and nonparametric methods outlined in
Sect. 2.2. Hierarchical clustering, as described in Sect. 2.2.2,
is employed to discover the similarity between monthly mean
temperature patterns within and between groups of stations.
The distance matrix in each month for the 32 stations is used
to find where the correlations are significant.

3.1 Annual average temperature trends

To get the annual temperatures, an averaging transformation
over each year was applied, grouping half-hourly and hourly
measurements into the monthly and annual time windows.
For each station, box plots of the annual mean temperature
time series are depicted in Fig. 2. The difference between
the colder highlands (black, cyan, and blue) and the warmer
lowlands (orange, yellow, and magenta) is evident as well as
that between the colder UK stations (blue and magenta) with
respect to the warmer Italian stations. In each group, some
of the stations exhibit outliers, potentially affecting the hy-
pothesis of normal distribution. Indeed, a single outlier can
have a substantial effect on the trends obtained by the OLS
method (Rousseeuw, 1984). Thus, to assess this hypothesis,
the Shapiro–Wilk test was applied for each station. The re-
sults of the Shapiro–Wilk test are shown in Table 2. The test
rejects the null hypothesis for the stations Valpelline, Aonach
Mòr, Costigliole, and all UK lowland stations. As the box
plot in Fig. 2 shows, all these stations have outliers. In par-
ticular, Valpelline and all UK lowland stations exhibit a sin-
gle lower outlier. Once this outlier is removed, the Shapiro–
Wilk test no longer rejects the hypothesis of a normal distri-
bution. It is worth noting that these outliers correspond to
the year 2010, which was the coldest year due to the co-
presence of two very cold winter months – January and De-
cember10. This analysis highlights the significant impact of
outliers causing non-normal distribution.

10The coldest month of the seasonal cycle is usually either De-
cember or January.
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Table 2. p values of the Shapiro–Wilk test for normal distribution. Stations marked in bold and with an asterisk (∗) denote statistically
significant trends at the 5% significance level.

Group Region Station p value Group Station p value

Italian lowland

Valle d’Aosta

Mont Fleury 0.16

UK lowland

Aboyne 0.002*
Donnas Clapey 0.23 Warcop Range 0.01*
St. Marcel Surpian 0.39 Aviemore 0.002*
Champdepraz Ponte Dora 0.45 Tulloch 0.001*
Saint-Christophe 0.52

Piemonte

Carmagnola 0.88
Avigliana 0.32
Borgone 0.65
Fossano 0.33
Costigliole 0.02*
Susa 0.17
Luserna 0.16

Italian highland

Piemonte

Barcenisio 0.39

UK highland

Bealach 0.10
Coazze 0.46 Great Dun 0.78
Niquidetto 0.27 Cairnwell 0.79
Prarotto 0.49 Aonach Mòr 0.01*
Val Clarea 0.23 Cairngorm 0.63

Valle d’Aosta

Valpelline 0.02*
Lillianes 0.94
Ollomont 0.96
Valgrisenche 0.80
Cogne 0.44
Gressoney 0.21

The normal distribution hypothesis is not rejected for all
Italian highland stations except Valpelline. It is worth men-
tioning that the Valpelline station is located at the lowest
altitude among the Italian Valle d’Aosta highland stations.
Italian lowland stations show a comparable median that is
fairly symmetrical concerning dispersion. The only excep-
tion is the Costigliole station, for which data are not normally
distributed. Outliers at stations in the UK highlands do not
affect the distribution of annual mean temperature except in
the case of the Aonach Mòr station. According to the results
of the Shapiro–Wilk test for the UK lowland stations, their
annual mean temperature showed a deviation from the nor-
mal distribution. The effect of this result on the annual mean
temperature trend test is examined later on.

Table 3 shows the results of the methods outlined in
Sect. 2.2.1 to compute trends in annual mean temperatures.
The fourth and fifth columns refer to the OLS method and the
S estimator, respectively. Their slopes and R2 coefficients of
determination are given in each subcolumn. The sixth col-
umn refers to the MK test and Sen’s slope estimator. The
subcolumns report p values, Sen’s slope estimators, and R2

coefficients of determination, respectively.
In the Italian highland group, most stations exhibit a sig-

nificant positive trend except for Valpelline, which shows a
relatively small negative trend and also fails the normality

test. The Gressoney and Niquidetto stations, on the other
hand, show a nonsignificant positive trend in all methods,
with varying degrees of fitting, depending on the method
used. Similarly, most lowland stations in Italy show sta-
tistically significant positive slopes, with the exception of
Fossano, which shows a nonsignificant negative trend in
all methods. It is worth observing that the non-normality
checked at the Costigliole station as well as the presence of
outliers do not affect the statistical significance result of the
three methods.

