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Abstract. We present a lightweight stochastic weather generator (SWG) based on a multisite hidden Markov
model (HMM) trained on a large area with French weather station data. Our model captures spatiotemporal
precipitation patterns with a strong emphasis on seasonality and the accurate reproduction of dry and wet spell
distributions. The hidden states serve as interpretable large-scale weather regimes, learned directly from the
data without requiring exogenous inputs. Compared to existing approaches, it offers a robust balance between
interpretability and performance, particularly for extremes. The model architecture enables seamless integration
of additional weather variables. Finally, we demonstrate its application to future climate scenarios, highlighting
how parameter evolution and extreme event distributions can be analyzed in a changing climate.

1 Introduction

1.1 Context

The current context of climate change necessitates a care-
ful analysis of industrial resilience in future climate condi-
tions to anticipate adaptation needs. This includes estimat-
ing extreme hydrometeorological conditions, such as the fre-
quency of long-lasting dry spells, which are critical for hy-
dropower and nuclear generation. Parliamentary missions in
France (Christophe and Pompili, 2018) have highlighted the
need to quantify hydro-stress impacts on nuclear power gen-
eration. Similarly, understanding future hydrometeorological
conditions is essential for farmers to develop robust agricul-
tural strategies (see Pascual et al., 2017; Zhao et al., 2017;
Parent et al., 2018, and references therein).

Rainfall can trigger natural hazards with diverse spa-
tiotemporal characteristics, ranging from short-duration,
localized intense showers to prolonged meteorological
droughts affecting vast regions. As a result, precipitation
modeling must be adapted to the specific hazard being ad-
dressed. Global and regional climate models can simulate
the climate system and project its evolution under different
forcing scenarios. However, they remain computationally ex-
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pensive, limiting the number of simulations that can be per-
formed. In practice, climate projections are made available
in public repositories, such as the French national project
DRIAS (Soubeyroux et al., 2021), which provides around
30 projections (see Sect. 8 for details). Yet, for accurate
risk assessments, additional scenarios may be needed, lead-
ing to challenges in data augmentation and scenario resam-
pling. Another limitation of climate models is their inabil-
ity to fully capture local extremes, despite advancements in
spatial resolution and process modeling (Luu et al., 2022).
Consequently, stochastic weather generators remain widely
used in impact studies. The recent IPCC Working Group
1 report of the 6th assessment (Arias et al., 2021) empha-
sizes the importance of such tools, stating that “Method-
ologies such as statistical downscaling, bias adjustment, and
weather generators are beneficial as an interface between cli-
mate model projections and impact modeling and for deriv-
ing user-relevant indicators.” Unlike climate models, which
represent the physical mechanisms governing climate evolu-
tion, stochastic weather generators are calibrated to repro-
duce the statistical properties of climate variables, includ-
ing distributions, spatial and temporal correlations, and inter-
variable dependencies in multivariate models.
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Generating statistically coherent weather series in time
and space is a challenging problem. Mathematically, these
series form multivariate time-dependent data that are far
from being independent and identically distributed. In simple
terms, today’s weather is strongly influenced by past condi-
tions and spatial correlations with surrounding locations. Ad-
ditionally, weather patterns evolve throughout the year and
under climate change, making it essential to accurately re-
produce both typical weather conditions and extreme events
such as heavy precipitation and intense heatwaves.

For industries operating spatially scattered installations,
a key concern is the simultaneous exposure of multiple fa-
cilities to the same extreme event. In electricity generation,
prolonged, spatially extensive droughts can complicate grid
management, making it crucial to assess their frequency to
anticipate appropriate adaptation measures (International En-
ergy Agency, 2022, e.g., Chap. 3 — Nuclear Power). Large-
scale weather regimes can also significantly impact renew-
able energy production (van der Wiel et al., 2019). However,
estimating the occurrence and intensity of such situations
is not straightforward. Historical observations provide only
a single realization among many possible trajectories influ-
enced by climate variability. Climate models can expand the
range of possible events but often fail to produce enough ex-
treme cases for robust statistical analysis. For example, Lang
and Poschlod (2024, Sect. 4.1) discuss an ensemble of 50
climate model simulations used to estimate return periods of
heavy rainfall, while Fischer et al. (2023) show that an en-
semble of 30 climate model simulations over 31 years each
could not reproduce heatwaves of the same magnitude as the
2021 Pacific Northwest event. To address this limitation, they
propose ensemble boosting methods to enrich simulations of
extreme heatwaves. Stochastic weather generators (SWGs)
offer a way to overcome this limitation by increasing the
sample size, enabling better extreme event statistics at a man-
ageable computational cost.

Beyond hazard modeling, stochastic weather generators
are essential tools for climate stress testing (Robertson et al.,
2007; Manzano and Ines, 2020; Ranger et al., 2022). By
generating realistic large ensembles of weather simulations
under a given climate scenario, they help decision-makers
anticipate climate variability and implement proactive adap-
tation measures. Given the increasing impact of climate
change, leveraging these models is crucial for building re-
silience and ensuring sustainability.

The purpose of this paper is to develop an interpretable
parametric model that efficiently simulates spatially coher-
ent rainfall patterns — both occurrences and amounts — across
France, incorporating self-taught large-scale weather pat-
terns. Unlike pure generative models based on neural net-
works (Goodfellow et al., 2014), the stochastic generator de-
veloped in this study benefits from easily interpretable pa-
rameters, enabling the incorporation of climate change fac-
tors (see Sect. 8.3). Recent studies (Miloshevich et al., 2024)
compare the use of stochastic weather generators and deep
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learning models for extreme heatwave sampling, highlight-
ing the complementary nature of these approaches. Other
studies have shown that classical generative models are not
adapted to learn heavy-tailed distributions (like rainfall), re-
quiring specialized architecture dedicated to extremes (Al-
louche et al., 2022). Finally, enforcing physical constraints
within such models remains a challenge, which is critical for
generating long-term realistic weather simulations (Dueben
and Bauer, 2018).

1.2 Background literature

Many stochastic weather generators are devoted to the gen-
eration of precipitation time series, as precipitation is a cru-
cial variable for many impact studies in agriculture or hy-
drology. For reviews, see Wilks and Wilby (1999), Chen and
Brissette (2014), Ailliot et al. (2015a), and Nguyen et al.
(2023). Stochastic weather generator (SWG) development
dates back to the 1980s, with the model proposed by Richard-
son (1981) to generate long samples of precipitation, mini-
mum and maximum temperature, and solar radiation.

They can have different spatial scales, e.g., single-site
models (Richardson, 1981), multisite models for closely lo-
cated stations (Benoit et al., 2018), gridded-resolution mod-
els (Wilks, 2009; Dawkins et al., 2022), or models for widely
separated stations ( 2 100km) (Zucchini and Guttorp, 1991;
Robertson et al., 2004). The temporal resolution can also
vary, typically from sub-hourly (Cowpertwait et al., 2007)
to hourly (Stoner and Economou, 2020) or daily rainfall
amounts. Multisite daily stochastic generators will be the
main focus of this work. A class of models focuses on non-
parametric approaches, typically using resampling methods
(e.g., Boé and Terray, 2008), which mix parametric and re-
sampling techniques. The main drawback of these methods is
that they cannot produce samples outside the observed distri-
bution, limiting their usefulness for extreme value analysis.
In such cases, parametric models are typically preferred.

The first important modeling choice is whether rain oc-
currence and rain amount should be generated separately. To
simulate both rain occurrence and amounts simultaneously,
one typically uses latent Gaussian variables, e.g., censored
Gaussian latent variables (Bardossy and Plate, 1992; Ail-
liot et al., 2009; Baxevani and Lennartsson, 2015) and com-
plex covariance structures (Flecher et al., 2010; Benoit et al.,
2018; Bennett et al., 2018). These approaches conveniently
model spatiotemporal dependencies within a common latent
space using a covariance structure. They are highly flexible,
allowing, for example, the easy inclusion of past dependence
or other weather variables such as temperature. However,
these approaches assume an underlying normal dependence,
which is not always satisfied. Their computational complex-
ity makes them very hard to train. Moreover, they tend to
misrepresent dry and wet spells (e.g., Bennett et al., 2018,
Fig. 4, or Baxevani and Lennartsson, 2015, Figs. 7 and 19), as
they treat spatiotemporal dependence in rain occurrence and
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rain amounts the same way. One can argue that these are two
distinct processes. In that case, modeling rain occurrences
separately has typically been done using first-order Markov
chains (Richardson, 1981), which can be easily extended to
higher orders to better reproduce dry and wet spells (Srikan-
than and Pegram, 2009). To model subsequent rain amounts,
parametric distributions with light or heavy tails are used (see
Chen and Brissette, 2014, for a comparison). In this second
approach, addressing spatial dependence becomes challeng-
ing since it must be handled separately for rain amount and
occurrence. To this end, a class of models referred to in this
paper as WGEN models was proposed in Wilks (1998). It
introduces a latent Gaussian copula to model correlations
between rain occurrences at different sites. While this ap-
proach effectively reproduces pairwise correlations, it treats
time and space dependence separately and, as we will show
in Sect. 5.3, fails to capture large-scale, temporally persistent
dry states.

Another option is to include spatial dependence using me-
teorologically defined weather types (e.g., dry, wet, or at-
mospheric circulation patterns), also referred to as weather
regimes or circulation patterns. In this case, weather regimes
are a finite set of large-scale patterns that characterize the
weather of a given day. They can either be predefined and
incorporated into the model as exogenous variables or in-
ferred as latent variables; see Vaittinada Ayar et al. (2016)
and Gutiérrez et al. (2019) for comparison of different ap-
proaches. For example, Vrac et al. (2007) identified weather
types a priori through the classification of either precipita-
tion data or exogenous atmospheric variables and trained a
Markov-like precipitation model conditional on these inputs.
Nguyen et al. (2024) applied a similar approach using a mul-
tivariate autoregressive model and a Gaussian latent model
for rain occurrence and precipitation. Known dependence
can also be incorporated using the generalized linear model
(GLM) framework to make model parameters dependent on
covariates such as previous-day dependence, known weather
regimes, month of the year, and so on (see Yang et al.,
2005; Chandler, 2020). See Holsclaw et al. (2016), Verdin
et al. (2019), and Stoner and Economou (2020) for Bayesian
versions of these GLM approaches. These approaches have
two main drawbacks. First, they require selecting the rele-
vant weather types or exogenous variables, along with the
stochastic properties of precipitation conditional on weather
types. See Philipp et al. (2016), Beck et al. (2016), and Huth
et al. (2016) for comparisons and discussions on the impact
of the choice of weather regimes based on synoptic vari-
ables. Additionally, Najibi et al. (2021) study the quality
of a weather generator conditioned on different predefined
weather patterns that were obtained by different methods.
Second, the exogenous variables or weather regimes need to
be specified by the user or accurately modeled in order to
utilize the weather generator, which may pose limitations in
certain applications.
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To circumvent these difficulties, hidden Markov models
(HMMs) introduce weather types as latent variables (Zuc-
chini and Guttorp, 1991; Ailliot et al., 2009; Sansom and
Thomson, 2010), which are directly inferred from the sta-
tion and variable of interest without requiring additional
data. This approach has the advantage of identifying weather
regimes specifically adjusted to the weather characteristics of
the area of interest (Najibi et al., 2021). The weather regimes
are typically modeled using a latent Markov chain, and the
distribution of the observations is conditioned on these latent
states.

We may recall that it is not surprising from a probabilis-
tic point of view that using latent variables to model complex
dependencies might simplify analysis; see, for example, Kim
et al. (2019) and Yamanishi (2023) for machine and deep
learning reviews or Ghassempour et al. (2014) for time series
clustering. In some very specific settings, it is even possible
to prove that general exchangeable random variables can be
realized as a mixture of product distributions (for some la-
tent distribution) thanks to De Finetti’s theorem (Diaconis
and Freedman, 1980). In our setting, the exchangeability of
the rain variables is not satisfied (e.g., rain occurrence proba-
bilities differ at different weather stations); however, this case
is still inspiring for modeling dependencies.

Coming back to multisite rain occurrence models, spa-
tial HMMs have been proposed by Zucchini and Guttorp
(1991), with the latent variable identified during inference
shown to yield meaningful large-scale patterns (Robertson
et al., 2004). In these papers, the main limitation is the condi-
tional independence assumption, which states that multisite
rain occurrences are independent given the weather states.
This makes these generators suitable for widely separated
stations where the assumption holds. In this paper, we adopt
and verify this hypothesis a posteriori.

Other studies have incorporated exogenous weather vari-
ables into spatial HMMs to introduce more spatial corre-
lations beyond those produced by the conditional indepen-
dence assumption while also making them sensitive to other
spatial phenomena. This is referred to in the literature as non-
homogeneous HMM (Hughes and Guttorp, 1994a, b; Hughes
et al., 1999; Bellone et al., 2000; Greene et al., 2011) and
used for statistical downscaling. As previously mentioned,
selecting these additional dependencies is challenging and
thus might not always be beneficial, as shown in Hughes and
Guttorp (1994b, Table 4), where the authors, using an HMM-
based model, compare a version with exogenous variables
and one without. The conclusion is that the best model is the
one without external forcing.

See Hughes and Guttorp (1994a) for a comparison of dif-
ferent model choices. In Kirshner (2005), the author provides
an overview and tests different options for multivariate distri-
butions, ranging from conditional independence to complex
dependence structures, including tree structures.

Models incorporating spatial HMM conditional indepen-
dence with rain amounts directly using exogenous variables
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have been explored (Bellone et al., 2000; Neykov et al., 2012;
Holsclaw et al., 2016). In Kroiz et al. (2020), the model is
first fitted under the conditional independence assumption
without external variables, and then a Gaussian copula is
applied conditional on the weather states to correlate rain
amounts.

