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Abstract. The modeling of the occurrence of a rainfall dry spell and wet spell (ds and ws, respectively) can
be jointly conveyed using interarrival times (its). While the modeling has the advantage of requiring a single
fitting for the description of all rainfall time characteristics (including wet and dry chains, an extension of the
concept of spells), the assumption of the independence and identical distribution of the renewal times it implicitly
imposes a memoryless property on the derived ws, which may not be true in some cases. In this study, two
different methods for the modeling of rainfall time characteristics at the station scale have been applied: (i) a
direct method (DM) that fits the discrete Lerch distribution to it records and that then derives ws and ds (as
well as the corresponding chains) from the it distribution and (ii) an indirect method (IM) that fits the Lerch
distribution to the ws and ds records separately, relaxing the assumptions of the renewal process. The results
of this application over six stations in Europe, characterized by a wide range of rainfall regimes, highlight how
the geometric distribution does not always reasonably reproduce the ws frequencies, even when its are modeled
well by the Lerch distribution. Improved performances are obtained with the IM thanks to the relaxation of the
assumption of the independence and identical distribution of the renewal times. A further improvement of the
fittings is obtained when the datasets are separated into two periods, suggesting that the inferences may benefit
from accounting for the local seasonality.

1 Introduction

Rainfall is an intermittent process that is characterized by the
alternation of wet and dry statuses. Indeed, a very simple rep-
resentation of the rain process consists of an alternating se-
quence of two opposite conditions (dry and wet), each lasting
for a given duration. Although some aspects of this intermit-
tent process can only be observed at small timescales (i.e.,
hourly or smaller), particularly those concerning patterns of

maximum-intensity events, the daily timescale allows the
fundamental sequence of dry and wet events to be captured,
as they are usually driven by the dynamics of large-scale pre-
cipitation systems (Bonsal and Lawford, 1999; Osei et al.,
2021; Zhang et al., 2015). The daily scale is also quite ap-
pealing since precipitation records over several decades are
reliably collected at this frequency, a feature seldom shared
by subdaily time series.
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Many approaches have been proposed in the scientific
literature to model rainfall intermittence, including Pois-
son clusters, multifractals, power spectral analyses, Markov
chains, and geostatistics (Dey, 2023; Hershfield, 1970;
Schleiss and Smith, 2016). At the local scale, a classical ap-
proach to address intermittency in rainfall records is to statis-
tically analyze the sequences of rainy days, called wet spells
and denoted as ws, and those of non-rainy days, called dry
spells and denoted as ds and assumed to be independent of
each other. When a dense network of stations is at hand, one
way to properly account for the spatial correlation between
stations is to consider hidden Markov models (Hughes and
Guttorp, 1994; Robertson et al., 2004; 2008), to discover the
existence of hidden weather states, or Markov chains (Wilks,
1998), to model the rainfall amount process or the occurrence
process. In this paper, we focus on modeling rainfall intermit-
tence locally as a reasonable approach in the case of data that
are spatially independent.

In his pioneer study, Chatfield (1966) analyzed a short
series of daily rainfall recorded at a single station in Kew
(London) and investigated the ratios between observed fre-
quencies of increasing values of ws. Chatfield (1966) found
that the probability of a wet day being followed by a rainy
day is almost constant. This memoryless property charac-
terizes the geometric distribution, and this assumption has
been widely applied to describe the ws distribution in nu-
merous studies since then (e.g., Kottegoda and Rosso, 1997;
Racsko et al., 1991; Zolina et al., 2013). In the same study,
Chatfield (1966) observed that “the probability that a dry day
will be followed by a dry day does increase with the previ-
ous number of consecutive dry days”, thus suggesting a ten-
dency of the rainfall process to persist in the dry state. The
author proposed adopting the log-series distribution to fit the
ds series, as it exhibits increasing values of the subsequent
ratios. While geometric and log-series distributions were ap-
plied in the past (Chatfield, 1966; Green, 1970) and are still
often adopted to infer ws and ds probability laws (Chowd-
hury and Beecham, 2013; El Hafyani and El Himdi, 2022),
some authors have questioned the general suitability of these
distributions. As a few examples, Wilks (1999) suggested the
use of a mixed geometric distribution for modeling ws over
the US, whereas Deni et al. (2010) assessed a good perfor-
mance of the compound geometric distribution in peninsular
Malaysia. Furthermore, for both dry and wet spells, mixed
distributions are generally observed to perform reasonably
well (Dobi-Wantuch et al., 2000; Deni and Jemain, 2009).

Recently, Agnese et al. (2014) suggested modeling both
ws and ds by investigating the probabilistic law of the so-
called interarrival times (its), representing the series of the
times elapsed between 2 subsequent rainy days. By assum-
ing that its are independent and identically distributed (i.i.d.)
discrete random variables, any it series was interpreted as a
realization of a sequence of holding times in a discrete re-
newal process. An important feature of any renewal process

is that it restarts at each epoch of arrivals (the so-called re-
newal property).

Agnese et al. (2014) showed that both the ws and ds dis-
tributions can be easily derived from the it distribution. In-
deed, the geometric distribution for ws directly arises from
the i.i.d. hypothesis on the renewal times it, whereas the ds
distribution follows the same probabilistic law adopted for
fitting the it probabilities. This approach has been success-
fully applied over rainfall records collected in two different
rainfall regimes in southern and northern Italy (Agnese at al.,
2014; Baiamonte et al., 2019, respectively), and the three-
parameter Lerch series distribution (part of the Hurwitz–
Lerch–Zeta distribution family) has proven to reliably fit the
it empirical frequencies, outperforming both the polyloga-
rithmic and logarithmic distributions (which are the discrete
counterparts of two commonly adopted continuous distribu-
tions for dry spells).

Although the modeling of the ws and ds distributions sep-
arately may allow a relaxation of the i.i.d. hypothesis on it,
modeling the it sample first has the clear advantage of re-
trieving the probability distribution of both ws and ds from a
single fitting, often reducing the number of parameters. How-
ever, if the geometric distribution does not fit ws correctly,
implying that the rainfall probability varies within the event,
two separated models of ws and ds may be needed for a reli-
able evaluation of both quantities.

