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Abstract. A number of recent climate studies have used univariate parametric statistical models to estimate
return periods of extreme weather events based on the method of maximum likelihood. Using simulations over
multiple training datasets, we find that using maximum likelihood gives predictions of extreme return levels
that are exceeded more often than expected. For instance, when using the generalised extreme value distribution
(GEVD) with 50 annual data values, fitted using maximum likelihood, we find that 200-year return levels are
exceeded more than twice as often as expected; i.e. they are exceeded in more than 1 in 100 simulated years. This
bias, which we refer to as a predictive coverage probability (PCP) bias, would be expected to lead to unreliable
predictions. We review the theory related to Bayesian prediction using right Haar priors which gives an objective
way to incorporate parameter uncertainty into predictions for some statistical models and which eliminates the
bias. We consider a number of commonly used parametric statistical models and give the right Haar priors in
each case. Where possible, we give analytical solutions for the resulting predictions. Where analytical solutions
are not possible, we apply either an asymptotic approximation for the Bayesian prediction integral or ratio of
uniforms sampling. For the fully parameterised GEVD and the generalised Pareto distribution with a known
location parameter, neither of which have a right Haar prior, we test a number of methods and find one that gives
big reductions in the PCP bias relative to maximum likelihood predictions. Finally, we revisit the De Bilt extreme
temperature example considered in a number of previous studies and generate revised, and shorter, estimates for
the return period of the 2018 heatwave. Software for fitting predictive distributions with parameter uncertainty
has been developed by the first author and will be available as an R package.

1 Introduction

A number of recent studies in the field of extreme weather
attribution have estimated the return probabilities and return
levels of extreme weather events, in past, present, and possi-
ble future climates. See, for example, Philip et al. (2022),
Otto et al. (2023), Rivera et al. (2023), Thompson et al.
(2023), Vautard et al. (2023), and Zachariah et al. (2023).
Overviews of some of the methodologies used in extreme
weather attribution are given in Philip et al. (2020), van Old-
enborgh et al. (2021), and van Oldenborgh et al. (2022),
and aspects of the uncertainty in extreme weather attribution
have been discussed in Jeon et al. (2016) and Paciorek et al.
(2018).

1.1 Point estimates and parameter uncertainty

As one step in the attribution methodology, many attribution
studies use univariate parametric statistical models to esti-
mate the distribution of the weather index of interest. The
generalised extreme value distribution (GEVD) and gener-
alised Pareto distribution (GPD) are commonly used, and,
less commonly, other distributions, including the normal,
log-normal, gamma, and standard Weibull distributions, are
also used. Parameters are often modelled as a function of
global mean surface temperature. All the studies cited above
have then used the approach of making point estimates of
the parameters of the statistical model and substituting those
point estimates into the formula for the distribution function
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in order to calculate return probabilities and return levels.
We refer to this methodology as the point-estimate plug-in
methodology. Various methods could be used to make the
point estimates of the parameters, although all the above
studies use maximum likelihood. The maximum likelihood
methodology has the benefit of being straightforward, both
conceptually and in practice. It is also objective in the spe-
cific sense that the predictions depend on the data and the
model assumptions but not on any prior assumptions about
unknown parameter values. However, it neglects the uncer-
tainty around the parameter estimates. Because the relation-
ship between parameter estimates and predicted probabil-
ities is non-linear, this is likely to lead to narrower pre-
dictive distributions than if parameter uncertainty were in-
cluded. This phenomenon is well documented. For instance,
to quote Bernardo and Smith (1993) (p. 483), “We should
emphasise [...] that the all too often adopted naive solution
of prediction based on the ‘plug-in estimate’ [...] usually us-
ing the maximum likelihood estimate, is bound to give mis-
leadingly overprecise inference statements about y, since it
effectively ignores the uncertainty about theta”, and Geisser
(1993) (p. 17), “[...] introducing maximum likelihood esti-
mates for the mean and variance [...] results in estimated pre-
diction intervals that are too tight in the frequency sense.”
There are various ways one can understand why point esti-
mates of parameters may not lead to good predictions. For
instance, one can say that the uncertainty in predicting a fu-
ture value arises from the uncertainty both inherent in the
distribution model and about the underlying parameter values
of that model. Using point estimates for parameters ignores
the latter uncertainty. Results from simulation tests of the
ability of maximum likelihood plug-in predictions to predict
extremes given by Gerrard and Tsanakas (2011) and Fröh-
lich and Weng (2015) confirm that maximum likelihood un-
derestimates the probabilities of extreme events. More re-
cently, this effect has been noted in the context of the esti-
mation of temperature extremes by Zeder et al. (2023). The
impact of using point estimates for prediction can also be
demonstrated mathematically by reference to the Bayesian
paradigm, in which the predictive distribution of a future
unobserved value, given the observed data, consists of an
integration over all possible values of the unknown model
parameters. An asymptotic expansion of this integral (Datta
et al., 2000, Eq. 2.1), reproduced in Sect. 5 as Eq. (2), shows
that the predictive distribution based on maximum likelihood
point estimation is a zeroth-order (O(n−1)) approximation
to this integral. However, it also shows that to the first or-
der (O(n−2)), the first, second, and third derivatives of the
underlying distribution and the first derivative of the prior
are important. Thus, although maximum likelihood will ad-
equately account for parameter uncertainty in prediction for
sufficiently large datasets, this may well not be the case for
smaller datasets.

1.2 Objective Bayesian methods

In this article, our goal is to assess whether predictions
that include a representation of parameter uncertainty using
Bayesian methods perform better than predictions based on
maximum likelihood. We will focus on objective Bayesian
methods, in which the prior is used as a mathematical device
to achieve certain desired properties. However, if genuine
prior information is available, then use of a suitable subjec-
tive prior may improve the accuracy of prediction, especially
when there are parameters that are particularly hard to esti-
mate, such as shape parameters. We do not investigate such
approaches in the present study.

1.3 The reliability principle

We define our goal to be the derivation of methods for pre-
dicting extremes that are as reliable as possible. We refer to a
reliable method as one which, when tested many times, pro-
duces probabilities that correspond to the actual frequencies
of unobserved events. For instance, events which are pre-
dicted to occur with a probability of 0.01 should occur ap-
proximately 1 % of the time. The tests over which frequen-
cies are calculated could be over many different observed
variables and datasets. Reliability is a standard way to evalu-
ate probabilistic predictions: see, for example, Wilks (2011)
for a discussion of the use of reliability and reliability dia-
grams.

Probabilities from reliable methods can be used to make
informed decisions. For instance, consider a government that
manages 1000 flood defences. We suppose that these flood
defences fail independently. If the defences are each de-
signed to fail with a probability of 0.01 every year, and the
probabilities were calculated using a method that is known
to give reliable probabilities, then the government could rea-
sonably expect 10 of the defences to fail every year, on av-
erage, and could plan for that. Maximum likelihood predic-
tions are not reliable, because of the neglect of parameter
uncertainty, and underestimate extremes. If the defences are
designed to fail using probabilities derived from maximum
likelihood, then more than 10 of them should be expected to
fail every year. We see from this example that probabilities
from unreliable methods are difficult to interpret, difficult to
use for decision-making, and may be misleading. We refer to
the idea that methods for calculating predictive probabilities
should be reliable as the reliability principle.

To assess the reliability of the methods that we consider,
we evaluate reliability for fixed parameter values. For each
parameter value, we compare the nominal (i.e. specified) re-
turn probability with the probability at which modelled re-
turn levels are actually exceeded by out-of-sample values.
We refer to the probability at which modelled return levels
are actually exceeded, which is the true predictive probabil-
ity for that return level, as the predictive coverage probabil-
ity (PCP). A method that gives PCP that matches nominal
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probabilities, for a certain parameter value, is reliable for that
parameter value. A method that is exactly reliable for all pa-
rameter values individually will be exactly reliable in all sit-
uations, even when the parameters are unknown. Similarly, a
method that is approximately reliable for all parameter val-
ues will be approximately reliable in all situations.

Reliability is also known as calibration. In our objective
Bayesian approach, we use the prior to attempt to achieve
calibration and will refer to objective priors that are chosen
to achieve reasonable calibration as calibrating priors.