The stations in the UK highland exhibit statistically non-
significant negative trends, with the exception of the Aonach
Mòr, which shows a positive trend in the OLS and a statisti-
cally nonsignificant negative trend with the S estimator and
Sen’s estimator; this is because the OLS method reveals sen-
sitivity to outliers and non-normality.

Lowland stations in the UK showed statistically nonsignif-
icant negative trends; however, the robust regression and
Sen’s slope estimators produced slopes of similar magnitude
relatively larger than those obtained by the OLS method. This
result highlights the outlier tolerance and distribution inde-
pendence of robust regression and Sen’s slope trend analy-
sis. It is noteworthy that the R2 value of the OLS method
is smaller than the R2 values of the S estimator and Sen’s
estimator.
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Figure 2. Box plots of the annual average temperatures of all stations: black and cyan box plots represent Valle d’Aosta and Piemonte in the
Italian highlands. Orange and yellow box plots correspond to Piemonte and Valle d’Aosta in the Italian lowlands, respectively, while blue
and magenta box plots represent the UK highland and lowland stations.

As anticipated, Table 3 shows how outliers and non-
normal distribution affect trend analysis. For example, UK
lowland stations with non-normal distributions (Shapiro–
Wilk test; p < 0.05) still have negative slopes in both para-
metric and nonparametric methods, indicating that outliers
do not affect the trend but impact the coefficient of deter-
mination. OLS assigns a lower significance to trends com-
pared to nonparametric methods. For normally distributed
data, all methods detect significant trends except for Cham-
pdepraz, where Sen’s slope found a statistically significant
trend, while OLS and the S estimator did not. These find-
ings confirm that Sen’s slope estimator method with the MK
test is the better method for trend analysis, with or without
outliers.

These results are in agreement with those found in the
French Alps and some adjacent regions of Italy and Switzer-
land (Durand et al., 2009), where it was observed that in
spite of the fluctuations in the trend varying by altitude, sea-
son, and region, there is a general trend of increasing aver-

age annual temperatures. Similar studies conducted in Spain
(El Kenawy et al., 2012), midwestern US, the Canadian
prairies, western Arctic (Isaac and Van Wijngaarden, 2012),
Croatia (Radhakrishnan et al., 2017), and India (Bhuyan
et al., 2018) have reported a significant warming trend in
average annual temperatures, indicating an overall increase
over the past century. In addition, research carried out in
Gombe State (Alhaji et al., 2018) showed a significant in-
crease in maximum and average temperatures, while mini-
mum temperature showed a nonsignificant upward trend. In
Meshram et al. (2020), an increase in annual and seasonal
temperatures between 1901 and 2016 is reported, focusing
on Chhattisgarh. In contrast, highland and lowland stations
in the UK showed nonsignificant cooling trends although the
magnitude of the negative slope is smaller in absolute value.

To assess the representativity of the considered 32 sta-
tions, their trends were compared with the average trends of
the corresponding Italian and UK areas. Annual anomalies
with respect to the average temperature values from 1991 to
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Table 3. Parametric and nonparametric methods of Sect. 2.2 applied to the average annual temperatures. Stations marked in bold and with
an asterisk (∗) denote statistically significant trends at the 5% significance level. The unit of slopes is °C yr−1.

Group Region Station name OLS S estimator MK test and Sen’s estimator

Slope R2 Slope R2 p value Slope R2

UK highland Cairngorm −0.011 0.02 0.014 0.12 0.92 −0.003 0.04
Aonach Mòr 0.02 0.02 −0.004 0.01 0.89 −0.002 0.01
Cairnwell −0.001 0.00 0.005 0.02 0.92 −0.002 0.00
Great Dun −0.022 0.06 −0.02 0.20 0.38 −0.02 0.06
Bealach −0.023 0.08 −0.007 0.09 0.31 −0.012 0.07

UK lowland Aviemore −0.007 0.006 −0.01 0.19 0.54 −0.01 0.19
Aboyne −0.002 0.05 −0.03 0.59 0.14 −0.02 0.59
Tulloch −0.01 0.02 −0.02 0.46 0.27 −0.02 0.46
Warcop Range −0.002 0.0004 −0.007 0.15 0.65 −0.003 0.14

Italian lowland

Saint-Christophe 0.059* 0.34 0.074* 0.73 0.01* 0.059* 0.68
Champdepraz Ponte Dora 0.038 0.19 0.036 0.54 0.02* 0.038 0.61

Valle d’Aosta St. Marcel Surpian 0.052* 0.36 0.064* 0.79 0.01* 0.050* 0.61
Donnas Clapey 0.014 0.04 0.023 0.27 0.46 0.011 0.22
Mont Fleury 0.042 0.16 0.014 0.14 0.07 0.046 0.21

Luserna 0.075* 0.57 0.084* 0.67 0.001 0.074 0.57
Susa 0.039* 0.22 0.037* 0.28 0.03* 0.035* 0.21
Costigliole 0.035* 0.22 0.032* 0.24 0.02* 0.032* 0.22

