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Abstract. Studies that investigate the effects of meteorological fluctuations on varying multi-disciplinary out-
comes often depend on analysis of high-frequency sensor data from automatic monitoring stations in different
locations. The validation of such spatial time series requires attention given that they are susceptible to multiple
forms of error. Existing validation techniques tend to cater to detection of only one form of outlier in isolation,
lack robustness, or fail to optimally leverage the strong between-series correlation that often prevails in high-
frequency meteorological data exhibiting multiple seasonalities. To address these shortcomings, two adaptations
were made to an existing procedure, for more powerful outlier detection in strongly correlated high-frequency
time series, using a distributional approach. The modified technique was tested in a simulation study and was
also applied to a real univariate spatial set of hourly air temperature series from the South African Air Qual-
ity Information System. In both instances, the effectiveness of the technique in detecting outliers was assessed
relative to procedures lacking either or both adaptations. The results show the modified procedure to be most
comprehensive in the simultaneous detection of multiple forms of error, including solitary spikes, shifts in the
series mean, and irregularities in the diurnal pattern. Furthermore, the method is generalizable to any set of time

series displaying a similar correlation structure.

1 Introduction

The ambient measurement of meteorological variables at
high frequency, via automated sensors, serves many purposes
that extend beyond weather surveillance. In particular, stud-
ies that investigate the effects of meteorological fluctuations
on varying multi-disciplinary outcomes often rely upon the
analysis of ground-level monitoring data, either directly or
indirectly, for the adjustment of models developed using co-
variate data derived from satellite imagery (Moreno-Tejera et
al., 2015). Such high-frequency time series are usually col-
lected, processed, and transmitted by automatic monitoring
stations (AMSs) situated in different locations. A wide range
of meteorological variables may be measured as often as ev-
ery few minutes over an extended period, with the resulting
data series thus being characterized by multiple forms of sea-
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sonality. For example, the values of hourly surface air tem-
perature readings will depend not only on the hour of the day
but also on the month (or week) of the year in which they are
recorded.

Due to the predictable 24 h rotation of the Earth, many
meteorological variables respectively exhibit a very strong
positive linear correlation over time between differing spa-
tial locations when measured at high frequencies (e.g. air
temperature, atmospheric pressure, solar radiation, and hu-
midity). This is provided that the measurement locations are
close enough to one another (no more than 200 km apart) to
be subject to the same intermediate mesoscale weather sys-
tems (Penn State Department of Meteorology, 2025). How-
ever, in general, the quality of data that are recorded near-
continuously by programmed reading instruments in the ab-
sence of direct regular human observation tends to be ex-
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tremely poor and is often marred simultaneously by numer-
ous varying forms of error or outliers (Schliiter and Kresoja,
2020). This can result in the observed temporal correlations
between univariate series within a spatial set being artificially
lower than they typically would be if the data were perfectly
clean.

In this article, we distinguish between differing forms of
outlier by referring to single outliers and to multiple con-
secutive or sequential outliers. Both forms of outlier men-
tioned often arise in automated high-frequency meteorolog-
ical data recorded at ground level — due either to the use of
a lower-cost apparatus having been distributed at high den-
sity (Van Poppel et al., 2023), because of changeovers in the
system, or human error in the programming of higher-grade
systems (Schliiter and Kresoja, 2020). A single outlier is typ-
ically observed as a solitary spike or dip in the data. A con-
secutive sequence of outliers may present itself either as a
level shift (increase or decrease in the series mean) or as an
irregularity in the seasonal (usually diurnal) pattern. Irregular
patterns are the most difficult to identify (Schliiter and Kre-
soja, 2020), as they present themselves in the form of sub-
sequences that are only improbable during certain parts of
the diurnal cycle.

The literature highlights that existing outlier detection
methods for time series are sub-optimal for the type of high-
frequency, error-prone meteorological data described above.
Our appraisal of published works highlights that current tech-
niques fail to optimally leverage the strong between-series
correlation that often prevails in high-frequency meteorolog-
ical data. Furthermore, they frequently lack robustness when
applied to data sets containing extreme or extensive error, and
they tend to cater to the detection of only one form of outlier
in isolation.

For example, based on their extensive review, Blazquez-
Garcia et al. (2021) conclude that there is a need for val-
idation techniques which leverage more fully the temporal
correlation between time series within a spatial or multivari-
ate set and which further make contingency for every series
within the set to be equally likely to contain outliers. This
would be contrary to applying the distorted but common as-
sumption that particular series within the set may be regarded
as clean and used as a reliable benchmark. In their review,
Blazquez-Garcia et al. (2021) also provide a structured clas-
sification of existing methods in which they distinguish be-
tween them, predominantly according to the fype of outlier
that each has been designed to detect (solitary versus multi-
ple sequential). Similarly, Posio et al. (2008) discuss the pros
and cons of a wide variety of outlier detection methods and
suggest that, in order for the choice of technique to be opti-
mal, prior knowledge is needed of the type of inconsistencies
likely to be present in the data. Schliiter and Kresoja (2020)
determine their “autoregressive cost update mechanism” to
be more effective at identifying solitary outliers, whereas
their “wavelet-based mechanism” is deemed more effective
at detecting the presence of multiple consecutive outliers.
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They advocate for the implementation of a combination of
data pre-processing tools in order to ensure a comprehensive
approach to outlier detection.

Since prior knowledge may not exist of the outlier type
or types present within a time series — particularly those re-
trieved using an automated sensor — the literature infers that
several existing validation techniques would need to be em-
ployed in order to ensure comprehensive detection of both
solitary and sequential outliers within sensor-dependent me-
teorological data. Clearly this is undesirable, with a need for
the development of a single deft solution. For high-frequency
univariate spatial time series in particular, the type of season-
ality present within the data also demands consideration in
the detection of outliers as well as the strength of the tempo-
ral correlation between series.

In this paper, we present a new method for standardiz-
ing meteorological sensor data, with the purpose of enabling
comprehensive detection of multiple varying forms of out-
lier in strongly correlated series that typically come from
high-frequency measurements being collected across differ-
ent locations. In Sect. 2, we provide a detailed discussion
of the limitations and weaknesses of existing validation pro-
cedures for correlated series. In particular, we draw atten-
tion to a parsimonious method which employs, twice over,
a conventional data-standardization approach to outlier de-
tection but which is best-suited for the validation of lower-
frequency, more moderately correlated data. In Sect. 3, we
formulate a new procedure for detecting outliers in high-
frequency, strongly correlated series by making two adap-
tations to the double-standardization procedure described in
Sect. 2. Whilst still preserving the simplicity of the origi-
nal double-standardization procedure, we take into account
the presence of multiple seasonalities within high-frequency
data so that we are able to fully leverage the between-series
correlation structure. Furthermore, we introduce the use of
robust statistics into the standardization of the data to en-
sure sensitivity of detection. In Sect. 4, we design and con-
duct a Monte Carlo simulation study to test the effective-
ness of the new procedure in the simultaneous detection of
multiple varying forms of outlier within strongly correlated
simulated series. We assess performance relative to double-
standardization procedures lacking either or both procedu-
ral adaptations. We show the modified technique to be more
reliable in the simultaneous detection of varying forms of
moderate and severe outliers. In Sect. 5, we present a case
study in which we apply the new validation procedure to
an actual data set containing an unknown element of error.
We similarly find the modified technique to be highly sensi-
tive and more comprehensive in the simultaneous detection
of varying forms of outlier than other comparable double-
standardization procedures. In Sect. 6, we summarize our
conclusions and suggest possible avenues for extension in
future work.
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2 Existing validation procedures for correlated
series

Many existing methods for the detection of outliers in mul-
tivariate time series do attempt to account for the tempo-
ral correlation that is commonly present between different
variables in order to avoid “loss of information” (Blazquez-
Garcia et al., 2021). Such techniques reduce the dimension
of the data to a single variable or a reduced set of uncorre-
lated variables, to which univariate methods of outlier de-
tection are then applied. A similar approach might be ap-
plied to validate the correlated univariate spatial time series
that arise when the same weather variable is concurrently
measured across a number of different locations at high fre-
quency, with the series displaying largely parallel trends over
time. However, this would only serve to detect outliers that
simultaneously affect multiple time series (Blazquez-Garcia
et al., 2021). The presence of outliers that occur indepen-
dently within a given series would be overlooked.

One approach to validating seasonal, univariate spatial
time series that caters to the possibility of independent out-
liers within each series and also attempts to account for tem-
poral correlation between series is a double-standardization
procedure employed by Washington (2020) for the valida-
tion of a spatial set of daily maximum temperature series
spanning several years. The method draws on the work of
Lund et al. (1995) as well as a technique titled “climatologi-
cally aided interpolation” that was proposed by Willmott and
Robeson (1995). The procedure adopts, twice over, a conven-
tional “z-score” approach to outlier detection (Moore et al.,
2009) whilst controlling overtly for seasonality within each
series.

As Moore et al. (2009) explain, z scores are generally de-
rived by leveraging the distribution of the data to apply the
following transformation:
=2"H e

o

where x denotes the original data value, © = mean(x), and
o = standard deviation(x).

As a first step in the data-validation procedure employed
by Washington (2020), each series is independently standard-
ized by replacing the original data values with their corre-
sponding z scores, but the z scores are derived using sea-
sonally controlled parameter estimates for the mean and the
variance. For example, Washington opts to standardize each
of the daily maximum temperatures recorded in the month of
February, using the mean and standard deviation of all daily
maximum temperatures recorded in the month of February
across different years. Each of the daily maximum temper-
atures recorded in the month of March is transformed using
the mean and standard deviation of all daily maximum tem-
peratures recorded in the month of March, and so on. This
seasonally controlled approach to preliminarily (and inde-
pendently) standardizing every time series within the spa-
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tial set permits separate initial flagging of potential outliers
within each series through inspection of how many standard
deviations above or below the relevant seasonal mean each
value lies and through application of a threshold.

In the next step of Washington’s procedure, each of the z
scores is subsequently standardized but this time using the
spatial distribution of the z scores across series (locations) at
each time point (or rolling window of time) within the data
set. For example, if we consider, say, 13 February 1984 to be
one particular time point within Washington’s daily spatio-
temporal data set, each of the z scores from across the dif-
fering locations within the spatial set, relating to that partic-
ular date only, is standardized using the mean and standard
deviation of all z scores relating to that date (or narrow win-
dow of time around that date) across series. This subsequent
round of standardization in Washington’s procedure enables
secondary confirmation of whether each data point that was
preliminarily flagged as an outlier (after step 1) should re-
main as such, based on how many standard deviations the
corresponding z score lies above or below the mean of the z
scores across series observed within a narrow window around
the relevant time point.