1.4 Unbiased estimators

We do not aim for our prediction methods to give unbiased
or low bias estimates of probabilities or return values. There
are several interrelated reasons for this:

a. The bias of probabilities and return values is defined as a
comparison between predicted values and values based
on the true parameters. In a real climate data situation,
the true values for the parameters can never be known,
and so this comparison does not correspond to any com-
parison that can be made in a real situation and can
only be calculated when using simulations. This con-
trasts with reliability, which corresponds to a compari-
son between predicted return values and observed out-
comes that can be made in real situations.

b. The comparison involved in calculating the bias of prob-
abilities and return values does not directly consider
the behaviour of individual out-of-sample values and
how they relate to the prediction, even though this is
the comparison which matters to users of a prediction.
This contrasts with reliability, which directly considers
the behaviour of individual out-of-sample values and
how they relate to the prediction. In simulations, the be-
haviour of individual out-of-sample values in relation
to the prediction can be determined by substituting pre-
dicted return values into the true distribution function,
as we discuss in Sect. 2.

c. The bias is an average across the results of multiple sim-
ulations or experiments where the underlying parameter
values are held constant. Bias is therefore particularly
suited for helping understand the results of repeated ex-
periments, such as laboratory experiments. However, in
the present context, there are no repeated experiments,
and we are making predictions based on single fixed
samples. The only averaging possible in real situations
is over predictions based on different fixed samples,
which would have different underlying parameter val-
ues. For bias to be relevant to real situations, a connec-
tion would therefore have to be made between these two
kinds of averaging. For bias of probabilities and quan-
tiles, there is no such connection. However, for reliabil-
ity, there is a connection. PCP, as a probability, can be

combined across multiple situations, and when multiple
individual predictions are reliable, the predictions con-
sidered together are also reliable.

d. There are no mathematical results that relate the level
of bias of probabilities or return values to the reliabil-
ity of predictions of out-of-sample values. There is no
mathematical reason to think that unbiased probabilities
correspond to the frequencies of out-of-sample values.

Overall, unbiasedness, or low bias, of estimated probabilities
and return levels is neither necessary nor sufficient for pre-
dictions to be reliable.

The problems with assessing estimators in terms of their
bias are well documented. For instance, to quote Bernardo
and Smith (1993) (p. 462), “However, although requiring [...]
estimators to be unbiased [...] may have some intuitive ap-
peal, there are powerful arguments against requiring unbi-
asedness.”

1.5 Overview

In Sect. 2.1, we discuss methods for the statistical modelling
of extremes, and in Sect. 2.2, we define the terminology, sim-
ulation methodology, and 12 statistical models that we use.
In Sect. 3, we evaluate the PCP bias from using the max-
imum likelihood plug-in method for our list of 12 models.
In Sect. 4, we review the theory for making Bayesian pre-
dictions with right Haar priors, which provides an objective
method for incorporating parameter uncertainty into predic-
tions, but which only applies to some statistical models. In
Sect. 5, we discuss how the theory can be applied to 10
of our 12 models but not to the GEVD or GPD. For these
10 models, we test the effectiveness of the resulting predic-
tions using simulations. We then also test ways to predict the
GEVD and GPD. In Sect. 6, we extend the discussion and
simulation testing to include statistical models in which the
parameters have predictors. In Sect. 7, we revisit a standard
example from the extreme weather attribution literature that
involves estimating the return periods of maximum tempera-
tures measured in De Bilt. Finally, in Sect. 8, we draw some
conclusions and discuss outstanding questions.

2 Preliminaries

2.1 Statistical modelling of extremes

One approach for modelling extremes is to use the GEVD for
modelling maxima and the GPD for modelling the tails of
distributions beyond an extreme threshold. There are many
examples in the literature, such as Northrop et al. (2016),
Risser et al. (2019), Wehner et al. (2020), and Jonathan et al.
(2021). The justification for this approach is based on ex-
treme value theory and the proof that for many underly-
ing distributions the distribution of maxima converges to the

https://doi.org/10.5194/ascmo-11-1-2025 Adv. Stat. Clim. Meteorol. Oceanogr., 11, 1–22, 2025



4 S. Jewson et al.: Reducing reliability bias with calibrating priors

GEVD and the distribution of threshold exceedances con-
verges to the GPD (see, for example, the textbook by Coles,
2001). There are various reasons, however, why the GEVD
and GPD may not always be the best distributions to use
in extreme weather attribution, even for maxima and ex-
ceedances beyond a threshold (see, for example, the discus-
sions in Zhu et al., 2019, and Russell and Huang, 2021). First,
climate variables typically have seasonal cycles in mean,
variance, and distribution shape. Annual maxima and thresh-
old exceedances are therefore not maxima and exceedances
of a stationary distribution. Second, the effective sample size
during 1 year of variability may not be large enough to give
good convergence to the GEVD or GPD. Third, trends in cli-
mate variables are often modelled as a function of time or
global mean surface temperature. However, the trends may
not be modelled correctly. Any mismatch between real and
modelled trends will affect the distribution of the residu-
als around the trend. Fourth, climate variables are typically
affected by multi-year climate variability, which can cause
their distribution to vary over time. These four factors all
mean that using the GEVD and GPD to model the future
values may not be justifiable. Fifth, sample sizes may not
be large enough to give meaningful information about all the
parameters in these models, i.e. may not be large enough to
avoid overfitting relative to simpler models with fewer pa-
rameters. Finally, as we see below, it is more difficult to form
a predictive distribution for the GEVD and GPD than for
some other statistical distributions for fundamental mathe-
matical reasons. In some cases, it may be better to use a sim-
pler distribution for which it is easier to form a predictive
distribution.

Given the above list of reasons why the GEVD and GPD
may not always be the best distributions to use, we discuss
another approach to modelling extremes based on model se-
lection. In this approach, a number of models are considered
and the appropriateness of each is assessed using a model
selection metric, such as AIC (Akaike information criterion)
or the log score (see textbooks such as Wasserman, 2003, or
Claeskens and Hjort, 2010, for a discussion of model selec-
tion). GEVD and GPD are included in the models considered
but are not automatically assumed to be the most appropri-
ate. Motivated by this alternative philosophy for modelling
extremes, we consider below how to make predictions for a
number of statistical distributions, not just the GEVD and
GPD. We consider 12 models in all. For random variables
that are bounded on one side, as is the case for many rain-
fall related variables, we consider the exponential distribu-
tion, the Pareto distribution with a known scale parameter,
the log-normal distribution, the Fréchet distribution with a
known location parameter, the standard Weibull distribution,
and the GPD with a known location parameter. For variables
that are not bounded on either side, as is the case for many
temperature related variables, we consider the normal distri-
bution, the logistic distribution, the Cauchy distribution, the

Gumbel distribution, the GEVD with a known shape param-
eter, and the GEVD.

2.2 Evaluating predictions using predictive coverage
probability

The focus of our study is on return periods of extreme events.
In general, extreme events might be either the upper or the
lower tail of the distribution, but we concentrate on the upper
tail. We focus on the extremes rather than the body of the dis-
tribution by considering return periods of exceedances from
2 to 200 years.

We suppose that we have a random sample, d =

(x1,x2, . . .,xn), of observations from a probability distribu-
tion function F (·;θ ) indexed by an unknown parameter θ .
We are interested in exceedance probabilities for a future ob-
servation Y from the same distribution. In the present con-
text, we refer to an exceedance probability α as the return
probability, 1/α as the return period, and upper quantile
q(θ,α) satisfying F (q(θ,α);θ )= 1−α as the return level.
Other definitions of the return period are possible, but this
definition would seem to be the most commonly used in cli-
mate science.

Suppose that α is a nominal (i.e. specified) return proba-
bility (and 1/α the corresponding nominal return period) and
that we have a prediction methodology that produces an es-
timate q̂(α) of the true return value q(θ,α) corresponding to
α. Then, the true return probability α(d,θ ) for the given data
d corresponding to q̂(α) is

α(d,θ )= Pθ (Y > q̂(α)|d)= 1−F (q̂(α);θ ) . (1)

Since α(d,θ ) is a function of the unknown parameter θ , it
is not useful for evaluating a given prediction methodology
for a specific dataset d . However, in the standard frequen-
tist spirit, we can evaluate a prediction methodology based
on the mean probability Eθ (α(d,θ )) over repeated sampling.
Note that Eθ (α(d,θ ))= Pθ (Y > q̂(α)), where the probabil-
ity is over the joint distribution of the data d and the future
value Y . This quantity is the PCP. The predictive coverage
probability bias is the difference Eθ (α(d,θ ))−α.

If the prediction method were perfect, we would expect the
PCP to be equal to the nominal return probability for all val-
ues of the nominal probability. As discussed in the Introduc-
tion, this then leads to reliable prediction methods even when
the parameter is unknown. If the prediction method produces
predictive distributions for which the tail of the distribution
is too thin, then the return level will be exceeded more often
than expected, and the PCP will be larger than the nominal
return probability α. For example, we would expect the pre-
dicted 100-year return level to be exceeded with a probability
of 1 %. If the tail of the predictive distribution is too thin, then
the predicted 100-year return level will be exceeded with a
probability greater than 1 %.

In order to compute the PCP associated with a given pre-
diction methodology specified by q̂(α), we use an adaptation
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of the simulation methodology used by Gerrard and Tsanakas
(2011) as follows:

1. Specify a value for the parameter θ and generate a large
number N of samples of training data d from F (·;θ )
using a random number generator. Each training sam-
ple consists of n values. When considered in relation to
the example we present later, these samples represent
annual maxima of temperature for n years.

2. Specify a number of nominal return periods 1/α at
which we wish to test the prediction methodology.

3. For each training sample, compute the estimated return
level q̂(α) corresponding to each of the nominal return
periods. Then compute the corresponding true return
probability α(d,θ ) from Eq. (1). Since this step com-
pares the prediction against the distribution with true
parameter values, it is effectively an out-of-sample eval-
uation of the prediction and therefore evaluates the true
out-of-sample predictive performance.

4. For each value of α, compute the average of the α(d,θ )
values over all the training samples. This gives a Monte
Carlo estimate of the PCP.