The objective of this paper is to verify to which extent
the assumption of i.i.d. on renewal times it affects the abil-
ity to reproduce the probabilistic law of both ws and ds. The
analysis is performed for six 70-year time series recorded at
sites with very different rainfall regimes across Europe (from
southern Italy to northern Scotland). The appropriateness of
the renewal property for the different sites is tested by com-
paring the outcomes of two modeling approaches: i) a direct
method (DM), where the fitting is performed directly on it,
whereas both ws and ds are simply derived from the previous
it fitting; and ii) an indirect method (IM), where the renewal
property is relaxed and ws and ds are modeled separately,
hence including the option of accounting for a non-constant
rain probability inside ws. The analysis is also extended to
two additional time variables strongly associated with ws and
ds, called wet chains (wch, as previously introduced by Ba-
iamonte et al., 2019) and dry chains (dch). These variables
extend the concept of wet and dry spells to sequences char-
acterized by an interruption of 1 non-rainy day or 1 rainy
day, respectively, as they represent two quantities that may
be of interest for practical hydrological applications. Due to
the likely influence of rainfall regimes on the results, the two
methods (DM and IM) are evaluated not only on the entire
time series, but also on two subsets obtained by following
the rainfall seasonality at the study sites, as is common prac-
tice in ecohydrological applications.
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2 Methods

2.1 The Hurwitz–Lerch–Zeta (HLZ) family of discrete
probability distributions

The HLZ (also known as Lerch) family is a set of discrete
probability distributions, whose probability mass function
(pmf) is expressed in its general three-parameter form as
(Zörnig and Altmann, 1995)

pv (k) =
θk−1

(k+ a)s8 (θ,s,a+ 1)
k = 1,2, . . ., (1)

where θ ∈ (0,1), a >−1, s ∈ R are the parameters of the
Lerch distribution, and the transcendent Lerch function 8
reads as

8 (θ,s, a+ 1)=
∑
∞

n=0

θn

(n+ a+ 1)s
. (2)

Depending on the values assumed by the three parameters
{θ,s,a}, some special cases of the Lerch distribution family
can be obtained, as summarized in Table 1. There, we re-
ported only those cases with finite moments up to the order
considered in this study. Note that non-negative values of s
provide a monotonically decreasing pmf with a mode equal
to 1.

This distribution makes it possible to account for some pe-
culiar characters observed in the it samples, such as high val-
ues of both standard deviation and skewness, a monotoni-
cally decreasing pattern of frequencies with a slowly decay-
ing tail, and a typical “drop” entering the dry status (it= 2)
from the wet status (it= 1).

To estimate the parameters of the Lerch distribution, the
maximum likelihood estimation (MLE) method was applied.
For the general case (three-parameter, Eq. 1), the analytical
solution of the MLE method returns arithmetic, geometric,
and harmonic expectations equal to the corresponding sam-
ple values. If N denotes the sample size, the MLE function
reads as (Gupta et al., 2008)

ln L (θ, s, a)= ln θ
∑N

i=1
vi − s

∑N

i=1
ln (a+ vi)

−N ln [8 (θ, s, a)] . (3)

For each special case of the family of Lerch distributions,
Table 1 also reports the constraints that need to be satisfied
in the MLE. The likelihood equations were solved for both
the DM and IM by standard numerical methods to obtain the
MLE.

While the general three-parameter form (ID= 1 in Ta-
ble 1) fits at least as well as any special cases with a smaller
number of parameters (ID= 2–5 in Table 1), the inclusion
of additional parameters is not always statistically justified
(Wilks, 1938). For this reason, the likelihood-ratio (LLR) test
was employed to detect whether the improvement in terms of
log-likelihood is worth the introduction of the extra parame-
ters. In this test, the D statistic was computed from the log-
likelihood of the null model (ln(LID) with ID= 2–5) and of

the alternative model (ln(L1)) as

D =−2[ln (LID)− ln (L1) ] , (4)

where both log-likelihood values are computed from Eq. (3)
using the corresponding parameterization. The D values are
approximately χ2-distributed, with degrees of freedom equal
to the difference between the number of free parameters of
the alternative and null models.

To assess the adequacy of the Lerch family distribution in
reproducing the observed frequencies, we employed a simu-
lated χ2 goodness-of-fit test. When the distributions exhibit
a long tail, the classical χ2 test might be biased due to the
presence of numerous small class sizes (with fewer than five
elements) and strong asymmetry (Martínez-Rodríguez et al.,
2011). Therefore, we proceeded by reconstructing the distri-
bution of the χ2 statistic under the null hypothesis via Monte
Carlo simulation (Hope, 1968). Let us remind the reader that
this well-known goodness-of-fit test is characterized by the
null hypothesis that the data follow the specified distribution
and by the alternative hypothesis that the data do not follow
the specified distribution.

We simulated 3000 replicates of the sample by random
sampling from the inferred theoretical distribution. The asso-
ciated p value (at a significance level of 0.05) was computed
as the fraction of the 3000 replicates for which the computed
χ2
j values (with j = 1,2, . . .,3000) were greater than χ2

ref,
i.e., the χ2 of the observed frequencies.

2.2 Inference of the main time properties of rainfall
series

Let a time series of rainfall data be defined as H =

{h1,h2, . . .,hn}, where h (mm) is the rainfall depth recorded
at a fixed uniform unit τ of time (e.g., a day). A day k is con-
sidered rainy if the rainfall depth hk ≥ h∗, where h∗ is a fixed
rainfall threshold. Thus, a subseries of rainfall depth h is se-
lected from H , corresponding to the times E =

{
t1, . . ., tnr

}
such that htk ≥ h∗ with k ∈ {1, . . .,nr}, and nr < n is an inte-
ger multiple of the timescale τ .