The double-standardization procedure described above is
conceptually designed to address the following sequential
questions:

1. Is eachreading at a “normal” level for the given location
in the given seasonal period?

2. For those that are not, is each abnormally high or low
reading in fact normal in relation to the mean reading
being recorded at all of the locations, within a narrow
window around that same respective time point?

This procedure was proposed, most sensibly, for the valida-
tion of a moderately correlated set of univariate spatial time
series, thus necessitating that outlier detection rely primar-
ily on independent detection within each series alone and
less so on leveraging correlation dependencies. Furthermore,
the procedure was applied to daily data exhibiting only one
type of seasonality, with temperature values being treated as
dependent on the month of the year (rather than the week
of the year). Thus, the prevailing between-series correlation
structure was largely retained in the standardized data set af-
ter step 1 of the procedure, despite controlling for season
(month) during the preliminary transformation of each se-
ries. This is due to the fact that, for the most part, consecu-
tive data points within a given series were standardized using
the same distributional parameters (mean and standard devia-
tion), with the only exceptions occurring at change points in a
month. For example, a daily maximum temperature recorded
on, say, 31 March was standardized using a different set of
distributional parameters to the next daily maximum temper-
ature recorded on 1 April. However, each of the daily maxi-
mum temperatures recorded sequentially from 1 to 31 March
was standardized using the same set of distributional parame-
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ters, and so the change in the resulting z scores from one day
to the next — relative to the standard deviation of the data
— was the same as the corresponding change in the original
data values. Thus, in the context of daily spatial time series,
the extent to which differing pairs of series change together
is largely preserved in the standardized version of the data,
and hence so too is the between-series temporal correlation,
even when the preliminary standardization of each series is
performed by overtly controlling for seasonality.

In contrast, if the double-standardization procedure de-
scribed above were to be applied to a higher-frequency time
series of hourly air temperature readings that extend over
several months and thus exhibit multiple seasonalities (in-
cluding both the hour of the day with a periodicity of 24
and the month of the year with a periodicity of 12), then the
between-series correlation structure would not be retained.
In this scenario, each consecutive data value within a given
series would be standardized using a different set of distribu-
tional parameters. For example, within a given series, each
temperature reading recorded at a time of, say, 01:00LT on
any given day in, say, February would need to be transformed
using the mean and standard deviation of all temperature
readings in that series recorded at a time of 01:00LT in the
month of February. However, subsequent readings recorded
at a time of 02:00LLT would need to be transformed using
the mean and standard deviation of all temperature readings
recorded at a time of 02:00LT in the month of February.
Hence, the change in the resulting z scores from one hour
to the next — relative to the standard deviation of the data —
would differ from the corresponding movement in the origi-
nal data series. The benefit of subsequently standardizing the
z scores across series (locations) using their spatial distribu-
tion at each time point would then be limited given that sea-
sonally controlled series standardization of hourly data (ex-
hibiting multiple seasonalities) decreases the prevailing tem-
poral correlation between series. We later provide evidence
to corroborate this in Sect. 4.

Moreover, for the type of high-frequency error-prone sen-
sor data considered in this paper, the other weakness of the
double-standardization procedure described above is that the
sensitivity of the outlier detection would be inhibited by the
widely acknowledged susceptibility of z scores to bias. When
robust estimates are not used for the mean and standard devi-
ation of the distribution, they may become artificially higher
or lower due to the presence of a few severe outliers within
the data, or even only one (Posio et al., 2008). This is a partic-
ular risk when there are many outliers on one side of the dis-
tribution or when the spatial sample is small (which is often
the case with device-collected meteorological data). Under
such circumstances, the z scores themselves become biased,
and the outliers present within the data may go undetected.
Thus, a conventional z-score approach to outlier detection
has a circular flaw in that it is most efficient at detecting out-
liers only when the presence of outliers within the data is
negligible or the outliers are mild.
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3 Proposed procedure for validation of strongly
correlated series

3.1 Rationale

For the type of strongly correlated, error-prone spatial time
series that usually arise when meteorological data are col-
lected using a sensor at high frequency across different lo-
cations, we propose an alternative z-score approach to data
validation in which outlier detection is conducted once af-
ter double standardization of the data is complete. Should
only certain series within the spatial set be of importance, we
nonetheless recommend that all series be retained within the
set during data validation. The purpose of this is to maintain
the feasibility of implementing a distributional approach to
the detection of outliers within the series of interest but in a
robust and realistic manner that regards every series in the
spatial set as being equally susceptible to inaccuracy. This
rationale stems from the notion that a period of unusually
high or low, say, air temperature might appear dubious when
observed in isolation for a given location, but this could cor-
respond to a heat wave or unusually cold spell being expe-
rienced concurrently across all neighbouring locations too.
Hence, we recommend that potential data errors only be
flagged within each series after a comparison (of standard-
ized data) has been made between all locations within the
set for each given point in time. The proposed technique is
thus designed to assess whether the (standardized) reading
being observed for a given location, at a given point in time,
is normal in relation to that being observed for the majority of
the locations at the same point in time. This accounts for the
possibility of measurement error occurring at more than one
location simultaneously. We subsequently impose two adap-
tations to the double-standardization procedure described in
Sect. 2.

Firstly, we prescribe the use of robust statistics for more
accurate estimation of the frue parameters of the data in the
absence of error (i.e. the true mean and true standard de-
viation of the data when clean). This is to avoid introduc-
ing bias during either preliminary or secondary standardiza-
tion of the data. This procedural adaptation caters atypically
for the likelihood of numerous inconsistencies being present
within each series and for the fact that no series in isolation
can confidently be regarded as an accurate reference. Pro-
vided the data are symmetrically distributed, we advocate for
replacing the mean in Eq. (1) with the median as an ideal and
hence for replacing the standard deviation with an unbiased
estimate that is derived from the median absolute deviation
from the median (MAD). This usually involves multiplying
the MAD by a constant scaling factor ¢ = 1/Q(75), where
Q(75) denotes the 0.75 quantile of the assumed underlying
probability distribution in the absence of outliers. When the
data follow a Gaussian distribution, ¢ = 1.4826 (Posio et al.,
2008).
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Such an approach to data standardization was first popu-
larized during the 1960s, giving rise to the Hampel identifier,
which is a robust technique for flagging anomalies in time se-
ries using the MAD method and which typically employs a
“rolling window” to overcome non-stationarity (Posio et al.,
2008). A MAD approach to data standardization is widely
regarded as preferable (Lewinson, 2019; Leys et al., 2013;
Owolabi et al., 2021; Posio et al., 2008; Wicklin, 2021). This
is due to the fact that the median and hence the MAD are in-
sensitive to the presence of outliers — provided less than 50 %
of the data are comprised of outliers — and given that they are
also resistant to sample size. These robust statistics enable
greater sensitivity of detection, relative to a chosen z-score
threshold, by eliminating z-score bias.

As a second procedural adaptation, we atypically prescribe
that initial standardization of each series be performed glob-
ally. This is to enable every consecutive data value within a
given series to be transformed using the same respective es-
timates for the mean and standard deviation of the series in
its entirety. This is as opposed to applying Hampel’s rolling
window or any other technique to control overtly for mul-
tiple seasonalities within the series. Since we are propos-
ing that outlier detection in strongly correlated series need
only be conducted after double standardization of the data
is complete, it is not necessary to remove the seasonal (and
diurnal) trend in each series during preliminary standardiza-
tion. Moreover, the subsequent spatial standardization of the
Z scores across series is performed in a seasonally controlled
manner, since it involves making a comparison of data be-
tween locations at common points in time when each lo-
cation is subject to the same seasonal (and diurnal) effects
and even the same weather conditions. In Sect. 4, we explore
more overtly whether or not the subsequent spatial standard-
ization of the data does in fact remove seasonality in the
twice-standardized series when either the proposed or origi-
nal (non-adapted) version of the double-standardization pro-
cedure is applied.

The benefit of preserving the seasonal (and diurnal) trend
in each series during preliminary standardization is that the
prevailing temporal correlation between the original data
series does not become depressed in the standardized ver-
sion of the data. Global series standardization thus facilitates
maximum exploitation of the temporal correlation structure
in the spatial set when subsequently making a comparison
between series in the detection of possible error. In addi-
tion, globally estimated parameters are less susceptible to
breaking down than parameters estimated for shorter season-
ally controlled periods, particularly within high-frequency
sensor-dependent time series that may contain extended sub-
sequences of error.

It is important to highlight that, although we are advocat-
ing for outlier detection in strongly correlated series to be
based entirely on the spatial distribution of the data at re-
spective points in time, the preliminary standardization of
each series is still necessary. Series may exhibit differences
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in probability distribution due to differing micro-climates
whilst still displaying very similar trends over time (i.e. tem-
poral correlation) as a consequence of diurnal periodicity.
For example, one spatial location might display a greater
standard deviation in hourly air temperature than another lo-
cation, with comparatively higher daily maxima and lower
daily minima being recorded. However, this could simply be
due to that location being exposed to a more extreme micro-
climate as a result of perhaps being situated at a slightly
higher altitude, e.g. only 40-50km away. Thus, to avoid
making mistakes in the flagging of outliers based on compar-
ison between series, it is necessary to first standardize each
series to exhibit a mean of 0 and a standard deviation of 1.

3.2 Formulating the new procedure

In summary, we propose the following procedure for compre-
hensive validation of spatial time series that exhibit a strong
positive correlation over time.

Standardize each series i independently using robust es-
timates for the global mean and global standard deviation of
the respective series, such that the one-time standardized data
values within each series (or spatial location) i are given by

Xir — M;
MAD;

* J—
Zjp =

) 2
where x;; denotes the reading recorded at location i at time ¢,
M; = median(x;;), and MAD; = median(|x;; — M;|) for all 7.
Perform subsequent standardization of the one-time stan-
dardized data across all series at each time point ¢ indepen-
dently, using robust estimates for the mean and standard de-
viation of each respective Gaussian-assumed spatial distribu-
tion, such that the twice-standardized values are given by

*k Z;k t Mt*
Tt = T AT )
1.4826 (MAD; )
where M} = median(z},) and MAD] = median(|z;“t - M; |)
for all series (or spatial locations) i.

