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Abstract. Forecasting rainfall into the next season remains highly challenging and is normally presented in
terms of probabilities rather than the expected rainfall as measured by rain gauges. I show here that, in favourable
cases, for the selected times of the year and selected geographical regions, it is possible to obtain useful quanti-
tative forecasts of rainfall with a series of relatively simple steps. One such instance explored in this work is the
prediction of austral springtime rainfall in SE Australia regions predominantly based on the surrounding ocean
surface temperatures during the winter.

In the first stage, I search for predictors by exploring correlations between the target rainfall and ocean surface
temperatures at earlier times. In addition to standard ocean climate indicators such as El Niño or the Indian
Ocean Dipole, other typical patterns of variation are captured in terms of the temperatures of selected ocean
areas. When characteristic patterns of correlation are discovered, they are included in the predictor selection
in the form of expansion in terms of the empirical orthogonal functions (EOFs). EOF expansions can provide
very strong signals. For example, in the case of the Indian Ocean, during the winter, the dominant EOF shows a
stronger correlation with future rainfall than the commonly used Indian Ocean Dipole.

The technical part of the forecast model is provided by deep learning artificial neural networks, where I use
the information sources with the strongest correlation in relation to the historical rainfall data as the inputs. The
networks are trained on past rainfall data, and the output is a quantitative forecast based on the current state of
the predictors. The resulting hindcasts appear to be accurate for September and October and less reliable for
November. I also present model forecasts for rainfall during the 2024 austral spring in the selected SE Australia
regions.

1 Introduction

Southeastern Australia, including the Murray–Darling Basin,
is a highly productive agricultural region largely dependent
on adequate rainfall, which provides the irrigation water
needed for high-value crops. Accurate prediction of water
availability several months in advance would greatly aid in
crop planning and management. The medium-term forecasts
for the farming community are regularly published by the
Australian Bureau of Meteorology and the state bodies, e.g.
Agriculture Victoria.

The most important influence on future rainfall in Aus-
tralia is the ocean temperature surrounding the continent. For

more than 50 years, Indian Ocean sea surface temperatures
(SSTs) have been known to affect rainfall over the continent.
A comprehensive history of earlier research is available in
Ummenhofer et al. (2008). The configuration of the Indian
Ocean SST is accepted as one of the major climate drivers
over the large regions of the three continents at its bound-
aries. These SST conditions are codified as the Indian Ocean
Dipole (IOD) index, which is defined as the difference be-
tween the anomalies on the western side (10° N to 10° S and
50 to 70° E) and those on the eastern side (0 to 10° S and 90
to 110° E) of the basin. During its negative phase, westerly
winds at tropical latitudes accumulate warmer surface water
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north of Australia, leading to increased rainfall over the con-
tinent.

The influence of Indian Ocean teleconnections on the rain-
fall in SE Australia was explored by Cai and Cowan (2008),
Ummenhofer et al. (2009), and Cai et al. (2011a), who es-
tablished another indicator of the SST configuration of the
Indian Ocean to the northwest of Australia that has an even
stronger influence than the IOD on the rainfall in the south-
east of the continent. The meridional temperature gradient
– defined in Ummenhofer et al. (2009) as the difference in
terms of SST anomalies between the regions sI (centred at
30° S, 95° E) and eI (centred at 10° S, 110° E), both with
a 10° surround – correlates strongly with the rainfall dur-
ing both dry and wet years. Closely linked to Indian Ocean
conditions, subtropical ridge position and intensity are also
strongly correlated with rainfall in SE Australia (Cai et al.,
2011a, b; Timbal and Drosdowsky, 2012).

Pacific Ocean conditions, as reflected in the El Niño–
Southern Oscillation (ENSO) phase, influence the weather
throughout Australia. The relationship between ENSO and
the weather system movements and, ultimately, the rainfall
in SE Australia is very variable, with complicated dynam-
ics (Lim et al., 2016; Hauser et al., 2020). While ENSO and
the IOD are not independent (Wang et al., 2019), ENSO data
contain information that is complementary to that of the IOD
and are the second most important input in forecasting rain-
fall in Australia.

The variations in the ocean conditions surrounding Aus-
tralia are most prominent during austral winter and spring,
when both the IOD and ENSO show greater departures
from the neutral state (e.g. Lim et al., 2021). Larger depar-
tures from the neutral range create favourable conditions for
medium-range forecasting of spring rainfall.

