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Abstract. In the study of the global climate, ocean temperature estimates use sea surface temperature (SST)
anomalies instead of marine air temperature (MAT) anomalies. A key question to ask is whether biases result
from this choice. In this article we employ hierarchical statistical models to investigate spatiotemporal differences
between SST and MAT and their anomalies in the tropical Pacific. The analysis uses observations from the
Tropical Atmosphere Ocean (TAO) buoy network and the ERA5 data product. Our spatiotemporal modeling
approach accounts for missing data in the observation network and allows for full uncertainty quantification.
Our findings indicate evidence that SST and MAT are interchangeable in the tropical Pacific when we calculate
seasonally adjusted monthly anomalies.

1 Introduction

In estimating global mean temperature anomalies (Vose
et al., 2012; Lenssen et al., 2019; Morice et al., 2020; Ro-
hde and Hausfather, 2020), the ocean temperature anomaly
estimates use sea surface temperature (SST) anomalies in-
stead of marine air temperature (MAT) anomalies (Freeman
et al., 2017). Here, the term “anomaly” stands for a deviation
from an average over some reference period, as is common
in climate science. SST is measured by a sensor under wa-
ter, while MAT is measured by a sensor in the air. The main
reason for using SST is that, especially in the earlier records,
the SST readings were of a better quality and more reliably
recorded on ships (Sect. S1 in Kent et al., 2017). On the
other hand, SST tends to be warmer than MAT. If the global
average anomaly difference is constant (say over a monthly
timescale), the anomalies would be identical. Cayan (1980)
identifies large-scale relationships between SST and MAT
for Marsden squares in the Northern Hemisphere. He finds
that SST is redder (in the spectral sense; i.e., there is more de-
pendence in the time series) than MAT, presumably because
of the thermal inertia of the ocean mixed layer. Feng et al.
(2018) compare the two using a coupled reanalysis study
and find a very slight decrease in the difference between
SST and MAT, both globally and over the equatorial Pacific.

Kent et al. (2013) compare nighttime MAT anomalies to SST
anomalies and find that since 1980 there has been a tendency
for the difference to increase in the northern temperate re-
gion, while there is a slight decrease in the tropical region.
Recent work, using relatively sparse data from the Tropical
Atmosphere Ocean (TAO) buoys (Hayes et al., 1991), indi-
cates that the difference may recently have been increasing
in the equatorial Pacific (Rubino et al., 2020), based on least-
squares regression over stretches of data at least 35 months
long for which both series are available without missing data.

We focus on understanding the spatiotemporal relationship
between SST and MAT in the tropical Pacific. To do this,
we analyze the difference between SST and MAT, allowing
for temporal dependence in the TAO buoy series and includ-
ing spatial dependence between buoys. Our spatiotemporal
regression-based approach allows us to investigate whether
or not there are temporal trends in the differences and how
these trends may vary spatially. We also compare them to an
analysis of the difference between SST and MAT based on
the European Centre for Medium-Range Weather Forecasts’
ERA5 fifth-generation reanalysis product (Hersbach et al.,
2020), which is restricted to the grid squares containing the
buoys.
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Figure 1. Locations of the 54 buoys in the current TAO array in the tropical Pacific.

One popularly used temperature anomaly is defined by re-
moving seasonal averages over a given time period at each
location. Thus, in addition to analyzing the raw difference se-
ries (SST minus MAT), we analyze seasonally adjusted dif-
ference series obtained by subtracting the average monthly
differences over the entire period of 1996–2018 for both the
buoys and ERA5.

In Sect. 2, we describe and illustrate the data and reanal-
ysis used, while in Sect. 3 we present a statistical model
for the different spatiotemporal difference datasets (buoy and
ERA5; raw differences and seasonally adjusted differences)
and describe our Bayesian inferences. The results appear in
Sect. 4, and a discussion of our analysis is found in Sect. 5.
The Supplement includes further data analyses and details of
the model fitting procedure.

2 Data and exploratory data analyses

2.1 TAO buoy data

The TAO array of fixed ocean buoys in the tropical Pacific
originated in 1984 (although some buoys were started ear-
lier) as an effort to understand the El Niño phenomenon. The
current array has 54 buoys, each measuring winds, sea sur-
face temperature, relative humidity, air temperature, and sub-
surface temperature at 10 depths in the upper 500 m. We will
focus on MAT (measured by a Rotronic MP-101A sensor for
2 min averages every 10 min) and SST (measured by a PMEL
ATLAS module instantaneously six times an hour). A com-
plete update and restructuring of the network is underway
and is expected to be completed by 2027. A plot of the lo-
cations of the 54 buoys in the current TAO array is shown in
Fig. 1.

The earliest measurement of both MAT and SST is from
7 March 1980 at the buoy at 110° W and the Equator. A sum-
mary of the data quality indicator for MAT and SST mea-
surements is shown in Table S1 in the Supplement. We use

data with quality classifications 1 (good), 2 (probably good),
and 5 (adjusted). The quality is best if the sensor calibration
agrees pre-deployment and post-deployment. If only one of
the two calibrations is available, the quality is deemed prob-
ably good. The adjusted classification has used some data
external to the sensor to adjust for pre- or post-calibration
disagreement. Details about the arrays, their instrumentation,
and their data quality control are given on the TAO website
(Mangum et al., 1998).