Identify outliers in relation to a deviation threshold % such
that, if |z}7*| > h, the value x;; is flagged as a potential data
error warranting further investigation.

Note that we do not prescribe a value for 4. A value of
h = 3 is commonly adopted (Pearson, 2002), given that only
~ 0.3 % of z scores would be expected to display an absolute
value greater than 3 in clean data if they follow a standard
normal distribution. However, depending on how closely the
spatial distribution of z?, approximates a Gaussian distribu-
tion at each time point #, a higher threshold may be more ap-
propriate. This is often determined by first examining what
percentage of data points are flagged when using & = 3. Ob-
viously, the extent of flagging will be inversely proportional
to the value of the threshold — the choice of which remains
largely subjective in most of the literature (Blazquez-Garcia
et al., 2021).
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3.3 Technical considerations

The specification of a unitary scaling factor, c = 1 in Eq. (2),
is easily justified. Given that we are considering univariate
spatial time series that are strongly correlated between loca-
tions over time, it is expected that each series would exhibit
a distribution of similar shape in the absence of outliers. That
is, a common type of underlying distribution (e.g. normal or
uniform) is expected, consequently necessitating consistent
scaling of the respective MAD for each series during pre-
liminary series standardization using Eq. (2). Although the
value of the common scaling factor ¢ should theoretically be
chosen according to the type of underlying probability distri-
bution universally assumed for every series, the choice of ¢
ultimately has no influence on the respective values of the
twice-standardized data once subsequent spatial standardiza-
tion of z7, has been performed at each time point 7. Hence,
the scaling factor c is dropped in Eq. (2). That is, c = 1.

The feasibility of a MAD approach to data standardiza-
tion does, however, depend on the assumption that the un-
derlying distribution of the data is symmetric (Posio et al.,
2008). This is due to the fact that the median is only reliable
as an estimate of the true mean when the data are symmetri-
cally distributed. In the case of time series that are asymmet-
rically distributed, we would instead propose that the me-
dian and the MAD, only in Eq. (2), be replaced with alterna-
tive robust statistics that are more appropriate for estimating
the parameters of skewed data (e.g. a trimmed mean and a
trimmed standard deviation). In contrast, the assumption im-
posed in Eq. (3) that 2}, display an approximate Gaussian
(and therefore symmetric) spatial distribution at each time
point ¢ is more enduring. This is due to the fact that the pro-
posed procedure has been specifically adapted for the valida-
tion of strongly correlated, univariate time series which are
expected to exhibit similarly shaped distributions and which
are also preliminarily standardized to account for any differ-
ences between them in the (true) mean or standard deviation.
Hence, the MAD approach prescribed in Eq. (3) is feasible
given the properties of the spatio-temporal data for which the
validation procedure has been designed. Furthermore, there
is flexibility for increasing the deviation threshold accord-
ingly should a higher number of flagged outliers suggest that
a degree of under-scaling has indeed occurred during spatial
standardization of z}, using Eq. (3).

4 Evaluation of the new procedure by Monte Carlo
simulation

It is important to assess the reliability and comprehensive-
ness of the proposed validation procedure for strongly corre-
lated series. It is equally important to ascertain any weak-
nesses of the proposed technique under particular circum-
stances. This is best done via a simulation study, since it
is not possible to definitively assess a new method using an
actual data set in which the element of error present within
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the data is unknown. To this end, we simultaneously intro-
duced numerous differing aberrations (or outliers) into clean,
simulated data, and we then examined the ability of the new
double-standardization procedure to detect these aberrations.
Specifically, we assessed the performance of the proposed
technique relative to that of three other comparable double-
standardization procedures lacking either or both of the pro-
posed adaptations. The simulation study was conducted us-
ing RStudio version 2024.04.2 4 764.

4.1 Design of the simulation study

In the design of the simulation study, we adopted the ap-
proach of Zewotir and Galpin (2007). During each iteration,
we first simulated a clean spatio-temporal set of hourly air
temperature data, exhibiting a strong positive correlation be-
tween series over time. Next, we simultaneously introduced
numerous aberrations, including solitary spikes and dips,
temporary level shifts in the series mean, and even irregular-
ities in the diurnal pattern (the likes of which typically might
arise due to timestamp error). We then checked to see which
of the four double-standardization procedures were able to
detect them.

As discussed in Sect. 1, multiple differing forms of out-
liers often arise in sensor-dependent, high-frequency meteo-
rological data for a wide variety of reasons, including human
error. Differing series may be afflicted by differing combi-
nations of outlier types, and any given outlier might affect
more than one spatial location simultaneously. Examination
of a wide variety of scenarios was thus essential in our simu-
lation study in order to properly assess the sensitivity of de-
tection and robustness of the validation procedure. For the
purpose of introducing aberrations to cover a range of pos-
sibilities, we needed to select observations spanning differ-
ing time points and differing spatial locations. Although one
could select observations randomly for each iteration, we in-
stead opted to follow the lead of Zewotir and Galpin (2007)
and chose to perturb the same observations in each run for
ease of analysis.

4.1.1 Simulation of clean data

The clean spatio-temporal data sets were generated using a
relatively simple simulation strategy. Based on their review
of the literature, Zewotir and Galpin (2007) emphasize that
it is advantageous to employ a simple simulation strategy,
rather than a complex one, in order to permit more straight-
forward evaluation of the performance of the new method-
ology being tested. If the method yields sensible results in a
simple setting that are easy to explain and contextualize, this
should provide assurance that the method will similarly pro-
duce reasonable results under more complex circumstances.

As a first step, we employed a deterministic model to pro-
duce smooth hourly air temperature series of extended dura-
tion for a set of 25 spatial locations within the province of
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Mpumalanga (MP), South Africa. The respective distances
between the differing pairs of locations within the spatial set
ranged from as little as 1.7 km to at most 162.3 km. The spa-
tial locations used in the study correspond to the locations
of the differing AMSs for which we were able to obtain ob-
served series of daily minimum and maximum air temper-
ature readings viz. AMS 1 to AMS 28 (see Table Al) but
with AMS 6, AMS 23, and AMS 24 being omitted from
the simulation study, due to the high degree of missingness
in their respective daily series. For the purpose of the sim-
ulation study, we specifically considered a time period ex-
tending from O1:00LT on 1 February 2018 to midnight on
30 September 2018 in order to yield approximately symmet-
rically distributed air temperature series.

The chillR package (Luedeling et al., 2024) was employed
to generate hourly air temperature data. This package pro-
vides functions that apply varying mathematical equations
published by Linvill (1990), Spencer (1971), and Almorox
et al. (2005). Together, the above-mentioned mathematical
equations facilitate deterministic modelling of hourly air
temperatures, according to Julian date (day of the year) and
geographic latitude. A sine curve is used to model the day-
time trends in air temperature between sunrise and sunset,
and a logarithmic decay function is used to model cooling
during the night. The only inputs that the chillR package re-
quires for the simulation of hourly data, in addition to Julian
date and geographic latitude, are the corresponding series
of the observed daily minimum and maximum air temper-
atures for each location (previously referenced). These daily
series are from the South African Air Quality Information
System (SAAQIS, 2023, https://saaqis.environment.gov.za/,
last access: 18 July 2023) for the set of 25 spatial locations
(or AMSs) mentioned above. We performed basic cleaning
of the data via inspection, and a relatively low percentage
of each daily series (~ 5% on average) was imputed by
linear interpolation. A smooth hourly air temperature series
was then generated for each location using relevant functions
within the chillR package.

At each iteration of the study, randomness was incorpo-
rated into the smooth series simulated for each location.
This was done through inclusion of a stochastic error term
e~ N(0, 062). In each run, the stochastic error term & was
randomly generated using a seed specific to that iteration
in order to obtain the final set of clean spatio-temporal air
temperature data to be used in the run. Overall, 100 differ-
ent random seeds were applied during the study. Without any
knowledge of o2, it was decided that the simulation should
be conducted using two contrasting but still reasonable val-
ues for oez (0.25 and 4) in order to test the performance of the
proposed outlier detection procedure for strongly correlated
series under two differing degrees of between-series correla-
tion. Using AMS 1 as an illustrative example, Fig. 1 high-
lights the simulation of a substantially more erratic trend in
series, when the variance of the random error is set to 4 in-
stead of 0.25. Under each set value of crez, 100 different clean
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data sets were simulated and then evaluated prior to aberra-
tions being introduced.

4.1.2 Introduction of aberrations

Observations were largely chosen at random for the purpose
of concurrently introducing numerous varying aberrations
into the clean simulated data (in order to replicate the type of
error-prone series considered in this paper). Once selected,
the same observations were perturbed during each iteration
of the study. Table 1 presents the set of 12 varied forms of
aberration that were introduced simultaneously during each
run, along with the corresponding AMS and time periods that
were selected for perturbation. Aberrations 1 to 4 represent
differing forms of solitary outliers (spikes or dips) that affect
either a single AMS or multiple AMSs concurrently. Aberra-
tions 5 to 9 represent varied forms of temporary level shifts in
the series mean, each with a differing duration. Aberration 9
was deliberately designed to extend across more than half
the time period of the data, with the expectation that all of
the varying double-standardization procedures would break
down in trying to detect it (even those procedures that em-
ploy robust statistics). Aberrations 10 to 12 represent periods
of irregularity in the diurnal pattern, each of differing length.
In certain instances, the same AMS was assigned to more
than one aberration (e.g. AMS 3) to permit the evaluation of
the proposed method against three alternatives in the simulta-
neous detection of multiple varying forms of outliers within
a series.

Under each fixed value of 062 (0.25 and 4), the set of
aberrations shown in Table 1 was introduced at differing
degrees of perturbation (mild, moderate, and severe). For
spikes, dips, and level shifts in the series mean (i.e. aberra-
tions 1 to 9), mild outliers were introduced by perturbing the
relevant observations by %5 °C, moderate outliers were in-
troduced by perturbing the relevant observations by +10 °C,
and severe outliers were introduced by perturbing the rele-
vant observations by 15 °C. To achieve periods of irregu-
larity in the diurnal pattern (i.e. aberrations 10 to 12), mild
aberrations were introduced by shifting the respective peri-
ods of data backward by 4 h, moderate aberrations were in-
troduced by shifting the respective periods of data backward
by 8 h, and severe aberrations were introduced by shifting the
period of data backward by 12h (in which case a complete
inversion of the diurnal pattern was achieved with air tem-
peratures that were originally simulated for a timestamp of,
say, 15:00 LT, reflecting a timestamp of 03:00 LT instead). To
illustrate the manner in which irregular diurnal patterns were
introduced into the clean data, Fig. 2 displays the simulation
of aberration 10 under differing degrees of perturbation.