A comprehensive study devoted specifically to oceanic and
atmospheric predictors of rainfall and runoff over SE Aus-
tralia was conducted by Kirono et al. (2010), who explored
12 predictors during all seasons of the year. The study found
that the best predictors of rainfall for the springtime period
were SST in the Niño-4 area and the depth of the Pacific
Ocean thermocline represented as the second empirical or-
thogonal function (EOF) of the 20 °C isotherm (Ruiz et al.,
2006). The use of EOFs as predictors of rainfall was also ex-
plored by Drosdowsky and Chambers (2001), who reported
a significant correlation between the first two Pacific and In-
dian Ocean EOFs and the subsequent rainfall.

The present study was designed to produce springtime
forecasts during the winter months, which limits the choice
of predictors to those where data for the previous months are
available within 2 weeks after the end of the month. For this
reason, important information contained in the temperature
profiles of the interior of the oceans, including the thermo-
cline, is presently not included. This restriction is not present
in earlier hindcasting studies where all the predictors are
available. In accordance with Kirono et al. (2010), correla-
tions between different Niño SST regions during the winter

and the springtime rainfall were evaluated, and, for the most
recent 25 years, Niño 3.4 was better correlated with rainfall
than Niño 4 was; hence, it was selected as one of the predic-
tors for all winter forecasts.

Over decades, Pacific and Indian Ocean climate patterns
slowly change (Han et al., 2014; McKay et al., 2023a). The
collected data become less relevant over time. In this work,
I found that pre-1950 data seldom contribute useful infor-
mation, and, for all hindcasting tests, the best results were
obtained with the datasets starting in 2000.

In the following section, I extend the earlier search for cor-
relations between different climate drivers and rainfall in the
spring. To produce current forecasts, my method uses deep
learning artificial neural networks to integrate full historical
information from all included climate drivers. With this ap-
proach, I integrate many years of past data from many cli-
mate drivers to capture typical nonlinear patterns of climate
system evolution and, during the winter, produce a spring-
time forecast. The two sources seldom mentioned in routine
periodic forecasting reports, the meridional gradient and the
dominant EOFs, greatly improve the outcomes in all hindcast
tests. Earlier work on machine learning in integrating infor-
mation from many climate drivers (Feng et al., 2020) used a
very different method (random forest model for aggregating
the data).

Understanding of the physical basis of specific climate pat-
terns is not used in this work and in most other works utilis-
ing artificial neural networks. The physical processes are the
sources of data, and, based on the data, the networks recog-
nise the patterns and provide the answers for the practical
task of medium-term rainfall forecasting.

The three rainfall regions explored are, as defined by the
Australian Bureau of Meteorology, southeastern Australia,
Victoria, and the Murray–Darling Basin. The next section
describes the search for the best input data streams, and the
subsequent section describes the hindcasting and forecasting
of the future rainfall with deep learning nonlinear neural net-
works. Many of the details, as well as the forecasting out-
comes that became available during the revision of the paper,
are relegated to the Supplement.

2 Search for climate variables that correlate with
future rainfall

The primary search tool is the Pearson correlation coefficient,
which is used to measure the linear relationship between the
temperatures and rainfall at different locations. Some of the
valuable earlier works (e.g. Ummenhofer et al., 2008) ex-
plored the correlation between driving variables correlated
with rainfall and rainfall at the same time of the year. Here, I
am primarily interested in the predictive power of such vari-
ables; hence, I search for the correlation between a variable
and rainfall in the following season. As an example, the cor-
relation coefficient between the time series of August SST
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averages and November rainfall in southeastern Australia is
shown in Fig. 1.

A rigorous linear tool that is able to capture significant
ocean SST features is the representation of SST fields as an
expansion into EOFs. The intent behind my use of EOFs as
a forecasting tool is the reduction of the large and partly re-
dundant historical data contained in the SST at each position
into smaller sets of independent data ordered by descending
importance. EOFs were determined using the method and the
software of Dawson (2016). For example, ocean surface tem-
peratures (ERSST data) at each position during the month of
July between 1950 and 2024 are used as an input. As the
resolution of the data is 2 °, this represents a 41 × 31 matrix
for each year. The resulting analysis defines EOFs for the
selected area and for the month of July. The SST distribu-
tion for July of each year is represented as a linear sum of
EOFs, where coefficients in the sum change every year. The
time series of the coefficients contains SST history informa-
tion in a condensed form without redundancy, which leads
to a simpler and more accurate analysis. The EOFs for the
two studied temporal periods, 1950–2024 and 2000–2024,
are very similar, and I choose a longer period, which results
in slightly better accuracy in applications.