We looked at patterns of missing data in the daily series at
each location (Fig. S1 in the Supplement). At least part of the
missingness is caused by the fact that buoys attract fish and
therefore fishers, who purposely or inadvertently cut the wire
holding the buoy in place (Connell et al., 2023). When buoys
float away from their assigned location, a rescue ship is sent
out to recover them. Another source of missing data was the
2012 decommissioning of a NOAA ship that had serviced the
array since 1996 (McPhaden et al., 2023). Without mooring
maintenance, the missingness rose to 70 %. The COVID re-
strictions also made it difficult to recover lost buoys, leading
to higher missingness after 2019 (Boyer et al., 2023). Thus,
we decided to only use data from 1996 to 2018.

The daily data are turned into monthly data by averag-
ing data in months that have at least 15 d of non-missing
data. (We average over the observed daily values within each
month.) Figure S2 shows the resulting percentage of missing
monthly values for the period 1996 to 2018. The percentage
of missingness varies by location, ranging from 6 % (2° S,
140° W) to 51 % (2° N, 95° W).

2.2 Reanalysis data product

In order to get an alternative estimate of the SST and MAT,
we go to the European Centre for Medium-Range Weather
Forecasts’ ERA5 (Hersbach et al., 2020). A reanalysis uses
a current weather forecasting model of historical data. The
input data for ERA5 come from satellites, weather balloons,
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Figure 2. Heat maps of the SST, MAT, and their difference for the TAO buoy data (a, c, e) and the ERA5 data product (b, d, f). The units
are degrees Celsius. In each panel the monthly time series by year (horizontal axis) are ordered from north to south and, within each latitude,
from west to east (vertical axis).

weather data, buoys, ships, and other weather data. This is,
however, not a coupled model. Rather, the sea surface tem-
perature is prescribed using different Hadley Centre models
(the OSTIA model since 2007), and the atmosphere is then
run using the sea surface temperature as a boundary condi-
tion. ERA5 produces hourly data for a variety of variables on
a 0.25°× 0.25° grid. We use the monthly means data prod-
ucts for SST and MAT, extracting 54 monthly time series of
each variable at the grid cells closest to the locations of the
TAO array of ocean buoys. There are no missing values for
these 54 monthly SST and MAT series.

2.3 Exploratory data analysis

On average (over all of the buoys), the SST is about 0.76 °C
warmer than the MAT at a monthly scale. The difference
SST−MAT is directly proportional to the sensible heat flux
(Cayan, 1980). Looking at the different buoy locations, the

difference in the monthly means ranges from 0.21 (Equator
and 125° W) to 1.55 (2° N and 95° W).

We show heat maps of the SST, MAT, and their difference
(SST−MAT) for the TAO buoys in Fig. 2a, c, and e. Note
the very sparse data availability around 2013. As expected,
there are strong seasonal effects on the SST, MAT, and their
difference that seem to vary by latitude and longitude over
the tropical Pacific. The seasonal effects are stronger in the
east, where the buoys are closer to the continental land, as
compared to the west. While there are spatial variations in
the average temperature over 1996–2018, it is hard to see
long-term temporal trends.

Figure 3 shows, in blue, time series of observed differ-
ences between the sea surface temperatures and marine air
temperatures for the TAO buoys. Each panel shows a differ-
ent buoy location but does not accurately represent the dis-
tances between the locations (again, see Fig. 1 for the actual
locations). While we observe seasonal variations that vary
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Figure 3. Buoy (blue) and ERA5 (gray) monthly differences (SST−MAT) for the 0.25°× 0.25° grid square containing the corresponding
buoy location. This pictorial representation does not accurately represent the distances between the different buoy locations, and the series
presented at 8° N and 140° W is actually at the location 9° N and 140° W.

spatially in the difference SST−MAT, for the TAO buoys,
the strength of these seasonal variations is weaker compared
to examining the SST or MAT separately. This indicates that
there is some agreement between the seasonal patterns for
the sea surface and air temperatures in the tropical Pacific.
Figure 3 indicates no evidence of long-term trends but some
evidence that the average differences vary spatially for the
buoys across this region.

2.3.1 Comparison to ERA5

We compare heat maps of the monthly SST, MAT, and
SST−MAT for the TAO buoys (Fig. 2a, c, and e) and the
ERA5 product (Fig. 2b, d, and f) in Fig. 2. Figure 3 shows

for each buoy location the two time series of monthly TAO
buoy differences and monthly ERA5 differences.

Clearly the ERA5 differences tend to be higher than the
buoy differences, particularly in the western part. This could
be because the forecast model in the version (CY41R2) of
the ECMWF’s Integrated Forecasting System used in ERA5
has a known cold bias in the lower regions of the troposphere
over most parts of the globe (Haiden et al., 2021). Some out-
lying buoy patterns do not show up in ERA5 (e.g., 9° N,
140° W around 2004 and 2° S, 195° W around 2015). This
may be due to unfortunate configurations of missing values.