Thus, a total of six different scenarios were tested (two set
values of aez x 3 degrees of perturbation). In each of the
six scenarios, 100 aberrant data sets were simulated. The
adapted double-standardization procedure was applied to
each and every aberrant data set, and so too were the semi-
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Simulation of clean hourly air temperature

AMS 1: 8-14 February 2018
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Figure 1. An illustration showing a segment of the clean hourly air temperature series that was simulated for AMS 1, initially by deterministic

modelling (%2 = 0) and thereafter by incorporating stochastic error at each run using two differing set values for cZ.

Table 1. An overview of the set of aberrations simultaneously introduced during each iteration of the simulation study as well as the
corresponding observations that were randomly selected for perturbation in each instance.

Description Affected AMS* Affected time period in 2018
Aberration 1 Spike, affecting one location AMS 3 04:00LT, 1 February
Aberration 2 Dip, affecting one location AMS 5 15:00 LT, 12 March

Aberration 3
Aberration 4
Aberration 5
Aberration 6
Aberration 7
Aberration 8
Aberration 9
Aberration 10
Aberration 11

Spike, affecting five locations

Dip, affecting four locations

Temporary increase in the series mean, lasting 24 h

Temporary decrease in the series mean, lasting just over 10d
Temporary decrease in the series mean, lasting 16d

Temporary increase in the series mean, lasting more than 26 d
Temporary increase in the series mean, lasting more than 4 months
Irregularity in the diurnal pattern, lasting just over 6d

Irregularity in the diurnal pattern, lasting more than 18 d

AMS 1,7, 15,21, and 25
AMS 3,4, 11, and 14

21:00LT, 23 June
09:00LT, 4 July

Aberration 12 Irregularity in the diurnal pattern, lasting more than 4 months

AMS 9 19:00LT, 17 April-18:00LT, 18 April

AMS 13 06:00 LT, 20 September—11:00 LT, 30 September
AMS 2 17:00LT, 5 February—17:00 LT, 21 February
AMS 3 08:00 LT, 29 July-23:00 LT, 24 August

AMS 22 11:00 LT, 24 March-08:00 LT, 11 August

AMS 3 15:00 LT, 10 May-22:00LT, 16 May

AMS 19 01:00 LT, 13 March-03:00 LT, 31 March

AMS 17 17:00 LT, 8 February—02:00 LT, 23 June

* Automatic monitoring station, i.e. spatial location.

adapted and non-adapted versions lacking either or both of
the proposed procedural adaptations discussed in Sect. 3.1.

Hereafter, we use the abbreviation “R” to denote the
use of robust statistics within a procedure, the abbreviation
“NR” to denote the use of non-robust statistics, the abbrevia-
tion “G” to indicate the implementation of global series stan-
dardization, and the abbreviation “NG” to denote non-global
or seasonally controlled series standardization.

Adv. Stat. Clim. Meteorol. Oceanogr., 11, 133—158, 2025

4.2 Results of the simulation study

Before assessing the performance of each of the double-
standardization procedures in the detection of the artificially
imposed aberrations, we evaluated the clean data sets simu-
lated under the two set values of c:ez (0.25 and 4). In particu-
lar, we explored the prevailing correlation between the clean
series in each instance — both before and after preliminary se-
ries standardization using different methods — and we exam-
ined the rates of “false positives” (Zewotir and Galpin, 2007)
that were obtained when the differing validation techniques
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Simulation of aberration 10 under .2 = 0.25
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Figure 2. An illustration showing the perturbation of a segment of the clean hourly air temperature series that was simulated for AMS 3, in
the oez = 0.25 case, in order to introduce differing degrees of irregular diurnal patterns into the data.

were applied to the clean data. Finally, we also examined the
autocorrelation functions (ACFs) and partial autocorrelation
functions (PACFs) of the twice-standardized (clean) series in
relation to that of the original series. The objective of this
was to ascertain whether or not spatial standardization re-
moves seasonal (diurnal) periodicity within a series, through
implementation of either the adapted or non-adapted double-
standardization procedure. A data set simulated for AMS 1,
using a set value of aez = (.25, was arbitrarily chosen for this

purpose.

4.2.1 Evaluation of the clean data sets

In the 062 =0.25 case, the temporal (Pearson) correlation
prevailing between differing pairs of series within the spa-
tial set was observed to range from 0.90 to 0.99 across all
100 iterations of clean data simulated for this scenario. In
contrast, the prevailing temporal correlation between the se-
ries was observed to be somewhat lower in the ae2 =4 case,
ranging from 0.81 to 0.93 across all relevant iterations. The
slightly weaker between-series correlation generated in this
scenario is not surprising given the more erratic trend pro-
duced in each series in this case (as illustrated in Fig. 1). In
light of the observed differences in correlation structure, we
anticipated that there would be a lower rate of success in the
detection of outliers in the aez =4 case, given the formula-
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tion of the new procedure specifically for strongly correlated
series. That is, the success rate of the new procedure was
expected to be inversely proportional to the strength of the
between-series correlation prevailing in the data.

Table 2 displays the range of temporal correlations that
continued to prevail between the clean series after prelimi-
nary standardization was implemented using differing meth-
ods (global versus seasonally controlled) but prior to spa-
tial standardization. Under both set values of o2, it is evi-
dent from the table that the between-series correlation be-
comes depressed when a non-global (NG) or seasonally con-
trolled approach is applied during preliminary series stan-
dardization. For example, in the aez =0.25 case, it can be
seen that the range of temporal correlation dropped from be-
tween 0.90 and 0.99 in the original data (as specified above)
to between 0.46 and 0.88 when the non-adapted double-
standardization procedure was applied to standardize each
series independently (using a non-global approach and non-
robust statistics). Similar results were achieved when a semi-
adapted double-standardization procedure was applied using
robust statistics, again using a non-global approach to inde-
pendent series standardization. In contrast, it can be seen that
the between-series correlation was preserved when a global
approach was adopted to preliminarily standardize each se-
ries, regardless of whether or not robust statistics were used.

Adv. Stat. Clim. Meteorol. Oceanogr., 11, 133—158, 2025




142 N. D. Benschop et al.: A new data-standardization procedure for comprehensive outlier detection

Table 2. Range of the observed temporal correlation between the one-time standardized series across all of the clean data sets simulated with

each value of oez.

02 =025 ol =4

Pearson correlation

Pearson correlation

Procedure applied Minimum  Maximum Minimum Maximum
Non-adapted (NR, NG) 0.46 0.88 0.29 0.55
Semi-adapted (NR, G) 0.90 0.99 0.81 0.93
Semi-adapted (R, NG) 0.44 0.86 0.28 0.53
Adapted (R, G) 0.90 0.99 0.81 0.93

Once spatial standardization of the clean simulated data
sets was subsequently implemented using the four differing
techniques (i.e. after double standardization of the data was
complete), we conducted an evaluation of the distribution of
the resulting twice-standardized data in each case to deter-
mine the overall false-positive rate of outlier detection using
each method. Furthermore, we examined the false-positive
rates of detection, specifically among observations selected
for eventual perturbation.

Similar to what we would expect to see in standard normal
data, Table 3 shows that only a very low percentage of data
(0.5 % or less, in each case on average) was flagged as out-
liers in each of the clean simulated sets when using double-
standardization procedures that employ non-robust statistics
along with a typical deviation threshold of 4 = 3. However,
methods that employ robust statistics during preliminary and
spatial standardization were found to yield somewhat higher
overall false-positive rates of detection in each case when
applied to the clean simulated data. This highlights a slight
weakness of the new outlier detection procedure proposed
for strongly correlated data, which is indicative of lower lev-
els of efficiency. Moreover, this finding infers that a slightly
higher deviation threshold might need to be applied when
using this procedure (or any other procedure that employs
robust statistics to standardize data) in order to avoid having
to inspect (unnecessarily) a very large number of flagged ob-
servations. Nonetheless, we chose to proceed with the simu-
lation study, largely using a deviation threshold of 4 = 3, but
we also opted to explore detection rates based on a higher
deviation threshold of # =5 for the adapted procedure only.
Fortunately, despite the apparent tendency of robust outlier
detection methods to yield a higher number of false positives,
the results presented in Appendix B (see Tables B1 and B2)
confirm that virtually no bias was introduced at the start of
the study, with false-positive rates being zero or negligible
among observations specifically chosen for eventual pertur-
bation.

The ACF plots displayed in Figs. 3-5 were used to de-
termine whether or not the seasonality present within a se-
ries (see Fig. 3) is ultimately removed via spatial standard-
ization of the data across series at each point in time, using
either the adapted (R, G) or non-adapted (NR, NG) double-
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Table 3. Percentages of clean data lying > 3 standard deviations
from the mean after double standardization of the data using differ-
ing procedures (averaged across all 100 simulated data sets relating
to each case).

Case Adapted  Semi-adapted Semi-adapted Non-adapted
procedure procedure procedure procedure
R, G) (NR, G) (R,NG) (NR, NG)
crez =0.25 24 % 0.5% 2.5% 0.4 %
0o2=4 1.5% 0.2% 2.0% 0.1%

standardization procedures (see Figs. 4 and 5 respectively).
The plots are arbitrarily based on a clean hourly air temper-
ature series that was simulated for AMS 1 in the case 62 =
0.25 (previously shown in Fig. 1). The differing ACF plots of
the resulting twice-standardized data, shown in Figs. 4 and 5
respectively, indicate that the spatial standardization of the
data serves to greatly reduce the seasonal trend, regardless
of whether it is performed using the adapted technique or
the non-adapted technique. (The corresponding PACF plots
given in Appendix C lead to similar conclusions.) However,
it is equally clear from the ACF plots that spatial standard-
ization does not remove seasonality entirely. Furthermore,
the ACF associated with the twice-standardized data aris-
ing from the adapted procedure (R, G) is seen to decay ex-
tremely slowly, indicating strong dependencies between the
twice-standardized data values through to very long hourly
lags. One would thus expect the adapted procedure to per-
form well in the detection of extended sequences of consec-
utive outliers. In contrast, it can be seen that the ACF as-
sociated with the twice-standardized data arising from the
non-adapted procedure (NR, NG) decays far more rapidly,
indicating a greater degree of stationarity, likely due to pre-
liminary series standardization having been performed in a
seasonally controlled manner too.