The interarrival time series it= {it1, it2, . . . , itnr } is de-
fined as the sequence built with the times elapsed between
each element of E (except the first one) and the immediately
preceding one. It is worth noting that, if itk = 1, the rainy
day k immediately follows the rainy day k−1; consequently,
in the it time series, any sequence of m consecutive unitary
values is a wet spell (ws) of durationm+1. Keeping in mind
this observation, the isolated rainy day k is identified if the
following condition is satisfied:

itk > 1 and itk+1 > 1. (5)

Additionally, the sequence of dry spells (ds) can be derived
from the it sequence as

dsk = itk − 1 for any itk > 1. (6)
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Table 1. Lerch family of probability distributions with the corresponding parameter domains, together with the theoretical means (arithmetic,
AM, geometric, GM, and/or harmonic, HM) that match (x) or not (–) with the empirical ones according to the MLE method.

ID Probability distribution θ s a AM GM HM

1 Three-parameter Lerch

0< θ < 1

> 0∗ >−1 x x x
2 Two-parameter polylogarithmic > 0∗ 0 x x –
3 One-parameter logarithmic 1 0 x – –
4 One-parameter geometric 0 1 x – –
5 Two-parameter extended log 1 >−1 x – x

∗ The condition s > 0 allows a monotonically decreasing pmf to be obtained, with a mode equal to 1.

We define a “wet chain”, wch, as the sequence of wet spells
broken by 1 d dry spells. This concept was introduced in Ba-
iamonte et al. (2019), i.e., “wet day sequences”, and it cor-
responds to a ws if no interruption occurs, whereas, if an
event ds> 1 occurs, the wet chain runs out. Similarly, here
we introduce a “dry chain”, dch, a sequence of dry spells in-
terrupted by 1 d wet spells. A dch corresponds to a ds if no
interruption occurs, whereas a dch expires if ws> 1 occurs.
Different examples of wch and dch are given in Fig. 1.

From a hydrological point of view, the above-described
wch can be seen as a single rainy period in a broad sense,
since a single non-rainy day in between multiple rainy days
does not significantly alter the wet status, as if the entire pe-
riod is likely related to the same meteorological perturba-
tion. A similar consideration can be made for dch, since a
single rainy day that interrupts a sequence of dry spells may
also not significantly alter the dry status, with the additional
caveat that the rainfall depth during the isolated rainy day
should be a limited amount. Following the consideration that
an isolated rainy day (surrounded by two dry spells) is likely
associated with only a few hours of rain, the assumption of
limited rainfall depth seems reasonable when only durations
are analyzed.

2.2.1 The direct method

According to previous studies (Agnese at al., 2014; Baia-
monte et al., 2019), a direct inference on the it pmf (from
now on referred to as the DM) can be performed by Eq. (1)
(with v = it). Following the i.i.d. hypotheses on it, the re-
sulting random variable ws is were geometrically distributed
with parameter (1−pit(1)), where pit(1) is the probability
that it is equal to 1 as given in Eq. (1). Thus, we have

pws (k)= (1−pit (1))pit(1)k−1 k = 1,2, . . ., (7)

where pit(1) is equal to

pit (1)=
(

1
(a+ 1)s8 (θ,s, a+ 1)

)
. (8)

From Eq. (7), the ws pmf satisfies the memoryless property
of the geometric distribution, i.e.,

P (ws> k+m|ws>m)= P (ws> k) . (9)

Equation (9) is a consequence of the simple but restrictive
hypothesis that the probability of future rainy day occurrence
is not affected by the occurrence of past rainy days; i.e., the
probability of a rainy day is assumed to be constant (Chat-
field, 1966).

According to Eq. (6), the ds pmf can be easily recovered
from the it pmf as (Agnese et al., 2014)

pds (k)=
pit (k+ 1)
1−pit (1)

. (10)

The wch pmf follows from the it distribution by also consid-
ering that a wet chain is a sequence of it= 1 (consecutive
rainy days) and it= 2 (corresponding to a hole in between
2 rainy days), ending with it> 2. Therefore, taking into ac-
count the probabilities that it is equal to either 1 or 2 as well
as all the probability of different combinations of it values,
we can write

pwch (k)= (1−pit (1)−pit (2))∑k−1
j=0

(
k− 1
j

)
pit(1)k−1−jp

j
it (2) , (11)

where j (0≤ j < k) is the number of holes breaking the wet

status,
(
k− 1
j

)
is the number of subsets of j elements

chosen among k−1 elements, and k−1−j is the number of
it= 1, indicating a wet spell of size k− 1. It is worth high-
lighting that pwch(1)= (1−pit(1)−pit(2))= P (it > 2).

An alternative, and more general, formulation of wch pmf,
pwch(m), relies on a convolution approach. In this case,
pwch(m) can be obtained following two observations: (i) that
the probability of the sum of k wet spells of any duration
(P (

∑k
j=1wsj =m), with k = 1,2, . . .) is equal to the k-fold

convolution of ws with itself, corresponding to pk∗ws (m); and
(ii) that the probability of having a sequence of k− 1 1 d dry
spells, corresponding to P (ds(1)

= 1, . . .ds(k−1)
= 1), can be

expressed as pds(1)k−1(1−pds (1)). By extending the convo-
lution over all the possible combinations of ws sequences,
summing to m and to the n 1 d ds sequences (0≤ n≤m−1)
breaking the wet status, the probability pwch(m) can be ex-
pressed as

pwch (m)=
∑m

k=1
pds(1)k−1(1−pds (1))pk∗ws (m) . (12)
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Figure 1. Examples of interarrival times (it), wet spells (ws), dry spells (ds), wet chains (wch), and dry chains (dch).

Equation (11) follows from Eq. (12) when the hypothesis of
i.i.d. on renewal times it holds.

Using similar arguments but with ds in place of ws, the dch
pmf, pdch(m), results in

pdch (m)=
∑m

k=1
pws(1)k−1(1−pws (1))pk∗ds (m) , (13)

which can be obtained from Eq. (12) by simply substituting
ws with ds and vice versa. Note that pdch(1)= pds(1) (1−
pws(1)). It should be observed that the definition of chains
can be easily extended to interruptions longer than a single
day (i.e., a 2 d wch is a sequence of it= 1, it= 2, and it= 3,
ending with it> 3). However, the chains can become less and
less realistic with increasing length of the interruption.