As with the TAO buoy monthly SST, MAT, and their dif-
ferences, we see strong seasonal variations in the correspond-
ing monthly ERA5 series, varying spatially over the tropical
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Figure 4. Heat maps of the seasonally adjusted monthly SST, MAT, and their differences for the TAO buoy data (a, c, and e) and the ERA5
product (b, d, and f). The units are degrees Celsius. In each panel the monthly time series by year (horizontal axis) are ordered from north to
south and within each latitude from west to east (vertical axis).

Pacific (again, the seasonal effects are stronger to the west
nearer the continental land). There is a suggestion that the
seasonalities are not the same for the TAO buoys and ERA5
series, which we will examine further in our modeling ef-
forts. Again, as with the TAO buoys, there is no visual ev-
idence of long-term trends in the monthly differences for
ERA5, but spatial variations in the average differences exist.

2.3.2 Seasonally adjusted monthly differences
(anomalies)

The argument for using SST as a proxy for MAT in calculat-
ing global mean temperature is that the difference between
the two does not change (on a global scale) over time (on a
monthly scale), so when SST and MAT anomalies are calcu-
lated, the difference should be zero. We calculate anomalies
by subtracting the longest possible monthly temporal aver-
age, in our case from 1996 to 2018. From now on we will
call these anomalies seasonally adjusted monthly values.

Figure 4 shows the seasonally adjusted monthly values of
the SST, MAT, and their difference. Making this seasonal ad-
justment takes care of the ERA5 cold bias in MAT and illus-
trates that the raw MAT from ERA5 should not be used as the
ground truth for this measurement in the equatorial Pacific.
Rather, ERA5 MAT seasonally adjusted monthly differences
need to be used.

In the heat maps of seasonally adjusted monthly SST and
MAT values, there are obvious warm and cold bands. They
correspond to the Oceanic Niño Index (ONI), which essen-
tially consists of temporally smoothed ocean temperature av-
erages over the central region of the network. High values of
the ONI correspond to high values of both SST and MAT.
The index is closely related to the Southern Oscillation In-
dex (SOI), which compares pressure gradients rather than
temperature gradients. It is notable that this pattern is clearly
discernible in the buoy data in spite of the substantial amount
of missing data.
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Figure 5. Buoy (blue) and ERA5 (gray) seasonally adjusted monthly differences for the 0.25°× 0.25° grid square containing the corre-
sponding buoy location. This pictorial representation does not accurately represent the distances between the different buoy locations, and
the series presented at 8° N, 140° W is actually at the location 9° N, 140° W.

Figure 5 compares the seasonally adjusted monthly differ-
ences calculated for the TAO buoys and the ERA5 product.
We present this figure at the same vertical scale as Fig. 3. Af-
ter seasonal adjustment, the TAO buoy and ERA5 differences
are more similar, with little evidence of seasonality across
the tropical Pacific. While there are local temporal dispari-
ties in the distributions of the seasonally adjusted monthly
differences for the buoys and reanalysis product, the centers
and spreads are similar at each spatial location. Together with
the lack of visual evidence of long-term trends in these sea-
sonally adjusted monthly differences, this suggests that, in-
deed, after seasonal adjustment, SST could be used in place
of MAT. We next investigate this formally using statistical
models for the differences.

3 Spatiotemporal modeling

In this section we introduce a hierarchical spatiotemporal
model that we will fit to our four monthly difference datasets:
the monthly differences, SST minus MAT, for the TAO buoy
data; the monthly differences, SST minus MAT, for the
ERA5 product; the seasonally adjusted monthly differences,
SST minus MAT, for the TAO buoy data; and the season-
ally adjusted monthly differences, SST minus MAT, for the
ERA5 product. In the model below we refer to each dataset
as the monthly differences. Again, our primary interest is
to learn whether or not there are spatially varying temporal
trends in each monthly difference dataset while accounting
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for possible spatially varying seasonal effects and residual
spatiotemporal dependence.

Suppose that D ⊂ S is our continuous geospatial domain
in the Pacific Ocean, where here S denotes Earth’s surface.
Let T ⊂ Z denote the discrete-time index set. For a given
dataset, we observe the monthly differences at m spatial lo-
cations in D denoted by s1, . . .,sm. At each spatial location
sj (j = 1, . . .,m), let Oj ⊂ T denote the set of time indexes
where we observe data. For the TAO buoy data, these indexes
vary according to where we observe data at each location,
whereas for the ERA5 product Oj = T for all j since there
are no missing data. Then {Z(sj , t) : j = 1, . . .,m, t ∈Oj }
denotes the observed spatiotemporal monthly differences for
a given dataset.

Our interest is in modeling the underlying latent spa-
tiotemporal difference process {Y (s, t) : s ∈D,t ∈ T }. As-
suming a standard Gaussian measurement error model, we
assume that the observations are related to this latent process
through

Z(sj , t)= Y (sj , t)+ ε(sj , t),j = 1, . . .,m, t ∈Oj ,

where we assume that {ε(s, t) : s ∈D,t ∈ T } is a mean zero
Gaussian process that is independent over space and time. We
suppose that the measurement error variance var(ε(s, t))=
σ 2 > 0 is constant over space and time.