This method of evaluating the predictive skill of a pre-
diction methodology by comparing nominal and mean
true return probabilities allows for an easy comparison
of results across different distributions since the com-
parison does not involve the units or magnitude of the
underlying random variables.

We apply the above methodology to 12 statistical models –
namely, exponential, Pareto with a known scale parameter,
normal, log-normal, logistic, Cauchy, Gumbel, Fréchet with
a known location parameter, standard Weibull, GEVD with
a known shape parameter, GEVD, and GPD with a known
location parameter. These models were chosen because they
are commonly used, serve as good examples of the theory,
and may have applications in the climate sciences. In each
case, we take N = 5000 and n= 50 and repeat the above
process three times to assess convergence. Many analyses of
extreme weather return periods use historical data consisting
of the maximum value per year, and our choice of n= 50 is
intended to correspond to a case in which 50 years of his-
torical data is being used. Overall, 50 years is reasonably
representative of studies in this field. Regarding the statis-
tical parameters, the following applies: for the exponential,
we use a rate of 1; for the Pareto with a known scale, we use
a shape of 1; for the normal, we use a mean of 0 and a stan-
dard deviation of 1; for the log-normal, we use a log-mean of
0 and a log-standard deviation of 1; for the Gumbel, logistic
and Cauchy, we use a location of 0 and a scale of 1; for the
Fréchet with a known location parameter, we use a shape of
1 and a scale of 1; for the Weibull, we use a shape of 1 and
a scale of 1; for the GEVD with a known shape parameter,

we use a location of 0, a scale of 1, and a shape of −0.25;
for the GEVD, we use a location of 0, scale of 1, and shape
of −0.25; and for the GPD with a known location parameter,
we use a location of 0, scale of 1, and shape of 0.1. Changing
the location and scale parameters does not affect the results.
Changing the shape parameters only affects the results for
the GEVD and GPD, and we explore this dependence below.

There are a number of relationships between the distribu-
tions we are considering, which are discussed in Sect. 4.

3 Predictive coverage probability of maximum
likelihood predictions

We now quantify the PCP from using a maximum likelihood
plug-in methodology to predict return levels for the 12 statis-
tical models given in Sect. 2.2. For the normal, we also con-
sider parameter estimation using the standard unbiased esti-
mator for the variance, while for the GEVD, we also consider
using probability weighted moments (PWM), since PWM is
commonly used as an alternative point-estimate method. The
return value estimators q̂(α)= q(θ̂ ,α) satisfy the equation
F (q̂(α); θ̂ )= 1−α.

Figures 1 and 2 show the PCP versus nominal return prob-
abilities for our 12 distributions, in grey. These figures are
versions of the reliability diagram that is commonly used in
both weather forecasting and machine learning for illustrat-
ing the properties of probabilistic forecast systems. In our
application, we have adapted the standard reliability diagram
to focus on the upper tail using axes that are linear in inverse
return probability. These figures show that, for all the distri-
butions we consider, the maximum likelihood PCP is greater
than the nominal probability in the upper tail, i.e. shows reli-
ability bias.

For instance, for the normal distribution example, the re-
turn levels corresponding to nominal return periods of 50,
100, 150, and 200 years are exceeded 1.24, 1.35, 1.42, and
1.48 times more often than would be expected and so actually
correspond to return periods of 40, 74, 106, and 135 years.
For the GEVD, the return levels corresponding to the nom-
inal return periods of 50, 100, 150, and 200 years are ex-
ceeded 1.38, 1.69, 1.97, and 2.24 times more often than
would be expected and actually correspond to return periods
of 36, 59, 76, and 89 years.

For the normal, results based on the unbiased estimator
for the standard deviation are very slightly better than those
for maximum likelihood but still show considerable relia-
bility bias. For the GEVD, results based on PWM are very
slightly better than those for maximum likelihood but again
show considerable reliability bias.

From Gerrard and Tsanakas (2011), we know that the
maximum likelihood results for the normal and log-normal
should be the same, since normal and log-normal are related
by an increasing transformation of the random variable. Sim-
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Figure 1. Predictive coverage probability (PCP) versus nominal return probability for predictions generated using maximum likelihood
(ML; grey) and right Haar priors (RHP; black) for various distributions. The Pareto distribution has a known scale parameter. The black dots
indicate the specified return probabilities at which results were calculated. Each panel shows six lines: three lines showing results from three
independent evaluations of the performance of maximum likelihood and three likewise for RHP. Panel (c) shows a third set of three lines
(UV; grey, dashed) based on the unbiased estimator for the variance of the normal distribution.

ilarly, the results for exponential and Pareto should be the
same.

One way to compensate for the biased predictions gener-
ated by the maximum likelihood plug-in method would be to
use charts like Figs. 1 and 2 to derive a correction. For in-
stance, for the GEVD, we could use the PCP to relabel the
1-in-200-year event as a 1-in-89-year event. This relabelling
approach could be used as the basis for an algorithm for gen-
erating less biased predictions, although such an algorithm
would be computationally expensive. For the GEVD and
GPD, such an algorithm would also still suffer from some
reliability bias because the reliability bias depends on the pa-
rameters, and the real parameters are unknown. We do not
explore the relabelling approach in this study. Rather, we will
explore what statistical theory has to say about whether there

are computationally inexpensive alternative methods to max-
imum likelihood for generating predictions that can eliminate
or reduce the reliability bias in the first place.

3.1 Sampling bias of maximum likelihood predictions

We also evaluate the sampling bias of the probabilities and
return levels from our predictions. We do not want, or expect,
the sampling bias to be zero, as discussed in the Introduction,
since sampling bias is not an indicator of whether predictions
are reliable or not. We present the bias simply as a diagnostic
that can help with understanding how the predictions are gen-
erated. For estimating return values and return probabilities,
the sampling biases of the maximum likelihood and Bayesian
estimators that we are considering are of the same asymptotic
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Figure 2. Panels (a)–(d) follow Fig. 1 but for different distributions. The Fréchet distribution has a zero location parameter, and the GEVD in
panel (d) has a known shape parameter of−0.25. Panel (e) shows corresponding results for the GEVD for five models: maximum likelihood;
a hybrid maximum likelihood/Bayesian prediction, in which we fix the shape parameter to the maximum likelihood estimate and integrate
over uncertainty in the location and scale parameters using the conditional right Haar prior (RHP) for the GEVD; Bayesian prediction
using the prior given as the product of the conditional RHP for the GEVD with a flat prior for the shape parameter; Jeffreys’ prior (JP);
and probability weighted moment parameter estimation (PWM). Panel (f) shows corresponding results for the GPD with a zero location
parameter for two models: maximum likelihood and a Bayesian prediction using the prior given as the product of the conditional RHP for
the GPD with a flat prior for the shape parameter.

order of n−1 and so tend to zero as the sample size tends to
infinity. We evaluate the sampling bias using a modified ver-
sion of the simulations described above and illustrate it in
Figs. S1–S4 in the Supplement. Maximum likelihood gives
relatively small but non-zero sampling bias for both the re-
turn levels and the return probabilities.

4 A review of predictive probability matching theory

There have been various pieces of statistical research into
the question of how to achieve zero reliability bias (i.e. PCP
equal to the nominal probability). We use one of the main

results from this research, which comes from Fraser (1961),
Hora and Buehler (1966), and Severini et al. (2002). This re-
sult is that, for a certain class of statistical models known as
transitive transformation models, we can achieve zero PCP
bias using a Bayesian prediction with the prior set to what is
known as the right Haar prior (RHP). This is known as pre-
dictive probability matching. The RHP must be determined
for each model. This result can be explained in three steps as
described in the next three sections.
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4.1 Transitive transformation models

If we transform a normally distributed random variable X
using the linear transformation X′ = a+ bX, then the new
random variable X′ is also normally distributed. If X has a
mean and standard deviation (µ,σ ), then X′ has a mean and
standard deviation (µ′ = a+ bµ,σ ′ = bσ ), assuming b > 0.
The set of all these transformations form a group, known as a
transformation group. Furthermore, any normally distributed
random variable can be transformed to any other normally
distributed random variable in this way, and the transforma-
tion is invertible, which makes the group of transformations
a sharply transitive transformation group (which we abbrevi-
ate to transitive transformation group). Not all distributions
have transitive transformation groups. For instance, there is
no set of transformations over the set of all gamma distribu-
tions that form a transitive transformation group.

We refer to those statistical models that are associated with
transformations that form a transitive transformation group
as transitive transformation models. They are also known ho-
mogeneous models (e.g. McCormack and Hoff, 2023). Ex-
amples of transitive transformation models are exponential,
Pareto with a known scale, Rayleigh, normal with a known
location or scale, normal, lognormal with a known location
or scale, lognormal, Gumbel, Fréchet with a known location
parameter, Weibull, Logistic, Cauchy, Laplace, Lévy, GEVD
with a known shape parameter, generalised Pareto distribu-
tion (GPD) with a known shape parameter, and any other dis-
tribution which has just location and/or scale parameters. Ex-
amples of models that are not transitive transformation mod-
els are gamma, Pareto, Fréchet, GEVD, GPD with a known
location parameter, and GPD.