Equations (7), (10), (11), (12), and (13) show that in the
DM the probability distributions of the wet and dry spells
and of the wet and dry chains can be directly recovered from
the it distribution, without the need for extra fittings or pa-
rameterizations.

2.2.2 The indirect method

The IM is based on modeling individually the random vari-
ables ws and ds, and it is the most commonly adopted ap-
proach for the modeling of ws and ds in hydrology (Kotte-
goda and Rosso, 2008). Both distributions rely on Eq. (1)
(v = ws and v = ds). In this case, the observations of ws and
ds are assumed to be i.i.d. and independent of each other.
Note that, contrary to what has been observed in many stud-
ies and described in Sect. 2.2.1, in the IM the ws distribution
is not constrained to be geometric, since the hypothesis of
constant probability – when a wet day is followed by another
wet day – is removed. Indeed, we have

P (ws> r + 1)
P (ws> r)

= 1−
P (ws= r + 1)
P (ws> r)

, (14)

where the left-hand-side term is the so-called failure rate,
FRws(r). If the ws pmf is assumed to belong to the family
of Lerch distributions, the failure rate reads as (Gupta et al.,
2008)

FRws(r)=
1

(a+ r)s8 (θ,s,a+ r)
. (15)

If we set s = 0, which corresponds to Geom(1− θ ) in the
family of Lerch distributions (Table 1), we get FRws(r)= θ ,

and thus P (ws>r+1)
P (ws>r) = 1− θ is constant, as expected. For all

the other distributions in the Lerch family, FRws(r) will suit-
ably depend on r allowing for more flexibility (Gupta et al.,
2008).

Once both the ws and ds distributions are known, the it
distribution can be easily recovered as

pit (1)=

∑
∞

j=1 (j − 1) pws (j )∑
∞

j=1k pws (j )
=
E [ws]− 1
E [ws]

if k = 1, (16)

pit (k)= pds (k− 1)(1−pit (1)) if k > 1. (17)

The procedure to derive it from ws and ds is not commonly
discussed in studies adopting the IM method, as they are usu-
ally focused only on the modeling of ws and ds rather than
it.

As in the DM, the probability distribution of wch and dch
can be obtained from Eqs. (12) and (13), respectively, where
the probabilities pds and pws are now separately inferred, un-
like in the DM, for which these probabilities are recovered
from the it distribution. It is worth mentioning that, for the
wch pmf, Eq. (11) is no longer valid, since the assumption
of a memoryless property is relaxed. From a computational
point of view, we emphasize that the IM will always require
two fittings (ws and ds) performed through a numerical MLE,
unlike the DM, where only one fitting is sufficient to recover
the distribution of it.

3 Materials

3.1 Rainfall records

In this paper, to obtain the series of rainfall time variables
(it, ws, ds, wch, dch), daily rainfall records are analyzed. To
discriminate between rainy and non-rainy days, a fixed rain-
fall threshold h∗ = 1 mm is chosen according to the conven-
tional value established by the World Meteorological Orga-
nization. The dataset includes six time series collected over
Europe at different latitudes (from 38 to 58° N), from Trapani
and Floresta in Sicily to Stornoway in northern Scotland.
Figure 2 depicts the spatial location and altitude of the six
stations. About 70 years of recorded data are used for each
rain gauge: Ceva (1950–2016), Floresta (1951–2015), Ox-
ford (1950–2017), Stornoway (1950–2020), Torino (1950–
2017), and Trapani (1950–2015), with a minimal occurrence
of missing data.

https://doi.org/10.5194/ascmo-10-51-2024 Adv. Stat. Clim. Meteorol. Oceanogr., 10, 51–67, 2024
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Figure 2. Locations of the six considered stations, together with
latitudes and elevations above sea level (© QGIS 2023).

Due to the relevance of rainfall regimes for the distribution
of rainy and non-rainy days, in addition to the analysis of
the entire year (Y ), all the analyses were performed for two
additional data subsets: (S1) from April to September and
(S2) from October to March.

The analyzed stations are characterized by different rain-
fall regimes, as shown in Fig. 3 by the average number
of rainy days in each month (panel a) and the fraction of
the yearly-average rainy days in each month (panel b) (as
a standardization of the data in panel a). The stations of
Trapani (TRA) and Floresta (FLO) represent the typical
Mediterranean climate, with a strong seasonality in the rain-
fall regime (see Fig. 3b) and precipitation concentrated in the
S2 season. The two stations differ in the total amount of av-
erage annual rainfall, which is low for TRA (420 mm) and
high for FLO (1133 mm), a difference that is also revealed
by the different number of rainy days per month (Fig. 3a).
Torino (TOR) and Ceva (CEV) are characterized by a mid-
latitude sublitoranean climate with a high rain frequency in
spring (Fig. 3b). CEV also exhibits a secondary peak in au-
tumn, mainly due to the influence of the Tyrrhenian Sea
warming in summer. Despite this difference, the two stations
are characterized by a similar total annual rainfall (829 and
836 mm, respectively) and number of rainy days (Fig. 3a).
Oxford (OXF) is a northern European station with a relatively
low average rainfall amount (592 mm) homogeneously dis-
tributed throughout the year, whereas Stornoway (STW) has
a very high rain frequency and a higher amount all through

the year (1072 mm) due to its location in far northwestern
Scotland and the direct effect of the wet fronts from the At-
lantic Ocean. Both stations in the UK have low seasonality
compared to the other stations (see Fig. 3b).

For the TRA and FLO stations, seasons S1 and S2 clearly
correspond to the low and high frequencies of rain events,
respectively (Fig. 3b). A similar pattern can be observed for
OXF and STW, although with less marked differences be-
tween the two seasons. Due to the considerable length of the
data records, sample sizes remain large even for the two sea-
sonal datasets, as summarized by the data in Table 2. The
sample size is less than 500 only for dch in TRA for S1,
which can be explained by the numerous long dry periods
occurring in the dry season.