Piemonte Fossano −0.001 0.00 −0.002 0.00 0.96 −0.001 0.04
Borgone 0.052* 0.41 0.056* 0.46 0.001* 0.053* 0.41
Avigliana 0.056* 0.53 0.068* 0.51 0.001* 0.061* 0.53
Carmagnola 0.044* 0.43 0.042* 0.52 0.002* 0.043* 0.43

Italian highland

Val Clarea 0.042* 0.20 0.040* 0.60 0.029* 0.040* 0.60
Prarotto 0.056* 0.24 0.049* 0.55 0.021* 0.051* 0.58

Piemonte Niquidetto 0.039 0.15 0.018 0.12 0.098 0.029 0.19
Coazze 0.059* 0.28 0.061* 0.75 0.015* 0.060* 0.70
Barcenisio 0.053* 0.25 0.043* 0.66 0.015* 0.050* 0.67

Gressoney 0.031 0.12 0.026 0.12 0.14 0.031 0.18
Cogne 0.056* 0.30 0.056* 0.38 0.02* 0.056* 0.30

Valle d’Aosta Valgrisenche 0.068* 0.37 0.063* 0.41 0.02* 0.068* 0.37
Ollomont 0.051* 0.23 0.046* 0.26 0.03* 0.048* 0.23
Lillianes 0.089* 0.37 0.092* 0.36 0.01* 0.089* 0.37
Valpelline -0.001 0.00 0.01 0.13 0.48 -0.004 0.01

2020 were then calculated. The National Oceanic and Atmo-
spheric Administration (NOAA) algorithm (NOAA, 1987)
was used for the two (one in Italy and one in the UK) geo-
graphic areas where the stations are included. They are about
4000 km2 in size, as defined by the coordinates 7°, 45° and
−4°, 56°, respectively. The trend slopes were very similar to
the average slopes reported in Table 3 at 0.0445°C yr−1 and
−0.0047°C yr−1 for Italy and the UK, respectively. There-
fore, the here considered 32 stations provide trend values
consistent with those estimated over the corresponding wide
areas where they are located (see Fig. 3).

3.2 Monthly temperature trends

The variability in monthly mean temperature trends at the
32 stations was assessed subsequently to an analysis of
the annual mean temperatures. To get an initial descriptive
overview of the characteristics shown by the stations for
monthly mean temperature trends, the MK test and Sen’s es-
timator were applied. In the following, we briefly summarize
the results, highlighting similarities and differences.

Figure 4 represents the monthly mean temperature trends
derived from Sen’s slope estimator for the six distinct re-
gions: the UK highland and lowland in the upper part, the
Italian Valle d’Aosta region in the middle, and the Italian
Piemonte region in the lower part of the figure. On the left
are the highlands, while on the right are the lowland sta-
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Figure 3. The anomalies of areal temperatures (with respect to 1991–2020 averages) for Italy and the UK as evaluated by NOAA (in orange
for the Italian and in blue for the UK data). The latitude and longitude values are reported at the bottom.

tions. Larger, bold data points highlight statistically signif-
icant warming and cooling trends.

As shown in Fig. 4, both negative and positive trends oc-
curred across the months. In the UK the slopes are gener-
ally lower than in Italy. For the UK, January to April show
a decrease in temperature, while the Italian stations exhibit
positive slopes for most of the months.

Going down into detail, the Italian stations generally dis-
played positive (warming) trends in summer, as well as in
February, April, and December. In February, July, and Au-
gust, the Italian highland stations recorded monthly tem-
perature trends with values above 0.15 °C yr−1, while May
and June showed values lower than −0.06 °C yr−1. Mean-
while, Italian lowland stations showed higher monthly tem-
perature trends in January, February, April, July, August,
and September raised above 0.06 °C yr−1 in most of the sta-
tions with the exception of Fossano, which showed negative
trends in the first 3 months, different from other stations in
its group, and lower values in March and May, falling be-
low −0.06 °C yr−1. Specifically, the trends of all the stations
in the Italian lowlands and highlands show a negative trend
in May. Notably, the temperature patterns at the UK high-
land stations were different from those in the other two Ital-
ian groups but comparable to those in the UK lowlands (see
Fig. 4). December stood out as the month with the high-
est trends at both highland and lowland stations in the UK.
The temperature increased between 0.01 and 0.10 °C yr−1 in
the highlands and between 0.01 and 0.06 °C yr−1 in the low-
lands. The month of December in Italy also recorded gener-
ally quite high trends. Instead, stations in the UK behave in
the opposite way to Italy in May, with an increase in trend
values, while Italy shows a decrease everywhere. Another
opposite behavior occurs in April, when all Italian stations
showed an increasing trend, while in the UK, April is one of

the months with the most significant decreasing trend, rang-
ing between −0.04 and 0.12 °C yr−1.