4.2.2 Results when aberrations were introduced

Tables 4-7 display the success rates of the four validation
procedures in detecting the various aberrations that were si-
multaneously introduced into the clean data under six dif-
ferent scenarios (two set values of oez x 3 degrees of pertur-
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ACEF of clean hourly air temperature series
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Figure 3. Plot of the autocorrelation within a series of clean hourly air temperature data simulated for AMS 1, using crez =0.25.

Series ACF after double-standardization via adapted procedure
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Figure 4. Plot of the autocorrelation in the series, after double standardization of the data using the adapted procedure.

bation). For single outliers (i.e. aberrations 1 and 2), the suc-
cess rate shown refers to the proportion of iterations in which
the respective aberration was detected (from a relevant set of
100 runs). For solitary outliers affecting multiple locations
(i.e. aberrations 3 and 4), the success rate reflects the propor-
tion of aberrant observations that were detected each time on
average. For sequential outliers (i.e. aberrations 5 to 12), the
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success rate reflects the proportion of the perturbed sequence
that was detected each time on average.

The results presented in Table 4, in the oe2 =0.25 case,
show that the non-adapted double-standardization proce-
dure (NR, NG) was highly reliable in the detection of aber-
ration 1 (a solitary spike affecting only one location) and
aberration 5 (a temporary increase in the series mean of very
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Series ACF after double-standardization via non-adapted procedure
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Figure 5. Plot of the autocorrelation in the series, after double standardization of the data using the non-adapted procedure.

Table 4. Results showing the success rates of the non-adapted double-standardization procedure (NR, NG) in detecting each aberration

among the 100 iterations in each scenario.

02 =025 o2=4

Mildly Moderately  Severely Mildly Moderately  Severely

perturbed perturbed  perturbed perturbed perturbed  perturbed

Aberration 1 92 % 100 % 100 % 11% 55% 91 %
Aberration 2 0% 60 % 100 % 0% 6 % 61 %
Aberration 3 0% 0% 0% 0% 0% 0%
Aberration 4 0% 0% 0% 0% 0% 0%
Aberration 5 99 % 100 % 100 % 9% 63 % 97 %
Aberration 6 17 % 63 % 77 % 1% 11% 23 %
Aberration 7 3% 6 % 7 % 0% 0% 0%
Aberration 8 2% 6 % 8 % 0% 0% 1%
Aberration 9 1% 2% 3% 0% 0% 0%
Aberration 10 15 % 20 % 22 % 1% 2% 3%
Aberration 11 0% 0% 0% 0% 0% 0%
Aberration 12 2% 5% 8 % 0% 1% 1%

short duration). Under conditions of moderate to severe per-
turbation, the method also performed well in the detection of
aberration 2 (a solitary dip affecting a single location) and
aberration 6 (a temporary decrease in the series mean last-
ing slightly longer than aberration 5 but still only persist-
ing for less than half a month). However, the non-adapted
method performed poorly in the detection of irregular pat-
terns (i.e. aberrations 10 to 12) and also failed to detect
any substantial portion of any sequence of level shift lasting
more than several days (i.e. aberrations 7 to 9). Furthermore,
the non-adapted double-standardization procedure was com-
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pletely unsuccessful in detecting aberrations 3 and 4, con-
sisting of solitary outliers affecting multiple locations con-
currently.

We largely attribute the generally poor performance of the
non-adapted method in the detection of sequential outliers to
the seasonally controlled approach that this technique uses to
implement preliminary series standardization. As we showed
in Sect. 4.2.1, this depresses the temporal correlation within
the data by reducing the dependencies between consecutive
values in each standardized series, in order to render them
somewhat stationary. Furthermore, performing preliminary
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Table 5. Results showing the success rates of the semi-adapted double-standardization procedure (NR, G) in detecting each aberration among

the 100 iterations in each scenario.

02=0.25 o2=4

Mildly Moderately  Severely Mildly Moderately  Severely

perturbed perturbed  perturbed perturbed perturbed  perturbed

Aberration 1 0% 13 % 100 % 1% 11% 37 %
Aberration 2 0% 0% 0% 0% 1% 8 %
Aberration 3 0% 0% 0% 0% 0% 0%
Aberration 4 0% 0% 0% 0% 0% 0%
Aberration 5 67 % 100 % 100 % 9% 63 % 98 %
Aberration 6 18 % 78 % 99 % 2% 24 % 67 %
Aberration 7 28 % 63 % 86 % 4 % 24 % 59 %
Aberration 8 23 % 68 % 95 % 2% 20 % 54 %
Aberration 9 5% 21 % 32 % 1% 4 % 8 %
Aberration 10 8 % 13 % 14 % 2% 6 % 7 %
Aberration 11 6 % 12 % 13 % 2% 6 % 7 %
Aberration 12 32 % 46 % 47 % 11% 26 % 30%

Table 6. Results showing the success rates of the semi-adapted double-standardization procedure (R, NG) in detecting each aberration among

the 100 iterations in each scenario.

02=025 o2=4

Mildly Moderately  Severely Mildly Moderately  Severely

perturbed perturbed  perturbed perturbed perturbed  perturbed

Aberration 1 96 % 100 % 100 % 20 % 79 % 97 %
Aberration 2 14 % 97 % 100 % 4 % 41 % 91 %
Aberration 3 72 % 100 % 100 % 8% 41 % 89 %
Aberration 4 9% 72 % 100 % 10 % 41 % 77 %
Aberration 5 93 % 100 % 100 % 32% 88 % 99 %
Aberration 6 30 % 66 % 78 % 8% 22 % 39 %
Aberration 7 11% 4 % 3% 3% 1% 0%
Aberration 8 9% 10 % 10 % 4 % 8% 10 %
Aberration 9 7% 12 % 13 % 3% 5% 8%
Aberration 10 27 % 43 % 45 % 11% 26 % 32%
Aberration 11 2% 3% 4 % 1% 1% 1%
Aberration 12 6 % 12 % 15 % 3% 4 % 5%

series standardization within smaller seasonally controlled
subsets of data, using non-robust estimates, raises the risk of
introducing bias when consecutive outliers are present within
the series for extended periods. Similarly, we attribute the
poor performance of the non-adapted method in the detec-
tion of aberrations 3 and 4 to the use of non-robust estimates
for the spatial mean and standard deviation of the data at
each time point and hence to the introduction of bias into the
twice-standardized data during spatial standardization. When
the spatial sample is small (e.g. only 25 locations), outliers
that affect multiple locations concurrently will substantially
bias the spatial mean and standard deviation of the data for
the time point in question.

Overall, it is fair to state that the non-adapted double-
standardization procedure was not at all comprehensive in
detecting the varied set of aberrations that were simultane-
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ously introduced into the data in the 62 = 0.25 case. Further-
more, when weaker temporal correlation prevailed between
the simulated series in the oez =4 case, the procedure was
even less sensitive to the presence of all forms of aberration
that were introduced.

Tables 5 and 6 display the corresponding rates of success
for semi-adapted versions of the double-standardization pro-
cedure. The results presented in Table 5 confirm that the im-
plementation of a global approach to preliminarily standard-
ize each series drastically improves the ability of a double-
standardization procedure to detect a substantial portion of
any sequence of level shift — even those with very long
durations — and particularly under conditions of moderate
to severe perturbation (see aberrations 5 to 9 in Table 5).
However, with the continued use of non-robust statistics, a
semi-adapted double-standardization procedure (NR, G) still
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Table 7. Results showing the success rates of the adapted double-standardization procedure (R, G) in detecting each aberration among the

100 iterations in each scenario.

02=0.25 o2=4

Mildly Moderately  Severely Mildly Moderately  Severely

perturbed perturbed  perturbed perturbed perturbed  perturbed

Aberration 1 67 % 100 % 100 % 7 % 60 % 98 %
Aberration 2 0% 92 % 100 % 4 % 25% 76 %
Aberration 3 11% 99 % 100 % 4 % 27 % 79 %
Aberration 4 0% 47 % 100 % 4 % 30% 74 %
Aberration 5 98 % 100 % 100 % 30% 92 % 100 %
Aberration 6 57 % 96 % 98 % 13% 63 % 95 %
Aberration 7 65 % 98 % 100 % 17 % 65 % 95 %
Aberration 8 59 % 96 % 100 % 16 % 62 % 94 %
Aberration 9 37 % 75 % 90 % 9 % 24 % 36 %
Aberration 10 36 % 57 % 57 % 16 % 37 % 40 %
Aberration 11 45 % 71 % 74 % 16 % 38% 48 %
Aberration 12 50 % 75 % 79 % 23 % 46 % 54 %

struggles in general with the detection of irregular patterns
(i.e. aberrations 10 to 12), though there was a notable in-
crease in the average proportion of the sequence being de-
tected in relation to aberration 12. Furthermore, such a semi-
adapted procedure (NR, G) was found to be largely incapable
of detecting solitary outliers (i.e. spikes and dips), with the
exception of aberration 1 under conditions of severe pertur-
bation in the 02 = 0.25 case.

In contrast, the results presented in Table 6 highlight that a
semi-adapted procedure (R, NG) which adopts the use of ro-
bust statistics for data standardization is highly reliable in the
detection of all forms of solitary outliers under conditions of
moderate to severe perturbation, in the 062 =0.25 case. This
is true even for spikes and dips that affect multiple locations
concurrently, i.e. aberrations 3 and 4. However, with the con-
tinued implementation of seasonally controlled series stan-
dardization, such a semi-adapted procedure (R, NG) remains
unreliable in the detection of irregular patterns (i.e. aberra-
tions 10 to 12) and in the detection of substantial portions
of any sequence of level shift that has an extended duration
(i.e. aberrations 7 to 9).