4.2 Existence of a right Haar prior

If there exists a transformation group acting sharply transi-
tively on a parameter space, then Haar’s theorem tells us that
there exists what is known as the right Haar prior (RHP) on
this parameter space. Haar’s theorem was originally proven
by the mathematician Alfred Haar in 1933. It is covered in
modern textbooks on measure theory and Haar measures
such as Diestel and Spalsbury (2014). In fact, we do not
have to invoke Haar’s theorem to justify our approach since
we will derive the RHPs for all the cases in which we need
them, and the derivations themselves prove the existence of
the RHP for those specific cases. Details of how we derive
RHPs are given in the Appendix.

4.3 Predictive probability matching

The RHP can be used to produce a Bayesian predictive distri-
bution for a random variable Y using the standard Bayesian
prediction equation given by

p(y|d)=

∫
f (y;θ )L(θ;d)π (θ )dθ∫

L(θ;d)π (θ )dθ
,

where p(y|d) is the probability density of the prediction of
y given training data d , f (y;θ ) is the probability density of
a prediction of the random variable Y for given parameter θ ,
L(θ;d) is the likelihood of the parameter θ given the train-
ing data d, and π (θ ) is the RHP. This predictive distribution
will be probability matching, i.e. will have zero PCP bias.
The proof of this result involves the framework described
by Fraser (1961), a theorem from Hora and Buehler (1966)
that relates Bayesian and frequentist estimates, and the appli-
cation of this theorem to prediction by Severini et al. (2002).

4.4 Discussion

The Severini et al. (2002) result solves the problem of how
to make predictions that are predictive probability matching
for transitive transformation models. It therefore tells us how
to completely eliminate the PCP bias that we have discussed
above for that set of models. We apply the theory to the 10
of our 12 models that are transitive transformation models.
The GEVD and GPD with a known location parameter are
not transitive transformation models, but we test whether a
methodology partly based on the RHP approach can be used
to reduce the reliability bias in GEVD and GPD predictions.

4.5 Examples

We now give a number of examples of the RHP for vari-
ous types of transformation model and some specific distri-
butions.

4.5.1 RHP for location models

Location distributions are distributions with a single param-
eter µ for which the distribution function is proportional to
g(x−µ) for some function g. Examples of families of loca-
tion distributions are the normal distribution with a known
standard deviation, the Gumbel distribution with a known
scale parameter, the GEVD with known shape and scale pa-
rameters, and the GPD with known shape and scale parame-
ters. The transformation X′ =X+ a, µ′ = µ+ a, for any a,
then forms a transitive transformation group over the distri-
butions within each family. The RHP in this case is given by
π (µ)∝ 1. The derivation of the location distribution RHP is
given in Appendix A.

4.5.2 RHP for scale models

Scale distributions are distributions with a single parameter σ
for which the distribution function is proportional to g(x/σ ),
for some function g. Examples of families of scale distribu-
tions are the exponential, the Weibull with a known shape
parameter, the normal with a known location parameter, the
Gumbel with a known location parameter, and the GEVD
with a known location parameter and a known shape param-
eter. The transformation X′ = bX, σ ′ = bσ , for any b > 0,
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forms a transitive transformation group over scale distribu-
tions within each family. The RHP in this case is given by
π (σ )∝ 1/σ . The derivation of the scale distribution RHP is
given in Appendix A.

4.5.3 RHP for location-scale models

Location-scale distributions are distributions with two pa-
rameters (µ,σ ) for which the distribution function is propor-
tional to g((x−µ)/σ ) for some function g. Examples of fam-
ilies of location-scale distributions are the normal, logistic,
Cauchy and Gumbel distributions, and GEVD and GPD with
known shape parameters. The transformation X′ = a+ bX,
µ′ = a+bµ, σ ′ = bσ , for any a and b > 0, forms a transitive
transformation group over location-scale distributions within
each family. The RHP in this case is given by π (µ,σ )∝ 1/σ .
The derivation of the location-scale RHP is given in Ap-
pendix A.

The location, scale, and location-scale cases then deter-
mine the RHP for all the transitive transformation distribu-
tions we are considering using the arguments below.

4.5.4 RHP for the exponential distribution

The exponential is a scale distribution with one parame-
ter λ and exceedance distribution function given by S(x)=
exp(−λx). Transforming the parameter to σ = 1/λ, to match
the form for scale distributions given above, allows us to de-
rive the RHP for the exponential as π (λ)∝ 1/λ. Details of
the derivation are given in Appendix B.

4.5.5 RHP for the Pareto distribution with a known scale

The Pareto with a known scale parameter xm is a distribution
with one parameter α, with an exceedance distribution func-
tion given by S(x)= (xm/x)α . It is not a location or scale
distribution. However, if we transform the random variable to
X′ =− log(logX− logxm), thenX′ follows a Gumbel distri-
bution with scale= 1, which is a location distribution. This
allows us to derive the RHP for the Pareto as π (α)∝ 1/α.
Details of the derivation are given in Appendix C.

4.5.6 RHP for the log-normal distribution

The log-normal is not a location-scale distribution. However,
if we transform the random variable toX′ = logX, thenX′ is
normally distributed, and so X′ does follow a location-scale
distribution. Under this transformation, the normal param-
eters are the same as the log-normal parameters. The RHP
for the log-normal is obtained by transforming the RHP for
the normal, but since the parameters are the same, the trans-
formation does nothing, and the RHP is the same as for the
normal, i.e. π (µ,σ )∝ 1/σ .

4.5.7 RHP for the Fréchet distribution with a zero
location parameter

The Fréchet with a zero location parameter is a distribution
with two parameters (s,α) with cumulative distribution func-
tion given by F (x)= exp(−(x/s)−α). The Fréchet with a
zero location parameter is not a location-scale distribution.
However, if we transform the random variable toX′ = logX,
then X′ follows a Gumbel distribution, which is a location-
scale distribution. This allows us to derive the RHP for the
Fréchet with a zero location parameter as π (s,α)∝ 1/(sα).
Details of the derivation are given in Appendix D.

4.5.8 RHP for the Weibull distribution

The Weibull is a distribution with two parameters (k,λ)
with exceedance distribution function given by S(x)=
exp(−(x/λ)k). The Weibull is not a location-scale distribu-
tion. However, if we transform the random variable to X′ =
− logX, then X′ follows a Gumbel distribution, which is a
location-scale distribution. This allows us to derive the RHP
for the Weibull as π (k,λ)∝ 1/(kλ). Details of the derivation
are given in Appendix E.

4.5.9 RHP for the GEVD and GPD

The GEVD is a distribution with three parameters (µ,σ,ξ )
with a distribution function given by e−t(x) where for
ξ = 0, t(x)= e−(x−µ)/σ , and otherwise t(x)= (1+ ξ ((x−
µ)/σ ))−1/ξ . The parameter ξ is referred to as the shape
parameter. For negative values of the shape parameter, the
GEVD is a three parameter form of the Weibull; when the
shape parameter is zero, the GEVD is equivalent to the Gum-
bel distribution, and when the shape parameter is positive, the
GEVD is a form of the Fréchet distribution. We can create a
transformation group for the GEVD using the set of all lin-
ear transformations X′ = a+ bX, for b > 0. However, this
transformation group is not transitive since the correspond-
ing transformation of the parameters does not change the
value of the shape parameter. Instead, the transformations
split the set of GEVDs into multiple subsets (known as or-
bits in group theory), each with a different value of the shape
parameter. The RHP of this transformation group, which we
call the conditional RHP (CRHP), does not create probability
matching predictions for the distribution when all parameters
are unknown. This is because it does not address the need
to put a prior on the shape parameter. There is, in fact, no
transitive transformation group for the GEVD and hence no
RHP. However, the above arguments do show that the GEVD
with a known shape parameter is a location-scale model, and
hence a transitive transformation model, and so has an RHP
of π (µ,σ )∝ 1/σ .

Similar arguments apply to the GPD with a known loca-
tion parameter. For the unknown shape parameter there is no
RHP, only a CRHP.
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Figure 3. Evaluation of the performance of various methods for predicting GEVD simulated data following the format of Fig. 1. The three
columns correspond to sample sizes of 25, 50, and 100, respectively. The four rows correspond to values of the shape parameter of −0.25,
−0.1, 0.1, and 0.25, respectively. Four methods are used to make the predictions: (a) maximum likelihood; (b) Bayesian prediction using
DMGS with the RHP on the location and scale parameters and using the maximum likelihood value for the shape parameter; (c) Bayesian
prediction using DMGS with the RHP on the location and scale parameters and a flat prior on the shape parameter; and (d) Bayesian
prediction using DMGS with Jeffreys’ prior.