Taking into account statistical significance, among the
noteworthy results, there are two statistically significant
cooling trends: one in January at the UK highland sta-
tion Bealach and another in April at the UK lowland sta-
tion Aboyne. Furthermore, statistically significant warming
trends were observed in August for the Gressoney and Val-
grisenche stations as well as in September and February for
the Lillianes station. Saint Marcel, Avigliana, Borgone, and
Luserna stations in the Italian lowland group displayed statis-
tically significant warming trends in different months: Saint
Marcel in August; Avigliana in January, April, September,
and November; Borgone in August, September, and Novem-
ber; and Luserna in July, September, and November. Specifi-
cally, between September and November, three lowland Ital-
ian stations reported statistically significant warming trends;
Avigliana exhibited the highest frequency of these warming
trends.

Now we explore the resemblance of the temporal patterns
of monthly mean temperature slopes (visible in Fig. 4) within
and across the six groups. This analysis is a novelty in the lit-
erature of this field and relies on the hierarchical clustering
technique in conjunction with regularized DTW. The results
of hierarchical clustering for monthly mean temperatures are
shown in Table 5: stations in each of the six groups of stations
are assigned to one of the four clusters each month. The per-
formance of this procedure is evaluated using the silhouette
score, as shown in the final column of Table 5. The results
of hierarchical clustering for the slopes of monthly mean air
temperatures are shown in Table 6.

Prior to analyzing the monthly mean temperature and the
slopes of monthly mean temperature hierarchical clustering
within and across the groups, sensitivity analysis was exam-
ined as shown in Table 4 and determined the number of clus-
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Figure 4. The trends from Sen’s slope estimators of monthly temperature time series from 2002 to 2021 at the UK stations (above) and
Italian ones (in the middle are Valle d’Aosta stations and below Piemonte stations). On the left are highland stations, while on the right are
the lowland ones. The larger dots represent the significant trends.

ters. Four clusters are considered in this study. The choice
of four clusters is mainly motivated by the results depicted
in Table 4. Thus, the main goal is to test whether the ob-
served data characterized the area to such an extent that they
were found grouped in the same clusters. For completeness,
a range from two to six was considered for the number of
clusters, and the corresponding silhouette scores are shown
in Table 4. In Table 4, specifying four clusters yields a higher
overall mean silhouette score than the other settings. Read-
ing Table 4 along the rows and comparing the scores for a
given month across clusters, the four clusters have the high-
est silhouette score in the months from March to November.
Based on this finding, together with the analysis of the geo-

graphical location of the stations and the shape of the den-
drogram diagrams generated by hierarchical clustering, the
optimal number of clusters in this study is four.

The hierarchical clustering is then implemented using four
clusters. According to the experimental results of hierarchi-
cal clustering within a group, Italian highland stations are
consistently classified into two clusters (Cluster I and Clus-
ter II), while Italian lowland stations are consistently classi-
fied into Cluster IV in all months except January, November,
and December (see the 10 stations clustered in Cluster I and
Susa and Donnas Clapey clustered in Cluster III in January,
and in December, four stations, Carmagnola, Marcel Surpian,
Aosta Mont Fleury, and Saint-Christophe are clustered in
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Table 4. The silhouette scores of monthly mean temperature hierarchical clustering with a different number of clusters. The higher silhouette
score over each row is highlighted in bold.

Silhouette scores

Month Two clusters Three clusters Four clusters Five clusters Six clusters

January 0.64 0.44 0.40 0.36 0.32
February 0.51 0.49 0.48 0.37 0.37
March 0.61 0.63 0.64 0.55 0.41
April 0.65 0.67 0.69 0.58 0.6
May 0.65 0.67 0.68 0.62 0.62
June 0.62 0.68 0.71 0.69 0.66
July 0.61 0.67 0.72 0.69 0.67
August 0.59 0.66 0.74 0.73 0.7
September 0.62 0.67 0.64 0.63 0.65
October 0.63 0.63 0.63 0.53 0.47
November 0.54 0.51 0.55 0.45 0.47
December 0.44 0.42 0.32 0.24 0.27
Overall mean 0.593 0.595 0.600 0.537 0.518

Cluster I). UK lowland stations are classified in the same
cluster for all months; however, their cluster assignments dif-
fer due to the similarity measure across the six groups. UK
lowland stations are grouped into three clusters: Cluster I
spans from March to May and September to November, Clus-
ter II spans from June to August, and Cluster IV spans from
December to February. UK highland stations are consistently
classified into the same cluster in seven different months and
inconsistently clustered in the other five months.

The Italian highland’s Valpelline, Lillianes, Coazze, and
Val Clarea stations at 1029, 1256, 1130, and 1068 m, respec-
tively, were identified in the same clusters for every month,
suggesting comparable patterns in monthly mean tempera-
tures. The other four Italian highland stations, Gressoney at
1642 m, Ollomont at 2017 m, Valgrisenche at 1859 m, and
Cogne at 1682 m, are likewise grouped into a unique clus-
ter as they show a similar monthly mean temperature pattern.
Consequently, the Italian highland stations are organized into
two clusters except in January and November, reflecting sim-
ilarities in monthly average temperature patterns (see also Ta-
ble 5). This clustering is confirmed by the silhouette score in
a range from 0.32 in December to 0.74 in August.