Our model for the latent spatiotemporal difference process
assumes that

Y (s, t)= µ(s, t)+ η(s, t),s ∈D,t ∈ T ,

where {µ(s, t) : s ∈D,t ∈ T } is the spatiotemporal mean
process and {η(s, t) : s ∈D,t ∈ T } is a spatiotemporal ir-
regular noise process that captures residual dependence not
explained by the mean. Our spatiotemporal mean process
can account for potential spatiotemporal trend components
but also spatially varying seasonal-in-time components. Let
{xk,t : t ∈ T }, k = 1, . . .,K denote a set of K covariates that
each vary over time. These covariates could be temporal
trend covariates, or seasonal or periodic covariates. Then,

µ(s, t)=
K∑
k=1

βk(s)xk,t ,s ∈D,t ∈ T .

In our models for the TAO buoy and ERA5 monthly differ-
ences, we include an intercept, a linear trend term, and sine
and cosine terms with periods of 1 year: thus, K = 4. We
find that using one sine term and one cosine term provides
a reasonable and interpretable description for the periodic-
ity observed in both the TAO buoy and ERA5 monthly dif-
ferences. A less parsimonious description for the periodicity
over years would mean including more sine and cosine terms
with shorter periods, fitting a different term for each month,
or using periodic splines (e.g., Perperoglou et al., 2019). With
more complicated models we could use Bayesian model se-
lection methods (e.g., Gelman et al., 2013, Sect. 7) to select

between different models for the spatiotemporal mean pro-
cess. In our models for the TAO buoy and ERA5 seasonally
adjusted monthly differences, we include an intercept and a
linear trend term but no sine or cosine terms. (Models for
seasonally adjusted monthly differences that included yearly
periodicities contained posterior seasonal components that
were not different from zero.) We assume that the spatially
varying coefficient processes {βk(s) : s ∈D} are a priori in-
dependent of k. For each k, {βk(s) : s ∈D} is a stationary
Gaussian process with mean µβk and covariance

cov(βk(s),βk(s′))= τ 2
βk

exp(−d(s,s′)/λβk ),s,s
′
∈D,

where, for each k, τ 2
βk
> 0 is the variance parameter and

λβk > 0 is the spatial range parameter. Here, d(s,s′) denotes
the chordal distance between the spatial locations s and s′

in D. More specifically, writing these two spatial locations
in terms of the longitude and latitude, i.e., s = (long, lat)T

and s′ = (long′, lat′)T , we have

d(s,s′)= 6.371
[
(cos(long κ)cos(lat κ)

− cos(long′κ)cos(lat′κ))2

+ (cos(lat κ) sin(long κ)− cos(lat′κ) sin(long′κ))2

+ (sin(long κ)− sin(long′κ))2]1/2,
with κ = π/180. The chordal distance is the Euclidean dis-
tance through a sphere with Earth radius 6.371 km, induces
“a valid correlation function on the sphere” (Banerjee et al.,
2004, p. 620), and ensures that the spatial range parameter is
measured in thousands of kilometers.

We define our spatiotemporal irregular noise process
{η(s, t) : s ∈D,t ∈ T } as follows. For t = 1, let η(s,1)=
ζ (s,1) for all s ∈D. Then, for t ≥ 2, let

η(s, t)= φ(s)η(s, t − 1)+ ζ (s, t),s ∈D.

Thus, {η(s, t) : s ∈D,t ∈ T } is a spatiotemporal autore-
gressive process of order 1 – AR(1). In the above equation,
{φ(s) : s ∈D} is the spatially varying autoregressive param-
eter process and {ζ (s, t)} is a mean zero Gaussian spatiotem-
poral innovation process that is assumed to be independent
over time but correlated over space. We model a transforma-
tion of the AR(1) parameter process {φ(s) : s ∈D} to enforce
stationarity in time: to guarantee that φ(s) lies in (−1,1) for
all spatial locations s ∈D, we let

η(s)= log((1.0+φ(s))/(1.0−φ(s))),s ∈D,

and we assume that this transformed spatial process {η(s) :
s ∈D} is a stationary Gaussian spatial process with mean µη
and covariance

cov(η(s),η(s′))= τ 2
η exp(−d(s,s′)/λη),

where τ 2
η > 0 is the variance parameter and λη > 0 is the spa-

tial range parameter. To enforce a stationary starting condi-
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tion in time, for s,s′ ∈D, let

cov(ζ (s, t),ζ (s′, t))=


τ 2
ζ exp(−d(s,s′)/λζ )

1−φ(s)φ(s′) , t = 1;

τ 2
ζ exp(−d(s,s′)/λζ ), otherwise.