The dominant July EOF for the Indian Ocean, shown in
Fig. 2, is spatially similar to the definition of the IOD. Dur-
ing July, the time series of its strength (expansion coeffi-
cient) correlates with rainfall in the September–October pe-
riod more strongly than the time series of the IOD. For exam-
ple, the correlation coefficient between the Murray–Darling
Basin rainfall during the September–October period and the
dominant Indian Ocean EOF in July is 0.66. In this exam-
ple, the next best indicator is the meridional gradient, with
a correlation coefficient of 0.55, whereas, for the IOD, it is
0.44. The seemingly modest differences are very significant
in hindcast testing of predictability.

After suitable ocean variables are identified, an easy way
to check leading times between the SST signal and the sub-
sequent rainfall is to plot correlations between monthly av-
erages of the variable and the rainfall in each region. In
Fig. 3, I illustrate the correlation coefficient between Indian
Ocean variables and rainfall in southeastern Australia over
all months. A table with all the variables used in prediction
is given in Sect. S2.

3 Hindcasting and forecasting of springtime rainfall

3.1 Forecasting chaotic dynamics

For a deterministic chaotic system, past data are, in principle,
sufficient to reconstruct the underlying dynamics (Takens,
1981). For a multidimensional system with additive noise,
this will only be approximately possible, and both linear
and nonlinear methods have been extensively tested. Linear
methods are less sensitive to errors in the input, and multi-
ple linear regression is often the method of choice (e.g. Ma-

her and Sherwood, 2014; Hudson et al., 2017; Lim et al.,
2021; McKay et al., 2023b). With more data, nonlinear meth-
ods, usually either delay coordinate embedding or neural net-
works, perform better (Weigend and Gershenfeld, 1994).

Once the information sources about future rainfall have
been identified, there is a choice between a number of pos-
sible linear and nonlinear forecasting methods. The task is
difficult as regional climate changes over decades (Han et
al., 2014) make older data misleading, and the useful history
period is short (see discussion in Sect. S3). I find that the best
results in hindcasting are obtained using only the records ob-
tained since the year 2000. An example showing the results
when longer periods are used is shown in Sect. S3. Based on
the performance, data from 1950 were used in calculations
of EOFs but not elsewhere.

For the period since 2000, there are not enough data to find
similar past states, and delay coordinate embedding is not ac-
curate. In my tests with springtime rainfall, deep learning ar-
tificial neural networks performed better than linear methods
or delay coordinate embedding (Sect. S7). Neural networks
have been used in climate research on many occasions, e.g.
El Niño or IOD forecasting (Nooteboom et al., 2018; Ham
et al., 2019; Ratnam et al., 2020). More recently, very-large-
scale artificial intelligence models have been developed for
weather forecasting over a 10 d period (e.g. Lam et al., 2023;
Bi et al., 2023), but they also have intrinsic limitations in
terms of accuracy (Seltz and Craig, 2023).

3.2 Training of neural networks

The choice of predictors and settings in the training process
is strictly empirical. The guiding principle in the selection
is a decrease in the root mean square error (RMSE) of the
differences between the data and the hindcasts in the valida-
tion segment. As is common with neural network training,
the procedure is largely a matter of trial, error, and gradual
improvement (Hastie et al., 2009; Yong, 2022). After exten-
sive testing, I selected networks consisting of three to five
linear layers and one tanh nonlinearity. A total of 25 years
of data were typically divided into 14–17 years for training,
5–7 years for validation, and 1 or more years for hindcasting
and/or forecasting.

Many runs were performed for each basin, starting the net-
works with different random learning rates. The scatter in
the results is shown as faint grey lines. During training, net-
work connection strengths are varied until the network settles
within the local minima of the cost function (Yong, 2022,
Sect. 6.3). Averaging over the results of many runs is ac-
cepted as the result. Notably, because of random starts, re-
peating the runs results in slightly different hindcasts. These
differences in the results for rainfall over a 2-month period
are typically several millimetres, which is small compared
with the intrinsic errors of the process.

Low learning rates lead to a slow drift towards one of the
minima in the error landscape, whereas high learning rates
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Figure 1. The correlation coefficient between the average SST during August and rainfall in November in southeastern Australia during the
period 2000–2023; the dataset used was HadISST4.01. The strong feature seen east of the Australian continent contains information that is
useful for the forecasting of November rains. Two more examples of ocean maps are shown in Sect. S4.