Finally, most approaches described above assume constant
parameters over a period of interest, e.g., a month or a season.
Therefore, time nonhomogeneity in the HMM, i.e., a transi-
tion matrix that depends on time, has also been proposed, for
instance, to introduce wind diurnal cycles (Ailliot and Mon-
bet, 2012; Ailliot et al., 2015b, or Touron, 2019a) for multi-
variate (temperature and precipitation) single-site HMM.

1.3 Our contribution

We introduce the seasonal hierarchical hidden Markov model
(SHHMM), a lightweight seasonal model based on a hidden
Markov model (HMM) for generating multisite and tempo-
rally realistic weather series, specifically precipitation. As in
Touron (2019b), our model is fully time-nonhomogeneous,
with parameters varying periodically throughout the year.
The first layer consists of an autonomous spatial HMM for
rain occurrences, similar to Zucchini and Guttorp (1991) and
Robertson et al. (2004), while the second layer models mul-
tisite seasonal rainfall amounts conditioned on the learned
hidden states.

1.3.1 Capturing large-scale dependencies

Our approach decomposes distributions using conditional in-
dependence with respect to hidden states, effectively captur-
ing complex spatiotemporal dependencies without requiring
external synoptic data. This ensures that large-scale weather
regimes emerge naturally from the data. Moreover, they are
shown to be robust across different station selections. To
help with the station selection, we propose a simple metric
to evaluate conditional independence. Rather than modeling
rain amounts directly within the HMM, we focus on discrete
rain occurrences. While previous attempts (Kroiz et al., 2020;
Holsclaw et al., 2016) struggled to capture meaningful spa-
tial correlations when including rain amounts in the hidden
states, our results show that the inferred states remain inter-
pretable and relevant for both rain occurrences and related
meteorological variables such as mean sea level pressure.
Unlike approaches that introduce additional spatial correla-
tion structures (Hughes and Guttorp, 1994b; Kirshner et al.,
2004), our model enforces conditional independence, ensur-
ing that spatial dependencies are fully learned by the hid-
den states. This prevents ambiguity in model identification,
where correlations could otherwise be absorbed by multiple
components. Section 2.6 argues for the relevance of learn-
ing weather regimes with rain occurrences and conditional
independence. In Sect. 2.5, the statistical identifiability of
our model is discussed, showing in particular that a mini-
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mal number of stations is needed to be identifiable. Lastly,
we propose a simple heuristic to initialize the SHHMM in
the expectation maximization inference algorithm, which is
known to be prone to local maxima (Cappé et al., 2005).

1.3.2 Improved temporal persistence and rainfall

representation

To better reproduce wet and dry spell persistence, we in-
troduce an additional autoregressive (local memory) Markov
dependence (Cappé et al., 2005; Kirshner, 2005) to improve
the simulation of spatiotemporal statistics. After generating
rain occurrences, a Gaussian copula is used to condition-
ally add rain amounts, yielding significantly improved re-
sults over Kroiz et al. (2020). Our work contributes to the
development of multisite SWGs for rainfall amounts, based
on self-taught weather regimes, while explicitly decompos-
ing the rain occurrence and amount processes.

1.3.3 Validation, comparison, and applications

We extensively validate the model’s ability to reproduce key
hydrometeorological statistics, including dry spell distribu-
tions and extreme rainfall accumulations. The model is com-
pared with WGEN-type models (Wilks, 1998; Srikanthan
and Pegram, 2009; Evin et al., 2018), which rely spatially
on latent Gaussian structures and high-order Markov models
locally. We show that our approach is more scalable in terms
of complexity and better captures large-scale dry spells.

We also illustrate its usefulness in two climate-related ap-
plications: (i) estimating climate variability through multiple
trajectory sampling, thereby showing how this can be used to
compare climate models (used in IPCC reports) more accu-
rately than with a single historical trajectory, and (ii) train-
ing our model on climate change scenarios and analyzing the
evolution in terms of parameters and extremes.

Compared to existing multisitt HMMSs, our model
uniquely combines local memory, seasonal parameter vari-
ation at low computational cost, and interpretable condi-
tional rainfall generation. These properties make it suitable
for studying large-scale risks such as prolonged droughts and
extreme precipitation events, relevant in many applications.

Note that this multisite model generates weather data only
at the training sites and hence cannot produce high-resolution
fields. Nevertheless, multisite simulation remains highly use-
ful in many operational contexts. For instance, in the en-
ergy sector, a critical question is the likelihood of prolonged
dry spells affecting a large portion of the territory simultane-
ously. Such events can stress multiple power plants at once
— particularly nuclear plants whose cooling systems depend
on river flows, which are impacted by large-scale droughts.
In this context, estimating the frequency of co-occurring dry
episodes across regions is more relevant than reproducing de-
tailed spatial variability. See Sect. 9 for a more detailed dis-
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cussion on the perspective of this work. Similar challenges
arise in large-scale agricultural production planning.

1.3.4 Software

The model and its code are available in the Julia pack-
age StochasticWeatherGenerators. jl (Métivier,
2024). It contains a reproducible step-by-step tutorial in its
documentation describing all the data loading, training pro-
cess, and simulations of the model described in this paper.
Most figures in this paper can be exactly reproduced using
the tutorial.

1.4 Organization of the paper

In Sect. 2, we describe the construction of the SHHMM.
We explain in Sect. 3 the procedure to infer and select the
model. Section 4 is entirely dedicated to the interpretation
of the model parameters; in particular, the trained hidden
states are interpreted as weather regimes for France and will
be compared to other well-known weather regimes such as
the North Atlantic Oscillation (NAO). In Sect. 5 we show
simulation results for the spatiotemporal rain occurrence se-
quences with a special focus on extreme dry/wet sequences;
we also compare our model to a WGEN-like model (Wilks,
1998). The actual rain amounts are then added on top of the
previous model in Sect. 6 and tested in simulations in Sect. 7.
In Sect. 8, we train our model with data from climate models
on a reference historical period and on future climate change
scenarios and discuss the results.

1.5 Notations used in the paper

For a positive integer M, we set [[1: M] :={1,2,...,M —
1,M}. If ® is a finite set, |®| denotes its cardinality. We
make the distinction between ¢ for a day and n for a date;
see Sect. 2.2. The number of days is 7 = 366.

2 Hidden Markov chain modeling

In this section, we introduce the statistical models consid-
ered in this work. The underlying mathematical framework
is based on hidden Markov models (HMMs), which we de-
velop and adapt with a focus on their application to stochastic
weather generation.

2.1 Data

Daily rainfall observation time series are extracted from
the European Climate Assessment & Dataset (ECA&D)
(Klein Tank, 2002). We focus only on stations in France and
close by. Among the available ECA&D weather stations in
France and Luxembourg, 66 stations have 100 % valid data
from 1 January 1956 to 31 December 2019, i.e., a 64-year
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Figure 1. The 10 selected stations with their respective dry spell
historical records over the period 1956-2019 (length in number of
days).

range and, 23 376 data rows. We select S = 10 of these sta-
tions in all of France (and Luxembourg): these weather sta-
tions are indexed withs € S := {1, ---, §}.

This weather generator scales to the size of France and
aims to capture large-scale, interpretable weather patterns.
Hence, we select the stations to be as representative as pos-
sible of French weather. As explained in Sect. 2.2, where the
conditional independence hypothesis is presented, the major
limitation of the model is its requirement for some degree of
independence between stations. In principle, we should de-
fine a criterion to optimize the selection of S = 10 stations
among the 66 available. Even with a simple approach, such
as maximizing the mean distance between station pairs, the

problem is computationally intractable, as there are (?g) ~

2 x 10'! possibilities. A more relevant yet even costlier cri-
terion is the MSEcy in Eq. (19) that is the mean square er-
ror (MSE) between observed and simulated rain occurrence
correlations. To select S, we start with a reasonable initial
configuration and iteratively perturb it by changing a few
stations, retaining the set with the minimum MSEcy. In Ap-
pendix C, we show that replacing 8 out of the 10 stations in
S with nearby ones does not affect the model’s interpreta-
tion in terms of weather patterns. We show in Fig. 1 all the
selected stations; in addition, we report in the heatmap scale
the historical maximum of consecutive days without rain —
dry spell — at each location. One of the goals of our modeling
is to reproduce similar records. In Sect. 8, we will investigate
how our model (and its parameters) evolves when historical
data are replaced by future projection data according to some
Representative Concentration Pathway (RCP) scenarios.
The N =23376 consecutive weather observations are
labeled with n € D :=[[1, N]l. The multisite rain amount
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(MRA for short) is calculated as
R™ :=(R™,..,R") e RS, (1)

for date n, where R§") (mm) is the daily rainfall amount at site
s. Note that rainfall is measured in millimeters (mm) of depth
typically using a rain gauge, which physically corresponds
to a volume per unit area — that is, 1 mm of rainfall equals
1 Lm™2. It is the RR variable in the ECA dataset. Similarly,
the multisite rain occurrence (MRO for short) is

Y™ =", vy" e T:=15, )

where each Y, s(") € I, := {dry, wet}, where dry means no rain
and wet means nonzero rain, i.e., Rg") > (0.1 mm of daily cu-
mulated rain.

In Sect. 4.1.2, to connect the weather patterns inferred by
the model with physically meaningful atmospheric patterns,
sea level pressure reanalysis data from the ERAS reanalysis
(Hersbach et al., 2020) are used. ERAS is the latest climatic
reanalysis produced by the ECMWF (European Centre for
Medium-Range Weather Forecasts), providing hourly time
series for various atmospheric, oceanic, and land surface pa-
rameters over the historical period from 1940 onward. It uti-
lizes a 4D-Var data assimilation process to produce data on
a 0.25° spatial resolution grid and is freely available on the
Copernicus Climate Change Climate Data Store.

Lastly, in Sect. 8, two climate projections provided by the
French climate service DRIAS (Soubeyroux et al., 2021), op-
erated by Météo-France and Institut Pierre-Simon Laplace,
are used. Developed to provide the best climate change infor-
mation at the French national level for practitioners, DRIAS
offers projections based on the Euro-CORDEX regionaliza-
tion initiative, further statistically downscaled over France at
an 8km resolution. A total of 42 simulations are available: 12
for the historical period (1951-2005) and 30 for the future
(2006-2100), with 12 using the RCP8.5 scenario, 10 using
RCP4.5, and 8 using RCP2.6. Among this set of projections,
only two are used here, covering the historical period and the
RCP8.5 scenario:

— CNRM-ALADING3, regionalizing the CNRM-CMS5
global climate model with the ALADING63 regional cli-
mate model

— IPSL-WRF381P, regionalizing the IPSL-CM5A-MR
global climate model with the Weather Research and
Forecasting (WRF) regional climate model

The next subsections are devoted to the design of the
model for the evolution of the MRO. The actual nonzero
rain amount will be added on top of the model after it is
trained in Sect. 6. Our approach relies on a hidden Markov
model: generally speaking, it is made of a hidden compo-
nent {Z™ :n > 1} (that should be inferred) and of an ob-
served one {Y™ :n > 1} (here the MRO). All processes are
discrete-time processes. See Cappé et al. (2005) for a general
account about hidden Markov models.
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2.2 Seasonal hidden Markov model (SHMM), model Cq

For the sake of clarity, we start with a simplified model,
which will be extended hereafter. See Zucchini and Mac-
Donald (2009) for an introduction to hidden Markov mod-
els for time series. Consider first the hidden component Z,
common to all stations s € S: it can take discrete values in
K :=1[1: K]l that will be later interpreted as climate states
for the region of interest, here France. We will thus refer to
this variable as a weather regime (WR), as often done in the
literature (e.g., van der Wiel et al., 2019). Note that other
equivalent names also exist in the literature, such as weather
types, weather patterns, or atmospheric circulation patterns.

The time evolution of {Z™ : n > 1} follows a nonhomoge-
neous Markov chain on the state space /C, with initial distri-
bution & = (&, -+, &), i.e., & = P(Z) =), and transition
matrix Q, € RE*K forn > 1,

Qu(k, k) =P (z("“) =K | Z™ = k) . 3)

To fit the climate context, we assume that the transition ma-
trix Q, is a T-periodic function of n with T =366, i.e.,
Qu+17 = Qy; we will thus refer to the Markov chain as a
seasonal Markov chain. In that case, we will distinguish be-
tween the label day of the year t € T :=[[1: T] and the la-
bel full date n used to denote the position in the sequence.
Each n corresponds to one ¢, but for each ¢ there are as
many date n € D variables as the number of periods in the
sequence: the matrices Q depend on time only through the
day ¢. If T was equal to 1, this SHMM would be a reg-
ular homogeneous HMM, i.e., a constant matrix Q(k, k') =
P (Z(”H) =k AQNS k) for all n € D values. Next, we de-
sign the model for the time evolution of the MRO Y. The in-
tuition behind the choice of well-spread stations is that local
weather variables Y, conditional on weather regimes Z, are
independent. In addition, we assume that the conditional dis-
tribution of ¥ does not depend on the past of ¥ and is also
periodic. All is summarized in the following assumption.

(H-Cp) Z evolves as a seasonal Markov chain with period
T = 366. Conditional on the process (Z™ .y > 1), the
spatial components Y 1("), LY é") are independent and,
furthermore, the conditional distribution of each YS(")
only depends on Z. This is a Bernoulli distribution
describing the probability of rain at a station s and date
n, conditional on Z" = k: it is denoted as f} s (called
emission distribution in the HMM literature) and as-
sumed to T-periodic, i.e., fkn+T.s = fk.ns» and thus
represented as

fk,l,s(ys) =P (Y.S(n) = Ys | Z(n) — k)
= Mers Ly =wet (1 = Akcrs)Lys=ary @

for some parameters Ax ;s € [0, 1].
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The above model for {(Z™,Y™) :n > 1} is referred' to
as Cp and called a seasonal hidden Markov model (SHMM),
with period 7', initial distribution §&. = P (Z M = ~), transition
matrix Qy, and distributions fi ; ;. This SHMM terminology
is borrowed from Touron (2019a).