In the above equation, τ 2
ζ > 0 is the variance parameter

and λζ > 0 is the spatial range parameter. Since {ζ (s, t) : t ∈
T } is stationary in time at each spatial location s ∈D, the
variance is constant over time with

var(ζ (s, t))=
τ 2
ζ

1−φ2(s)
, t ∈ T . (1)

We fit our spatiotemporal models in the Bayesian
paradigm, and thus we now discuss our specification of the
prior distribution for the hyperparameters in the model. We
assume that all of the hyperparameters are mutually indepen-
dent. For the measurement error variance σ 2, we assume a
prior that is an inverse Gamma distribution with shape 0.01
and rate 0.01. For parameters in the spatiotemporal irregular
noise process {η(s, t) : s ∈D,t ∈ T }, the variance τ 2

ζ has an
inverse Gamma distribution with shape 0.01 and rate 0.01,
and for the spatial range parameter λζ we assume a weakly
informative Gamma prior with shape 20 and rate 10. For the
transformed AR(1) parameter process {η(s) : s ∈D}, we as-
sume a normal distribution with mean 0 and variance 10 for
the mean µη, an inverse Gamma distribution with shape 0.01
and rate 0.01 for the variance τ 2

η , and again a weakly in-
formative Gamma prior with shape 20 and rate 10 for the
range parameter λη. For each spatially varying coefficient
process {βk(s) : s ∈D}, for k = 1, . . .,K , we also assume a
normal distribution with mean 0 and variance 10 for the
mean µβk , an inverse Gamma distribution with shape 0.01
and rate 0.01 for the variance τ 2

βk
, and again a weakly infor-

mative Gamma prior with shape 20 and rate 10 for the range
parameter λβk . The weakly informative priors for all of the
spatial range parameters were constructed from spatial mod-
els of the parameter estimates obtained from site-by-site time
series analyses of the monthly differences and monthly sea-
sonally adjusted differences for both the TAO buoy data and
the ERA5 product. We chose a single prior that was wide
enough to capture the dependence observed for all of the dif-
ferent spatially varying parameters.

For each model, we draw samples from the posterior dis-
tribution of the parameters given the monthly differences us-
ing a Markov chain Monte Carlo (MCMC) algorithm that is
summarized in Sect. S2 in the Supplement. After discarding
the first 5000 samples, we draw 100 000 more samples from
the posterior distribution, keeping every 10th sample. Run-
ning two independent MCMC algorithms, this yields 20 000
draws from the posterior of each model that we base our in-
ference on. Trace plots of the two sets of MCMC samples and
standard diagnostic calculations (e.g., Gelman et al., 2013,
chap. 11) indicated good mixing of the Markov chains.

4 Results

4.1 Spatiotemporal models fit to the differences

We first fit our spatiotemporal model to the monthly dif-
ferences (SST−MAT) for the TAO buoy dataset and the
ERA5 product. (We consider models fitted to monthly de-
seasonalized differences in the next subsection.)

Column (a) of Table 1 presents summaries of the pos-
terior distributions of hyperparameters in the model fit to
the monthly differences for the buoys, while column (b) of
the same table summarizes the posterior for the model fit
to the monthly differences for ERA5. For each parameter,
we calculate the posterior mean and show the 95 % poste-
rior credible intervals in parentheses. Across most of the pa-
rameters, we find differences in the posterior distributions
for the model fit to the buoys and the model fit to ERA5.
For example, for the monthly differences, we learn that the
measurement error standard deviation (SD), σ , is smaller for
ERA5 than for the TAO buoys. This is to be expected as
we anticipate that ERA5 will include more sources of in-
formation about the temperature in each grid box contain-
ing the TAO buoy location. Similarly, the mean for the inter-
cept process, µβ1 , is different from zero and positive for both
datasets, indicating that the SST is higher than the MAT on
average, but the difference is higher for ERA5 as compared
to the buoys.

The SD parameters for the latent spatially varying pro-
cesses (τη for the transformed AR(1) parameter process,
τζ for the spatiotemporal innovation process, and τβk for
the coefficient process with k = 1, . . .,4) all indicate that
these processes have different uncertainties that need to be
accounted for in both datasets. The range parameters for
the latent spatially varying processes (λη, λζ , and λβk for
k = 1, . . .,4) are all different from one another. Even given
the choice of an informative prior for these range parameters,
there is some evidence of Bayesian learning relative to the
prior, which assumes means of 2 and 0.025 and 0.975 quan-
tiles of 1.222 and 2.967, respectively. Since a large range pa-
rameter indicates stronger spatial dependence, we learn that
all latent processes exhibit stronger spatial dependence in
the model fit to the ERA5 monthly differences as compared
to the model fit to the buoy monthly differences. Looking
across the different latent processes, the weakest spatial de-
pendence occurs for the spatiotemporal innovation process,
as measured by λζ , whereas the strongest spatial dependence
occurs for the coefficient process for the spatially varying
linear trend, as measured by λβ2 .

Figure 6 displays posterior summaries of the spatially
varying parameters in each of the two models: the first col-
umn shows the posterior means for the model fit to the
monthly differences for the TAO buoys, and the second col-
umn shows the posterior means for the model fit to the
monthly differences for ERA5. In the different rows we
present different parameters: posterior means for the spa-
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Table 1. Posterior means with 95 % credible intervals in parentheses for hierarchical spatiotemporal Bayesian models fit to four different
datasets. Each column shows the results for each dataset: (a) the monthly differences, SST−MAT, for TAO buoys; (b) the monthly differ-
ences, SST−MAT, for ERA5; (c) the seasonally adjusted monthly differences, SST−MAT, for TAO buoys; and (d) the seasonally adjusted
monthly differences, SST−MAT, for ERA5.