5 Computation of the predictive distributions

Given the theory in the previous section, we now describe
methods for producing probability matching predictive dis-
tributions for the 10 of our 12 models that are transitive
transformation models. For each model we consider how
to evaluate the Bayesian prediction integral, given the RHP
for that model, and where possible, we use analytic solu-

tions. However, in many cases, analytic solutions are not
possible. Methods for evaluating the Bayesian prediction in-
tegral, in the absence of analytical solutions, include nu-
merical quadrature, importance sampling, rejection sampling
schemes such as ratio-of-uniforms sampling (RUST) (Wake-
field et al., 1991; Northrop, 2023), and Monte Carlo Markov
chain (MCMC) (see, for example, textbooks such as Bailer-
Jones, 2017). They each have advantages and disadvantages,
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depending on the problem being addressed, but none are
completely straightforward to use. For instance, although
MCMC is available in many software packages, using it re-
quires an understanding of burn-in and convergence. As a
simpler approach, that requires less understanding, we use
a novel method for evaluating the Bayesian prediction inte-
gral, taken from the Datta et al. (2000) study on approximate
predictive probability matching. Datta et al. (2000) treat the
maximum likelihood plug-in prediction as the first term in an
asymptotic expansion and then also derive the second term.
Equation (2.1) in their paper gives the following expression
for the predictive probability density:

p(y|d)= f (y; θ̂ )

1
2n

[
cst

{
cjrajrs+

2πs(θ̂ )

π (θ̂ )

}
ft (y; θ̂ )+ cjrfjr(y; θ̂ )

]
+ o(n−1), (2)

where cst and ajrs are, respectively, the negative inverse of the
matrix of second-order and the tensor of third-order partial
derivatives of the log-likelihood, both evaluated at θ̂ ; π (θ )
is the prior density; πs(θ ) is the vector of first-order partial
derivatives of π (θ ); and ft (y;θ ) and fjr(y;θ ) are, respec-
tively, the vector of first-order and the matrix of second-order
partial derivatives of f (y;θ ), where the partial derivatives are
all with respect to the parameters. The summation convention
has been used to simplify this expression.

Equation (3.3) in Datta et al. (2000) then gives a corre-
sponding first-order expression for the predicted quantiles as
a function of the exceedance probability:

h(π,α)= q(θ̂ ,α)+
1

nf (q(θ̂ ,α); θ̂ )[
cst

{
1
2
cjrajrs+

πs(θ̂ )

π (θ̂ )

}
µt (θ̂ ,α)+

1
2
cjrµjr(θ̂ ,α)

]
, (3)

where h(π,α) is the predictive quantile given prior π and
exceedance probability α; µt (θ,α)=−Ft (q(θ,α);θ ) and
µjr(θ,α)=−Fjr(q(θ,α);θ ), where Ft (y;θ ) and Fjr(y;θ )
are, respectively, the first-order and second-order partial
derivatives of F (y;θ ) with respect to the parameters. These
definitions of µt and µjr are different but equivalent to the
definitions (3.2) given in Datta et al. (2000).

Although apparently complex, the evaluation of Eqs. (2)
and (3) is straightforward as it involves only the differentia-
tion of the likelihood, prior, density and distribution function,
and matrix multiplication. We refer to the idea of using this
equation to estimate predictive densities and quantiles as the
DMGS method (after the initials of the authors of Datta et al.,
2000). Relative to the standard numerical methods for eval-
uating the Bayesian prediction integral, the DMGS method
has advantages and disadvantages:

a. DMGS is straightforward to automate (i.e. to run for
many cases without human intervention). For our pur-

poses, automation is important since we are running
many thousands of test cases for many distributions and
are developing software libraries.

b. DMGS is faster than the numerical integration methods.
Speed is important in our application since our simula-
tion tests involve many evaluations.

c. Equation (3) gives the quantiles we require directly as a
function of the exceedance probabilities.

d. DMGS will be less accurate than a method that evalu-
ates the full integral since it is only a first-order approxi-
mation. We assess whether it is a good approximation or
not using the results from our simulation testing. High
accuracy is less important for us, given the uncertainties
involved in all other steps of the estimation of extreme
weather return periods.

For two parameter distributions, our application of the
DMGS equations involve the numerical evaluation of the var-
ious terms in Eq. (3). Here the vectors µt (θ̂ ,α) and πs(θ̂ )
have two components, cst and µjr(θ̂ ,α) are 2× 2 matrices
with three unique terms, and ajrs is a 2×2×2 tensor with four
unique terms. For three-parameter distributions, the vectors
have 3 components, the matrices become 3×3 matrices with
6 unique terms, and the tensor becomes a 3× 3× 3 tensor
with 10 unique terms. For four-parameter distributions, the
vectors have 4 components, the matrices become 4×4 matri-
ces with 10 unique terms, and the tensor becomes a 4×4×4
tensor with 20 unique terms.

5.1 Specific distributions

We now describe how we evaluate the Bayesian prediction
integral with the prior set to the RHP for 10 of our mod-
els that are transitive transformation models. For the GEVD,
and GPD with a known location parameter, we describe a
number of alternative approaches for generating predictions.
An evaluation of the properties of the resulting return period
predictions is given in Figs. 1 and 2 in black.

5.1.1 Prediction for the exponential distribution

For the exponential, the Bayesian prediction integral can be
solved exactly, giving quantile predictions of the form

q̂(α)= s
(
α−1/n

− 1
)
,

where xi is the historical data and s =
∑n
i=1xi . Figure 1a

shows that these predictions are exactly predictive probabil-
ity matching, up to the accuracy of our simulation tests, as
expected from the theory.
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5.1.2 Prediction for the Pareto distribution with a known
scale

For the Pareto with a known scale, the Bayesian prediction
integral can be solved exactly, giving quantile predictions of
the form

q̂(α)= exp
(
s
(
α−1/n

− 1
))
.

Figure 1b shows that these predictions are exactly predic-
tive probability matching, up to the accuracy of our simula-
tion tests, as expected.

5.1.3 Prediction for the normal distribution

The normal distribution, when parameterised using the mean
µ and standard deviation σ , is a location-scale distribution,
and so the RHP is given by π (µ,σ )∝ 1/σ . If the normal dis-
tribution is parameterised differently (for instance, using the
variance or the inverse of the standard deviation or the in-
verse of the variance), then the RHP must be transformed us-
ing the rule for transforming probability densities. This prior
was proposed as an appropriate prior for the normal distribu-
tion by Jeffreys (1961) before the development of the RHP
theory and is often known as Jeffreys’ independence prior
for the normal distribution.

The Bayesian prediction integral with this prior can be
solved exactly (see, for instance, Lee, 2012), giving quantile
predictions of the form

q̂(α)= x+ σ̂
√

(1+ 1/n)Qt (1−α,n− 1),

where x is the mean of xi , σ̂ is the square root of the usual un-
biased estimator of the variance, with the denominator n−1,
andQt (1−α,n−1) is the set of quantiles of the t distribution
with n− 1 degrees of freedom at a probability of 1−α.

By comparison with corresponding predictions for the nor-
mal distribution with a known mean and a known variance
(see, e.g. Lee, 2012), it can be seen that the

√
(1+ 1/n) term

arises because of the uncertainty around the mean parame-
ter, while the t distribution arises because of the uncertainty
around the standard deviation parameter. This distribution is
identical to the confidence distribution for the normal dis-
tribution (see, e.g. Wasserman, 2003). Figure 1c shows that
these predictions are exactly predictive probability matching,
up to the accuracy of our simulation tests, as expected.

5.1.4 Prediction for the log-normal distribution

For the log-normal distribution, the Bayesian prediction inte-
gral can be solved exactly by transforming the random vari-
able to that of a normal distribution using the normal distri-
bution solution and transforming back. Figure 1d shows that
these predictions are exactly predictive probability matching,
up to the accuracy of our simulation tests, as expected.

5.1.5 Prediction for the logistic, Cauchy, and Gumbel
distributions

The logistic distribution with the distribution function
F (x)= (1+ exp(−(x−µ)/σ ))−1, the Cauchy distribution
with the density function f (x)= (πσ [1+ ((x−µ)/σ )2

])−1,
and the Gumbel distribution with the distribution func-
tion F (x)= exp(−exp(− ((x−µ)/σ ))) are all location-
scale distributions and so all have the RHP given by
π (µ,σ )∝ 1/σ .

There are, however, no known closed-form solutions for
the Bayesian prediction integrals in these cases, and so we
use the DMGS method. Figures 1e, f and 2a show our nu-
merical evaluation of the PCP calculated using the DMGS
method. At the accuracy of the simulations, the predictions
appear to be exactly predictive probability matching. The im-
pact of the approximation used in the DMGS method is not
apparent. We conclude that the DMGS method is sufficiently
accurate for our purposes for these distributions for this sam-
ple size.

5.1.6 Prediction for the Fréchet distribution with a zero
location parameter, Weibull distribution, and
GEVD with a known shape parameter

There are no known closed-form solutions for the Bayesian
prediction integrals in these cases, and so we use the DMGS
method. Figure 2b, c, d show our numerical evaluation of the
PCP calculated using the DMGS method. There are slight
biases, with the values of the PCP being slightly higher than
the nominal probabilities. These biases are because of the
first-order approximation used in the DMGS method. The
biases are much smaller than the bias from using maximum
likelihood, and we conclude that the DMGS method is suf-
ficiently accurate for our purposes. For other purposes, or
smaller sample sizes, it may be necessary to use a different
method to evaluate the integral, such as RUST or MCMC, to
achieve more accurate results.