It is noteworthy that the splitting of the two seasons of
CEV and TOR was done differently in a previous paper (Ba-
iamonte et al., 2019). However, in this paper the same split-
ting into two 6-month seasons is used for the sake of the ho-
mogeneity of the present analysis (Fig. 3a and b).

3.2 Preliminary tests on observed records

As is well known in the literature, the presence of a trend
in the datasets can affect the assumptions made for it (in the
DM) or for ws and ds (in the IM). Therefore, before fitting, a
trend test was performed. We used the well-known Mann–
Kendall (MK) nonparametric test (Mann, 1945; Gilbert,
1987) at a significance level of 0.05. Note that the MK test
is frequently used in the literature to detect significant trends
in hydrometeorological time series (see, e.g., Gocic and Tra-
jkovic, 2013, and references therein).

However, a known limitation of the MK test is the in-
creased probability of finding trends in the presence of a sig-
nificant autocorrelation in the data (Hamed and Rao, 1998).
In such a case, the variance of the MK test statistic depends
on the true unknown autocorrelation structure, and it is typi-
cally larger (lower) if positive (negative) autocorrelation oc-
curs with respect to the case of independent data. Therefore,
in the presence of autocorrelation, a correction is needed, as
the critical values of the classical MK test would lead to in-
correct results. Hamed and Rao (1998) proposed an approxi-
mation of the true variance of the MK test statistic in the case
of autocorrelated data.

Let us recall that a key difference between the DM and the
IM, as introduced in Sect. 2.2, is related to modeling the it
samples as i.i.d. renewal times, which results in a geometric
distribution of ws in the DM. One way of directly testing
the memoryless property of the empirical data is to study the
behavior of the ratios Sr+1

Sr
for all r ∈ {1, . . .,max(ws)− 1},

with Sr the number of wet spells of length at least r in a
ws series. The memoryless property implies that these ratios
are constant, while they would depend on r for a pmf in the
general form of the Lerch distribution (Gupta et al., 2008).
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Figure 3. Time variability of (a) the average number of rainy days in each month and (b) the fraction of yearly-average rainy days in each
month. Dashed lines delimit the two seasons S1 (April–September) and S2 (October–March).

Table 2. Sample sizes of the time variables for the six stations and for the three periods Year, S1 (from April to September), and S2 (from
October to March).

Station Year S1 S2

it ws–ds wch dch it ws–ds wch dch it ws–ds wch dch

CEV 4569 2530 2058 1102 2335 1357 1159 528 2203 1154 890 568
FLO 6495 2867 2048 1570 1966 1053 858 481 4520 1811 1188 1087
OXF 7933 3920 2559 1915 3664 1883 1254 902 4262 2034 1303 1012
STW 14227 4126 2202 2649 6065 2216 1259 1337 8145 1909 943 1312
TOR 5171 2726 2145 1289 3023 1668 1277 726 2147 1057 868 563
TRA 4064 2256 1755 970 955 661 574 220 3108 1594 1181 750

4 Results

4.1 Nonparametric analyses

The presence of a trend on the recorded it, ws, and ds time
series was tested using Kendall’s τ , which is a nonparametric
measure of rank correlation. The standard MK test – applied
using the τ values reported in Table 3 – shows the presence
of a small statistically significant trend in some cases (indi-
cated in bold in the table). Since a weak positive autocorre-
lation was always observed (Table 3) for the three variables
it, ws, and ds at each of the six stations, the corrected MK
was implemented through the Fume package of the R soft-
ware (2012). This corrected test returned the absence of a
statistically significant trend for all the variables and stations;
therefore, the entire dataset can be adopted for subsequent
analyses.

To verify the memoryless property of ws directly on the
empirical data, Fig. 4 plots the sequence of the ratio Sr+1

Sr
for all the stations and periods. The series are reported up
to ws values with a number of observations greater than or
equal to 10. These results show a roughly constant value for
the two stations of CEV and TOR (Fig. 4a), a slightly in-
creasing trend for TRA and FLO (Fig. 4b), and a marked
increasing trend for OXF (Fig. 4c) and STW (Fig. 4d). These
results suggest that the use of a geometric distribution for
the ws records of OXF and STW may not be adequate, as
successively investigated with the parametric analysis, since
the variability of the Sr+1

Sr
ratios could be considered a rough

Table 3. Values of Kendall’s τ statistic for the Year period time se-
ries of the six stations. In bold are the values that are statistically
significant (p = 0.05) for the classical MK test but not for the cor-
rected MK test. All the other values were found to be not significant,
even with the classical MK test.

Station it ws ds

CEV 0.0261 −0.0237 0.0309
FLO –0.0201 0.0244 −0.0040
OXF −0.0020 −0.0002 0.0128
STW –0.0217 0.0338 −0.0048
TOR 0.0049 0.0180 0.0329
TRA 0.0181 −0.0034 0.0204

indicator of the inadequacy of the geometric distribution in
describing wet spells (Chatfield, 1966).

The main statistics of all the rainfall time variables, it, ws,
ds, wch, and dch, are summarized in the box plots depicted
in Fig. 5, reporting the statistics for all the stations and for
the three periods Y , S1, and S2. The figure highlights the dif-
ferent statistical characters of the investigated variables and
how the seasonality seems to affect all the sites.

It is interesting to observe that the STW station shows the
highest ws and wch statistics, likely due to its high-frequency
rainfall. These high values are obviously counterbalanced by
the lowest it, ds, and dch statistics for all the considered peri-
ods. For ws (S1), almost all the stations show a quite limited
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Figure 4. For the three periods Y , S1, and S2, the Sr+1/Sr ratio versus ws (a) for CEV and TOR, (b) for FLO and TRA, (c) for OXF, and
(d) for STW.

range of variability, with the exception of STW and TRA,
which present very different rainfall regimes.