All the stations situated in the Italian lowland – Avigliana
at 340 m, Borgone at 400 m, Carmagnola at 232 m, Luserna
at 475 m, Susa at 470 m, Costigliole at 440 m, Fossano at
403 m, Aosta Mont Fleury at 577 m, Donnas Clapey at
318 m, Marcel Surpian at 540 m, Champdepraz Ponte Dora
at 370 m, and Saint-Christopher at 545 m – are consistently
clustered together. These stations were assigned to Cluster IV
for nine months, with silhouette scores ranging from 0.48 to
0.74, and to Clusters I and IV in the remaining months, with
silhouette scores of 0.55 and 0.40, respectively. The only ex-
ception was the Susa and Donnas Clapey stations which were
always assigned to the same cluster. Susa and Donnas Clapey

stations are grouped in Cluster III with no intra- and inter-
cluster with other stations in December.

Considering the UK highland, most months showed a sil-
houette score between 0.64 and 0.74, that is, a uniform clus-
tering pattern among all stations. All stations are grouped in
Cluster III. Among the UK highland stations, Great Dun and
Bealach, are clustered in Cluster III in January and Novem-
ber and Cluster I in December, while Aonach Mòr and Cairn-
gorm are clustered in Cluster III in October. In general, in the
UK highlands, the monthly mean temperature showed uni-
form patterns in most months.

From the monthly mean temperature patterns across dif-
ferent groups, the UK lowland stations, the Italian lowland
stations, and the UK highland stations have distinct clusters
for every month, corresponding to distinct patterns. The four
Italian highland stations are grouped consistently in Clus-
ter II with the UK lowland stations in June, July, and August.
They are also clustered with some stations of the UK high-
land stations in January, February, October, November, and
December.

UK lowland stations showed a similar pattern to the Italian
highland, with Valpelline, Lillianes, Val Clarea, and Coazze
being consistently assigned to Cluster I and the other four
stations assigned to Cluster II. In addition, the Valpelline,
Lillianes, Val Clarea, and Coazze stations consistently show
patterns similar to some of the Italian lowland stations in Jan-
uary, November, and December. Among all the stations, there
is no consistent pattern shared between the Italian and UK
highland stations. However, in some months, four of the Ital-
ian highland stations exhibited a pattern similar to that of the
UK highland stations. Furthermore, the Italian lowland sta-
tions and the UK highland stations did not display consistent
monthly mean temperature patterns for all months. Conse-
quently, it can be concluded that monthly mean temperature
patterns do not exhibit any persistent similarities between
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groups and that each group continues to exhibit its unique
and stable monthly mean temperature features. However, UK
lowlands and Italian highlands showed some sort of similar-
ity in Cluster I and Cluster II for most months.

Table 6 shows the results of the hierarchical clustering
with the DTW applied to the slopes of the monthly mean air
temperature. Despite the obvious distinction between posi-
tive and negative slopes, Table 6 adds some further insights
into understanding similarities/dissimilarities among stations
although the estimated slopes are rather uncertain. Indeed,
all of the stations in the UK highland and UK lowland are
grouped into Cluster IV, with the exception of the Aonach
Mòr station in the UK highland grouped into Cluster I. All
of the Italian lowland stations are grouped into Cluster III.
However, Fossano station is grouped in Cluster IV together
with UK lowland and UK highland stations. The slope of the
Italian highland station Valpelline is clustered in Cluster I to-
gether with the UK highland station Aonach Mòr, whereas
the Italian lowland station Fossano is clustered together with
the UK highland and the UK lowland stations in Cluster IV.
These unusual behaviors with respect to the group they be-
long to can also be observed in Fig. 4. Indeed, Valpelline
in the Italian highland, Fossano in the Italian lowland, and
Aonach Mòr in the UK highland have distinct slope patterns
within their reference groups. In particular, the slopes of the
two Italian stations often trend lower than the lower slopes of
their reference group. The opposite happens for the slope of
Aonach Mòr. The fact that these two stations were grouped
in Cluster I, thus showing different behaviors from all the
others, may be due to the following reasons: Valpelline is the
lowest of the mountain stations in Valle d’Aosta – and, in
fact, its slopes in Fig. 4 are different from the others – while
Aonach Mòr is missing 23 % of values. The Fossano station
is the southernmost station in the entire Italian set and is be-
ginning to have some sublittoral climatic effects. It is worth
noting that this difference does not appear in the average data
and thus in Table 5, but its trends in Fig. 4, especially in win-
ter, are very different from those of the other stations. Other
differences in the values of slopes related to specific months
do not seem to affect the clustering. For example, the Cairn-
gorm station showed a different pattern in two months (June
and July). However, the hierarchical clustering tolerated this
deviation and clustered Cairngorm along with its group. In
conclusion, we can infer that the slopes of the UK highland
and lowland stations are consistently grouped in Cluster IV,
with the exception of Aonach Mòr. The slopes of Italian
highland and lowland stations are grouped in Cluster II and
Cluster III, respectively, with the exception of Valpelline and
Fossano.