Figure 2. The first EOF for the month of July and for the Indian
Ocean region shown in the figure. The expansion in EOFs is cal-
culated from the time series of July SSTs between 1950 and 2024
using ERSSTv5 data. The scale in the figure shows the correlation
between the time series of the original SST and the coefficient of
the first EOF at each spatial position. High values of the correlation
indicate a high degree of covariation between the SST and EOF.

allow the system to probe many of the neighbouring minima,
leading to increased scatter in the results of different runs
but often higher accuracy when the mean value is used. The
input time series should be scaled to have the same or almost
the same norm as relative magnitudes affect the nonlinear
process of training.

Network training is performed using the elaborate and
comprehensive neural network software developed by Wol-
fram Research and which forms a part of Mathematica. Dur-
ing neural network training, the available short sequence

of target rainfall data is used to determine many synaptic
weights. The networks rapidly drift towards the overfitting
regime, i.e. a perfect agreement during the training period
but decreasing accuracy in the validation period. The soft-
ware automatically selects the result that corresponds to the
lowest validation errors. To make the best use of the limited
data, for the final forecast, the validation segment is extended
to the year of the forecasts, and the test segment is omitted.

3.3 Robustness and accuracy of the procedure

The process of predictor choice and network training must
pass several tests to confirm the credibility of the results. The
networks formed with only the data available a few years
before the present should perform similarly to the networks
trained using all of the data. When forecasting is robust, vari-
ations in the division between the validation and test seg-
ments do not change the results substantially. The years when
networks are inaccurate in hindcasting signify incomplete in-
put at that time, possibly due to the relatively brief training
period.

An example of forecasting with and without a test segment
is shown in Fig. 4. Terminating the validation segment in the
year 2019 only slightly decreased the fit over the 2020–2023
period and practically left the forecast unchanged.

For the three studied regions, the RMSE values between
the data and hindcast results are typically close to 20 mm.
The RMSE values for each hindcast and forecast figure in the
next section are shown as the grey uncertainty band. All nu-
merical values of accuracy are shown in the table in Sect. S6.

3.4 Hindcasting and forecasting 2024 rainfall for three
regions

Within the validation and hindcasting test periods, the
three regions explored (Victoria, Murray–Darling Basin, and
southeastern Australia) shared all of the main features of
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Figure 3. Correlation coefficient between the rainfall in southeastern Australia in any month and the (a) IOD and (b) dominant Indian Ocean
EOF during another month. The interesting parts of the diagrams are the months preceding the rainfall, which are in the lower-right section
of the images, below the shaded area. The images show that rain is strongly correlated with ocean indicators only in the spring. It is easily
visible that, in July, the future September–October rain is more strongly correlated with the EOF than the IOD, whereas the opposite is true
in June.

rainfall (see the map and correlation table in Sect. S1). Dur-
ing September and October, rainfall trends and anomalies ap-
pear to follow a single trend, possibly indicating a common
physical origin. Using June or July data, hindcasting is fairly
accurate, and I combine the two months into a single spring
period. The behaviour and likely physical basis for Novem-
ber forecasting are different, and the predictions are less ac-
curate. All rainfall anomalies were defined with respect to
the 1991–2020 period, with combined September–October
rainfall averages of 114.8, 73.4, and 108.5 mm for Victoria,
the Murray–Darling Basin, and SE Australia, respectively.
The corresponding November averages are 54.0, 47.1, and
51.5 mm, respectively.

With June data, forecasting is based on both the well-
known drivers and the not commonly used drivers, the most
important of which is the meridional gradient. Other promi-
nent inputs are the Niño-3.4 area SST and IOD. SSTs over
other regions of the Indian Ocean are sometimes helpful,
as are land temperatures over Australia in the case of the
Murray–Darling region. The years with extreme rainfall are
underestimated. Including EOF expansion in the input data
results in only a minor improvement. Partial agreement in
the validation period requires four to six input streams, and
the hindcasting success depends on details. While the results
are sometimes unreliable, they still provide a reasonable in-
dication of the developing trends.

With July data, the best predictor is the first Indian Ocean
EOF (40° S to 20° N and 40 to 120° E). Adding just Niño-3.4
SSTs to the neural net inputs is already sufficient to provide
good hindcasts. Further improvement is obtained by adding
a few more input streams. The resulting July forecasts used

are robust and insensitive to changes in the network structure
or training details.