In-depth analysis of the relationship between spells and
chains can be made of the data reported in Fig. 6, where, for
the six stations and for the two seasons S1 (a, c) and S2 (b, d),
the ratios of the observed cumulated frequencies Fws/Fwch
(a, b) and Fds/Fdch (c, d) versus the corresponding time vari-
ables are plotted. These ratios describe the relative weight
of the derived variable dch (wch) on ds (ws). As expected,
the ratios Fws/Fwch and Fds/Fdch are greater than unity, with
larger values for Fds/Fdch [1–3] than for Fws/Fwch [1–1.7].
In general, moving from S1 to S2, higher Fws/Fwch and lower
Fds/Fdch values can be observed. Ratios corresponding to the
CEV and TOR rain gauges provide almost similar values for
the two seasons according to the limited seasonality, whereas
STW, characterized by a very high rainfall frequency, is the
only case with a ratio Fws/Fwch higher than Fds/Fdch. Fi-
nally, it is worth noticing the very high values of Fds/Fdch
for TRA in the S1 period, reflecting the aridity that charac-
terizes the area of western Sicily during that season and the
large differences in Fws/Fwch in FLO when comparing the
two seasons.

4.2 DM and IM comparison

For the time series of the six rain gauges, the Lerch family
(as given in Eq. 1) was fitted on the three periods (Y , S1, and
S2) for it (DM) and for both ws and ds (IM). The parameters
obtained by MLE are summarized in Table 4. It is important
to highlight that, for each station–period combination, the pa-
rameters reported in Table 4 correspond to the Lerch family
special cases (see Table 1), as supported by the results of the

LLR test (e.g., three parameters are adopted only when this
number of parameters is justified by the test).

In the case of it (DM), the three-parameter Lerch distribu-
tion is selected for all the sites and periods; the θ parameter
varies between 0.86 and 0.97, with higher values observed
for the whole year and season S1 for TRA. The variation of
θ in the various periods is very limited for OXF, STW, and
to a lesser extent CEV, as evidenced by a low degree of sea-
sonality compared to the other stations. As expected, the a
values are all negative (Table 4), since the a parameter al-
lows the observed drop in frequency to be reproduced when
moving from it= 1 to it= 2. The s parameter is positive for
all the it fittings, suggesting that the mode is always at it= 1.

For the IM, the geometric distribution (s = 0 and a = 1)
was chosen in several cases (10 out of 18) to fit ws, most
commonly over the sub-seasons (8 out of 12) than over the
whole year. The CEV station is the only one where the ge-
ometric distribution was selected for all three periods, while
the geometric distribution was never selected for STW. To
capture the probabilistic law of ws, OXF and STW seem to
require the polylog series or the two-parameter extended log-
series distribution (Table 1). It is interesting to observe that,
for TRA and FLO, the geometric distribution is not appro-
priate for ws when the period is the year, while it is selected
when the complete dataset is split into two sub-seasons.

Concerning the ds distribution in the IM, two or three pa-
rameters are always required, with the notable exception of
STW, where the logarithmic distribution (s = 1 and a = 0) is
selected for all three periods. The polylog-series distribution
is selected for 10 out of 18 cases, confirming the adequacy
of this distribution for describing the probability law of dry
spells in different cases; notably, for CEV and TOR the val-
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Figure 5. Box plots of the statistics of time variables it (a–c), ws (d–f), ds (g–i), wch (j–l), and dch (m–o) for all six stations and for the
three periods Year (left column), S1 (central column), and S2 (right column). The variables q1 and q3 identify the first and third quartiles,
respectively.

ues assumed by θ and s in the polylog distribution of ds are
almost equal to those of the Lerch distribution for it. Hence,
for these stations, the additional parameter a in the Lerch dis-
tribution fulfills, in practice, the function of accounting for
the geometric distribution of ws.

The assessment of the goodness of fit for the selected dis-
tributions (for it in the DM and for ws and ds in the IM)
is synthetically illustrated in Fig. 7. In particular, for all
the stations and periods (Y , S1, S2), the computed p val-
ues are classified according to four ranges (0–0.01, 0.01–
0.05, 0.05–0.1, and 0.1–1), with light (0.05–0.1) and dark
(0.1–1) green classes referring to the acceptance range of the
null hypothesis. For a few of the 180 (6 stations× 3 peri-
ods× 5 variables× 2 methods) Monte Carlo procedures (19
out of 180), the presence of outliers (high values with a very
low frequency) suggested preliminary data smoothing. Such
smoothing was performed by uniformly distributing the fre-
quency of the outlier over all the values between the observed
value and the latest observed non-null frequency. In Fig. 7,
these cases are marked by black dots. Overall, Fig. 7 shows
that the fitting of it is satisfactory in all the cases for Y , with

only one exception (FLO) with a p value just above 0.05.
Analogously, good results are obtained for ds, which is not
surprising given the close relation between it and ds model-
ing in the DM framework (see Eq. 6). In contrast, the fits are
not satisfactory in several cases for the resulting ws and wch,
most notably for STW and TRA.

The data depicted on the right-hand side of Fig. 7 (i.e., IM)
suggest that, when the IM is applied, there is a significant re-
duction in the number of unsatisfactory fits (red and orange
classes), particularly for ws and wch. In addition, when an-
alyzing the seasonal datasets, a further improvement in the
identification of the probability law of the time variables is
evident.

The plots in Figs. 8 and 9 show the cumulative observed
frequencies and the corresponding fitted Lerch family prob-
ability distributions for the annual period (Y ) when apply-
ing the DM and the IM, respectively. The comparison be-
tween the two methods confirms the overall net improvement
achieved by the IM in those cases that were not well fitted in
the DM, such as ws and wch for STW (compare Fig. 8b and d
with Fig. 9a and c). The latter consideration is also supported
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Figure 6. Ratios between observed cumulative frequencies Fws/Fwch (a, b) and Fds/Fdch (c, d) for the six stations and for S1 (a, c) and S2
(b, d).

Table 4. Parameters of the Lerch family of probability distributions fitted on it (DM) as well as ws and ds (IM) for the six stations and for
the three periods Year, S1, and S2. Values of 0 or 1 for parameters s and a identify the special cases listed in Table 1.