Table 7 displays the corresponding performance of the
(fully) adapted double-standardization procedure (R, G). In
the (Tez =0.25 case, the adapted method was found to be
highly reliable in detecting all forms of solitary outliers and
level shifts (i.e. aberrations 1 to 9) under moderate to severe
perturbation, and it was seen to display reasonable perfor-
mance in detecting such perturbations when mild. (One slight
exception was in the detection of aberration 4 under condi-
tions of less than severe perturbation.) The adapted method
performed unexpectedly well in detecting the vast majority
of the lengthy sequence associated with aberration 9. It had
been anticipated that all four double-standardization proce-
dures — even those employing the median and MAD — would
break down in the detection of aberration 9, given that this
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level shift extends for more than half the time period of the
data.

Moreover, unlike the other methods, the adapted double-
standardization procedure was able to detect large portions of
the irregular diurnal patterns that were introduced via aber-
rations 10 to 12, particularly when the shift in the diurnal
pattern was of a moderate to severe degree (i.e. 8 to 12h).
Detection rates of 100 % are not really achievable in the case
of irregular diurnal patterns when using a form of double-
standardization procedure for data validation. This is true
even under severe perturbation (or complete diurnal inver-
sion), when maximum temperatures are logged as having
occurred in the early hours of the morning and minimum
temperatures during the afternoon. This is due to the fact
that readings time-stamped closer to either sunrise or sun-
set generally will not be flagged, as a result of their values
being similarly moderate and comparable (e.g. an air temper-
ature measured at 18:00 LT mistakenly logged with a times-
tamp of 06:00 LT would probably not appear extreme for a
timestamp of 06:00 LT or deviate too far from that recorded
elsewhere at 06:00 LT). However, provided a sufficient por-
tion of the irregular diurnal pattern is flagged by the double-
standardization procedure, it is usually quite easy to detect
the corresponding start and end points.

Overall, the adapted procedure (R, G) displayed either
equivalent or superior performance compared to the alterna-
tive methods in detecting all forms of severe perturbation and
almost all forms of moderate perturbation (with a slight ex-
ception in the case of aberrations 2 and 4, where the semi-
adapted procedure (R, NG) achieved slightly higher rates of
detection, though all four procedures struggled somewhat,
specifically in the detection of aberration 4 under conditions
of less than severe perturbation, possibly due to a mere pecu-
liarity of the observations selected for this aberration). The
adapted method also displayed superior performance in the
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detection of mildly perturbed sequences, including both level
shifts and irregularities in the diurnal pattern. However, it
was outperformed by the semi-adapted procedure (R, NG) in
the detection of mild spikes and dips (i.e. aberrations 1 to 4)
and by the non-adapted procedure in the detection of aber-
ration 1 under mild perturbation only. Thus, it would seem
that procedures which implement a seasonally controlled ap-
proach to preliminary series standardization possess superior
sensitivity in the detection of solitary outliers that are milder.
However, this is hardly an advantage when they are unable
to detect even the most severe forms of sequential outliers of
any substantial duration.

In the Uez =4 case, the adapted double-standardization
procedure was still found to be highly reliable in the detec-
tion of severe perturbations in almost all of the instances,
with fair performance being displayed in the detection of
moderate perturbations. In the aez = 0.25 case, when a higher
deviation threshold of & = 5 was applied, the adapted proce-
dure only failed to detect 20 % of the severe perturbations
that it had successfully identified using a deviation threshold
of h = 3, although an additional 38 % of moderate perturba-
tions went undetected (see Table D1).

5 Application of the procedure to real data: a case
study

As presented in the case study that follows, we next applied
the adapted double-standardization procedure to the set of
hourly air temperature series actually recorded by AMS 1 to
AMS 28 between 1 February and 30 September 2018. The
hourly data were extracted from SAAQIS, and although the
degree of error present within each time series was unknown,
it was considered to be potentially substantial and have vary-
ing forms. For context, SAAQIS serves as a publicly avail-
able online platform for storing and reporting on data for a
wide range of air pollutant and meteorological variables that
are measured via a country-wide network of AMSs under the
ownership of differing public entities. Such stations depend
on the use of programmable data-recording devices that con-
currently measure a variety of sensors for differing variables
at highly frequent and regular intervals over extended periods
and that are additionally configured to process and transmit
the data (Campbell Scientific, 2024). The choice of sensors,
rates of raw measurement (e.g. every few minutes or sec-
onds), and time spans for subsequent calculation of recorded
values (e.g. hourly readings) is customizable for each sta-
tion. The resulting time series made available on SAAQIS
are hence analogous to the type of data described in Sect. 1
as being susceptible to multiple forms of error.

5.1 Overview of the data

In the case study, we chose to retain AMS 6, AMS 23,
and AMS 24 within the spatial time series set despite a high
degree of missingness in their respective series. We thus ob-
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tained, to varying degrees of completeness, a total of 28 se-
ries of average air temperature readings processed for every
hour of every day by the respective AMSs positioned at dif-
ferent locations across the Gert Sibande and Nkangala dis-
tricts of the province of Mpumalanga (see Fig. 6). Six AMSs
among the 28 were identified as being of the utmost rele-
vance (hereafter referred to as principal stations), i.e. AMS 9,
AMS 10, AMS 12, AMS 15, AMS 21, and AMS 26. These
stations were deemed to be of principal importance based on
their respective proximities to six different primary schools
from which repeated-measure health data had been collected
during 2018. The remaining 22 AMSs were regarded as less
pertinent (hereafter referred to as subsidiary stations).

The temporal correlation prevailing between differing
pairs of series within the spatial set was determined to
range between 0.88 and 0.99, with only the subsidiary series
recorded at AMS 24 exhibiting deviant behaviour. In partic-
ular, this series was found to display a temporal correlation
of less than 0.20 with all other series in the spatial set, rais-
ing doubts about the validity of the data within that series.
Such a finding highlights the reality, in general, that any se-
ries external to the primary interests of a study will also be
susceptible to error and should consequently not be used in
isolation as a reliable reference for validating the series of
principal importance. This notwithstanding, low correlation
coefficients must always be interpreted with caution prior to
data pre-processing, since temporal correlation between se-
ries can be drastically impacted merely by the presence of
a few extreme data points (Walker, 1960). Thus, it was de-
cided that, regardless, AMS 24 should be retained within the
spatial set.

Despite the evidence of a predominantly strong tempo-
ral correlation between series, considerable variation was
observed in the level of air temperature recorded by the
28 AMSs at discrete points in time. For instance, the air tem-
peratures logged across the 28 different locations between
16:00 and 17:00LT on 2 February 2018 displayed an in-
terquartile range of 8.3 °C and ranged from as high as 31.7 °C
at AMS 26 to as low as 17.4°C at AMS 11 only 64.0km
away. Such an observation emphasizes the necessity, in gen-
eral, of preliminarily standardizing each series independently
according to its own distribution. However, despite the ob-
served differences, each of the series was confirmed as ex-
hibiting an approximately symmetric distribution of much the
same shape, akin to that displayed in Fig. 7a for the series
recorded at AMS 21. Even the series recorded at AMS 24
was found to display a distribution of a similar form, as seen
in Fig. 7b, aside from the presence of a deviant cluster of
extreme outliers situated on the far left, which was subse-
quently determined to be the result of multiple periods of
prolonged instrument malfunction (shown later in Sect. 5.3).
Thus, for the purpose of detecting any and all forms of out-
liers present within the wider spatio-temporal data set, it was
deemed viable to apply the proposed double-standardization
procedure (R, G) precisely as defined in Egs. (2) and (3),
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Figure 6. Map showing the locations of the 28 AMSs used to record ambient air temperature in MP in South Africa during 2018.
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Figure 7. (a, b) Estimated probability density function of air temperature at two different locations in the province of Mpumalanga, based
on average hourly data logged by AMS 21 (a) and AMS 24 (b) between February and September 2018.

i.e. by implementing a MAD approach during both stages of
data standardization.

Unlike in the simulation study, the double standardization
of the data in the case study was performed using Microsoft
Excel 2016, given that it facilitates the flagging of outliers
more easily via conditional formatting. To once again permit
a comparative evaluation of the findings, the non-adapted and
semi-adapted double-standardization procedures were also
applied to the same univariate spatial set of hourly air tem-
perature series. In each case, no prior data cleaning of any
sort was performed. The overall effectiveness in the detec-
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tion of outliers was assessed in terms of three aspects, i.e.
sensitivity (measured by the extent of data flagged as poten-
tially inaccurate), efficiency (determined by the percentage
of flagged values confirmed to be inaccurate), and the level
of comprehensiveness (based on the absolute number of inac-
curate observations and the variety of aberrations detected).
Comparative figures were generated in R using the ggplot2
package developed by Wickham (2016).
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5.2 Summary of the findings

After double standardization of the data was performed us-
ing the adapted procedure (R, G), a total of 3135 twice-
standardized air temperature values (2.2 % of all non-missing
data) were noted to exceed a deviation threshold of 7 =3
such that |77 > 3. Of these, 1399 values (1.0 % of all non-
missing data) were found to exceed a deviation threshold of
h = 4. Given the likelihood of a high number of false posi-
tives (based on the results of the simulation study), we chose
to restrict our investigation to the 1399 more extreme values
— the majority of which were observed to appear in consec-
utive sub-sequences within a select few of the (principal and
subsidiary) air temperature series, including AMS 24.

Despite the primary aim being the validation of each prin-
cipal series, an inspection was conducted of every one of
the flagged points and sequences in order to more thor-
oughly assess the efficiency and comprehensiveness of the
adapted procedure in detecting varying types of outliers. Of
the 1399 air temperature values that were flagged, a total
of 763 (54.5 %) were deemed to reflect data error after in-
depth interrogation (a detailed discussion of certain findings
is provided in Sect. 5.3). An additional 103 data values were
further deemed invalid after noting that they formed part of
differing extended sub-sequences — only portions of which
had been flagged by the procedure. Ultimately, a total of
886 air temperature values were nullified, with only 24 of
these being solitary outliers recorded by varying AMSs (both
principal and subsidiary) at differing time points. Another
294 of the nullified values were comprised of a sub-sequence
displaying an apparent inversion in the diurnal pattern which
occurred at AMS 15 (a principal station). The remainder
(566 nullified values) were comprised of 11 different sub-
sequences representing periods of abnormal level shifts in
four different series (both principal and subsidiary), ranging
from as short as 2 h to as long as 304 h. The findings from the
simulation study in Sect. 4 provide assurance that any other
data errors not detected by the adapted procedure in this case
study would likely only be solitary spikes and dips of milder
perturbation and hence of lesser consequence.