The SHMM chain is illustrated in Fig. 2.

A few remarks before going further can be found below.

— This model accounts for leap years: for instance, the
date n =59+ 366 =425 corresponds to 28 Febru-
ary 1957, i.e., to the day # =59, while the next date
n =426, 1 March 1957, is the day r = 61. All 29 Febru-
ary dates are labeled with r = 60. With this convention,
the estimation of parameters for + = 60 will be per-
formed with 3 times fewer data than for other dates;
nevertheless, it will have a quite minor impact on the
procedure because of the time smoothing of parameters
discussed in Sect. 2.4.

— The annual periodicity of the distributions Q; and f; x s
is questionable. On the one hand, for obvious reasons
of statistical inference, it is not possible to try to esti-
mate as many distributions (parameterized by n € D) as
there are data available, which leads to the reasonable
assumption of annual stationarity as in Touron (2019b).
On the other hand, annual stationarity is probably not
accurate considering climate change. In our method-
ology, the calibrated parameters should be understood
as valid over the data horizon used. We will see in
Sect. 8 that shifting the data period into the future (us-
ing climate projection under different RCPs) will cause
some parameters to evolve. Let us mention some tests
in Touron (2019b, Chap. V) showing that the effect of
climate change on precipitation is not easily identifi-
able (unlike for temperatures), supporting the station-
arity hypothesis of our model. Including nonstationary
effects with spatial HMM would require modifying the
model to allow exogenous variables like in Bellone et al.
(2000), Greene et al. (2011), and Dawkins et al. (2022)
and will not be explored in this paper.

As a consequence of the spatial independence assumption
in Sect. 2.2, the conditional likelihood of the MRO at date n
is given by

=P (Y =y1 2" =k) = [T frrs 00 )
seS

This probability depends only on n by the corresponding day
t. This assumption forces the model to learn spatial features
(and spatial dependence) through the hidden states.

Later in this paper, we show (see Fig. B2) that this SHMM
produces, in general, shorter dry or wet spells than the
ones observed, suggesting that the Markov dynamics of the

IThe index m = 0 in Co referring to the non-dependence of ¥ in
its past.
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weather regime Z are not enough to stochastically explain
the temporal evolution of the MRO Y. Indeed, Z is a weather
regime over all of France and does not take into account
the local dynamics of rain occurrence Y, S("), i.e., that in addi-
tion to being influenced by the global weather, local weather
should also be dependent on the local previous day’s MRO
y@=D y(®=2) ... Hence, it makes sense to define the dy-
namics of the MRO conditional on several previous days.
This is the raison-d’étre of the next models C,,, and m > 0.

We end this section with another set of remarks consider-
ing our model assumptions, which will also apply to Cy~0
models.

— The conditional independence hypothesis in Sect. 2.2 is
discussed in Sect. 2.6.

— Note that conditional independence does not imply in-
dependence between stations. The model will learn,
through the hidden states, “long-range correlation”,
whereas conditional independence will mean that there
is no short-range correlation. The actual correlations be-
tween the selected stations can be seen in Fig. 13 for
MRO and range between 0 and >~ 0.5.

— In Hughes and Guttorp (1994b, Fig. 3), the pairwise
correlation conditional on hidden states (and synop-
tic forcing) is shown to decrease very quickly with
distance. Typically, the characteristic decay length is
around 50km for most station pairs.

2.3 Seasonal hierarchical hidden Markov model
(SHHMM), model C; with m > 0

To better reproduce the dry and wet spell distribu-
tions, we consider additional local conditioning. Differ-
ent lengths of this additional local conditioning Y. S(n) |
(z™, st—l), Ys(n_z), e Yégn_m)) will correspond to differ-
ent models C,, (with some memory parameterm = 1,2, ---).
Intuitively, models with history C,,~¢ should display better
temporal persistence than the Cy model’ i.e., consecutive day
sequence statistics should be replicated better. On the other
hand, these models C,,~.o require more parameters to be fit-
ted for the same number of data, and thus one should expect
statistically less accurate estimates if m is too large.
Given m > 0, we introduce the history variable

H® . (y0=D_ y@=2) . y=m)y ¢ q/m) . Tm

and its local analog H™ := "D,y ... .y ¢
§m) :=Z17". The following hypothesis C,, summarizes the
model.

(H-C,;) Z evolves as a seasonal Markov chain with period
T = 366. Conditional on the hidden variable {Z"):
n’ > 1} and the local history H, the spatial compo-
nents Yl("), LY é") are independent, and, furthermore,

the conditional distribution of each YS(") only depends
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Z(n=2)
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Figure 2. A seasonal hidden Markov process (§, Qt, fk./)kek,re7> Where Z represents the hidden variables (weather regimes), Y the
observed multisite rain occurrence (MRO), Q the transition matrix, and f the distribution of the observations.

on Z™ and HS("). This distribution is a Bernoulli dis-
tribution describing the probability of rain at a station
s and date n, conditional on Z™ = k and HS(") = hg: it
is denoted as fi 5.1, assumed to be T-periodic, and
represented as

Fesan ) i=P (Y = 3, | 20 =k, B = by
= Kk,t,s,hy lyszwet + (1 - )‘k,t,s,hj)lyszdry (6)

for some parameters A ;s n, € [0, 1] depending only on
n by the associated day ¢, the hidden state &, and the m
previous days’ observation value A at the station s.

As a consequence, and similarly to Eq. (5),

Jean(y) = ]P’(Y(”) =y | ZW =k, H™ = h)

= ka,t,s,hs(YS)~ (7)
seS
The Cin>0 models are defined by

(&,Qy, fk,t,h)kelc,zeT,heHW)s where the law of the
first ~ observations & =P(H"D=.,2Z"=".), where
HD =O_ . yld-m)yisadded.

Regarding the usual terminology of hidden Markov
chains, the model Cy is a standard (periodic) HMM (Cappé
et al., 2005, Sect. 2.2) since the observed variables {Y ) .
n > 0} are independent given the hidden variables {Z ™. 5>
0}. For other models Cy, C,, ---, because of the dependence
with respect to previous days through ¥ #=D y=2) ... we
are rather in the presence of autoregressive HMMs as de-
scribed in Kirshner (2005, Sect. 3.1.1) (also discussed in
Cappé et al., 2005, Sect. 2.2.3, under the name hierarchi-
cal HMMs): conditional on {Z(") :n > 0}, the MRO process
(Y™ :n >0} evolves as a Markov chain with memory m.
This is a significant difference from other precipitation mod-
els in the literature, such as Touron (2019a), Holsclaw et al.
(2016), and Kroiz et al. (2020).

In the remainder of the article, we will use the term sea-
sonal hierarchical hidden Markov model (SHHMM) to re-
fer to the model C,,~¢. Note that we will also use the same
term to describe the full model, i.e., C,,~o with added rainfall
amounts (see Sect. 6).
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We illustrate the C,,—; model in Fig. 3.

Note that a time-independent autoregressive HMM was
proposed in the PhD work of Kirshner (2005, Sect. 6.1.1) as
a promising option but, to the best of our knowledge, has not
been explored further. However, the combination of HMM
with local memory, seasonality (see Sect. 2.4), and the sub-
sequent addition of rainfall amount (see Sect. 6) appears to
be new.

2.4 Hypothesis and modeling of the time regularity of
parameters

The previous models Cy and Cp,~0 depend on the T'-periodic
functions (Q, fk.r.n)reic hepm- A quick inspection of the
number of scalar parameters to estimate on each day r € T
gives

— K(K — 1) coefficients for the transition matrix Q; and

— K x 8§x2™ coefficients for the Bernoulli distribution pa-
rameter Ay ; s.p, forall k,s, and hy.

For § =10, K =4, and m = 1, it gives 92 scalar parameters,
which is larger than the number of available data at each day
t (64 for usual days and 16 for 29 February). On the one
hand, estimating the parameters by maximizing the observed
likelihood independently at each day ¢t € 7 is conceptually
simple. On the other hand, the estimated parameters would
suffer from high variance as there are too few data at each
day ¢. Therefore, in the inference procedure that will be ex-
posed in Sect. 3, a time regularity constraint will be imposed.
This procedure (detailed later) will be essential to recover in-
terpretable and meaningful results.

Let us argue in more detail. Intuitively, the timescale of
variation of the model parameters should be of the order of
magnitude of a month (30 d). Hence, once fitted, the parame-
ters should evolve as a smooth function of day ¢. The advan-
tages of imposing a smoothing are multiple:

1. This avoids unrealistic, erratic day-to-day changes in
the parameters while allowing for a physically realistic
seasonal evolution.
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Figure 3. Illustration of a seasonal hierarchical hidden Markov model with 1 d memory m = 1.

2. It helps to overcome the lack of data at each day ¢; in-
deed, the smoothing implies that the data from neigh-
boring dayst—1,74+1,¢t—2,t+2,... are accounted for
when making an inference at day .

3. In terms of identifiability of the model, it is well-known
that HMMs are identifiable up to relabeling of the hid-
den states. In the case of SHMM, the model is not iden-
tifiable up to the relabeling of hidden states at each day
t (Touron, 2019a). Thus, it is very likely that a naive
likelihood optimization routine gives quite different pa-
rameters on consecutive days, whereas for obvious in-
terpretability reasons, we seek a smooth evolution as a
function of the day ¢ of the calendar year.

A popular choice in the literature is to use trigonometric
polynomials (Langrock and Zucchini, 2011; Papastamatiou
et al., 2018; Touron, 2019b) to parameterize the parameters
as a function of the day ¢t € 7 (see Egs. 8-9b below) and di-
rectly infer new parameters. The final SHMM or SHHMM
is then only identifiable up to a global relabeling common to
all ¢. Other methods, such as cyclic penalized splines (Feld-
mann et al., 2023; Dawkins et al., 2022), could have been
considered. Thus, each parameter (Qy, Ak, r,5,h, )kek,seS,heT;
is composed with the trigonometric polynomial as follows:

given some coefficients co, cq, ..., set
Deg
2md 2wd
P.(t) = _1cos| —¢ sin [ ——¢ 8
(1) Co+;(62d 1 ( T >+C2d ( T )) (®)

for some degree Deg. For all k € K the transition matrices
are given by

Pey (1)

e
Qk,)=————5—— for 1<I<K,
1+ lI(:_llePCk’l(t)
1
Qk,K)= ——F—75—, (9a)
1+ 2/ P ®
and the Bernoulli parameters in Egs. (4)-(6) by
1
A = 9b
k.t.s.hs 1 4 eP(k,s,hS () ( )

The parameterization of Q; corresponds to the log-ratio
transformation well-known in compositional data analysis
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(Pawlowsky-Glahn and Buccianti, 2011). These definitions
ensure 0 <Ap;on, <1, 0<Qi<1 and Y, Quk,])=
1, VteT, and Vke K. A model with a high degree
Deg will be able to capture shorter and shorter sub-
seasonal/monthly/sub-monthly phenomena.

A quick inspection of the number of parameters (the co-
efficients c¢) gives (for S =10, K =4, m =1, and Deg = 1
corresponding to roughly four seasons) 92 x 3 = 276 scalar
parameters (for all ¢ € 7)) instead of 92 x 366 = 33672 in the
previous day-by-day parameterization. The gain is quite sig-
nificant. However, the maximization step has no analytical
solutions: the subsequent numerical optimization is heavy
because now (Q, Ak s 5.k, kek,seS,heZ, 1S not independent
with respect to ¢ € 7. The resulting parametric problem is
of lower dimensions but more complex to solve than the T
individual problems.

In the rest of the paper, we denote by 6 all the coefficients
appearing in Eqgs. (8)—(9b), and those are to be optimized:

0 :={cks € RZDeg-H’ Chk,s.hy € R2Degtl

kek,le[l:K—1],s €S, hy € I} (10)

2.5 Identifiability

For the inference problem to make sense, the model must
be identifiable. Latent models are known to be only identifi-
able up to label swapping. Moreover, Bernoulli mixtures are
known to be non-identifiable (Gyllenberg et al., 1994). How-
ever, they are identifiable under a weaker notion of generic
identifiability up to label swapping if the following condition
holds (Allman et al., 2009, Corollary 5):

2[logy(K)|+1<S. (11)

Generically identifiable (Allman et al., 2009) implies in par-
ticular that the set of points for which identifiability does not
hold has measure zero. Hence, for the applications, this no-
tion is enough. For our application, we explore K being at
most 8 so that § > 7.

In Touron (2019a, Theorem 1), the identifiability up to la-
bel swapping of the seasonal hidden Markov model is proven
under the following assumptions.
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1. For 1 <t < T, the transition matrices Q} are invertible
and irreducible.

2. The matrix Q7...Q7 is ergodic, and its unique station-
ary distribution £* is the distribution of Z(D.

3. Foreacht € [[1, T]], the K distributions (v,f(t))ke{l ,,,,, K)
are linearly independent.

The star (x) denotes the set of true parameters. The irre-
ducibility and ergodicity are satisfied under the parametric
assumption for Qy since all the matrix coefficients are strictly
positive. The invertibility of Q is proven to hold up to a neg-
ligible set of parameters (Touron, 2019a, Sect. 2.4.1) for our
parametric choice. The second condition can be shown using
the coefficients of Q; as strictly positive, so those of Q7...Q7%.
are also, and therefore Q’l‘. ..Q. is irreducible and aperiodic.
To prove that the third assumption is satisfied in our case,
we use the equivalence (Yakowitz and Spragins, 1968, The-
orem Sect. 3) between linear independence of K distribu-
tions (vi)rekc and the identifiability of the mixture ) wy v,’:’ .
for some weights (wy)rexc. Together with the condition in
Eq. (11), it follows that the model C,,—¢ is generically iden-
tifiable up to a global relabeling. For higher-order models
Cn>0, the local memory (autoregressive structure) of the dis-
tribution prevents direct application of the previous results;
however, one can reasonably expect a similar condition to
hold.