5.1.7 Prediction for the GEVD

The GEVD with unknown shape parameter is not a transi-
tive transformation model, as discussed above, and hence the
RHP approach does not give a method for making probabil-
ity matching predictions. There is currently a lack of theory
that might help, and the only way to find methods that give
predictions that are close to probability matching is trial and
error. There are many possible approaches, and we have in-
vestigated the following three methods in addition to maxi-
mum likelihood:

a. a hybrid maximum likelihood/Bayesian prediction, in
which we fix the shape parameter to the maximum like-
lihood estimate and integrate over the uncertainty in the
location and scale parameters with the prior set to the
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Figure 4. Evaluation of the performance of three methods for predicting GEVD simulated data, for a sample size of 25, following the format
of Fig. 1. The three methods are all Bayesian predictions based on the GEVD, the normal, and the Gumbel, respectively. The prior for the
GEVD is the CRHP-flat prior, while the priors for the normal and Gumbel are the RHP. Panel (a) considers data simulated with a shape
parameter of −0.25, and panel (b) considers data simulated with a shape parameter of −0.01.

CRHP for the GEVD, which we refer to as the CRHP-
ML method;

b. Bayesian prediction using the CRHP for the GEVD,
along with a flat prior on the shape parameter, which
we refer to as the CRHP-flat method; and

c. Bayesian prediction using Jeffreys’ prior, which has the
property that it is invariant to parameter transformation.

In all three cases, we calculate the predictive quantiles us-
ing the DMGS method. Figure 2e shows that the best results
come from the CRHP-flat method. This method gives values
of the PCP which are slightly lower than the nominal prob-
ability. The CRHP-ML method outperforms maximum like-
lihood but still shows a large reliability bias, while Jeffreys’
prior does not perform as well as maximum likelihood.

Figure 3 explores the performance of our four methods for
predicting the GEVD as a function of the sample size and
shape parameter for sample sizes ranging from 25 to 100 and
values of the shape parameter ranging from −0.25 to 0.25.
The CRHP-flat method is consistently the best method. This
method performs very well for a sample size of 100 and ap-
pears to give near-perfect probability matching. It performs
less well for a sample size of 25. The results in this figure
show that the reliability bias from all methods is reduced as
the sample size increases.

The poor performance of the CRHP-flat method for small
sample sizes motivates us to explore whether alternative dis-
tribution shapes, for which there is an RHP, might be bet-
ter for predicting GEVD data in some cases. Figure 4 shows
results from a numerical experiment in which we simulate
GEVD data and attempt to predict it using Bayesian meth-
ods based on GEVD with a CRHP-flat prior and normal and

Gumbel distributions with the RHP. When the simulated data
is based on a shape parameter of −0.25, predictions based
on the normal distribution with the RHP give a better pre-
diction than the GEVD with the CRHP-flat prior. When the
simulated data is based on a shape parameter of −0.01, pre-
dictions based on the Gumbel distribution with the RHP give
a better prediction than the GEVD with the CRHP-flat prior.
These are just suggestive results, but they add weight to the
argument given in Sect. 2 that it may make sense to test a
number of models when predicting maxima rather than just
using only the GEVD.

5.1.8 Prediction for the GPD with a known location
parameter

The GPD with a known location parameter is also not a tran-
sitive transformation model. Figure 2f shows results from
testing the CRHP-flat method. This method gives PCP val-
ues that are slightly higher than the nominal probability at
long return periods but which are much more accurate than
maximum likelihood in this case.

Figure 5 explores the performance of two methods for pre-
dicting the GPD with a known location parameter as a func-
tion of the sample size and shape parameter for sample sizes
ranging from 25 to 100 and values of the shape parameter
ranging from 0 to 0.6. The CRHP-flat method is consistently
the best method. As for the GEVD, this method performs
very well for a sample size of 100 and appears to give near-
perfect probability matching. It performs less well for a sam-
ple size of 25.
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Figure 5. Similar to Fig. 3 but now for data simulated using the GPD. The three columns correspond to sample sizes of 25, 50, and 100,
respectively. The four rows correspond to values of the shape parameter of 0, 0.2, 0.4, and 0.6, respectively. Two methods are used to make
the predictions: (a) maximum likelihood; and (b) Bayesian prediction using DMGS with the CRHP on the location and scale parameters and
a flat prior on the shape parameter.

5.2 Sampling bias of Bayesian predictions

We can also consider the sampling bias of our Bayesian esti-
mators of the return value and return probability. Results are
shown in Figs. S1–S4. Evaluating the return probability bias
requires calculating exceedance probabilities. For all except
the GEVD and GPD, we evaluate the exceedance probabili-
ties using an asymptotic expansion derived from the density
expansion given in Datta et al. (2000). However, this asymp-
totic expansion is not suitable for evaluating densities and

probabilities for the GEVD and GPD because the support of
these models depends on the parameter values, and so we
evaluate the exceedance probabilities using RUST instead.
For the return value estimators, we see that in the upper tail
the Bayesian estimators all have positive sampling bias and
that the magnitude of the biases is larger than that of the
maximum likelihood biases. For the return probability esti-
mators, we see that the sampling biases are of a similar size
to the maximum likelihood sampling biases. That Bayesian
predictions show sampling biases in this way is well known
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(see, e.g. Bernardo and Smith, 1993; Gelman et al., 1995),
and is not related to the performance of the predictions in
terms of reliability. For the RHP models, one could say that
these biases are necessary in order to achieve reliable predic-
tions, and it seems likely that they are necessary to achieve
approximate reliability for the non-RHP models too.

6 Extension to modelling trends

In many cases, extreme weather return periods are estimated
in the presence of a trend due to climate change. The best
way to capture a trend is to use a single statistical model
that encompasses both the trend and the distribution around
the trend. Any of the statistical models we have discussed
above can be generalised to include a trend by adding a pre-
dictor to any of the parameters. For instance, a location pa-
rameter µ can be replaced with a linear function of a pre-
dictor ri , giving µi = α+βri . For a location-scale model
with a trend, the transformation X′i = a+ bXi + cri , α

′
=

a+ bα,β ′ = bβ + c,σ ′ = bσ , for any a,c and b > 0, forms
a transitive transformation group over the distributions in the
family.

We apply linear trends to the location parameters of the
following six models: normal, log-normal, logistic, Cauchy,
Gumbel, and GEVD. For the GEVD, we additionally apply
a log-linear trend to the scale parameter and a linear trend
to the shape parameter. The predictors ri would typically be
either time or global mean surface temperature. In each case,
adding a predictor in this way adds an extra parameter to the
model since the original parameter is replaced by two param-
eters. The derivation for the RHP for linear predictors on the
location parameter is given in Appendix F, and the RHPs do
not change in any of the six cases relative to the same model
without the trend. The details of how we make predictions
for the six distributions with trends are as follows.

6.1 Normal distribution with a trend

For the normal with a trend, the RHP prediction for the point
r0 is given by

q̂(α)= x+ σ̂
√

(1+ 1/n+R0/R)Qt (1−α,n− 2),

where the unbiased estimator for the variance σ̂ 2 uses n− 2
in the denominator, R0 = (r0− r)2, and R =

∑n
i=1(ri − r)2.

6.2 Log-normal distribution with a trend

For the log-normal with a trend, the RHP prediction can be
produced by taking the log of the data xi , producing the RHP
prediction for the normal distribution with a trend and taking
the inverse log of the prediction.

6.3 Logistic, Cauchy, and Gumbel distributions with a
trend

For the logistic, Cauchy, and Gumbel with trends, there is no
analytic solution for the prediction, and we use the DMGS
approach.

6.4 GEVD with a trend

For the GEVD, we consider models with trends on the lo-
cation (GEV1); on the location and the scale (GEV2); and
on the location, scale, and shape (GEV3). In all cases, we
make predictions using maximum likelihood and a CRHP-
flat prior. We do not consider the other two models that were
considered for the GEVD without a trend, given their poor
performance. We use the DMGS approach for the Bayesian
integral.

6.5 Numerical testing of trend models

We test these trend models using simulations, as for the non-
trend models. In all cases, the trend is set to a slope of 1
in 50 years, although the PCP results do not depend on the
size of the slope. Results are shown in Fig. 6 and show that
the normal, log-normal, logistic, Cauchy, and Gumbel with
a trend models show poor probability matching when using
maximum likelihood and good probability matching when
using the RHP. The GEVD with trend shows poor probability
matching when using maximum likelihood. The CRHP-flat
method performs much better than maximum likelihood.

In Figs. S5–S7, we give results for the performance of
maximum likelihood and the CRHP-flat method for the
GEV1, GEV2, and GEV3 models as a function of the sample
size and shape parameter. We see that the CRHP-flat method
always beats maximum likelihood and once again performs
very well for a sample size of 100. We see that the reliability
biases increase as more predictors are added.

7 De Bilt example

We now revisit the De Bilt example that has previously
been discussed in Philip et al. (2020), van Oldenborgh et al.
(2021), and van Oldenborgh et al. (2022). This example con-
siders 118 or more years of annual maximum temperature
data from De Bilt (in our case, we use 122 years of data).