The distance correlation (see Fig. 5a) of the 32 stations
is employed to quantify the strength of relationships of the
trends of the monthly mean temperature. The stations in the
highland of Piemonte showed a relatively strong correlation
with the highland of Valle d’Aosta. We can see that the sta-
tion has a relatively strong correlation within the six groups

and a relatively weaker correlation between different groups,
especially between Italian and UK stations.

Finally, the distance correlation matrix of the 32 stations in
each month is presented in Fig. 5b. Interestingly, there was a
strong correlation between every station and other stations in
the same group. The Piemonte and Valle d’Aosta highland
stations are highly correlated in the monthly mean tempera-
ture for every month (see Fig. 5b). It is also evident that the
Italian highland and lowland stations are highly correlated in
the monthly mean temperature for every month, with the ex-
ception of November and December. Most of the stations in
the UK lowland and highland areas showed relatively strong
correlations with each other in the monthly mean temperature
for every month. However, the UK stations showed a weak
correlation with the Italian stations, as depicted in Fig. 5b.
In general, the Italian lowland stations exhibited a weaker
correlation with the Italian highland stations in January, and,
for some stations, this also occurred in November and De-
cember. Overall, the Italian highland and lowland stations
show a stronger correlation. In comparison with Switzerland
(Rebetez and Reinhard, 2008), the trends of Italian highland
and lowland show less spreading in monthly trends, perhaps
due to the fact that the Switzerland analysis was done in the
period from 1975–2004. Also, Bruley et al. (2022) did not
find a difference with altitude in monthly trends in the period
from 1980 to 2015 in the Massif Central of France. Natu-
ral climate variability, however, poses inherent limits to cli-
mate predictability, which vary between areas with relatively
lower or higher climate variability. The findings of our study
can help to obtain a clearer picture of the time patterns, show-
ing how they vary in different regions of Europe and at differ-
ent altitudes. Understanding why the different months of the
year behave in different way should require a more detailed
study, but our results can provide the starting point for it, sug-
gesting the employment of DTW and clustering to extend the
analysis in many different areas of the world. For example,
in the Mongolian Plateau between 1986 and 2004, an excep-
tional warming occurred, boosted by internal variability (Cai
et al., 2024). In our results, the Italian highland trends are not
enhanced with respect to lowland stations. Furthermore, Ro-
gora et al. (2004) did not find a relation with the altitude in
northwest Italian data, while Acquaotta et al. (2015) found
it in the same Italian area. Indeed, even if all Italian sta-
tions in the present work show a general coherence of most
monthly trends, in Fig. 4, a better correlation from Novem-
ber to February of mountain stations in both Italian areas is
visible even if they are localized at about 70 km distance. On
the map, it is easy to see Valle d’Aosta to the north and Bor-
gone to the south. This result can also avoid doubts about the
possible errors in measuring air temperature over snow, as
proven by Huwald et al. (2009). In fact, the number of days
with snow at the different stations can largely vary because
of altitudes that are spread between 1000 and 2000 m a.s.l.
Additionally, Salerno et al. (2023) recently found an unpre-
dicted cooling in an area of high mountains in the Himalaya.
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Table 5. The classification of the 32 stations into four clusters using hierarchical clustering in conjunction with regularized DTW. The values
of the silhouette score (S. score) are given in the last column.