2.6 Model justification

We end the modeling section with a discussion on our choice
of having inferred weather regimes using rain occurrences
only.

Training hidden state models with binary variables such
as wet/dry is well-established in machine learning classifica-
tion techniques (see Bishop, 2006). Hence, rather than using
a complex distribution (rain amount) in the HMM, we first
focus on discrete rain occurrences, as in a Bernoulli mixture.
Discrete distributions might seem like a simplification com-
pared to existing methods, where rain amounts are directly
expressed as a mixture of an atomic and continuous distri-
bution (Touron, 2019a) or modeled using censored Gaussian
distributions (Ailliot et al., 2009; Baxevani and Lennartsson,
2015), or in the context of Markov switching models where
complex weather variables are modeled (Ailliot and Mon-
bet, 2012; Ailliot et al., 2015b; Monbet and Ailliot, 2017;
Ailliot et al., 2020). However, it can be argued that rain oc-
currences and amounts are very distinct processes with dif-
ferent statistical properties (Wilks, 1998; Dunn, 2004; Yang
et al., 2019). For example, Vaittinada Ayar et al. (2020) use a
spatial censored latent Gaussian model (conditioned on pre-
defined weather regimes, but that is not the point) with the
rain amount R directly. Hence, it assumes the same spatial
correlation coefficient for the variables R > 0 and Y. Simi-
larly, while in our model we induce autoregressive Markov
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local memory for rain occurrences Y, their model assumes
temporal memory using a MAR(1) model for R.

As mentioned previously, attempts to directly include spa-
tial rain amounts within the hidden states have not been
completely satisfactory in terms of learned correlations (e.g.,
Kroiz et al., 2020, Fig. 1, Ailliot et al., 2009, Model Cy,
or Holsclaw et al., 2016), where no correlation check seems
to have been performed. Our approach produces fully inter-
pretable hidden states that are relevant not only for rain oc-
currence but also for other variables such as rain amounts
and mean sea level pressure. This is made possible by our
assumption described in Sect. 2.2, which is both a strength
and a limitation of the model: it requires a sparse station dis-
tribution but forces the hidden states to learn spatial patterns
with temporal Markov dependence. Hence, at smaller scales
(or for a denser station distribution), this assumption might
not hold, and other, often less interpretable, methods may be
required.

In fact, we argue that more complex HMMs can be in-
creasingly difficult to train and lack interpretability. See
Pohle et al. (2017) and de Chaumaray et al. (2023) for dis-
cussions on how imperfect parametric distributions can, for
example, lead to an overestimation of the number of hid-
den states. For instance, extreme precipitation events often
fall outside the reach of standard parametric rain distribu-
tions and could affect the weather regimes. Hence, learning
hidden states directly from rain amounts might affect their
quality. Moreover, a higher number of states could be neces-
sary, but this would come at the expense of robustness since
they are identified from the same amount of data. The choice
of Bernoulli distributions for binary variables is, however,
exact, suggesting that our model will likely pick a smaller
number of hidden states, i.e., more interpretable.

Moreover, we also argue that breaking conditional inde-
pendence, as in Hughes and Guttorp (1994b) and Kirshner
et al. (2004) (which are the only two attempts we found
in that direction), must be done carefully, as it complicates
model identification. Specifically, spatial correlation can ei-
ther be learned by the hidden states or by the added corre-
lation structure. The proportion of dependence captured by
each component is not explicitly controlled, and in some
cases, all correlations may be learned through the additional
correlation structure, rendering the hidden states irrelevant.
Enforcing conditional independence in our model ensures
that all spatial dependencies are learned exclusively by the
hidden states and is validated a posteriori (see Sect. 5.2.2). In
addition, the complexity of models like that in Hughes and
Guttorp (1994b) is such that it is not clear how many more
stations could be added (with respect to the conditional inde-
pendence model) before reaching computational limits.
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3 Fitting the SHHMM and selecting the
hyperparameters

In Touron (2019a), the maximum likelihood estimator is
shown to be a consistent estimator for the seasonal HMM,
i.e., Cy=0. Proving the consistency for the autoregressive
model Cy,~0 is outside the scope of this paper; however, we
will still use the maximum likelihood estimator to infer the
model parameters.

Maximizing the likelihood of a latent model is usually
done with the expectation maximization (EM) algorithm.
See McLachlan and Krishnan (2007) for a general review of
the EM algorithm and its extensions. To maximize the log-
likelihood of the SHHMM, we will use a heterogeneous ver-
sion of the Baum—Welch algorithm, which is a special kind
of EM algorithm for hidden Markov models. The details of
the algorithm can be found in Appendix E. Note that in this
paper, we do not consider Bayesian inference as in Stoner
and Economou (2020) and Verdin et al. (2019). Hence, the
estimated parameters will be deterministic, and the resulting
SWG model will solely be responsible for the climate vari-
ability, i.e., the uncertainty in the parameters’ estimation will
not be accounted for. A known issue of EM algorithms is
that they can converge to local maxima. As we will illustrate,
a naive random initialization of the algorithm without a good
guess will likely land in some meaningless local maxima —
even if multiple random initial conditions are tried — and/or
take a very long time to converge.

Hence, before fitting SHHMM with the Baum—Welch al-
gorithm, we will first find a crude estimator of the SHHMM
by solving many simpler subproblems by using the procedure
described below.

3.1 Initialization: the slice estimate

The idea is to first treat the MRO observations of each day
of the year t € T separately. On each day ¢, the distribu-
tions { f1.s,---, fk.;} form a mixture model that can be fitted
with a standard EM algorithm. Once this is done, we rela-
bel the hidden state at each day 7 to ensure some continuity
in the estimated parameters 6y ; 5. Finally, by identifying
the most likely a posteriori states on each date n, we obtain
an estimated sequence, {E’(") :n € D}, which we use to fit the
transition matrices Q(t). The whole procedure is described
in Appendix F. In Appendix F7, we show the gain in terms
of likelihood and number of iterations when using the slice
estimate compared to random initialization.

3.2 Baum-Welch algorithm for SHHMM

In the previous section, we provide an estimated SHHMM
that we will use as a starting point in the Baum—Welch al-
gorithm. The algorithm alternates between estimation (E)
and maximization (M) steps to converge to a local maxi-
mum of the observed likelihood defined for the SHHMM

https://doi.org/10.5194/ascmo-11-159-2025

(€. Qu frt ke eT nenm Withm > 1 (see Sect. 2.3) by
r <y(1:N); 9> _P (Y(I:N) _ y(I:N))

= Z éz(l),hl fZ“),tl (y(l) | h(l))

7D,z N elcN
N
[1QuE" 2 o, (3 167), (12
n=2

where for sake of simplicity we assume that /] is known so
that &, =P(ZV =21, HVY =h1) =P(Z" =z1). Note
that this is the case in practice, as we have a few extra days
of data to define #;. We briefly detail each step of the EM
algorithm in Algorithm 1, and more details can be found in
Appendix E.

Algorithm 1 EM algorithm for SHHMM C,,.

Result: A SHHMM (€, Qu, fi,r.h)kekC.ieT heryen With pa-
rameters 6stop)
Initialization:
An initial set of parameters 6O is given, as mentioned, we use
the Slice Estimate SHHMM described in Sect. 3.1.
Step (i > 0):
E-step: Compute the smoothing probabilities

@) . (@)
o =Py (200 =k | YEN) and 7 kD =
Py (Z(") =k, ztD = Y(IIN)> under the current pa-

rameter 0. These probabilities can be computed using the
Forward-Backward procedure (Appendix E).

M-step: Maximize the function R(O,0W) =
A [logL’(Y(liN), Z(liN);9> | Y(I:N)] with respect to

Stop:
The iterations stop at i = istop When LAY Dy < €atol-

Note that at M-step, the maximization can be done inde-
pendently for the transition matrices and the distributions of
the observations (and initial distributions). However, since
we enforce the coefficients 6) as periodic functions of the
day of the year ¢, the maximization step cannot be done ex-
plicitly even for a simple Bernoulli distribution and is thus
done numerically.

In all our numerical applications, the stopping criterion is
€atol = 1073, The log-likelihood at convergence is typically
for the settings K =4, m =1, Deg = 1, and the historical
data £(Usop)) >~ —117127, i.e., €ao01/|L(O0P)| ~ 1078, We
also check that this stopping criterion is relevant for the 6 pa-
rameters as we have max(|@Usior) — gUsiop=1)|) ~ 1073, where
the max is taken as the largest difference between two itera-
tions over all the parameters 6 in Eq. (10).

To avoid being trapped in a local minimum, we run the al-
gorithm 10 times with initial conditions randomized around
the initial state 0© provided in Sect. 3.1; see Appendix F6
for more details. We then select the maximum likelihood
amongst the different runs.
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3.3 Hidden state inference: the Viterbi algorithm

Once the SHHMM parameters are found 6, the most likely
hidden states given the observed data sequence {2 : n € D},
i.e.,

(G0, 20) = SERTP (20 = 20 |y ) = yBN) - (13)

can be inferred with the Viterbi algorithm (Viterbi, 1967). In
this algorithm, to estimate Eq. (13), forn € D and k € K, the
quantity

8,(k) = z('lr:l;?ntP’ (Z(l:nfl) = =) 70 _ gy y(l:n)> (14)

is estimated recursively. For a homogeneous HMM with no
local memory, Eq. (14) is simply

8u(k) = (JeR8n (DQUK, K1)
P(Y<n+1) — i+l | oD k)
See Viterbi (1967). For an SHHMM Egq. (14) is
8n(k) = (Jek8n (DQu (k, k"))
]P,<Y(n+1) — YD | Z0HD _ g gD h(n+l)>.

This can be shown by a straightforward adaptation of the
original proof.

This algorithm provides a very efficient way to decode the
whole hidden state sequence corresponding to the observa-
tions, allowing us to match historical weather events to hid-
den state sequences. This is illustrated in Sect. 4.4.

3.4 Model selection

We introduced three hyperparameters to our model: the lo-
cal memory length m =0, 1,2,---, the number of hidden
states (weather regimes) K =1,2,3,4,---, and the degree
Deg=0,1,2,--- of the trigonometric expansion in Eq. (8).
In particular, the number of hidden states K must be large
enough to reproduce spatial correlations but low enough to
avoid overfitting and loss of interpretability. In this model,
we fix m and Deg to be the same for all stations and vari-
ables.

In the literature, several methods have been used to as-
sess the best hyperparameters of HMMs, information cri-
terion coefficients like the Bayesian information criterion
(BIC), and cross-validation; see de Chaumaray et al. (2023),
and references therein. From a theoretical point of view,
no result guarantees the quality of these estimators for
SHHMM. To select the hyperparameter K, we use the in-
tegrated complete-data likelihood (ICL) criterion, as it fa-
vors nonoverlapping hidden states and shows better empiri-
cal performance with HMM than other model selection meth-
ods (Celeux and Durand, 2008; Pohle et al., 2017). It is de-
fined as Lc(y(EN), 7N gy = p(Zz(:N) = ;(1:N) | y(iN)
y<1:N ) ), which is not accessible in practice. The estimate

Loy 20N 6y — p (Z(I:N) = 51Ny (V) _ (1), é)
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Figure 4. ICL for different values of the hyperparameters. The
model with K =4, m =1, and Deg = 1 is the maximizer.

uses the fitted parameter 6 and the decoded Viterbi most
likely hidden state sequence (2"),cp. The ICL is then com-
puted as

ICL(m, Deg, K) = log(Lc(y"™V), 20:V); §y) — 4. (15)

log(N)

2
The optimal {m,Deg, K} set is obtained by maximizing
ICL(m, Deg, K). In Fig. 4, we see that K =4, m = 1, and
Deg = 1 maximize the ICL. Hence, for the rest of the pa-
per, unless specified otherwise, we will choose these parame-
ters. Note that in Robertson et al. (2004), K = 4 hidden states
were also found for northeast Brazil using cross-validation.
Note that, in principle, we could use different m at each sta-
tion s € S, as well as different degrees Deg, for each type of
variable and station (transition matrix coefficient, Bernoulli
parameter, etc.). We tested configurations where some sta-
tions had a larger local memory (m; = 2 or 3), but this con-
sistently resulted in a lower ICL. This suggests that while
the ICL criterion is well-suited for selecting the number of
states K, it may not be optimal for choosing other hyperpa-
rameters, as some stations, such as La Hague, show signs of
higher-order temporal dependence (see Figs. 11 and 12). Al-
ternative criteria such as BIC (Katz, 1981) or parsimonious
higher-order Markov models (e.g., Raftery, 1985) might be
considered. For the remainder of the paper, we fix m =1 at
all stations.

3.5 Comparison with multisite WGEN-type models

In this section, we introduce another multisite rain occur-
rence model that will be used for comparison. This model
was first proposed by Wilks (1998) using first-order Markov
models to simulate rain occurrence with a Gaussian latent
model to generate spatially correlated amounts. Srikanthan
and Pegram (2009) later extended it to fourth-order Markov
models to better reproduce dry/wet spell distributions. This
class of weather generators is also referred to as WGEN-type
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models (Nguyen et al., 2023) and is typically used alongside
rainfall amount models (e.g., Evin et al., 2018). Note that in
the literature, the acronym WGEN has also been used to re-
fer to other models. Seasonality is accounted for by assuming
that the parameters remain constant within each month.

Mathematically, at each station s € S and for a month
mth € [[1: 12]], rain occurrence follows a Markov model of
order my, with transition probabilities given by

P o L) =B (Y =y | HO =1,). (16)

where H™ = "D,y =2 ytTmy e glmw) . g
is the history variable of order my, introduced in Sect. 2.3.