Differences Seasonally adjusted differences

Parameter (a) TAO buoy (b) ERA5 (c) TAO buoy (d) ERA5

σ 0.097 (0.087, 0.106) 0.055 (0.045, 0.064) 0.107 (0.100, 0.113) 0.081 (0.075, 0.087)

µη 1.638 (0.833, 2.381) 1.236 (0.729, 1.701) 1.789 (0.979, 2.528) 1.401 (0.840, 1.918)
τη 0.830 (0.592, 1.137) 0.507 (0.375, 0.677) 0.825 (0.587, 1.128) 0.550 (0.406, 0.734)
λη 1.826 (1.080, 2.784) 1.929 (1.191, 2.865) 1.845 (1.098, 2.785) 1.981 (1.243, 2.889)

τζ 0.198 (0.191, 0.205) 0.244 (0.237, 0.252) 0.178 (0.172, 0.184) 0.204 (0.198, 0.210)
λζ 0.401 (0.340, 0.474) 0.587 (0.512, 0.674) 0.374 (0.326, 0.431) 0.675 (0.593, 0.771)

µβ1 0.835 (0.437, 1.253) 1.630 (1.024, 2.265) −0.039 (−0.123, 0.041) 0.033 (−0.032, 0.100)
τβ1 0.435 (0.316, 0.590) 0.650 (0.497, 0.843) 0.072 (0.045, 0.114) 0.054 (0.037, 0.078)
λβ1 1.806 (1.073, 2.739) 1.965 (1.249, 2.885) 2.098 (1.298, 3.088) 2.319 (1.482, 3.340)

µβ2 0.006 (−0.026, 0.037) −0.003 (−0.032, 0.026) 0.004 (−0.026, 0.034) −0.003 (−0.029, 0.024)
τβ2 0.028 (0.022, 0.035) 0.024 (0.020, 0.030) 0.025 (0.020, 0.031) 0.022 (0.018, 0.027)
λβ2 3.163 (2.178, 4.328) 3.560 (2.515, 4.785) 3.469 (2.415, 4.680) 4.034 (2.890, 5.363)

µβ3 −0.130 (−0.401, 0.137) −0.108 (−0.444, 0.220) – –
τβ3 0.283 (0.211, 0.371) 0.340 (0.262, 0.439) – –
λβ3 1.926 (1.168, 2.869) 2.084 (1.321, 3.038) – –

µβ4 −0.124 (−0.333, 0.074) −0.161 (−0.404, 0.074) – –
τβ4 0.207 (0.157, 0.269) 0.248 (0.188, 0.324) – –
λβ4 2.123 (1.356, 3.074) 1.991 (1.232, 2.951) – –

tially varying intercepts (first row), the spatially varying
decadal trends (second row), the spatially varying AR(1) pa-
rameters (third row), and the spatially varying AR(1) process
SDs calculated using the square root of Eq. (1) (fourth row).
For each panel we calculate simultaneous 95 % credible in-
tervals for the parameters over the different locations using
the simconf.mc function from the excursions R package
(Bolin and Lindgren, 2017, 2018). If the interval at each lo-
cation contains zero, we present the posterior mean at a given
location in gray, indicating that there is no evidence that the
parameter at that location is not zero, suitably accounting for
multiple comparisons. If the posterior mean is shown in blue,
however, there is evidence that the parameter at that location
is not zero.

Examining the second row of Fig. 6, we see that, over the
tropical Pacific, all slopes measured by change per decade in
the models for the buoy and ERA monthly differences are
not different than zero. This indicates no evidence of linear
trends in the difference, SST−MAT, on a monthly timescale.
However, we see that most intercepts in the models for the
buoy and ERA monthly difference models (the first row) are
greater than zero. Thus, both the buoy and ERA5 datasets in-
dicate that the sea surface temperature, SST, is higher than
the marine air temperature, MAT, at most of the locations.
This difference varies by location and dataset. Expanding on

our earlier exploratory analysis, SST is significantly higher
than MAT in the ERA5 dataset as compared to the TAO buoy
network. This indicates that, on the monthly timescale with-
out de-seasonalization, the average monthly SST values are
not interchangeable with the average monthly MAT values,
regardless of the dataset that we use.

The third row of Fig. 6 compares the spatially varying
AR(1) parameter, which measures the strength of tempo-
ral dependence in the latent monthly difference process es-
timated for the TAO buoys (left column) and ERA5 (right
column). The fourth row of the same figure indicates the spa-
tially varying AR(1) process SDs, again calculated from the
square root of Eq. (1). From these panels, we learn that there
is significant temporal dependence over all locations in the
tropical Pacific, which again varies over the region of inter-
est. The temporal dependence estimated from ERA5 tends
to be weaker than that from the TAO buoys, which suggests
that the ERA5 product, which includes more sources of in-
formation about the SST and MAT, introduces less temporal
dependence at a monthly scale than the TAO buoy network
values. While there are differences in the process SDs over
the region, the values for the buoys and ERA5 are more sim-
ilar.