We use the model selection philosophy for modelling ex-
tremes, as discussed in Sect. 2, in which we consider multiple
models rather than just relying solely on the GEVD. We con-
sider the following six models: normal with a linear predic-
tor on the mean, GEV1, GEV2, GEV3, logistic with a linear
predictor on the location, and Gumbel with a linear predic-
tor on the location. We use global mean surface temperature
for the predictors. For the normal, logistic, and Gumbel, we
consider both maximum likelihood (ML) and RHP predic-
tions. For the GEVD models, we consider maximum likeli-
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Figure 6. As Fig. 1 but for models with trends, i.e. predictors, on the location parameter.

Table 1. Model selection AIC weights for six models applied to
De Bilt historical maximum temperatures. The weights sum to 100
(before rounding).

Model AIC weight

Normal with one predictor 34.3
GEVD with one predictor 24.8
GEVD with two predictors 16.3
GEVD with three predictors 2.5
Logistic with one predictor 21.9
Gumbel with one predictor 0.1

hood and CRHP-flat predictions. The ML models are only
included for model selection, and as points of comparison,
since we already know from our simulation results that they
do not give good extrapolation of extremes and so are not
appropriate models. In all the models, we merge the steps of
trend and distribution modelling.

For the GEV1 model, the maximum likelihood param-
eter estimates are as follows: location = 23.2, trend slope
= 3.13, scale = 1.66, and shape =−0.32. For this value
of the shape parameter, the GEVD has a somewhat similar
shape to the normal distribution. For model selection among
the maximum likelihood models, we calculate AIC weights.
Table 1 shows that the normal model gets the highest weight,
followed by the GEV1 model and then the logistic model.
GEV2 and GEV3 get lower AIC weights, and the Gumbel
gets almost zero weight, implying that it does not fit the his-
torical data well at all.

We see that this is an example where the model selection
scores favour a model for maxima which is not the GEVD.
Comparing the likelihoods for the normal and GEV1 models
shows that the GEV1 has a higher likelihood and the normal
only has a better AIC score because of the compensation for
having fewer parameters. The AIC model selection is there-
fore favouring normal over GEV1 because it considers GEV1
to be overfitted relative to the normal.
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Our decision of which model or models to select in this
case is a subjective one based on the model selection scores,
extreme value theory, and simulation results presented ear-
lier. Different scientists may put a different emphasis on these
three factors. The model selection scores assess the overall
agreement between the distribution shape and the data, while
the simulation results assess the ability to extrapolate into the
tail, which is not assessed by the model selection scores. We
conclude that the best model to use in this case, of the 10
we are considering, would be the normal RHP model since
the normal has the best model selection scores, and using the
RHP version should give good extrapolation in the tail. The
second- and third-best models are the GEV1 with a CRHP-
flat prior and the logistic RHP models since these models
both have reasonably good model selection scores and would
be expected to extrapolate well into the tail. The best three
models all perform well, and considering all three is useful
as it gives an indication of the level of model uncertainty.

Figure 7 shows predictions from the normal and GEVD
methods for 1901 and 2022 climates. We see that the normal
models give higher temperatures for a known return period
(or shorter return periods for a known temperature) than the
corresponding GEV1 models.

In the 1901 climate, the 2018 heatwave has a return period
much longer than any we have calculated in the normal, lo-
gistic, or GEV1 models, emphasising how drastically climate
has changed between 1901 and 2018. In the 2022 climate, in
the normal RHP model (the first of our selected models), the
2018 heatwave has a return period of 44 years. In the sec-
ond and third of our selected models, the GEV1 CRHP-flat
prior and logistic RHP models, the heatwave has return peri-
ods of 34 and 52 years. All of these return periods are shorter
than the return period from the GEVD ML model, which is
90 years.

7.1 Uncertainty intervals

Studies that have used maximum likelihood to estimate ex-
tremes often use a parametric bootstrap method to generate
confidence intervals around the estimated return probabili-
ties. In Fig. S8, we show results for 90 % confidence inter-
vals generated in this way for the GEV1 maximum likelihood
model and compare them with the GEV1 CRHP-flat model
return probabilities. We see that at short return periods, the
Bayesian return probabilities are greater than the maximum
likelihood return probabilities but still lie within the range of
the confidence intervals. However, at longer return periods,
beyond around 1500 years, the Bayesian return probabilities
lie outside the confidence intervals. This can readily be un-
derstood as the Bayesian predictive distributions have fatter
tails than the underlying distributions. For instance, the pre-
dictive distribution for the normal distribution is a t distribu-
tion, which has fatter tails than the normal, and the predictive
distribution for the exponential distribution is a Pareto distri-
bution, which has fatter tails than the exponential. Similarly,

Figure 7. Return periods for maximum temperature at De Bilt
based on four different statistical methods for (a) 1901 climate and
(b) 2022 climate. The location parameters are all modelled with
global mean surface temperature as a linear predictor. The models
are normal (solid lines) and GEVD (dashed lines) based on max-
imum likelihood (grey) or Bayesian methods (black). The normal
models achieve the best model selection scores. The return periods
of the 2018 heatwave of 29.7 °C in the 2022 climate are shown by
vertical dashed lines.

for the GEVD, the predictive distribution is also fatter-tailed.
The confidence intervals for the maximum likelihood GEVD
are based on GEVDs with different parameter values. How-
ever, any GEVD, with any parameter values, will always ul-
timately be overtaken by the predictive distribution we are
generating because of the fatter tails.

For our Bayesian prediction, uncertainty intervals can be
created by sampling from the posterior distribution. We have
generated Bayesian intervals in this way using RUST. The
results are also shown in Fig. S9.

8 Conclusions

We have compared statistical predictions of extremes that
propagate parameter uncertainty with statistical predictions
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based on maximum likelihood, in the context of univariate
parametric statistical models. This is motivated by a number
of recent studies which have used statistical models to esti-
mate extreme weather return periods using maximum likeli-
hood, including Philip et al. (2022), Otto et al. (2023), Rivera
et al. (2023), Thompson et al. (2023), Vautard et al. (2023),
Zachariah et al. (2023), and van Oldenborgh et al. (2022).

We have used simulations to show that if the statistical
model is being fitted using maximum likelihood to 50 years
of data, then estimated return levels corresponding to return
periods of around 25 years and above will be exceeded ma-
terially more often than the return period suggests. We call
this discrepancy between the probability of exceeding a pre-
dicted quantile and the probability implied by the nominal
return period of the prediction a reliability bias. The reliabil-
ity bias gets worse as the return period increases. The degree
of the reliability bias varies from distribution to distribution,
but of the distributions we have tested, it is the worst for the
GEVD and GPD. For the GEVD, return level estimates cor-
responding to return periods of 200 years are exceeded more
than once in every 100 years rather than once every 200 years
as one would expect.

We have explored using objective priors that are chosen
to reduce this reliability bias, which we call calibrating pri-
ors. For certain statistical models, known as transitive trans-
formation models, it is possible to derive a Bayesian prior,
known as the right Haar prior (RHP), that can be used to
make objective Bayesian predictions that give predictions
without reliability bias (assuming that the statistical model
is correct). We have given the RHP for a number of com-
monly used distributions: the exponential distribution, Pareto
distribution with a known scale parameter, normal distribu-
tion, log-normal distribution, logistic distribution, Cauchy
distribution, Gumbel distribution, Fréchet distribution with a
known location parameter, Weibull distribution, and GEVD
with a known shape parameter.

The situation for non-transitive transformation models,
such as the GEVD and GPD, is more complex. There is no
RHP for non-transitive transformation models, and it is un-
clear as to what the best method is for making predictions.
We have therefore resorted to trial and error, and have tested
four methods for predicting the GEVD and two methods for
predicting the GPD. We find a Bayesian method that gives
reasonably good predictive probability matching for both dis-
tributions. It consists of using the conditional RHP for a
known shape parameter to determine the prior on the loca-
tion and scale parameters, combined with a flat prior on the
shape parameter. For the largest sample sizes we test, of 100
data points, this CRHP-flat method gives close to perfect pre-
dictive probability matching.

Based on these results, we recommend that in any situation
in which a univariate parametric statistical model is being
used for modelling probabilities or return periods of extreme
weather, predictions should be generated using the calibrat-
ing priors that we present in preference to using maximum

likelihood. Calibrating priors are straightforward to use and
eliminate or greatly reduce the reliability bias caused by ig-
noring parameter uncertainty.

Making a Bayesian prediction is not entirely straight-
forward as it involves an integral. To avoid having to use
numerical methods to perform this integral, we have used
an approximation scheme, based on Eq. (3.3) from Datta
et al. (2000), that we call the DMGS method. The DMGS
method reduces the Bayesian prediction integral to a direct
calculation involving derivatives and matrix multiplication,
is straightforward to write in computer code, and is fast to
evaluate. Our results show no apparent reliability bias from
using the DMGS method for the logistic, Cauchy, and Gum-
bel distributions and a small reliability bias from using it for
the Fréchet, Weibull, and GEVD with known shape distri-
butions. The bias for the Fréchet, Weibull, and GEVD with
known shape distributions is, however, much smaller than
the bias from using maximum likelihood and may be small
enough that it can be ignored for many applications. Alter-
natively, the integral could be performed using standard nu-
merical methods.