The multisite correlations are modeled using an unob-
served Gaussian process U. At each day n € D and for a
given month mth € [[1 : 12]],

U™ ~ N0, Qmn), a7

where U™ = [U™},cs, and Qumin = {@™®} is an Sx S
positive-definite correlation matrix. .

The rain occurrence Ys(n) at site s is determined by the
value of U S(n). Given a history hg") e 7'V and the Bernoulli
probability p" = £ (3, = wet | h§”§)

s

. (n) -1, W

dry, otherwise,

where ®~! is the quantile function of the standard normal
distribution.

As in Srikanthan and Pegram (2009) and Evin et al.
(2018), we set the Markov model order to my = 4. The
correlation matrix is estimated following the previous ref-
erences by simulating each site pair for each month

to determine w‘:‘?} that yields the observed correlations,

cor({YS(n)}nepmlh, {YS(," )}nepmm) where Dy is the set of all
days in month mth.

The model is fitted, yielding 2% x S x 12 parameters for
the Markov chains and S(S — 1)/2 x 12 for the correlation
matrices.

The biggest advantage of this model is that it is not lim-
ited by the conditional independence hypothesis; i.e., sta-
tions can be as close or as far apart as needed. Moreover,
the fitting procedure is slightly simpler, as no expectation
maximization algorithm is required. The seasonality treat-
ment differs slightly, as WGEN-type models assume param-
eters to be constant per month, while in our setting, they
evolve smoothly throughout the year. Ignoring this minor dif-
ference, the complexity of this model is significantly greater
than ours. The number of correlation coefficients grows as
~ §2, whereas our model scales as ~ K2 for the spatial
part, with typically K <« S. Thus, while our model is lim-
ited in the number of stations due to the conditional indepen-
dence assumption, WGEN-type models may be constrained
in practice by computational complexity. Moreover, as we
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will show, setting our local history to m = 1 provides good
results in general, whereas WGEN-type models typically
require larger my values to adequately reproduce dry/wet
sequences (see Sect. 5.2.1). This suggests that part of the
temporal dependency is captured by the hidden states, sim-
plifying the local Markov models. Additionally, large-scale
dry spells will not be accurately represented, as described
in Sect. 5.3. This is not entirely surprising, as WGEN-type
models only account for pairwise correlations. Note that
higher orders could, in principle, be added at a much greater
computational cost.

4 Interpretability: making sense of the hidden states

One of the main messages of this paper is to show that the
resulting hidden states are fully interpretable, both spatially
and temporally. In particular, forcing conditional indepen-
dence (see Eqgs. 5 and 7) forces all spatial correlations to be
in the hidden states.

The discrete latent variable Z € K used here corresponds
to weather regimes, sometimes referred to as weather types
or patterns, which represent a finite set of possible atmo-
spheric states acting as quasi-stationary, persistent, and re-
current large-scale flow patterns. They are commonly used
in weather generators to characterize the daily atmospheric
circulation (e.g., Garavaglia et al., 2010), which influences
the values of the generated variables at the daily timescale.
Various methods exist for identifying these weather regimes,
with hidden Markov models being one such approach. In our
case, these hidden states are not constrained by any external
variables and will be interpreted as specialized weather states
for France. To our knowledge, no previous approach using
spatial HMM has been applied to infer and interpret weather
regimes over France (or western Europe). Generally, only a
few attempts (e.g., Robertson et al., 2004, Sect. 4) identify
and interpret weather regimes without using exogenous vari-
ables.

We describe in this section different points of view to give
a sense of these hidden states that we also refer to as weather
regimes. In the following, all plots and interpretations are
done for the model C,,—; with K =4 and Deg = 1, which
was the model selected in Sect. 3.4.

4.1 Spatial features

The hidden states have been introduced to give correlated
rain events across France. Hence, we expect the hidden states
to form some spatial patterns specific to French weather; typ-
ically, the south is generally drier than the north.

4.1.1 Rain probability

In Fig. 5, we show the rain probability given the hidden state
k and that the previous day was dry, averaged over the year.
The Z = 1 state corresponds to a high probability of rain over
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all of France, Z =2 corresponds to a rainy climate in the
north and drier in the south, and Z = 3 is more or less the
opposite, while in the state Z = 4 the probabilities of rain are
low all over France. The trained model satisfactorily recovers
known regional features of the French climate. For higher-
order models K > 4, the spatial features are more and more
specific to peculiar regimes, e.g., rainy only in Bastia. It can
also be a signal of overfitting.

4.1.2 North Atlantic pressure maps

To interpret the model beyond the stations it was trained on
and beyond the rain occurrence variable, we will look at the
hidden states in terms of weather patterns over the North At-
lantic with pressure maps. This is a common practice in cli-
matology and is used to classify weather patterns. For ex-
ample, the four North Atlantic weather regimes are large-
scale weather regimes over the North Atlantic Ocean respon-
sible for most of the climate variability (Woollings et al.,
2010). There are various definitions of the regimes of the
North Atlantic weather, and it is typically done using cluster-
ing methods such as K-means on the daily maps of anoma-
lous 500 hPa geopotential height (e.g., van der Wiel et al.,
2019). Note that, as noted in Garavaglia et al. (2010), “it is
almost impossible to assert that a given classification is the
best” — hence, the comparisons presented in this section are
mostly qualitative, as our model classifies weather regimes
using only rain occurrence, while other weather variables or
classification techniques would yield different regimes.

In Fig. 6, we show how the weather regimes are rel-
evant in terms of pressure maps. We consider the mean
sea level pressure (MSP) from the reanalysis ERAS hourly
data on single levels (Hersbach et al., 2020) from 1979
to 2017. The pressure map is averaged over all winter
days Dw = D N {December, January, February} conditional
on the hidden state (inferred before via the Viterbi algorithm
(see Sect. 3.3), giving a pressure anomaly map AMSE =
EieDy (MSP(l) |z = k) —E/epy MSP(¢)) at each longi-
tude and latitude. The geographical area where the pres-
sure maps are computed is (longitude € [80° W, 40°E]) and
(latitude € [25°N, 80°N]). It is much larger than France and
corresponds roughly to the North Atlantic area. The results
are shown in Fig. 6.

The four maps clearly show four distinct regimes with
different pressure anomalies. It is remarkable that coherent
large-scale structures over mean sea level pressure are found
with a model only trained over S = 10 stations, all located in
France, with rain occurrences as training data.

As a first comparison, we consider the four Euro-Atlantic
regimes defined in Cassou (2004, Fig. 7). We display the
same differential pressure map as they do over the winter
months for a similar spatial domain. In Cassou (2004) and
van der Wiel et al. (2019), the four regimes are NAO—, At-
lantic Ridge, blocking, and NAO+. The two NAO regimes
correspond to the reinforcement or attenuation of the Ice-
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landic low and Azores high, leading to a strengthened or
weakened westerly flow over France. The two other regimes
correspond to different deviations of this flow, having dif-
ferent consequences for French weather, depending on the
season.

In our model selection, we found the same number of hid-
den states K = 4; see Sect. 3.4. If to some extent the states
defined by the SHHMM (Fig. 6) look similar to the Euro-
Atlantic regimes (see Cassou, 2004, Fig. 7) in terms of the or-
der of magnitude of the mean pressure anomalies (~ 10hPa)
and patterns, e.g., Z = 4 can be seen as a blocking-like pat-
tern.

However, a close inspection shows important differences:
the structures we found are more centered toward France and
slightly more intense. This is to be expected as the training
data are only in France. A fairer comparison can be found
with Boé and Terray (2008), where the weather types (WTs)
found with rain amounts in France are also coherent with
ours and easier to compare as they represent, like us, the
MSP anomalies. They define eight WTs over extended win-
ter months (November to March). WT2 (25 % relative fre-
quency of occurrence) is very close to our Z =4 (31.8 %)
in terms of pattern and amplitude, even far outside France.
WT6 (12.5 %) is also very close to our Z = 3 (15.5 %), i.e., a
milder depression centered on the Azores and an anticyclone
centered in northern Europe. The other two rainier hidden
states Z = 1 and Z = 2 probably cannot be viewed as simple
combinations of the remaining WTs. This is consistent with
Boé and Terray (2008), who use rainfall amounts for cluster-
ing.

In Garavaglia et al. (2010), the weather patterns (WPs) are
found using stations mostly located in the southeast of France
and a more complex rain variable. Note that their main figure
(Fig. 3) shows the WP geopotential height at 1000hPa aver-
aged all year long, making the comparison with our Fig. 6
harder. Their anticyclonic state (WP8) (25 %) is close to our
Z =4, with a pressure high over the north of France and
south of Great Britain.

4.2 Seasonality

The SHHMM’s transition matrix and distributions have pe-
riodic coefficients varying across the year. A consequence is
that the hidden states are not fixed in time but can also vary.
We expect variations to be smooth enough so that weather
regime Z = k has a similar interpretation during the whole
year.
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Figure 5. Yearly mean rain probability T_lz,eT)»k, t.s,h form =1 and h = dry, i.e., the probability of rain at a location s, conditional on

the hidden state Z = k € [1, K = 4] and on a previous dry day.
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Figure 6. Winter (December—January—February) mean sea level pressure (Pa) anomalies (difference) between the average of all winter days
in Z =k state and the average of all winter days. The relative frequency of occurrence of each state during winter in the historical data is

shown in parentheses.

4.2.1 Transition matrix

We display, in Fig. 7, the 16 coefficients of the transition ma-
trix Q. The “dry” state Z = 4 is the state where the proba-
bility of staying in the same state is the highest. Hence, we
expect longer global dry sequences than the other regimes.
The probability of remaining in the same state is the lowest
in states Z = 2 and Z = 3; hence, these can be seen as tran-
sitional states. Moreover, state Z =4 has a very low proba-
bility of switching directly to state Z = 1 (and vice versa),
confirming that an intermediate state is required for this to
happen. This makes sense with the intuition that a dry day
all over the country is rarely followed by a wet day all over
France. During some seasons, e.g., summer (June, July, Au-
gust, September), state Z = 2 will prefer to transition to a dry
state Z = 4 rather than the wet state Z = 1. This is the oppo-
site situation in the rest of the year. Again, this is consistent
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with the fact that during summer we expect the state Z = 1
to be less frequent.

4.2.2 Rain probability

We plot, in Fig. 8, the rain probabilities as a function of the
station and climate variable Z = k. In almost all stations, the
extreme states Z = 1 (4) are where it rains most (least) often.
As seen in Fig. 5, states Z = 2 and 3 are different in the north
and south.

The success of the SHHMM fit can be observed as, at each
station, most states are completely separated all year long.
That is, in general, the rain probability conditioned on dif-
ferent states Z does not cross states or become equal, show-
ing meaningful states. When converging to local minima, we
would typically observe such state crossings during the year,
indicating potential issues in the fit.
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4.3 Mean rain amount

Even if the model training does not involve any rain amounts
Rg"), the hidden states Z =k should still be meaningful
for these. In Fig. 9, we plot the daily mean rain amount
R,(:’?Y > 0 for each station and state k. The values obtained
are smoothed with a periodic moving average of time win-
dow £15d; see Appendix D for the definition. The “rainy”
weather regime k = 1 is the state where it rains the most at
almost every location and all year long. Similarly, the “dry”
regime k = K is where it rains the least. Interestingly, the in-
termediate regimes, k = 2 and k = 3, are rainier in the north
in different seasons. Southern stations have a different behav-
ior as expected.

4.4 Weather regime spells

To illustrate the dynamics of the weather regimes, we show
in Fig. 10 for different years the Viterbi estimated hidden
states () (see Sect. 3.3). As previously noticed, dry and wet
spells last longer in general than in other states. For histor-
ical events such as the drought in the of summer 1976, we
observe a long dry sequence (27d in a row in state Z =4
starting from 3 June). The famous 2003 heatwave from 1 to
15 August also corresponds to a 15 d dry spell.

5 Simulations: multisite rain occurrence

Now that the model is fully inferred and interpreted, we will
test its validity. To do so, we will sample multiple indepen-
dent and identically distributed (IID) realizations of the train-
ing period 1956 to 2019 and compare several spatiotemporal
statistics with the historical data.

5.1 Simulation algorithm of the SHHMM

We first sample the hidden states (z : n € D) according to
the nonhomogeneous periodic transition matrix Q;, and ini-
tial distribution &, and then we draw the MRO (y™ : n € D)
from the conditional distributions fz(”),t,, TG The procedure
is summarized in Algorithm 2.

Algorithm 2 Simulation of the SHHMM

Result: Sequence hidden states z, sequence of MRO y™)
=D g
for n € D do

7z ~ Q, (Z(n—l), )
end for
y(n=mfl:0) — yil:li=m—110
for n € D do

for s € S do

n
Ys = fZ("),tn,X,hg.")(')

end for

end for
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In the simulations, we choose the initial date as 1 January
1956. Our final date is 31 December 2019 so that the total
simulated range is 64 years, which corresponds to our dataset
span. We choose & =(1,0,0,0), i.e., zD =1, which is a
rainy weather regime, because it was rainy all over France
on that day. We assume that the MROs before the first sim-

ulation day y"=" " are observed and use them as input to

ini
draw ys(l) ~ fz(l) PRAOR

The model is lightweight, allowing fast generation — which
can easily be parallelized — of many sequences to study cli-
mate variability. On a standard computer, generating one 64-
year sequence of rain occurrences and hidden states using the
StochasticWeatherGenerators. jl package (Mé-
tivier, 2024) takes approximately ~ 0.01s.

5.2 Results

In the following, we will use J =5 X 103 1ID. realizations
(stochastic simulations) of the SHHMM over a 64-year span
and compare its statistics with the 64-year observed sequence
and denote by {y§”)}i"€)D the j € [[1, J]] realizations. When
the j is dropped, it refers to the ensemble of all simulations.