Figure 7 compares the posterior distribution of the
spatially varying seasonal components estimated for the
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Figure 6. A summary of the spatially varying posteriors from the hierarchical spatiotemporal Bayesian models fit to the monthly differences
SST−MAT for the TAO buoys (first column) and ERA5 (second column). The values are the posterior means for the spatially varying
intercepts (first row), the spatially varying decadal trend (second row), the spatially varying AR(1) parameters (third row), and the spatially
varying process standard deviations (fourth row). The gray values indicate that the simultaneous 95 % credible interval for the parameter at
that location contains zero, whereas the blue values indicate that the interval does not contain zero.

monthly differences of the buoys (in blue) and ERA5 (in
gray) for the different locations in the tropical Pacific. In each
panel the solid line shows the posterior mean value estimated
for each month, and the shaded regions indicate simultane-
ous 95 % credible intervals, again estimated using the meth-
ods of Bolin and Lindgren (2017, 2018). These figures indi-
cate a spatial variation in the seasonalities that varies by the

dataset used (buoy or ERA5). As a reminder, each seasonal-
ity is a summary of the seasonal variation in the monthly dif-
ferences SST−MAT, not the seasonalities of SST and MAT.
We would expect stronger seasonalities in SST and MAT as
we move away from the Equator, but we expect the seasonal
structure of the differences to be less pronounced. For the dif-
ferences we also see stronger seasonal structures as we move
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Figure 7. Posterior summaries of the seasonal terms from hierarchical spatiotemporal Bayesian models fit to the differences, SST−MAT, for
TAO buoys (blue) and ERA5 (gray), as a function of longitude and latitude. For each seasonal term, the solid dark lines indicate the posterior
mean as a function of the month, and the lighter-shaded regions denote 95 % simultaneous credible intervals. This pictorial representation
does not accurately represent the distances between the different buoy locations, and the series presented at 8° N and 140° W is actually at
the location 9° N and 140° W.

away from the Equator and closer to the continental land in
the east (there are only islands to the west of the region of
interest in the tropical Pacific). Different seasonalities for the
monthly differences indicate that the yearly seasonal struc-
tures of SST are different from the yearly seasonal structures
of MAT and further point to the fact that SST and MAT are
not interchangeable on the raw monthly scale in the tropical
Pacific.

4.2 Spatiotemporal models fit to the seasonally adjusted
differences

Next, we fit our spatiotemporal model to the monthly sea-
sonally adjusted differences (SST−MAT) for the TAO buoy
dataset and the ERA5 product. Since we have already de-
seasonalized the values in each dataset, in these models we
do not include seasonality terms that vary over the spatial
locations. (As mentioned earlier, we verified this assump-
tion by examining a more complicated model which included
yearly seasonality terms.) However, we still include a con-
stant and linear trend term at each location, which can vary
spatially over the tropical Pacific.
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Figure 8. A summary of the spatially varying posteriors from the hierarchical spatiotemporal Bayesian models fit to the seasonally adjusted
monthly differences, SST−MAT, for the TAO buoys (first column) and ERA5 (second column). The values are the posterior means for the
spatially varying intercepts (first row), the spatially varying decadal trend (second row), the spatially varying AR(1) parameters (third row),
and the spatially varying process standard deviations (fourth row). The gray values indicate that the simultaneous 95 % credible intervals for
the parameter at that location contain zero, whereas the blue values indicate that the interval does not contain zero.

Column (c) of Table 1 presents summaries of the poste-
rior distributions of hyperparameters in the model fit to the
monthly seasonally adjusted differences for the buoys, while
column (d) of the same table summarizes the posterior dis-
tributions for the model fit to the monthly seasonally ad-
justed differences for ERA5. Comparing the model fit to the
monthly (not seasonally adjusted) differences, we learn that

the process parameter for the measurement error SD (σ ) is
similar for the buoys but larger for ERA5. The parameters
for the spatially varying AR(1) parameters (µη, τη, and λη)
and the spatiotemporal innovation process (τζ and λζ ) vary
little in either model fit to the seasonally adjusted monthly
differences as compared to the model fit to the monthly dif-

Adv. Stat. Clim. Meteorol. Oceanogr., 11, 107–121, 2025 https://doi.org/10.5194/ascmo-11-107-2025



P. F. Craigmile and P. Guttorp: Comparing SSTs to MATs 119

ferences. This suggests that these spatial characteristics do
not vary after seasonal adjustment.

After seasonal adjustment, both intercept terms (as mea-
sured by µβ1 for the buoys and ERA5) are now not differ-
ent from zero and have a smaller SD compared to the mod-
els fit to the datasets without seasonal adjustment (as mea-
sured by τβ1 ). Figure 8 displays posterior summaries of the
spatially varying parameters in each of the two models fit
to the seasonally adjusted monthly differences. This plot is
arranged similarly to Fig. 6. The first row of Fig. 8 indeed
confirms that, once we seasonally adjust SST and MAT, we
cannot tell their difference apart on average (the posterior
intercepts at the different locations for both the buoy and
ERA5 spatiotemporal models are not different from zero).
Likewise, the second row of Fig. 8 indicates no evidence
that SST−MAT has linear trends at any location in the re-
gion of interest, once we seasonally adjust it. While the spa-
tially varying AR(1) parameters and process SDs vary a lit-
tle for the seasonally adjusted models compared to the non-
seasonally adjusted models, there is little evidence that the
spatiotemporal dependence characteristics have changed.