As a first example, in Fig. 4, we show rainfall hindcasts
and a forecast for the state of Victoria. When hindcasting
with June data, extreme-rainfall years are not fully antici-
pated. The learning rate during the training is set to be rel-
atively high, resulting in a large scatter between individual
runs but also more accurate mean values. In Fig. 4b and d,
I show a test where the network is finalised with the data
ending in 2017, thus reducing the validation set from 12 to
8 years. The accuracy of the result is moderately reduced, but
the main features are unchanged.

With July data, it becomes possible to hindcast more ex-
treme years, but some of the less important details are lost.
Some years (2014–2015 or 2020) are presently impossible to
hindcast accurately, but the errors are moderate.

Turning next to the important Murray–Darling Basin, the
average errors are larger (Fig. 5), and forecasts are less reli-
able. Using July data, the very large anomalies in 2016 and
2022 are hindcast correctly, but the problem years of 2013
and 2020 are still inaccurate. In addition to ocean data, the
inputs in panel (a) include temperatures on the Australian
continent, whereas those in panel (b) are based on the first
Indian Ocean EOF and Niño-3.4 data only.

Hindcasting is most accurate for the larger SE Australia
region (Fig. 6). The June data forecast shown in panel (a)
is based on the Niño-3.4 SST, the meridional gradient, Aus-
tralian continent temperatures, and Murray–Darling temper-
atures. The July forecast in panel (b) is based on the Indian
Ocean EOF1 and Niño-3.4 SSTs. The hindcasts are similar
in skill, but the errors appear at different places.
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Figure 4. Hindcast and forecast of the rainfall anomaly in the state
of Victoria during September and October using (a) June data,
(b) June data with a test period (2020–2023), (c) July data, and
(d) July data with a test period (2020–2023). Historic rainfall is
shown in green, and mean values of the validation are shown in red.
In this figure and all subsequent figures, points show monthly data,
and lines are added to make year-to-year changes easier to follow.
The 2024 forecast is the last point in blue. Faint dashed lines are
the results from individual random network starts. The mean value
of the RMSE over the period 2012–2023 is shown as shading. This
and all subsequent hindcasts and forecasts use 2000–2024 data time
series. In (b) and (d), only the data up to and including the year
2019 are used to define the network. Hindcast results using this net-
work for the years 2020–2023 are shown in black, and the forecast
for 2024 is shown in blue.

Figure 5. Murray–Darling Basin September–October rainfall hind-
cast and forecast using (a) June data or (b) July data. The symbols
have the same meaning as in Fig. 4. In (a), setting a larger value for
the network learning rate results in the system probing many states
in search of the best solution. In (b), validation results were better
with a low learning rate, when the system drifts to a local minimum
without probing many adjacent states.

Finally, we consider the rainfall in the November hindcast
with the August data. For input data, the strong South Pacific
Ocean feature visible in Fig. 1 is included as the second EOF
(40° S to 5° N and 140° E to 100°) shown in Fig. 7. In addi-
tion, the inputs include the Niño-3.4 SST, several positions
along the Pacific Ocean anomaly, the Indian Ocean merid-
ional gradient, and the air surface pressure anomaly in Tahiti.
The result shown in Fig. 8 appears to be reasonable, but only
future forecasting will show if this combination is accurate
and stable.

Within the accessible months, during the training of neural
networks, I encountered the well-known problem of overfit-
ting the model when the datasets are small, and many ad-
justable parameters are available. This problem has a human
analogue, which may arise when the investigator has a choice
between many available possibilities for the input data and
input parameters, eventually finding the set that fits in hind-
casting tests. The forecasts where only a few predictor in-
puts are sufficient are less dependent on the input parameter
choices and, hence, are preferable compared to the hindcast-
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Figure 6. SE Australia September–October rainfall hindcast and
forecast using (a) June data or (b) July data. The symbols have the
same meaning as in Fig. 4.

Figure 7. South Pacific EOF during the month of August corre-
sponding to the configuration shown in Fig. 1 and used in forecast-
ing November rainfall.

ing fits with up to 10 different inputs. Since the selection of
input data and training parameters has a large effect on the
outcome, the following tests were always performed to ex-
plore the reliability of the results and the possible influence
of overfitting resulting in unrealistic confidence. (1) The re-
sult must not depend strongly on the length of the validation
segment. (2) Using training and validation data that end a few
years earlier, e.g. in 2020, should still produce similar results
(Fig. 4b and d). (3) The network learning rate should not have

Figure 8. Hindcast of 2023 November rainfall in SE Australia eval-
uated with August data. The symbols have the same meaning as in
Fig. 4.

a strong influence on the result. My concern was largely al-
layed as forecasting with very different sets of inputs in the
June–July data comparisons still led to similar outcomes in
forecasting springtime rainfall.