5.2.1 Dry/wet state sequence

The dry spell sequences are of particular interest to esti-
mate risks associated with droughts. We show the observed
dry (wet) spell distributions, i.e., probability mass function
(PMF), in Fig. 11 (and Fig. 12) at all the stations and com-
pare them to the simulated spells for the J realization. When
the historical distribution is contained in the simulations’ en-
velope, we may conclude that the model does a good job of
reproducing the dry (wet) spells: note that this works sys-
tematically well, except for La Hague station (bordering the
Channel Sea) at a few data points. In general, for Lille, La
Hague, and Chassiron, the observed PMFs deviate from the
center of the envelope, suggesting that higher m > 1 might
be required.

In Appendix B, we show and discuss the distribution ob-
tained using the memoryless C,,—o model to highlight the
gain of the model C,,—; in both the center and the tails of
spell distributions; see Figs. B1 and B2. We note that even
though wet spells are in general much shorter than dry spells,
having m = 1 is necessary to accurately reproduce the wet
spells. Note that the WGEN model presented in Sect. 3.5 is
also expected, for a sufficiently high order, to perform well
for dry/wet spells, as it is trained at each station to learn the
temporal dependence of dry/wet sequences.

5.2.2 Spatial correlations

We compare in Fig. 13 the observed and simulated
S(S—1)/2 correlation coefficients between all sites
cor({Yv(")}nep,{Y;fl)}nep) for all s #s" €S. Most corre-
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Figure 9. Daily mean strictly positive rain quantity R > 0 (mm) at every station per kth component. We smooth the results as in Eq. (D1).
We use the model C with K =4 to get a posteriori the most likely state associated with each date n; see Eq. (F3).
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Figure 10. Estimated hidden state sequence for a selection of years. Each color corresponds to a hidden state: Z = 1 is blue, Z = 2 is green,
Z =3 is purple, and Z = 4 is orange.
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for all s #5’ € S compared with the correlations computed from
the simulations (we average the J =5 x 103 pair correlations of
our simulations). The conditional independence metric MSE(y in
Eq. (19), is displayed in the figure.

lations are well-reproduced, showing that the conditional
independence hypothesis in Sect. 2.2 (or Sect. 2.3) is valid.

To measure this quantitatively, we define the following
conditional independence metric:

MSEc = Y (cor(¥huep, (¥ hen)

s<s'eS
; 2
1 ) () (m)(J)
N 7ZC°r({ys }neD’{ys’ }neD : (19)

The closer to zero, the better the conditional independence
hypothesis will be satisfied. This criterion helps compare dif-
ferent choices of stations S; see Sect. 2.1 and Appendix C for
more details. This is the biggest limitation of this work: to
produce meaningful hidden states that correctly learn spatial
correlations, the MSE ¢y must be small. For example, a pair of
stations at the center of Paris and Orly (only ~ 13km apart)
would not satisfy the conditional independence hypothesis.
Note, however, that the conditional independence between
stations is not necessarily isotropic; hence, station configu-
rations with better MSE(y are not necessarily those with the
largest pairwise station distances.

To give an upper bound to this metric, we trained the
model, while keeping seasonality, with K =1 state, i.e.,
no hidden states (meaning completely independent stations),
and found MSE{} ~" = 0.096.
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5.3 Spatiotemporal spells

To check the spatiotemporal properties of the model, we
can focus on the temporal properties of the following spatial
quantity: the rain occurrence rate (ROR). Note that a similar
quantity is considered in Baxevani and Lennartsson (2015).
On a given day n, it is defined as the fraction of stations above
some precipitation threshold Ry,

ROR™ — Lseslp- g,

o i (20)

In general, the precipitation threshold could be made station-
dependent, e.g., a given quantile. Such quantities have been
used to study large-scale phenomena, e.g., temperature heat-
waves (Miloshevich et al., 2023; Cognot et al., 2025). Here,
we focus on dry or wet events relevant, for example, for
droughts, choosing Ry, = 0. The previous quantity simplifies
to

ZseS YS(n)

ROR™ =
|S]

(2D
To evaluate large-scale lasting dry events, we consider spells
of ROR™ < 0.2; ie., only 20 % or less of the stations are
rainy. We show in Fig. 14 the distribution (PMF) of the
spells for each season, i.e., December—January—February
(DJF), March—April-May (MAM), June—July—August (JJA),
and September—October—November (SON). We observe that
the SHHMM is able to reproduce short spells as well as
the distribution tails for every season. It can even produce
longer spells than observed. On the contrary, the WGEN
model overestimates short spell durations while underesti-
mating longer spells. This clearly shows that simple cor-
relation models are not adapted to produce correct large-
scale weather events, even though they perform well for pair-
wise correlation and local dry/wet spells. Using censored
Gaussian models, Kleiber et al. (2012) and Serinaldi and
Kilsby (2014) consider similar quantities but obtain rather
poor results. In contrast, Vaittinada Ayar et al. (2020) achieve
good results; however, their model is conditioned on synoptic
weather regimes and tested on a much smaller area.

6 Modeling: precipitation amount

In this section, we attach to the rain occurrence model C,,
an add-on: a multisite precipitation amount generator. The
procedure is carried out hierarchically, i.e., without modify-
ing or retraining the original model. In fact, other variables
such as temperature and solar irradiance could be attached
similarly to what will be presented in this section. To do so,
one only needs a generator for the new variable, e.g., AR(1)
model for temperature, and to allow its parameters to depend
on the weather regimes Z" = k and to evolve smoothly (as
in Sect. 2.4) with the day of the year . We hypothesize that
the new variable has some dependence on both the weather
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Figure 14. Distribution of spells of ROR™ lower than or equal to 0.2 for each season. We show in blue the observed spells and in gray the
simulations obtained with the SHHMM; in green are the simulations obtained with the WGEN model with Markov chains of order 4. In both
cases, the gray envelope shows the quantiles g5 95 of the J =5 x 103 simulations, and the line is the median (g50)-

regime and the season. We discussed in Sect. 4 various spa-
tiotemporal interpretations of the weather regime, and thus
it makes sense to consider how this global variable is rele-
vant for other weather variables. Hence, the resulting add-on
generator should generate a variable at least partially corre-
lated with the original SHHMM. This makes the model very
modular, allowing easy extensions without affecting its origi-
nal performances and interpretations. Figure 9 highlights the
rain amount dependence on the weather regime k and sea-
sonality. This principle is applied in this section to build an
add-on rainfall generator.

The multisite rain amount (MRA for short) is denoted R
as in Eq. (1). Building an MRA generator directly is hard
because of the ambivalent probabilistic nature of rain, be-
ing neither a discrete nor a continuous variable. Here we can
just focus on strictly positive rain amounts R > 0 because the
SHHMM directly indicates when R =0 or R > 0.

To train the rain amount generator, we will use the hidden
states Z( =z found in Sect. 3.3. The schematic of the
resulting model is shown in Fig. 15.

6.1 Marginal rain distributions

The rain amount generator we use to fit the marginal distri-
butions R > 0 at each station is a mixture g(r) of two expo-
nential distributions, with density

_r _r
71 e "

+(1—w)

22
k. 9 (22)

gr)y= ws
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This choice is widely adopted in the literature, e.g., Kirsh-
ner (2005), Touron (2019b), and Kroiz et al. (2020), and has
only three parameters denoted by y = {91, 92, w}. It is flex-
ible enough to be used for different climate types and loca-
tions. Other popular choices such as gamma (Kroiz et al.,
2020; Holsclaw et al., 2016) or heavy-tail distributions (Bax-
evani and Lennartsson, 2015; Naveau et al., 2016; Tencaliec
et al., 2020) could be used at specific locations s or weather
regimes k when needed. Note that these heavy-tail rainfall
distributions are notoriously hard to estimate (Evin et al.,
2016), so we will not consider them in the present paper.
See Chen and Brissette (2014) for a review of univariate pre-
cipitation models. For example, precipitation in the south of
France is less frequent than in the north but more intense,
leading to extreme events which are better described with
heavy-tailed distributions. In the simulation part, Sect. 7, we
show that despite being light-tailed, this choice of generator
g(r) trained with respect to weather regimes and seasonal-
ity is able to reproduce both the bulk and the tails of most
observed rain distributions well.

As in Sect. 2.4, the parameters of the mixture are peri-
odic functions y (t) = {91(¢), ¥2(¢), w(t)}, where 91 or2(¢) =
ePro2 5 0 w(r) =1/(14e®) and the P functions are
trigonometric polynomials (see Eq. 8).

To fit the mixtures gi ;s for each station s and hidden
state k we use the classical EM algorithm. The maximiza-
tion step has to be performed with numerical optimization as
in Sect. 3. Note that optimization can be done separately for
each weather regime k and station s.
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6.2 Multisite distribution: Gaussian copula

After training the marginal distributions g ; s at each hidden
state and site, we now focus on generating correlated mul-
tisite rainfall amounts (MRAs). To generate multisite rain
occurrences (MROs), we used the conditional independence
with respect to the hidden state (and possibly local history).
For a vector of Bernoulli (dry/wet) random variables, this
was enough to approximate the observed correlation matrix
well (see Fig. 13). However, for a vector of non-discrete
random variables, such as rain amounts, mixtures of con-
ditionally independent distributions typically underestimate
the joint distribution (Holsclaw et al., 2016). It means that
despite the hidden states carrying some part of the MRA cor-
relations, we have to add correlations in another way. A clas-
sical approach is to use copulas (Nelsen, 2006). Amongst the
various families of copula, the Gaussian copula is the easiest
to train and manipulate and has been used for weather mod-
els (Pandey et al., 2018; Kroiz et al., 2020). In this paper,
we will thus train and use a Gaussian copula conditional on
the hidden states to generate multisite (strictly) positive rain
amounts.

Let (p5,5)s.s be the correlations between a pair of stations
(s, s") for joint rainy events, i.e., (05.¢)s.y = Cor(Rs|Rs >
0, Ry|Ry > 0). To reproduce the correct observed (Pearson)

correlation (p), s, we train a Gaussian copula. A Gaussian
(G)

5,8’
the marginal distributions g as input. The matrix (%) is not
directly observed, but for an elliptic copula, there is a rela-
tionship between the correlation p(®) and the Kendall (rank)
correlations (Fang et al., 2002, Theorem 3.1),

copula takes a correlation matrix (%) ={p ")} s> and

. T
/O(G) = s (5 PKendall) . (23)

Hence, to compute ,o(G), we use the observed Kendall cor-
relation pgendan » Which is preserved under monotonic trans-
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Figure 15. SHHMM with rain amounts. g ; denotes the MRA generator with respect to the weather regime k and day of the year ¢.

formation, such as quantile and cumulative distribution func-
tions (CDFs).
We estimate the ZEG) =

correlation  matrices

{p,(ci? ¢)s.s7es2 conditional on the hidden state Z =k.
Indeed, we expect and observe that the weather regime
impacts the correlation. For the driest state Z = K a rain
event should be largely independent, and in the rainy state
precipitation should be correlated. We actually enforce
the conditional independence when k = K; i.e., E%G) is a
diagonal covariance matrix. This choice is also motivated
by the lack of observations of joint rain events in the state
k=K.

In this work, we also assume, for simplicity, that the cor-
relation matrices have no seasonality dependence, i.e., are
independent of the day . Moreover, we also do not model
local temporal correlations for rain amounts. This shortcom-
ing could be overcome using, for example, a spatiotemporal
covariance matrix (Benoit et al., 2018).

6.2.1 Simulation procedure

To simulate the rainfall amounts, we first simulate the
SHHMM chain (zV, y™ : n € D); see Algorithm 2. Then

for all the stations where rain is predicted, Sg’e)t ={s:Y, S(") =

wet, Vs € S}, the rain amounts Rg") > 0 are generated con-
ditionally using the Gaussian copula with marginal g, ,
and correlation matrix ) = RN s

Remark. In Appendix A, we visually show and with an ap-
proximate x2 test that the Gaussian copula model is a valid
model for most station pairs. Note that this Gaussian copula
can underestimate the joint extreme rain amount (Renard and
Lang, 2007), e.g., for close stations. In that case, other copu-
las might be used, as in Dawkins et al. (2022), for example,
but will not be explored in this paper.
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7 Simulations: multisite rain amount

In this section, we will test the full multisite model com-
bining the SHHMM and the rain amounts. We will test the
marginal distributions, the spatial and temporal correlations,
and the seasonality. Note that all previous results of the MRO
simulations (see Sect. 5) are still valid since the addition of
rain amount is done “on top” of the SHHMM.

In the simulations, we use the parameters obtained in
Sect. 3.4: m =1 local memory, K =4 hidden states, and
Deg =1 order of trigonometric polynomial. We use the
SHHMM transition matrix and Bernoulli distributions ob-
tained in Sect. 3.2 and the rain amount marginal and copula
obtained in Sect. 6.

7.1 Correlations

We first compare the spatial correlation of MRA over the 64
years of data; i.e., for all pairs of stations s and s’ we estimate
Cor(Ry, Ry). The results are shown in Fig. 16 (left), where
observed correlations are compared to simulations. In Fig. 16
(right), we perform a similar comparison for the symmetric
tail correlation (or upper tail dependence) (Nelsen, 2006) de-
fined by

(p1)s.5'(q) = ((pT)s\s’(Q) + (pT)s’ls(Q)) /2
with (o7)y1(@) =P (R > Fi'@) | Ry > Fgl@))  @4)

for g €[0,1]. The tail correlation indicates how extreme
events are correlated at different stations. We observe a good
match for most stations; however, for stations with larger tail
correlation, 2 0.2, the tail correlation is underestimated by
the simulations. This can be an indication that the Gaussian
copula is not enough for these pairs of stations. Improvement
using the Student copula (whose manipulation is less easy
but more capable of generating tail dependence) is a possi-
bility that should be explored in future work.