5 Summary and discussion

In this article we study the difference between sea surface
temperature (SST) and marine air temperature (MAT) over
the tropical Pacific, using data from the TAO buoys. As is
well known, SST is typically warmer than MAT, but when
using seasonally adjusted differences as our anomaly, there
is no substantial difference. Our spatiotemporal models in-
dicate no significant temporal trends at the locations of the
TAO buoys for both the TAO buoy monthly differences and
seasonally adjusted monthly differences as well as the ERA5
monthly differences and seasonally adjusted monthly differ-
ences, disagreeing somewhat with the findings of Rubino
et al. (2020). The main difference from that work is that we
are able to fit linear trends for each station over the entire
time period, regardless of the missing value pattern. Rubino
et al. (2020) found occasional short-term non-significant or-
dinary least-squares (OLS) trend differences between SST
and MAT anomalies.

Comparing the seasonally adjusted monthly difference
buoy data to the corresponding grid square values from the
ERA5 seasonally adjusted monthly differences, we see no
major difference between the two datasets using our spa-
tiotemporal models. Thus, our results indicate that SST and
MAT are interchangeable for computing global seasonally
adjusted monthly temperature anomalies in the tropical Pa-
cific. In order to extend these findings to the globe, we could
analyze a coupled reanalysis, where there is a realistic inter-
action between sea surface and marine air temperatures. This
would also have been the preferred reanalysis for this study.
Unfortunately, we have not found any coupled reanalysis that
covers the time period of our study.

We have chosen to use statistical tools that allow us to
estimate and predict the missing values in our spatiotempo-
ral model. This allows us to fully account for all uncertainty
in the TAO buoy values. However, one could have imputed
these missing data values before fitting a statistical model.
There are a variety of ways to do this. A blending approach
replaces missing values with the corresponding ERA5 val-
ues. Due to the bias in ERA5 MAT, this can only be done
using the monthly seasonally adjusted values. Another ap-
proach, due to Fuentes et al. (2006), is to compute a singu-
lar value decomposition (SVD) of the space–time data ma-
trix, iterating between computing the SVD for the matrix
and replacing the missing values by linear regression of the
columns onto the first SVD component. As an initial replace-
ment for the missing values, regression on the column av-
erages is used. This function is implemented as SVDMiss
in the SpatioTemporal R package available in the CRAN
archive.

To understand the robustness of our results to missing data,
we imposed the same missing data pattern as for the buoys
on the ERA5 data and refit our model to this dataset. Other
than an increase in the uncertainty in estimating parameters
in the spatiotemporal model fit to this dataset as compared
to the model fit to the ERA5 data with no missingness im-
posed, no other appreciable disparities could be detected.
This indicates that no bias was induced by the missingness
observed in the TAO buoy network. Given the extent of the
missingness in the TAO buoy network, we were also wor-
ried that there could be an association between missingness
and the temperature values themselves. Such a phenomenon
is known as preferential sampling (e.g., Diggle et al., 2010;
Gelfand et al., 2012). Exploratory plots comparing the SSTs
and MATs to summaries of the missing data pattern indi-
cated no evidence of preferential sampling. Additionally, we
note that the comparison of point measurements (TAO buoy
values) to grid square predictions (the ERA5 product) is not
ideal. One could either downscale the ERA5 data to the point
locations given by the observational network or upscale the
point locations to grid squares (e.g., Berrocal et al., 2012).
However, each of these options would require substantial ad-
ditional modeling and computer processing.

Our latent space–time difference process assumed an au-
toregressive model of order 1 in time at each location, with a
temporal dependence that varies by location and a spatiotem-
poral innovation process that is independent over time but
correlated in space. This gave a good summary of the ob-
served dependence. More complicated models with more in-
volved dependence structures may better account for uncer-
tainty in the monthly differences but would be computation-
ally more challenging to fit. Likewise, we used exponential
spatial covariance functions throughout to capture the spa-
tial dependence in various parts of the model, ranging from
the latent space–time difference process but also the spatially
varying parameter processes. While there is an advantage in
allowing the degree of smoothness of the spatial processes to
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change by using more general covariance functions such as
the Matèrn covariance function (e.g., Stein, 2012), the grid-
ded nature of the TAO buoy measurements and ERA5 data
product limits our ability to accurately estimate any smooth-
ness parameter. Also, as is often the case, there was some dif-
ficulty estimating the range parameters for the spatial correla-
tions using relatively uninformed priors. We therefore chose
informative priors that allowed some learning; i.e., the pos-
terior density was not the same as the prior density. Slight
changes to the form of the prior for the range parameters do
change the results slightly, given the dependence between the
posterior distributions for the mean, variance, and range pa-
rameters of the spatial processes. Another approach might
be, rather than to impose independent priors, to assign mul-
tivariate spatial priors within contiguous blocks of buoy sites
with independence only between blocks, thereby enforcing
some spatial dependence even in the priors.
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