Month Group Region Cluster I Cluster II Cluster III Cluster IV S. score

January

IH
Valle d’Aosta VP, LL OL, VG, CG, GR
Piemonte CO, VC BA, NI, PR

IL
Valle d’Aosta SC, CP, MF, MS DC 0.40
Piemonte CM, AG, BG, CT, LS, FS SS

UKH CR, AN, CW BL, GD

UKL WR, TH, AY, AR

February

IH
Valle d’Aosta VP, LL OL, VG, CG, GR
Piemonte CO, VC, BA, NI, PR

IL
Valle d’Aosta SC, CP, MF, DC, MS 0.48
Piemonte CM, AG, BG, CT, LS, FS, SS

UKH CR , AN BL, GD, CW

UKL WR, TH, AY, AR

March

IH
Valle d’Aosta VP, LL OL, VG, CG, GR
Piemonte CO, VC, BA, NI, PR

IL
Valle d’Aosta SC, CP, MF, DC, MS 0.64
Piemonte CM, AG, BG, CT, LS, FS, SS

UKH CR, AN, BL, GD, CW

UKL WR, TH, AY, AR

April

IH
Valle d’Aosta VP, LL OL, VG, CG, GR
Piemonte CO, VC, BA, NI, PR

IL
Valle d’Aosta SC, CP, MF, DC, MS 0.69
Piemonte CM, AG, BG, CT, LS, FS, SS

UKH CR , AN, BL, GD, CW

UKL WR, TH, AY, AR

May

IH
Valle d’Aosta VP, LL OL, VG, CG, GR
Piemonte CO, VC, BA, NI, PR

IL
Valle d’Aosta SC, CP, MF, DC, MS 0.68
Piemonte CM, AG, BG, CT, LS, FS, SS

UKH CR , AN, BL, GD, CW

UKL WR, TH, AY, AR

June

IH
Valle d’Aosta VP, LL OL, VG, CG, GR
Piemonte CO, VC, BA, NI, PR

IL
Valle d’Aosta SC, CP, MF, DC, MS 0.71
Piemonte CM, AG, BG, CT, LS, FS, SS

UKH CR , AN, BL, GD, CW

UKL WR, TH, AY, AR

July

IH
Valle d’Aosta VP, LL OL, VG, CG, GR
Piemonte CO, VC, BA, NI, PR

IL
Valle d’Aosta SC, CP, MF, DC, MS 0.72
Piemonte CM, AG, BG, CT, LS, FS, SS

UKH CR , AN, BL, GD, CW

UKL WR, TH, AY, AR

August

IH
Valle d’Aosta VP, LL OL, VG, CG, GR
Piemonte CO, VC, BA, NI, PR

IL
Valle d’Aosta SC, CP, MF, DC, MS 0.74
Piemonte CM, AG, BG, CT, LS, FS, SS

UKH CR , AN, BL, GD, CW

UKL WR, TH, AY, AR
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Table 5. Continued.

Month Group Region Cluster I Cluster II Cluster III Cluster IV S. score

September

IH
Valle d’Aosta VP, LL OL, VG, CG, GR
Piemonte CO, VC, BA, NI, PR

IL
Valle d’Aosta SC, CP, MF, DC, MS 0.64
Piemonte CM, AG, BG, CT, LS, FS, SS

UKH CR, AN, BL, GD, CW

UKL WR, TH, AY, AR

October

IH
Valle d’Aosta VP, LL OL, VG, CG, GR
Piemonte CO, VC, BA, NI, PR

IL Valle d’Aosta SC, CP, MF, DC, MS 0.63
Piemonte CM, AG, BG, CT, LS, FS, SS

UKH BL, GD, CW CR, AN

UKL WR, TH, AY, AR

November

IH
Valle d’Aosta VP, LL OL, VG, CG, GR
Piemonte CO, VC BA, NI, PR

IL
Valle d’Aosta SC, MF, MS CP, DC 0.55
Piemonte CM, AG, BG, CT, LS, FS, SS

UKH CR, AN, CW BL, GD

UKL WR, TH, AY, AR

December

IH
Valle d’Aosta VP, LL OL, VG, CG, GR
Piemonte CO, VC BA, NI, PR

IL
Valle d’Aosta SC, MF, MS DC CP 0.32
Piemonte CM SS AG, BG, CT, LS, FS

UKH BL, GD CR , AN, CW

UKL WR, TH, AY, AR

Table 6. The classification of the trends of the 32 stations into four clusters using hierarchical clustering in conjunction with DTW.

Group Region Cluster I Cluster II Cluster III Cluster IV

IH
Valle d’Aosta VP LL, OL, VG, CG, GR

Piemonte CO, VC, BA, NI, PR

IL
Valle d’Aosta SC, CP, MF, DC, MS

Piemonte CM, AG, BG, CT, LS, SS FS

UKH AN CR, BL, GD, CW

UKL WR, TH, AY, AR

The relevant warming trends in summer in the Italian stations
can instead have important effects on the vegetation and car-
bon feedback (Zhang et al., 2022).

Regarding the possible causes of the monthly patterns, it
is possible that the relatively lower warming of the UK is
related to the decline in the strength of the Atlantic Merid-
ional Overturning Circulation (AMOC) (Robson et al., 2016;
Johnson and Lyman, 2020). For other insight, we refer to
specific studies about the influence of dynamical drivers on
monthly trends (Hoffmann and Spekat, 2021). Some hints
for attributing trends to synoptic circulation are also in the

literature, with specific references to European data (Fleig
et al., 2015). It was the first attempt to understand the influ-
ence of global change on monthly trends. As a possible ad-
dition to this work, it could be interesting to compare cloud
cover and sunshine trends with temperature trends. Some in-
teresting work has been done in Italy by Manara et al. (2023).