The comparative analysis in Table 8 highlights that
the non-adapted and semi-adapted versions of the double-
standardization procedure were considerably less compre-
hensive in detecting the same assortment of errors using
a consistent deviation threshold of 4 = 4. The non-adapted
procedure (NR, NG) was determined to be the least sen-
sitive and comprehensive. The semi-adapted procedure (R,
NG) was found to be the most sensitive but least efficient,
with the highest number of false positives. In line with the
findings of the simulation study, this procedure was specifi-
cally observed to be less reliable in the detection of sequen-
tial outliers, flagging less than half of what the adapted pro-
cedure (R, G) had successfully been able to detect. How-
ever, the majority of the solitary spikes that were flagged by
the adapted procedure were also detected by this procedure
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(17 out of 24). Conversely, the semi-adapted procedure (NR,
G) was found to be somewhat more efficient, though less
comprehensive, than the (fully) adapted procedure. As per
the observations from the simulation study, this procedure
was particularly weak in detecting solitary spikes (only 4 out
of the 24 identified) and also somewhat less reliable in the de-
tection of sequential outliers (73 % identified of those flagged
by the fully adapted procedure).

It might be argued that the results for the non-robust
double-standardization procedures in this case study would
have been better if a more typical threshold of # = 3 had in-
stead been applied for these techniques in particular. How-
ever, the comparative figures shown below in Sect. 5.3 high-
light that, even with the use of such a lower deviation thresh-
old, the non-robust procedures would still have missed many
aberrant observations that the adapted procedure was suc-
cessfully able to detect using a deviation threshold of & = 4.
The findings of the simulation study further support this.

5.3 Examples of specific findings

Figure 8d highlights the superiority of the adapted procedure
in identifying moderate air temperature spikes of between 9
and 10.5 °C that occurred concurrently at AMS 15, AMS 21,
and AMS 23 between 09:00 and 10:00LT on 2 Febru-
ary 2018. For example, the twice-standardized value of 6.0
obtained for AMS 21 corresponds to a supposed average air
temperature of 28.3 °C between 09:00 and 10:00LT. This
reading was 9.3 °C higher than the average air temperature
recorded during the hour prior, between 08:00 and 09:00 LT,
and 3.5 °C higher than the average air temperature recorded
during the subsequent hour, between 10:00 and 11:00LT.
The nearest neighbouring station to AMS 21 (AMS 17) did
not record any such spike, despite being only 2.7 km away.
The spikes at AMS 15, AMS 21, and AMS 23 were subse-
quently deemed invalid after noting that unfeasible readings
were simultaneously being reported for other variables at
these three stations, e.g. relative humidity in excess of 130 %.
However, the corresponding twice-standardized air tempera-
ture values shown in Fig. 8a and b that were derived using
non-robust double-standardization procedures failed to sur-
pass even a lower deviation threshold of 4 = 3. With the af-
fected AMSs being under the same ownership, it is probably
not coincidental that they suffered from similar errors across
multiple sensors over the same period of time despite being
situated more than 100 km apart. Several such spikes were
detected at differing time points within the data set and for
differing AMS groups.

Figure 9a—d highlight the detection of a temporary level
shift down in air temperature at AMS 1. Subsequent inspec-
tion of the relevant portion of non-standardized data revealed
that air temperature at this location supposedly dropped by
more than 6 °C to 13.9 °C at midday on 6 April 2018 and
then plummeted further to just below freezing (—0.9 °C) at
13:00LT. Air temperature readings increased slightly there-
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Table 8. Comparative analysis of the effectiveness of differing double-standardization procedures in detecting multiple varying forms of

outliers.
Adapted Semi-adapted Semi-adapted Non-adapted
procedure procedure procedure procedure
R, G (NR, G) (R,NG) (NR, NG)
Sensitivity? 1399 795 1769 163
Efficiency® 54.5 % 67.9 % 21.6 % 552 %
Comprehensiveness® 763 540 382 90

4 Number of data points flagged as potential errors; that is, \zf‘l*\ >4.0 Percentage of flagged data points
confirmed to be errors. ¢ Total number of invalid data points detected.

2 February 2018, 9-10am

(a) Non-adapted (NR, NG)

(b) Semi-adapted (NR, G)

(d) Adapted (R, G)

Air temperature (twice-standardized)
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AMS identification number

Figure 8. (a—d) A comparison of the twice-standardized air temperature values obtained for each AMS between 09:00 and 10:00 LT on
2 February 2018, derived using four differing double-standardization procedures employing either robust (¢, d) or non-robust (a, b) statistics
and either a seasonally controlled (a, ¢) or global (b, d) approach to series standardization.

after but still remained 5-20° lower versus those recorded at
all other AMSs for the next 22 h, before returning to norma-
tive levels at 13:00 LT on 7 April 2018. Each of the double-
standardization procedures displayed some success in identi-
fying this sequence, most likely due to its very short duration
(based on the findings from the simulation study).

Figure 10d emphasizes the robustness and sensitivity of
the adapted procedure in detecting prolonged periods of de-
vice malfunction at AMS 24. Air temperatures below —48 °C
were reported at this location between 01:00 LT on 10 April
and 08:00LT on 12 April and again between 18:00LT on
13 April and 08:00LT on 26 April during 2018 (reflected
by twice-standardized values as low as —171 beyond the
axis limits of Fig. 10). Similar errors also occurred during
September (not depicted). This finding explains the previ-
ously observed deviation of AMS 24 from the between-series
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temporal correlation structure. Procedures adopting a sea-
sonally controlled approach to series standardization broke
down in this scenario, as seen in Fig. 8a and ¢, even when ro-
bust MAD estimates were used. This is due to the fact that
the malfunction persisted for more than 15d in total dur-
ing April (at least between 01:00 and 08:00 LT), resulting
in fewer valid air temperature values being flagged as exces-
sively large.

Figure 11d highlights the superiority of the adapted pro-
cedure in detecting an inversion in the diurnal pattern at
AMS 15 (a principal station), which occurred between
07:00LT on 13 February and noon on 25 February 2018.
During this period, maximum temperatures were logged as
occurring at night and minimum temperatures during the day.
The adapted procedure flagged 63 % of this sub-sequence.
As expected, readings time-stamped closer to either sunrise
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AMS 1
(a) Non-adapted (NR, NG) (b) Semi-adapted (NR, G)

(c) Semi-adapted (R, NG) (d) Adapted (R, G)

Air temperature (twice-standardized)
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Figure 9. (a—d) A comparison of the twice-standardized air temperature series obtained for AMS 1 between 6 and 7 April 2018, derived
using four differing double-standardization procedures.

AMS 24
(a) Non-adapted (NR, NG) (b) Semi-adapted (NR, G)

(c) Semi-adapted (R, NG) (d) Adapted (R, G)

Air temperature (twice-standardized)

9 April 2018 26 April 2018 9 April 2018 26 April 2018
12am 9am 12am 9am
Figure 10. (a—d) A comparison of the twice-standardized air temperature series obtained for AMS 24 during April 2018, derived using four
differing double-standardization procedures.

or sunset were generally not flagged due to their more mod- trolled series standardization, with the semi-adapted proce-
erate and comparable values. Figure 11a and b show that pro- dure (R, NG) only flagging 23.5 % of this sequence.

cedures using non-robust estimates were naturally less sen-

sitive to the period of timestamp error. Figure 11c further

shows that detection was also inhibited by seasonally con-
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AMS 15

(a) Non-adapted (NR, NG)

(b) Semi-adapted (NR, G)
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Figure 11. (a—d) A comparison of the twice-standardized air temperature series obtained for AMS 15 during February 2018, derived using

four differing double-standardization procedures.

6 Conclusions

In this paper, we have presented a new method for standardiz-
ing meteorological sensor data, with the purpose of enabling
comprehensive detection of multiple varying forms of out-
liers in strongly correlated series that typically come from
high-frequency measurements collected across different lo-
cations over an extended period of time. A review of the rel-
evant literature characterized existing outlier detection tech-
niques as sub-optimal for the validation of such error-prone
spatial time series, as they each tend to cater to the detection
of only one form of outlier in isolation, lack robustness, or
fail to optimally leverage the strong between-series correla-
tion that often prevails in high-frequency meteorological data
exhibiting multiple seasonalities.

To address this problem, we have thus devised a nimble
technique for the detection of both solitary and sequential
outliers (including irregular patterns) in strongly correlated
univariate spatial time series. In particular, we have made
adaptations to an existing double-standardization procedure
for more moderately correlated series that relies on a z-score
approach. The modified procedure that we have proposed
draws on robust statistics to estimate the mean and standard
deviation of each respective temporal and (thereafter) spa-
tial series to ensure sensitivity of detection even when ex-
tensive error is present within the data. Provided that each
time series has a similarly shaped symmetric distribution, we
advocate for the use of the most robust MAD approach to
estimating the true mean and standard deviation of the data.
Whilst the application of such robust statistics in the detec-
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tion of outliers is nothing new, to the best of our knowledge
the adoption of the MAD method in a double-standardization
procedure is unusual. Furthermore, the proposed procedure
is somewhat unique in that the MAD technique is applied
to highly seasonal, non-stationary time series using a global
approach that retains the series structure rather than con-
trolling for seasonality or implementing Hampel’s rolling
window. Accordingly, the new method preserves and fully
leverages the temporal correlation between series by retain-
ing dependencies between consecutive values in the twice-
standardized data. This facilitates better detection of more
lengthy aberrant sequences, including the detection of seem-
ingly typical data points occurring outside the diurnal cycle.

Both procedural adaptations mentioned above have been
shown to be necessary for achieving optimal rates of detec-
tion when varying forms of aberration are potentially present
within a data set, including irregular patterns. When tested
on simulated data marred by artificially imposed aberrations,
double-standardization procedures which adopted a global
approach to preliminary series standardization generally out-
performed those that implemented seasonally controlled se-
ries standardization in the detection of sequential outliers
lasting more than just a few days. Conversely, procedures
which employed robust statistics to standardize the data gen-
erally outperformed procedures that did not in the detec-
tion of solitary outliers and level shifts with very short du-
rations. Overall, the (fully) adapted double-standardization
procedure (R, G) displayed either equivalent or superior per-
formance compared to the non-adapted or semi-adapted ver-
sions in the detection of all forms of severe perturbation,
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and almost all forms of moderate perturbation, in simulated
data. The adapted method also displayed superior perfor-
mance in the detection of mildly perturbed sequences, in-
cluding both level shifts and irregularities in the diurnal pat-
tern. Similar results were obtained when the adapted double-
standardization procedure was applied to real data in a case
study, along with other comparable methods. One slight
weakness of the adapted procedure was seen to be in the de-
tection of solitary spikes and dips that are more mild but for-
tunately of lesser consequence.