4 Discussion

Ideally, throughout a year, a forecasting method should pro-
vide reliable forward information with only small errors.
However, weather system development is ruled by chaotic
dynamic equations, and, as shown first by Lorenz (1963) and
elaborated upon in many further works, perfect forecasts are
theoretically impossible because of the extreme sensitivity to
initial conditions. The search described in Sect. 2 revealed
strong correlations of different early indicators with rainfall
during the spring months and weaker correlations at other
times of the year. The rainfall during the winter months is
only modestly correlated with SST, with accepted climate
drivers, or with temperatures over different regions of the
continent, with the correlation coefficients ranging from 0.2
to 0.4. This information is insufficient for the network ar-
chitectures tested here, and forecasts had to be restricted to
rainfall during the spring months. Data with a high correla-
tion coefficient of approximately 0.70–0.75 (as is the case
with the dominant EOF principal component in July) are
much more valuable than data with a correlation coefficient
of 0.60–0.65 (typical ocean indicators).

In the winter–spring period, the dominant physical modes
are strong, the effective dimension of chaotic dynamics is
not prohibitively high, and the neural network can forecast
several months ahead with good skill. Particularly important
is the ability of the method to make quantitative forecasts in
difficult years with large anomalies, such as 2016 or 2022.

At less favourable times, the dominant modes are not as
strong, and the behaviour is complex (ENSO predictabil-
ity barrier; see, for example, Chen et al., 2020). If the
chaotic dynamics of the physical processes cannot be fol-
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lowed for several months ahead, future rainfall will appear
to be largely stochastic. Under such conditions, classical
probabilistic forecasting using linear methods is favourable.
Khastagir et al. (2022) tested both linear methods and neural
networks in forecasting rainfall in W Australia and reported
that linear methods tend to perform better.

In the winter–spring period studied in this work, condi-
tions favour neural networks, and forecasting with linear re-
gression was less accurate (results are in Sect. S7). When
testing neural networks without the tanh nonlinearity, the re-
sults were not as good, particularly in the years of large de-
viations from the average (Sect. S7).

Neural network training performed in this work was con-
ducted without any information about the physical signifi-
cance or importance of each input data stream. In the longer
term, we need to understand the physical mechanism driving
climate fluctuations at annual and seasonal scales. It is hoped
that the present identification of features that have a signifi-
cant influence on rainfall during the following seasons may
help in understanding the physical basis of the relationships
between important climate variables and, thus, in advancing
medium-term climate forecasting.

Code availability. – The ocean SST selections and nc file han-
dling are available at NOAA PyFerret (https://ferret.pmel.noaa.
gov/Ferret/downloads/pyferret, NOAA PyFerret, 2025).

– The EOF evaluations were performed using Andrew Daw-
son’s EOF analysis in Python (https://ajdawson.github.io/eofs/,
Dawson, 2025).

– The correlation maps and neural network evaluations were
performed with Mathematica 14.0 (https://www.wolfram.com/
mathematica/, Wolfram Research, 2025).

– The full code example with annotations and a brief introduc-
tion is available at https://community.wolfram.com/groups/-/
m/t/3282530 (Marčelja, 2025).

Data availability. – The rainfall and temperatures are available
from the Australian Bureau of Meteorology (2025, http://www.
bom.gov.au/cgi-bin/climate/change/timeseries.cgi).

– The Niño34 data were posted by NOAA (https://psl.noaa.gov/
data/climateindices/list/, NOAA, 2025).

– The Indian Ocean Dipole (DMI) data were posted by
NOAA (https://psl.noaa.gov/gcos_wgsp/Timeseries/Data/dmi.
had.long.data, NOAA DMI, 2025).

– Meridional gradients, EOFs, and selected ocean surface
temperature regions were evaluated based on Had or
ERSSTv5 ocean surface data using PyFerret. ERSSTv5:
http://iridl.ldeo.columbia.edu/SOURCES/.NOAA/.NCDC/
.ERSST/.version5/.anom/datafiles.html (IRI/LDEO Climate
Data Library, 2025).

– HadISST (delayed by several months) is available at https:
//www.metoffice.gov.uk/hadobs/hadisst/data/download.html,
(Met Office Hadley Centre Observation Datasets, 2025).
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