Station Variable θ s a

Y S1 S2 Y S1 S2 Y S1 S2

CEV

it

0.913 0.902 0.923 0.442 0.395 0.476 −0.953 −0.954 −0.958
FLO 0.934 0.942 0.858 1.005 0.700 0.738 −0.657 −0.833 −0.809
OXF 0.902 0.906 0.896 1.069 0.996 1.122 −0.384 −0.437 −0.342
STW 0.867 0.864 0.861 1.348 1.186 1.539 −0.528 −0.489 −0.508
TOR 0.919 0.871 0.940 0.581 0.393 0.549 −0.891 −0.942 −0.953
TRA 0.970 0.975 0.897 1.164 0.744 0.689 −0.364 −0.687 −0.771

CEV

ws

0.446 0.419 0.476 0 0 0 1 1 1
FLO 0.650 0.464 0.599 1 0 0 3.084 1 1
OXF 0.558 0.486 0.600 0.261 0 0.382 0 1 0
STW 0.843 0.696 0.853 1 0.324 0.585 0.921 0 0
TOR 0.473 0.583 0.508 0 1 0 1 1.143 1
TRA 0.553 0.308 0.486 1 0 0 1.896 1 1

CEV

ds

0.913 0.901 0.922 0.433 0.387 0.467 0 0 0
FLO 0.967 0.953 0.853 1.938 1 0.662 2.889 1.399 0
OXF 0.890 0.880 0.880 0.827 0.543 0.835 0 −0.548 0
STW 0.838 0.861 0.799 1 1 1 0 0 0
TOR 0.918 0.871 0.940 0.552 0.384 0.541 0 0 0
TRA 0.989 0.980 0.892 2.042 1 0.614 3.870 2.062 0

by the comparison between the p value classes (Fig. 7) asso-
ciated with the same variables, when the IM is used in place
of the DM. This result underlines how the i.i.d. hypothesis
for it in the DM may not always be valid.

Since the previous results show that the main difference
between the two methods concerns the ability to model ws
and wch and to a lesser extent dch, the plots in Fig. 10 depict
the difference in the cumulated frequencies for these vari-
ables modeled through the two methods for S1 (panels a, c, e)
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Figure 7. Summary of the results of the χ2 test for both the direct (DM, a) and indirect (IM, b) methods. The variables inside the large
arrows are the ones fitted in the corresponding method, whereas the other variables are deducted. The p values (see the legend) for all the
stations and periods are reported. The black dots indicate that smoothing of the observed frequencies was applied to calculate χ2

ref.

and S2 (panels b, d, f), respectively. These results further em-
phasize how the IM improves the performances in most of the
cases given the high fraction of points located in the portion
of the plots below the 1 : 1 line (i.e., differences in the DM
are larger than in the IM). Overall, most of the differences
lie along the identity line, suggesting good performance for
both methods but with large discrepancies observed for STW,
OXF, and FLO, i.e., for the cases in which the renewal prop-
erty needs to be relaxed.

The Lerch family distribution also allows the probability
of extremes of the time variables to be predicted. The overall
consistency of the latter can be observed in Fig. 11, where
the empirical 99th percentiles, Q0.99, are compared with the
estimated ones, for all stations and periods, when applying
the DM (Fig. 11a) and the IM (Fig. 11b). Figure 11a shows
that the dots are quite close to the line of perfect agreement,
with only a few exceptions likely due to the limited sample
size, as for the Sicilian stations for season S1. A slight im-
provement can be obtained by applying the IM, as shown
by the decrease in the standard error of the estimate (SEE)
reported in the figures. These results suggest that the poor
performances observed for the DM is some cases do not sig-
nificantly affect the results on the tails but only the accuracy
in the most frequent data.

5 Discussion

The fitting of the Lerch distribution to the selected six sta-
tions extends the studies previously carried out for the sta-
tions in Sicily and Piedmont (Agnese at al., 2014; Baia-
monte et al., 2019). The adequacy of this distribution in fit-
ting it is confirmed when data recorded over OXF and STW

are considered, despite the rather different rainfall patterns
of these latter stations compared with those previously an-
alyzed. Most notably, the observed frequencies for it are
already well reproduced at the annual scale, stressing how
splitting the datasets into subperiods is not strictly necessary
for correctly reproducing the probabilistic law of it in any of
the rainfall regimes under consideration. The scientific litera-
ture on the statistical inference of rainfall interarrival times is
still rather sparse, so further evidence of the suitability of the
Lerch family for reproducing it distributions in a wide range
of rainfall regimes is encouraging for further applications of
the methodology.

However, the results obtained for ws and ds with the DM
highlight how a good fit of it does not necessarily guarantee
a satisfactory reproduction of the frequency of these derived
quantities and, in particular, how the geometric distribution
is not always adequate in describing wet spells. The ability to
better reproduce the observed frequencies of ws with the IM
and thus with distributions relaxing the memoryless property
suggests the presence of an inner structure in multiday rain-
fall events, which manifests in a non-constant rain probabil-
ity within the event itself. Usually, the internal structure ob-
served in subdaily (e.g., 10 min) rainfall records is assumed
to vanish at the daily aggregation steps (e.g., Ridolfi et al.,
2011), but the results reported here may contradict this as-
sumption at some of the investigated sites.

The need to resort to a more complex distribution than
the geometric one to reproduce the probabilistic structure of
ws has been highlighted in the literature, especially for long
spells, by the studies of Berger and Goossens (1983) for rain-
fall data in Belgium and Deni and Jemain (2010) in Malaysia.
The inadequacy of the geometric distribution is confirmed
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Figure 8. Observed frequencies and fitted probability distributions for the six stations according to the DM and for the period “Year”. The
variables on the x axis are in logarithmic scale.

here for long ws (> 10 d) with a relatively high frequency,
such as the case of STW where the DM returned poor perfor-
mances. It is important to underline how the unsatisfactory
fitting of a geometric distribution may not necessarily trans-
late in the presence of memory in the rainfall series. In this
regard, on the one hand, the results observed for the stations
of TRA and FLO may suggest other reasons behind the poor
performance of the geometric distribution in modeling ws as
derived from it. The geometric distribution seems to be a suit-
able choice when the data are analyzed separately for the two
seasons, which might imply that the complex structure of the
ws distribution observed over the entire year is not associ-
ated with an actual relaxing of the renewal property but with
a mixing of ws samples collected during two rather distinct
seasons.