7.2 Rain amounts
7.2.1 Distribution and autocorrelation of precipitation

Figure 17 shows the nonzero rain amount distributions Ry >
0 at each station s all year long during the 64-year span of
data. It shows the historical distributions (blue) and 5 x 10°
realizations of our generator (gray). The model reproduces
the bulk of the distributions as well as the tails. The ob-
served distribution is in the interquartile range (red envelope)
of the simulations up to PDF values >~ 3 x 10~ for all sta-
tions (except for a few points). Even for southernmost sta-
tions (Toulouse, Marignane, Bastia) with heavier tails, our
model is able to capture most extremes; i.e., the observations
lie in the full simulation envelope (gray). This might be due
to the seasonal training of the marginals in Eq. (22), allow-
ing the distributions to be more extreme in late summer when
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heavy storms are common in the south of France. This good
performance is interesting in light of recent efforts to use
more complex distributions, e.g., generalized Pareto distri-
bution (Naveau et al., 2016; Tencaliec et al., 2020). At some
stations like Embrun and Toulouse, it can even generate ex-
tremes twice as large as the current maximal value observed,
which might be questionable. Note that it cannot reproduce
the most extreme rain event at Chassiron (that occurred on
14 August 1972), which in this case shows the limitation of
short-tailed exponential distributions.

In Fig. 18, we perform a temporal dependence check for
the rainfall amounts (zero and nonzero) by showing the au-
tocorrelation function (ACF) at different lags. The results
show that the ACF with lag =1 is always underestimated.
This is expected as the current model does not include ex-
plicit dependence on the previous day’s rainfall, as in Benoit
et al. (2018), where the quantity R"+! | R” is explicitly mod-
eled. The only dependence in our model comes from the
weather regimes as well as the autoregressive rain occur-
rences. Larger lags (> 1), however, are better reproduced
at most stations. The model fails at La Hague and Chass-
iron, which are both located on the coast (Channel Sea and
Atlantic Ocean, respectively), where the observed dry and
wet spells also deviate more from the simulation interquar-
tile range than for other stations.

In the context of flood analysis, a more relevant statistic
is the distribution of aggregated rainfall amounts over a pe-
riod of time. It is crucial, as, for example, heavy rainfall over
5 consecutive days poses a greater risk of flooding than the
same amount of rain dispersed over several months. Some
models specifically train on these aggregated events (e.g.,
Evin et al., 2018), while here the only temporal dependence
is provided by the underlying HMM. To this end, we dis-
play in Fig. 19 the distribution of cumulated rain sequences
(non-overlapping) of 5 d. The results again show that the bulk
of the distribution (inset) is very well-reproduced, while the
tails of the observations generally lie up to 1073 within the
interquartile range of the simulations. Once again, the model
is able to produce extremes that were not observed, e.g., at
Embrun and Bourges. At Chassiron, it fails again to enve-
lope the most extreme observation (which is due to the same
extreme event as seen in Fig. 17). The worst results are ob-
tained for La Hague and Chassiron. Again, this is an indi-
cation that these two stations require a more complex local
model, e.g., higher local memory and dependency on past
rainfall amounts.

7.2.2 Precipitation during the year

To test the seasonality of the model, we show the quantiles
0.1,0.5, and 0.9 of the accumulated monthly amount at ev-
ery location. This tests how the model performs in each re-
gion and for each month under different regimes (very dry,
median, and rainy months). Note that each blue point (his-
torical data) at each station and month is obtained using the
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Figure 16. Comparison of the multisite correlation (a) and symmetric tail correlation in Eq. (24) with ¢ = 0.95 (b) from the observed and
simulated data. The correlations computed from simulations are averaged over J =5 x 103 realizations.

LILLE LA HAGUE LUXEMBOURG ORLY BOURGES
0 0 0 0 0 _
10 10 10 10 10
S o
167! - 25,75 107t 107t 107!
—Obs
e 1072 1072 1072 1072 F
(@)
(a9
107 T 107 T
107 107 107" w0t F
Ml LN N
0 20 40 60 80100120 0 25 50 75 100 0 20 40 60 80100120 0 20 40 60 80100120 0 25 50 75 100
CHASSIRON EMBRUN TOULOUSE MARIGNANE BASTIA
0 _ 0 0 0 0
10 10 10 10 10
107 107! 107 107! 107!
e 1072 1072 1072 1072 1072
()
(a9
107 T 107°% F T 107°% F
1074 1074 IO 1074 w0t
0 20 40 60 80100120140 0 50 100 150 0 50 100 150 0 50 100 150 200 0 100 200 300
Rain (mm) Rain (mm) Rain (mm) Rain (mm) Rain (mm)

Figure 17. Distribution of the nonzero precipitation amount R > 0 (mm) at every station and for all years 7. The distribution of the historical
data is shown by the blue line. The gray envelope covers the full range (g, 100) of the J =5 x 103 simulations, while the red envelope covers
the interquartile range (¢25,75), and the line is the median. To ensure correct representation, the bin intervals of all histograms are set to

0,2,4,---, RSR),X (mm), where Rﬁggx is the maximum rainfall recorded in observations or simulated among the J simulations at the station s.

observed quantile over 64 points. Hence, it is prone to greater
estimation error than most other statistics studied in this pa-
per that use daily observables. Most observed points are lo-
cated within the envelope of the J = 5x 10° simulations (col-
ored regions), indicating a fair match with the model. At the
southernmost stations, Marignane and Bastia, the observed
seasonality does not seem to match that of the model: at the
beginning of summer, the model appears to produce rainier

Adv. Stat. Clim. Meteorol. Oceanogr., 11, 159-201, 2025

July months, while at the beginning of autumn, in October,
the generated months are drier than observed. This suggests
that the rainfall amount model might not be fully adapted; for
example, a higher seasonal dependence (larger Deg) could be
required.
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Figure 18. Estimated autocorrelation function (ACF) of the daily rainfall amount R (mm) for lag O to 15 at every station and for all years 7T .
The ACF of the historical data is shown by the blue line. The gray envelope covers the full range (go,100) of the J =5 x 103 simulated ACF.

8 Application to climate change projections

So far, we have trained and validated the SHHMM using his-
torical data. Using the same hyperparameters as found in the
model selection (see Sect. 3.4), we can train the model on
other datasets. In this section, we show how the stochas-
tic weather generator developed in this paper can be used
to study climate change impacts. The focus of the paper is
not to perform an in-depth analysis but rather to show, as
a proof of concept, how SWG could be useful in that con-
text. To this end, we will train the model with projection
data made available by climate model institutes participating
in the scientific projects coordinated in the IPCC framework
(Arias et al., 2021). A new Coupled Model Intercomparison
Project is launched for each new IPCC cycle, and each par-
ticipating institute runs the latest versions of their global cli-
mate model or Earth system model under prescribed radiative
forcing conditions. Because these simulations are global and
present biases compared to local observations (Tootoonchi
et al., 2023), we will use the downscaled and bias-adjusted
projections provided by the French climate service DRIAS. It
is based on a selection of regional projections made in the in-
ternational CORDEX initiative based on CMIP5 global pro-
jections (projections made in the framework of the 5th IPCC
assessment report).
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8.1 DRIAS data

We use the DRIAS website (Soubeyroux et al., 2021) that
aggregates different regional (European) projections forced
by some chosen global projections made by different insti-
tutes. DRIAS-2020 provides 30 climate projections (2006—
2100) with three scenarios (RCP2.6, RCP4.5, and RCPS.5)
and 12 historical simulations (1951-2005). These simula-
tions are further downscaled and bias-adjusted over France
using the ADAMONT method (Verfaillie et al., 2017) with
SAFRAN reanalysis (Vidal et al., 2010) covering France
with 8 km resolution for many daily variables. We select the
closest grid points to the S = 10 considered stations and ex-
tract the precipitation amount. The exact grid point choice
should not matter too much, since the reanalyzed simulations
are smoothly interpolated. Since these physical models tend
to overestimate the frequency of light rain amounts R, we set
to R =0 all amounts smaller than 0.1 mm to match what is
done at the experimental weather stations.

8.2 Direct comparison of models with the reference
period

Climate models provide historical simulations (1951-2005)
to be able to validate models against observed data. Be-
cause a model does not simulate the same interannual vari-
ability as observed, the evaluations are based on the statisti-
cal properties of the variables rather than on their chronol-
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ogy. For example, in Fig. 21, we compare the monthly rain
quantiles computed as in Sect. 7.2 obtained from the his-
torical climate simulations and from the SHHMM simula-
tions (the same as previously trained on historical obser-
vation). We use here two climate models, Aladin (CNRM-
ALADIN63 — CNRM-CERFACS-CNRM-CMS5) and IPSL
(IPSL-WRF381P — IPSL-IPSL-CM5A-MR), as an example.
Using an SWG allows a better sampling of the natural cli-
mate variability because it is possible to run many more re-
alizations than can be done with climate models. This sam-
ple can then be used to check how climate model simula-
tions are positioned. For example, at Lille station, in July for
the 0.9 quantile, we observe that the historical point around
2~ 120mm (blue) is far from the two climate models (orange
and green): ~ 100mm. However, when looking at the pre-
dicted statistical envelope, the climate models are exactly at
the median, while the historical observation is actually an
extreme value. When comparing the two climate models, we
observe that the IPSL model produces more points outside
the statistical envelope than the Aladin model, suggesting
that the model may present stronger biases.

We can perform the same comparison task on dry spell
distributions with the Aladin model; see Fig. 22. Again, the
SWG samples allow for comparison of the climate model
within the predicted variability. At a lot of stations, e.g.,
Marignane, Orly, and Toulouse, the results are within the in-
terquartile range. However, we can also observe that in the
tails, the climate model is always under or equal to the histor-
ical curve. This raises the question of whether climate models
are able to produce yet unseen extremes.

8.3 Training on RCP scenarios

Once the comparison has been made for the historical pe-
riod, in this section, we will study how the spatial rainfall
may evolve in the future by fitting the SHHMM on climate
model projections under different RCP scenarios. The RCP
scenarios are designed to represent differentiated trajectories
of greenhouse gas and aerosol emissions that drive climate
change until the end of the century (and beyond in some
cases). To do so, we select the data over a 64-year range,
here 2032-2096, which simplifies the statistical comparison
with the 64-year range of the historical data we considered.
In Fig. 23, the transition matrices obtained when training
on historical and IPSL-RCP8.5 data are compared. The aim
here is only to highlight the ability of the SHHMM to be used
in climate change conditions, not to conduct an impact study;
that is why only one climate model is used. The two matrices
are still close, meaning that the hidden states of our model are
robust to parameter evolutions. However, we can observe in-
teresting differences. For example, Q3,3 and Q_, are sig-
nificantly larger in summer months. The weather regimes 1
and 3 were interpreted as rainy all over France and heavy rain
in the south, respectively. This means that the IPSL model
under RCP8.5 projects longer stretches of heavy rain. Fig-
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ure 24 shows the analog of Fig. 20 with simulations from the
trained SHHMM with IPSL-RCPS.5 data and in blue the his-
torical data. It clearly shows that the IPSL model under the
RCP8.5 scenario projects rainier periods. In fact, it is known
that the regional climate model for the EURO-Coordinated
Regional Downscaling Experiment used in all DRIAS mod-
els presents this type of bias (Boé et al., 2020; Vautard et al.,
2021). In particular, summer periods are consistently rainier,
even for the 0.1 quantile of the monthly mean rain amount.
This example shows how the proposed SWG can be used
to analyze and compare models: either directly interpreting
the coefficients change or sampling from the fitted model to
study extreme behaviors.

9 Conclusions

In this paper, we define a multisite stochastic weather gener-
ator for precipitation named the seasonal hierarchical hidden
Markov model (SHHMM). Even though it is based on a hid-
den Markov model introduced for weather applications in the
1990s, we propose an original combination of features based
on two important assumptions: (a) the conditional indepen-
dence for the multivariate rain occurrence (MRO) variable
(see Egs. 5-7) and (b) the imposed smooth seasonal evo-
Iution of most model parameters (see Sect. 2.4). Assump-
tion (a) forces the model to learn spatial correlations, leading
to fully interpretable hidden states (weather regimes). This
differs from part of the literature, where hidden states and
correlation coefficients are trained jointly with continuous
variables or additionally conditioned on predefined synoptic-
scale variables. Thanks to the discrete nature of MRO and the
station locations, we checked the validity of hypothesis (a);
see Fig. 13. Assumption (b) is natural and has been intro-
duced before in Touron (2019a); it stabilizes training, i.e., re-
moves a lot of identifiability issues that occur while training
nonhomogeneous HMMs, and leverages the relatively small
number of observation years. To capture more of the local
weather, i.e., station-wise, we introduced an autoregressive
dependence of rain occurrence on past weather, allowing bet-
ter temporal correlations.

The model inference and identifiability were analyzed.
In particular, we proposed an efficient heuristic initializa-
tion in Sect. 3.1 to accelerate model training during the
Baum—Welch expectation maximization algorithm and ad-
ditionally demonstrated that the model must satisfy specific
identifiability conditions to remain meaningful in Sect. 2.5.
To the best of our knowledge, these aspects have not been
previously discussed in the literature. The model selection
was performed using the integrated complete-data likelihood
criteria, leading in particular to the selection of four hid-
den states extensively interpreted as France-wide weather
regimes in Sect. 4. In particular, we were able to showcase
how the hidden states found can be compared to several
Euro-Atlantic and France-centered weather regimes defined
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Figure 21. Same as Fig. 20 with added monthly rain quantile for the model Aladin (CNRM-ALADIN63 — CNRM-CERFACS-CNRM-CMS5)
and [PCC (IPSL-WRF381P — IPSL-IPSL-CM5A-MR) for the reference period 1952 to 2006.
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Figure 22. Same as Fig. 11 with the dry spell distribution of Aladin (CNRM-ALADIN63 — CNRM-CERFACS-CNRM-CMS5) for the

reference period 1952 to 2006.

in other works. These hidden states were shown to be robust
to different choices of stations; see Appendix C. The model
was extensively tested with simulations. Its performance in
reproducing dry and wet spells, as well as the amount of pre-
cipitation, is very good, even in the tails of the distributions
at most stations. Our model was compared with WGEN, a
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widely used model in the literature, and was found to better
reproduce the distribution of areal dry spells.