4 Conclusions

In this paper, annual and monthly temperature trends of 32
stations of the Italian highland (five stations in Piemonte
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Figure 5. Distance correlation matrix of the 32 stations across Italy (highland and lowland) and the UK (highland and lowland). Matrix for
the slopes of (a) the monthly mean trend and (b) the monthly mean temperature.
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and six stations in Valle d’Aosta), Italian lowland (five sta-
tions in Valle d’Aosta and seven stations in Piemonte), UK
highland (five stations), and UK lowland (four stations) were
analyzed using the data collected from 2002 to 2021. The
first purpose of the study is to analyze annual and monthly
mean temperature trends. Furthermore, the unsupervised ma-
chine learning approach (hierarchical clustering in combina-
tion with DTW) is used to investigate the monthly mean air
temperature patterns in order to measure the degree of sim-
ilarity within and between the six groups of stations. The
silhouette score is used to assess how effectively the clus-
tering procedure performs. The main novelty of the paper
is showing that stations with similar locations and altitudes
have similar monthly slopes by quantifying them using DTW
and clustering methods. These results reveal the nonrandom-
ness of different trends throughout the year and between dif-
ferent parts of Europe, with a modest influence of altitude
in wintertime. Two different regions of Europe were cho-
sen because of the different climate and temperature trends
– namely, northern UK (smaller trends) and northwest Ital-
ian Alps (greater trends).

The results of this study indicated a general warming trend
in annual mean air temperature, with statistically significant
warming observed at 8 of the 11 stations of the Italian high-
land and 9 of the 12 stations in the Italian lowland. Non-
significant decreasing trends are detected at Valpelline in the
Italian highland group as well as at Fossano in the Italian
lowland group. Conversely, the mean annual air tempera-
ture in the UK highland and the UK lowland at all stations
showed a statistically nonsignificant cooling trend. At most
stations, the results obtained from the parametric and non-
parametric methods used in this study are comparable. The
bias of distribution and data outliers in the OLS method are
evident at some stations, particularly those that differ from
normal ones, such as Valpelline and Aonach Mòr. Due to
the non-normal nature of the annual mean air temperature at
Valpelline, Costigliole, Aonach Mòr, and all stations in the
UK lowland, differences in the magnitude of slopes and R2

values are seen among the UK lowland stations when com-
paring the OLS and other methods. Nevertheless, all methods
indicate a nonsignificant cooling trend across all UK stations.

Analyzing trends in monthly average air temperature, neg-
ative slopes were observed in May and June at most Italian
stations, indicating a cooling trend. The months of Febru-
ary, August, and December, on the other hand, demonstrated
clear warming trends. In the Italian highlands, the Valpelline
station is an exception, with a decreasing trend in March, Oc-
tober, and November. Compared with Italian stations, the UK
highland and lowland stations generally have more months
with cooling trends.

Hierarchical clustering showed that stations within the
same group had similar monthly mean temperature patterns.
The similarity which can be seen in Fig. 4 has been justi-
fied with clustering and correlation methods, as also shown
in Fig. 5. As an exception, the Italian highland stations are

grouped into two clusters: Valpelline, Lillianes, Coazze, and
Val Clarea are grouped in one cluster and the other four (Ol-
lomont, Valgrisenche, Gressoney, and Cogne) stations are
grouped in another cluster for all months. The peculiarities
of Valpelline, Fossano, and Aonoch Mòr can be attributed,
respectively, to the fact that Valpelline is the lowest in eleva-
tion of its group; Fossano is the most southern of the Italian
ones, with some sublittoral influence; and Aonoch Mòr has
a large number of missing values. It would be reasonable to
increase the number of clusters by increasing the number of
involved geographic areas: for example, by adding midland
areas. This is no doubt a possible subject of future research.

The main result of the paper is clearly showing the dif-
ferent time patterns in each month for each group of sta-
tions. This was also done using the distance correlation ma-
trix that shows strong correlations among the Piemonte and
Valle d’Aosta highland stations every month. This pattern is
also evident for most of the UK highland and lowland sta-
tions. These results are in agreement with the geographic lo-
cation of the stations and are not too surprising. Consider-
ing a finer temporal scale, such as daily mean temperatures,
would be useful for a more comprehensive analysis of the de-
pendence. This analysis is in progress and will be the subject
of future studies. Actually, stratifying monthly temperatures
already allow us to add some non-obvious observations about
correlations between stations. The Italian highland and low-
land stations show a higher correlation every month with the
exception of January, November, and December. Hence, the
Italian lowland stations show a weaker correlation with the
Italian highland stations in those three months. The distance
correlation matrix depicts weak correlations among the UK
and Italian stations.

Whatever their correlation, the processes underlying the
various combined processes that cause these monthly and
annual trends are beyond the scope of this paper. The find-
ings of the present paper enhance the need to understand the
temperature dynamics in the different groups and altitudes
of Europe. These results also emphasize the importance of
continuous monitoring and analysis of data in order to better
quantify climate change.
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