On the other hand, the geometric distribution seems to per-
form poorly on STW regardless of seasonality, which is actu-

ally quite limited for this station. The STW station seems to
represent a case where the memoryless property is violated,
as also confirmed by the inspection of the Sr+1

Sr
ratios.

Splitting the entire dataset into subperiods seems to im-
prove the performance of fittings crosswise for both the DM
and the IM. This result is well suited for possible implemen-
tations of the methodology for operational applications re-
lated to ecohydrology models (e.g., D’Odorico et al., 2000;
Petrie and Brunsell, 2011) and stochastic weather generators
(e.g., Paek et al., 2023). In these fields, to express the climatic
component of weather variables (Semenov et al., 1998), not
only does the overall probabilistic structure of rainfall need
to be reproduced, but information on a seasonal or even sub-
seasonal (i.e., monthly) scale is also required. Other studies,
carried out over regions characterized by a climate with no
distinct monsoon seasons, have also highlighted the impor-
tance of focusing on either the dry summer seasons or wet
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Figure 9. Observed frequencies and fitted probability distributions for the six stations according to the IM and for the period Year. The
variables on the x axis are in logarithmic scale.

winter seasons (Caloiero and Coscarelli, 2020; Paton, 2022;
Raymond et al., 2016). Wan et al. (2015) also suggested the
need to account for the seasonality to properly reproduce the
duration of ws for Canada using a Markov chain method.

Another consequence of the inadequacy of the geometric
distribution in describing wet periods is that the daily struc-
ture of rainfall needs to be taken into account for modeling
processes such as the seasonal dynamics of soil moisture and
vegetation. Ratan and Venugopal (2013) did an assessment
for tropical areas using satellite rainfall data. They found wet
spell durations with a peak at 1 d for dry regions, while the
duration of 2–4 d is predominant for humid areas. A similar
but reversed observation was made for dry spells, resulting
in 1 d for humid areas and 3–4 d for dry areas.

For some cases, the results obtained for the IM suggest that
the classical application of the geometric distribution for ws
and of the polylog series for ds provides satisfactory model-

ing of the observed frequencies. However, there are no sub-
stantial benefits to using these two distributions over using a
three-parameter Lerch distribution. Indeed, a similar number
of fitting parameters is required in the DM and IM but with
the obvious drawback of having an increasing computational
cost due to the need to perform two independent fittings (for
ws and ds) compared to a single one (it only). In this context,
the case of STW is peculiar, where the geometric distribu-
tion is never selected for ws and a two-parameter distribution
is always required, although a one-parameter distribution is
used at this site for ds. This circumstance suggests that a re-
liable fit of the two quantities can still be achieved without
increasing the total number of parameters when compared
with the three-parameter Lerch.

Finally, it is worth mentioning that the models proposed in
this paper are local, and hence spatial dependency in parame-

https://doi.org/10.5194/ascmo-10-51-2024 Adv. Stat. Clim. Meteorol. Oceanogr., 10, 51–67, 2024



64 G. Baiamonte et al.: Different methods to model dry and wet spells in Europe

Figure 10. Scatterplots of the absolute difference between observed frequencies and fitted probabilities with the DM (x axis) against the IM
(y axis) for ws (a, b), wch (c, d), and dch (e, f).

Figure 11. Comparison between the empirical and theoretical quantile Q0.99, calculated according to the DM (a) and the IM (b) for all the
stations, periods, and time variables bundled together.

Adv. Stat. Clim. Meteorol. Oceanogr., 10, 51–67, 2024 https://doi.org/10.5194/ascmo-10-51-2024



G. Baiamonte et al.: Different methods to model dry and wet spells in Europe 65

ters may need to be accounted for in applications to multiple
stations located at shorter distances.

6 Conclusions

In this paper, daily rainfall data belonging to a large range
of rainfall regimes across Europe (latitudes 38–58° N) have
been analyzed to model the frequency distribution of some
key rainfall time variables. By using two different methods,
the assumption of the renewal property that implies the geo-
metric distribution of wet spells has been investigated. First,
a direct method (DM), where the geometric distribution of
wet spells is assumed, has been applied. Second, the latter as-
sumption is relaxed by using an indirect method (IM) where
wet spells and dry spells were modeled separately, hence in-
cluding the possibility of accounting for a non-constant rain
probability inside the rainfall cluster.

As a general rule, the results of comparing the DM and
the IM suggest that the Lerch distribution can be success-
fully used for both interarrival times and dry spells in a wide
variety of rainfall regimes, whereas a preliminary analysis of
the memory property (e.g., of the Sr+1

Sr
ratios) may be needed

to assess the reliability of the wet spells derived from the in-
terarrival times modeled with the DM using the Lerch fam-
ily. When signals of memory are detected, the IM is recom-
mended, as it is better suited for a wider range of conditions,
albeit with a potentially larger number of fitting parameters.

The analysis was extended to include two additional time
variables strongly associated with wet and dry spells, referred
to as wet and dry chains. These variables extend the concept
of wet and dry spells to sequences characterized by an in-
terruption of 1 non-rainy day or 1 rainy day, respectively,
as they represent two quantities that may be of interest for
practical hydrological applications. The results obtained for
the two chains generally reflect the findings obtained for the
spells, albeit highlighting additional difficulties in the prob-
abilistic modeling, especially at sites where the sample size
may become a limiting factor.

The effects of the seasonality on the results were also ad-
dressed, splitting the data into two 6-month subperiods. This
separation tends to improve the performances for both the
DM and the IM, stressing how at most of the sites the DM
applied to seasonal data is still a suitable straightforward ap-
proach. The results of this study may help in scenario sim-
ulations of drought and flood events, considering that prob-
abilistic functions, such as those applied in this work, are at
the root of stochastic climate modeling.

Future research aimed at investigating the neighboring lo-
cation effects on parameter values will be developed.
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