The models we have considered are relatively simple. The
most complex, as measured by number of parameters, is the
GEVD with three predictors, which has six parameters. How-
ever, the idea of using calibrating priors can also be applied
to more complex models with more parameters. Indeed, the
more parameters there are, the more important it becomes to
account for parameter uncertainty. A key area for future re-
search is therefore to derive reasonable calibrating priors for
more complex models.

We have also investigated an example consisting of max-
imum temperature data from the last 122 years at De Bilt,
which has previously been discussed by Philip et al. (2020),
van Oldenborgh et al. (2021), and van Oldenborgh et al.
(2022). These authors used the GEVD, on the basis that
the GEVD is the limiting distribution for maxima when the
parameters are known, and estimated the parameters using
maximum likelihood. We use a model selection approach,
using AIC, and test normal with a predictor on the mean,
GEVD with one, two, and three predictors on the location,
scale, and shape parameters and logistic and Gumbel mod-
els with predictors on the location parameter. We find the
best AIC score for the normal model with a predictor on
the mean. GEVD with a predictor on the location parame-
ter gives the second-best AIC score, and the logistic distri-
bution with a predictor on the location parameter gives the
third best score. The GEVDs with two and three predictors
get less good AIC scores because they are overfitted. The
Gumbel gets a very poor AIC score and can be completely
rejected as suitable model. We therefore select normal RHP,
GEVD with a CRHP-flat prior, and logistic RHP as the best
models (all with predictors on the location parameter). For
the 2018 heatwave, predictions from these models give re-
turn periods of 44, 52, and 34 years, respectively. These are
lower than the return periods given by the maximum likeli-
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hood version of the GEVD, which is 90 years. The difference
in return periods between the two GEVD models is because
of the inclusion of parameter uncertainty.

Estimating probabilities and return levels of extreme
weather events is difficult and involves many uncertainties.
We have investigated one issue, which is how to propagate
parameter uncertainty into the predicted distribution. Meth-
ods also exist for reducing parameter uncertainty, in particu-
lar the ideas of basing parameter estimates on data from mul-
tiple sites or on higher-frequency data. In some cases, it may
be possible to combine the two ideas of propagating the pa-
rameter uncertainty and reducing the parameter uncertainty,
which may then give the best results.

We intend to continue this line of research and further
investigate methods for propagating parameter uncertainty
when using non-transitive transformation distributions, such
as the gamma distribution, GEVD, and GPD, as well as ex-
tending the method of calibrating priors to other more com-
plex models.

Appendix A: Deriving right Haar priors

Consider a sharply transitive transformation model as de-
scribed in Sect. 3.1. The associated transformation group
can be identified with the parameter space �. If t is an el-
ement of � and S a subset1 of �, then we can define a new
subset of � which we call the right translate of S by t as
S∗t = {s∗t;s ∈ S}, where ∗ is the group operation. The right
Haar prior (RHP) is defined to be the measure I satisfying
I (S ∗ t)= I (S). In a similar way, the relation I (t ∗S)= I (S)
defines the left Haar prior (LHP), where t ∗S is the left trans-
late of S by t . The RHP and LHP are not necessarily equal.
Haar’s theorem guarantees the existence and uniqueness, up
to scalar multiplication, of the right and left Haar priors.

As noted in Sect. 3.2, it is not necessary to invoke Haar’s
theorem since the derivations below themselves prove the ex-
istence of the RHP for those specific cases. In each case, we
derive the prior density, π , that satisfies the equation

π (φ)= π (θ )
∣∣∣∣ ∂θ∂φ

∣∣∣∣
+

, (A1)

where φ = θ ∗ t , t ∈�. Then I (S)=
∫
S
π (θ )dθ is the RHP,

with associated RHP density π . To see this, note that

I (S ∗ t)=
∫
S∗t

π (φ)dφ =
∫
S

π (φ)
∣∣∣∣∂φ∂θ

∣∣∣∣
+

dθ

=

∫
S

π (θ )dθ = I (S)

as required.

1To be rigorous, we must exclude some pathological types of
subset by defining S to be a Borel set.

Equation (A1) can be solved for each case or solved in
general with

π (θ )∝
∣∣∣∣∂(t ∗ θ )

∂t
(t = e)

∣∣∣∣−1

+

,

where e is the identity element of the symmetry group. The
plus sign indicates that the absolute value of the determinant
is taken.

A1 Location models

In the transitive transformation for location distributions,
the parameter µ transforms as µ′ = µ+ a. Equation (A1)
therefore becomes π (µ+ a)= π (µ), the solution of which
is π (µ)∝ 1, which is the RHP. For comparison, the LHP is
identical in this case since a+ S = S+ a.

A2 Scale models

In the transitive transformation for scale distributions, the pa-
rameter σ transforms as σ ′ = bσ . Equation (A1) becomes
bπ (bσ )= π (σ ), the solution of which is π (σ )∝ 1/σ , which
is the RHP. Again we see that this is identical to the LHP
since bS = Sb.

A3 Location-scale models

In the transitive transformation for location-scale distri-
butions, θ = (µ,σ ) transforms by t = (a,b) as θ ′ = (a+
bµ,bσ ). Hence, φ ≡ θ ∗ t = (µ+ aσ,bσ ) with the Jacobian∣∣∣∣∂φ∂θ

∣∣∣∣= ∣∣∣∣ 1 a

0 b

∣∣∣∣= b.
Equation (A1) becomes bπ (µ+ aσ,bσ )= π (µ,σ ), which
has the solution π (µ,σ )∝ 1/σ , which is the RHP. For com-
parison, the relation I (t ∗S)= I (S) gives the LHP. However,
since t ∗ θ = (a+ bµ,bσ ) 6= θ ∗ t , the left Haar prior is dif-
ferent and is equal to π (µ,σ )∝ 1/σ 2.

Appendix B: Exponential distribution

The exponential distribution gives P (X > x)= exp(−λx). If
we transform this distribution to the new parameter σ us-
ing σ = 1/λ, then the RHP for the scale distribution param-
eterised by σ , πs(σ )∝ 1/σ , transforms into the RHP for
the exponential, πe(λ), using πe(λ)= πs(σ ) dσ

dλ , which gives
πe(λ)∝ 1/λ.

Appendix C: Pareto distribution with a known scale

The Pareto distribution with a known scale gives
P (X > x)= (xm/x)α . If we transform using y =

− log(logx− logxm) and µ= logα, we find that
P (Y < y)= exp(−exp(− (y−µ))), which is a form of
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the Gumbel distribution, with a scale parameter of 1. We can
derive the RHP for the Pareto with a known scale, πp(α),
from the RHP for the Gumbel with a known scale, πg(µ),
using πp(α)= πg(µ) dµ

dα , which gives πp(α)∝ 1
α

.

Appendix D: Fréchet distribution with a zero location

The Fréchet distribution with a zero location parameter
gives P (X < x)= exp

(
−(x/s)−α

)
. If we transform using

y = logx, µ= logs and σ = 1/α, we find that P (Y < y)=
exp(−exp(− ((y−µ)/σ ))), which is a form of the Gumbel
distribution. We can derive the RHP for the Fréchet, πf(α,s),
from the RHP for the Gumbel, πg(µ,σ ), using πf(α,s)=
πg(µ,σ )|J |, where J is the Jacobian, given by

J =

(
∂µ
∂s

∂σ
∂s

∂µ
∂α

∂σ
∂α

)
=

( 1
s

0
0 −

1
α2

)
,

which has the determinant 1/(sα2), and so

πf(s,α)∝
1
σ

1
sα2 ∝

1
sα
.

Appendix E: Weibull distribution

The Weibull distribution gives P (X > x)= exp
(
−(x/λ)k

)
.

If we transform using y =− logx, µ=− logλ, and σ = 1/k
we find that P (Y < y)= exp(−exp(− ((y−µ)/σ ))), which
is a form of the Gumbel distribution.

We can derive the RHP for the Weibull, πw(λ,k),
from the RHP for the Gumbel, πg(µ,σ ), using πw(λ,k)=
πg(µ,σ )|J |, where J is the Jacobian, given by

J =

(
∂µ
∂λ

∂σ
∂λ

∂µ
∂k

∂σ
∂k

)
=

(
−

1
λ

0
0 −

1
k2

)
,

which has the determinant 1/(k2λ), and so

πw(λ,k)∝
1
σ

1
k2λ
∝

1
kλ
.

Appendix F: Location-scale models with a trend

In the transitive transformation for location-scale distribu-
tions with a trend, θ = (α,β,σ ) transforms by t = (a,c,b) as
θ ′ = (a+ bα,bβ+ c,bσ ). Hence, φ ≡ θ ∗ t = (α+ aσ,cσ +
β,bσ ), with the Jacobian

∣∣∣∣∂φ∂θ
∣∣∣∣=

∣∣∣∣∣∣
1 0 a

0 1 c

0 0 b

∣∣∣∣∣∣= b.
Equation (A1) becomes bπ (α+aσ,cσ+β,bσ )= π (α,β,σ ),
which has solution π (α,β,σ )∝ 1/σ , which is the RHP.
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