The detection rates that were achieved by the adapted
procedure under simulated conditions of slightly weaker
between-series correlation infer that the fypical prevailing
temporal correlation between series in a univariate spatial set
should ideally be somewhat greater than 0.8 in order for the
adapted double-standardization procedure to be an appropri-
ate choice for comprehensive detection of outliers. The effi-
ciency of the adapted procedure was also determined to rely
on the choice of a higher deviation threshold (i.e. & > 3) in
order to limit the number of false positives whilst still achiev-
ing similarly high rates of detection. The choice of devia-
tion threshold requires careful consideration in order to bal-
ance comprehensiveness in the detection of outliers with ef-
ficiency. The technique was found to be moderately efficient
in the case study using a threshold of & = 4, with 54.5 % of
the flagged points subsequently being deemed invalid. In ret-
rospect, a higher threshold would have been more appropri-
ate for the given data, since almost all readings that were
confirmed to be inadmissible displayed a twice-standardized
value larger than 5. Had such a threshold been applied, only
940 values (0.6 % of all non-missing data) would have been
flagged but with the same definite errors being detected, rais-
ing the efficiency to above 70 %.

As is true for any double-standardization procedure, the
proposed technique requires a sufficiently large spatial set,
potentially necessitating the inclusion of subsidiary series.
Nonetheless, the adapted procedural design permits the atyp-
ical (but realistic) notion that subsidiary series may also con-
tain anomalous data. The benefit of devising a method that
copes with this assumption is that it becomes feasible to si-
multaneously validate all series within the spatial set. This in
turn implies that if the number of principal series is satisfac-
torily large, they can in fact be used to validate each other
without needing to incorporate any other series external to
the primary interests of the study. However, benefit may ac-
tually be derived from concurrently validating subsidiary se-
ries if they are to subsequently inform multiple imputations
of missing and nullified data within the principal series.
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The variety and greater extent of inconsistencies detected
by the adapted procedure in both the simulation study and the
case study highlight the superior comprehensiveness that can
be achieved in outlier detection when the method is modi-
fied to fully leverage the characteristics of the data. Although
both the simulation study and the case study were based on
high-frequency air temperature data exhibiting multiple sea-
sonalities, we emphasize the generalizability of the proposed
method to any data series that display a strong correlation
with each other through time. This includes, but is proba-
bly not limited to, univariate spatial time series of differ-
ing measures of humidity, solar radiation, and even ambient
pressure, despite much weaker diurnal cyclicity in the lat-
ter. Similar to air temperature, these variables usually exhibit
strong temporal correlation between locations when mea-
sured at high frequency and sufficiently fine spatial resolu-
tion. Thus, we stress that the applicability of the proposed
double-standardization procedure is dependent purely on the
temporal correlation prevailing between series in the data re-
quiring validation, with potential usefulness even beyond the
scope of meteorology. Extension to multivariate sensor data,
or to time series with a lagged temporal correlation structure,
may be interesting avenues to pursue in future work.
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Table A1. Details of the air monitoring stations (AMSs) used to record ambient air temperature across the province of Mpumalanga (MP) in
South Africa during 20182,

Station Station name District Station Latitude  Longitude
number owner

AMS 1 Amersfoort Gert Sibande  Sasol —27.01709 29.87193
AMS 2 Balfour Gert Sibande MP —26.66285 28.5847
AMS 3 Bosjesspruit Gert Sibande  Sasol —26.60556  29.21083
AMS 4 Camden Gert Sibande  Eskom —26.6226 30.106
AMS 5 Chicken Farm Nkangala Eskom  —25.97884  28.94285
AMS 6 Club Gert Sibande  Sasol —26.52352  29.18902
AMS 7 Delmas Nkangala MP —26.14032  28.69702
AMS 8 Elandsfontein Gert Sibande  Eskom —26.24548 29.41733
AMS 9 eMalahleni Nkangala SAWSP 2587786  29.18647
AMS 10 eMbalenhle North ~ Gert Sibande  Sasol —26.53639 29.0725
AMS 11  eMbalenhle South  Gert Sibande  Sasol —26.57034  29.07457
AMS 12 Ermelo Gert Sibande SAWS —26.49335  29.96805
AMS 13 eZamokuhle Gert Sibande  Eskom —26.97806 29.85409
AMS 14  Grootdraaidam Gert Sibande  Eskom —26.89181 29.30783
AMS 15  Grootvlei 1 Gert Sibande  Eskom —26.76472  28.48008
AMS 16  Grootvlei 2 Gert Sibande  Sasol —26.80103 28.49577
AMS 17  Hendrina Nkangala SAWS —26.1512  29.71648
AMS 18 Kendal Nkangala Eskom —26.1079  28.97446
AMS 19  Komati Nkangala Eskom  —26.09742 29.4506
AMS 20  Kiriel Village Nkangala Eskom  —26.25122  29.25639
AMS 21  Kwazamokuhle Nkangala Eskom  —26.13827 29.7389
AMS 22 Lebohang Gert Sibande ~ Sasol —26.38111 28.91833
AMS 23 Majuba Gert Sibande  Eskom — —27.11275  29.80023
AMS 24  Middelburg 1 Nkangala MP —25.77311 29.43861
AMS 25 Middelburg 2 Nkangala SAWS —25.79606  29.46282
AMS 26  Phola Nkangala Eskom  —25.99567  29.03816
AMS 27  Secunda Gert Sibande  SAWS —26.55064  29.07903
AMS 28  Standerton Gert Sibande  MP —26.96411 29.2232

2 Information was sourced from the South African Air Quality Information System (SAAQIS). b South African

‘Weather Service.
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Appendix B

Table B1. False-positive rates of outlier detection among the respective observations selected for perturbation, across 100 iterations in clean
data using 062 =0.25.

Adapted  Semi-adapted Semi-adapted Non-adapted

procedure procedure procedure procedure

R, G) (NR, G) (R, NG) (NR, NG)
Observations chosen for aberration 1 0% 0% 1% 0 %
Observations chosen for aberration 2 0% 0% 0% 0%
Observations chosen for aberration 3 0% 0% 0% 0 %
Observations chosen for aberration 4 0% 0% 0 % 0 %
Observations chosen for aberration 5 0% 0% 0% 0%
Observations chosen for aberration 6 0% 0% 1% 0 %
Observations chosen for aberration 7 4% 0% 4 % 0 %
Observations chosen for aberration 8 1% 0% 2% 0%
Observations chosen for aberration 9 4% 0% 3% 0 %
Observations chosen for aberration 10 0% 0% 0 % 0 %
Observations chosen for aberration 11 0% 0% 1% 0%
Observations chosen for aberration 12 2% 1% 2% 0 %

Table B2. False-positive rates of outlier detection among the respective observations selected for perturbation, across 100 iterations in clean
data using 062 =4.

Adapted  Semi-adapted Semi-adapted Non-adapted

procedure procedure procedure procedure

R, G) (NR, G) (R, NG) (NR, NG)
Observations chosen for aberration 1 2% 0% 2% 0 %
Observations chosen for aberration 2 0% 0% 0% 0%
Observations chosen for aberration 3 1% 0% 1% 0 %
Observations chosen for aberration 4 0% 0% 3% 0 %
Observations chosen for aberration 5 2% 0 % 3% 0 %
Observations chosen for aberration 6 1% 0% 2% 0 %
Observations chosen for aberration 7 2% 0% 3% 0%
Observations chosen for aberration 8 1% 0% 2% 0 %
Observations chosen for aberration 9 2% 0% 2% 0%
Observations chosen for aberration 10 1 % 0% 1% 0%
Observations chosen for aberration 11 1% 0% 2% 0 %
Observations chosen for aberration 12 2% 0% 2% 0%
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Appendix C: Partial autocorrelation function plots for

AMS 1 (in the 02 = 0.25 case)

PACEF of clean hourly air temperature series

Simulated for AMS 1 using 6.2 = 0.25
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Figure C1. Plot of the partial autocorrelation within a series of clean hourly air temperature data simulated for AMS 1, using oez =0.25.

Series PACF after double-standardization via adapted procedure
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Figure C2. Plot of the partial autocorrelation in the series, after double standardization of the data using the adapted procedure.
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Series PACF after double-standardization via non-adapted procedure
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Figure C3. Plot of the partial autocorrelation in the series, after double standardization of the data using the non-adapted procedure.

Appendix D

Table D1. Results showing the success rates of the adapted double-standardization procedure (R, G) in detecting each aberration when a

higher deviation threshold of # = 5 was applied.

2

02 =025 o2 =4

Mildly Moderately  Severely Mildly Moderately  Severely

perturbed perturbed  perturbed perturbed perturbed  perturbed

Aberration 1 7 % 97 % 100 % 1 % 9% 53 %
Aberration 2 0% 15% 82 % 0% 2% 15%
Aberration 3 0% 41 % 97 % 0% 2% 16 %
Aberration 4 0% 0% 9% 0% 1% 12%
Aberration 5 4% 100 % 100 % 4% 4 % 89 %
Aberration 6 1% 71 % 94 % 1% 12% 50 %
Aberration 7 26 % 84 % 99 % 2% 17 % 56 %
Aberration 8 18 % 70 % 93 % 2% 14 % 44 %
Aberration 9 7% 35% 50 % 1% 3% 6%
Aberration 10 20 % 38 % 39 % 2% 11% 15%
Aberration 11 25 % 51% 58 % 3% 12% 17 %
Aberration 12 30 % 55 % 62 % 5% 19 % 25 %

Code and data availability. All of the data (both simulated and
real) are available upon request from the corresponding author, to-
gether with the code used to conduct the simulation study and to
generate the graphical analyses. The real data may alternatively be
downloaded from the South African Air Quality Information Sys-
tem (https://saaqis.environment.gov.za/, last access 18 July 2023).
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