The model’s hierarchical structure allows for easily adding
other weather variables on top of the HMM without modify-
ing the hidden states. In fact, new variables, such as rainfall
amount, benefit from the trained hidden states and can be ad-
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Figure 23. Temporal variation of the transition matrix Q¢ trained on historical data (plain line) and on RCP8p5 from IPSL-WRF381P data

(dashed line) for the period 2032-2096.
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Figure 24. The (0.1, 0.5, 0.9) quantile of the cumulated monthly mean rain amount in millimeters per month (orange, green, and light blue,
respectively). Historical data (dark blue) and J = 103 realization of the model trained with the RCP8p5-IPSL-WRF381P data for the period
2032-2096. For each quantile, we show the envelope of the J simulations and in darker colors the [25, 75] percentiles and the median. Note
that the color palette has been slightly modified with respect to Fig. 20 to highlight that these envelopes are obtained with simulations from

the model trained on an RCP scenario.

justed conditionally on them. The rainfall amount was also
tested in terms of distribution, autocorrelation, 5 d aggregated
distribution, monthly aggregated quantile, and spatial corre-
lation, with good performance.

Eventually, we showed how this generator can be used
with climate change models. One can evaluate climate mod-
els on the reference period by comparing them to the esti-
mated climate variability obtained with many simulations of
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the SWG, as in Figs. 21 and 22. This approach can give more
relevant results than only comparing the climate models to a
single historical observation. Additionally, training the SWG
model on future climate projections allows for interpreting
changes across all model parameters (see Fig. 23) or resam-
pling from these future scenarios to better estimate variability
and extremes; see Fig. 24.
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The major limitation of the model is the assumption (a)
that forces careful choice of the stations, as noted already
in Zucchini and Guttorp (1991). Even though we show in
Appendix C that the precise station choice does not signifi-
cantly affect the hidden states as long as the MRE(y is low,
finding a valid station set can be a hard problem. This first
model lays the groundwork for a fully seasonal spatiotempo-
ral SWG working on a large scale with no external exogenous
variables.

Having inferred the weather regime only from rain occur-
rences and not amounts might also not be completely sat-
isfying, as other clustering methods using rainfall amounts
or geopotential have found more complex patterns, particu-
larly for extreme rain. Rain occurrences might limit the num-
ber of meaningful patterns, as Robertson et al. (2004) also
found four hidden states using a spatial HMM for north-
east Brazil, which has a completely different climate. To
circumvent these limitations, one could try to train a spa-
tial HMM with rain amounts and/or more complex variables.
However, we caution against such complexities, as they can
tend to produce hidden states very dependent on the cho-
sen imperfect parametric distribution; see Pohle et al. (2017)
and de Chaumaray et al. (2023). Another solution, keeping
only rain occurrences, could be to break conditional inde-
pendence to allow many more stations in the region of inter-
est, which would be able to discriminate between more com-
plex patterns. It was explored partially in Hughes and Gut-
torp (1994b) and Kirshner et al. (2004) by allowing pairwise
correlations or tree structures with the hidden states. Keeping
interpretable hidden states while breaking conditional inde-
pendence is a challenge left for future research.

Many smaller improvements could also be considered,
such as different models for rain amount or seasonality at dif-
ferent locations to account for regional specificities. A tem-
poral correlation with previous rain amounts is also possible
with a spatiotemporal correlation matrix (Benoit et al., 2018;
Bennett et al., 2018) to improve the precipitation autocorre-
lation function (ACF). Another question is how to incorpo-
rate nonstationarity in the model’s hidden states, such as cli-
mate change trends. So far, these have been added using the
generalized linear model framework with exogenous variable
dependence on the parameters (e.g., Greene et al., 2011, or
Dawkins et al., 2022).

Extending the model with new weather variables, such
as temperature on top of the current model (and its hidden
states), is another challenging problem that can be addressed
with this model. Indeed, the weather regimes identified here
are likely relevant for other weather variables such as temper-
ature, solar radiation, and wind. They could therefore be used
to train conditional models for these additional variables (hi-
erarchical dependence). In fact, this idea was tested by train-
ing an SWG on five daily weather variables (rainfall amount,
minimum and maximum temperature, solar irradiance, and
evapotranspiration) using the same hidden states identified
in this paper. The simulation outputs were then coupled with
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a crop model to produce a hackathon dataset; see Métivier
et al. (2025) and references therein. Note that this is ongo-
ing work. In a similar spirit, another option to include more
densely packed stations could be to couple the SHHMM and
its pre-trained large-scale weather regimes with a local high-
resolution model. In this case, the hidden states would serve
as exogenous variables. However, compared to other models
where these inputs are fixed over a training period, our hid-
den states are modeled specifically for the large-scale area
of interest and can be regenerated as needed to explore cli-
mate variability over the period of interest, e.g., with future
climate scenario data.

Adding new weather variables and higher-resolution mod-
els at specific locations to extend the SHHMM could be
useful in many large-scale risk analysis studies. For exam-
ple, river water (temperature and flow) used to cool power
plants can be modeled based on the weather (typically tem-
perature and rainfall) over the relevant catchment areas (e.g.,
Nguyen et al., 2023). With an extended SHHMM, one could
assess the resilience of the entire French nuclear power plant
fleet under climate change projections, e.g., by estimating the
probability of having half of the plant generation simultane-
ously limited due to long-lasting, large-scale droughts. Ex-
ploring this extension is left for future work.

Appendix A: Gaussian copula

To check the Gaussian copula approximation for the joint
rain events between station pairs, we transform our data into
an empirical bivariate distribution with normal margins to
test its quantiles against those of a true bivariate normal dis-
tribution. Note that these checks are mostly qualitative since
we apply the procedure to time series, meaning we are out-
side the IID framework where these kinds of tests are valid.

In detail, given a pair of stations (s, s”) and a hidden state
Z =k, we consider the joint positive rain amount Ry ¢ ; =
(Ry > 0,Ry > 0)| Z =k for all dates n, so we can remove
the superscript n. We first have to transform the observations
to pseudo-observations, i.e., Ry ¢ x € Ri BN (us,k,ug k) €
[0, 1]2. There are several possible transformations 7, e.g.,
the estimated marginal CDF or ordinal ranking. We use the
latter one as done in the package Copulas. jl (Laverny
and Jimenez, 2024) that we use for all our copula sim-
ulations. These pseudo-observations are then transformed
to normal distributions using the transformation X ¢ =
(¢~ Nusx), o~ (uy 1)), where ¢~! is the quantile function
of the standard normal distribution. For a vector x € R"” and
an n x n correlation matrix Xy, the squared Mahalanobis dis-
tance is defined as

DM(x)=xTZI\7[1x. (A1)

We use the correlation coefficients pg,) , obtained in
Sect. 6.2 to build the 2 x 2 matrix X); and compute the
Mahalanobis distance for all samples. For a true bivariate
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normal distribution, the distribution of Dy follows a x2(v)
distribution with v =2 degrees of freedom. In Fig. A1, we
compare the quantile of the x2(v = 2) distribution with the
Dm(X ¢ 1) for two pairs of stations and each hidden state
Z = k. Note that we simplify the analysis, considering only
one covariance matrix instead of the four fitted in Sect. 6.2.
The correspondence is good even for close pairs. It means
that Gaussian copulas are adapted when stations are far
enough apart. For Z = 1, i.e., the rainiest weather, only 3 out
of 45 station pairs fail the one-sided Kolmogorov—Smirnov
test with the 95 % confidence level that compares the theo-
retical x2(v = 2) distribution with the observed squared Ma-
halanobis distance. These are the pairs Bourges—Orly, Lille—
Orly, and Lille-Luxembourg, which are amongst the clos-
est pairs; see, e.g., Fig. A1 (left). Interestingly, for a slightly
bigger distance, the pair (334 km) Orly—La Hague passes the
test; see Fig. Al (middle). This indicates anisotropy in the
correlation repartition. For other weather regimes Z > 1, the
Gaussian copula hypothesis also works well for most stations
with enough data.
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Figure A1. Three examples of g—g plots to test the Gaussian copula hypothesis. The squared Mahalanobis distances between station pairs
vs. xz(v = 2) distribution are shown. A good match means that the Gaussian copula hypothesis to generate pairs (Ry > 0, Ry > 0) | Z =k

is satisfied.
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Appendix B: Comparison with the memoryless
model C;—0

In Sect. 2.2 and 2.3 we define and model C,,—o and C;,;~¢.
We later selected C,,,—1 using the ICL criteria; see Fig. 4. We
show here the performance of the C,—o model in terms of
dry/wet spells in Figs. B1 and B2. The observed distribu-
tion is shown, while the J =5 x 103 simulation quantile en-
velopes are displayed. These figures are to be compared with
Figs. 11 and 12 produced by the C;,—=1 model. In the bulk of
the spell distributions, i.e., short spells with higher probabil-
ity, the difference is important (note that the log scale tends
to visually minimize the effect), e.g., Embrun and Marig-
nane for the dry spells and all wet spell distributions. This
indicates that the model C,,—¢ without local memory over-
estimates very short wet spells (and dry spells to a lesser
degree). At some stations, it also underestimates the longer
spells (tails), e.g., Bastia for wet spells.
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Figure B1. Dry spell distribution (in number of days) at every station and for a time range D of the historical data (blue) and the J =5 x 103
simulated wet spell distribution. The gray envelope covers the full range (g, 100) of the simulations, while the red envelope covers the
interquartile range (g25,75), and the line is the median. Simulations are obtained over the same time range D and using the memoryless

model K =4, Deg =1, and Cp;,—g.
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Figure B2. Wet spell distribution (in number of days) at every station and for a time range D of the historical data (blue) and the J =5 x 103
simulated wet spell distribution. The gray envelope covers the full range (¢q,100) of the simulations, while the red envelope covers the
interquartile range (g25,75), and the line is the median. Simulations are obtained over the same time range D and using the memoryless

model K =4, Deg =1, and C,;,—.

Appendix C: Comparison with other station choices

In this Appendix, we show that the hidden states, i.e., weather
regimes, found in the main text with our choice of stations S
(see Sect .2.1) are robust to station changes. We replaced all
stations with their closest station within a < 150km radius.
In cases where no neighbor was found, the station was kept.
With our pool of 66 stations and the original set, we replaced
8 out of 10 stations. The resulting moved station set, Spoveds
is given in Table C1. Note that the Luxembourg_A station is
different from the Luxembourg station (at the airport) used
in the paper.

We trained our SHHMM with the stations in Spgyed Using
the same procedure as before. The resulting transition ma-
trix is shown in Fig. C1. The new transition matrix (dotted
line) is almost identical to the original one (full line) found
in Sect. 4.2.1. The mean probabilities conditional on the hid-
den states of Spoved (crosses) are also very close to those of
S (circles), exhibiting the same spatial pattern; see Fig. C2.

https://doi.org/10.5194/ascmo-11-159-2025

Table C1. Original station set S and set Spgved With the closest
available station within a 150 km radius. In bold are the stations we
kept for which no neighboring station was available in the given
radius.

Original set Distance (km) to  Moved set

S the closest  Spoved

Lille 102 Abbeville

La hague 150  Ploumanac’h
Luxembourg 4  Luxembourg_A
Orly 163 Orly
Bourges 154 Bourges
Chassiron 124 Nantes
Embrun 117 Nice
Toulouse 72 St-Girons
Marignane 102 Montpellier
Bastia 90  Ajaccio

Adv. Stat. Clim. Meteorol. Oceanogr., 11, 159-201, 2025




192

E. Gobet et al.: Interpretable seasonal multisite hidden Markov model

1.0 1
0.8

0.6

1.0
0.8

0.6

0.4

0.2 E

0.4

0.2

O'OJan FebMar AprMay Jun Jul Aug Sep Oct Nov Dec O'OJan Feb Mar Alperay Jun Jul Aﬁg sép Oct NovDec
1.0 1.0 ¢

0.8 —_Q3—>1_Q3—>2_Q3—>3_Q3a4 0.8 Q4ﬁ1_Q4ﬁ2_Q4—>3_Q4A4
06 | 06 | '
04 T m—— 04 |

0.2 0.2 k

00 o L g B

""Jan FebMar AprMay Jun Jul Aug Sep Oct Nov Dec

" Jan FebMar AprMay Jun Jul Aug Sep Oct Nov Dec

Figure C1. Temporal variation of the transition matrix Q(¢) for the SHHMM K =4, Deg = 1, and m = 1. The full line is the matrix trained
on the original set S, and dotted lines correspond to the model trained on the set Syoved-
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Figure C2. Yearly mean rain probability T_lzt eTMe,t,s,h for m =1 and h = dry, i.e., the probability of rain at a location s, conditional
on the hidden state Z =k € [1, K = 4] and on a previous dry day. The circle represents the results obtained when training with the S set,
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Appendix D: Periodic moving average

We define the periodic moving average used in Fig. 9. Given
a T'-periodic observable X @ for t € T, the associated mov-
ing average X is given by

o £ ()
h=—H H

X+

_ h\’
h=H

—oK =
h=—H <H>

where € [1,T], X“FD = X®_and K is a kernel. In the
paper, we choose the window size H = 15 with the Epa-
nenchikov kernel K(u) = %(1 — u)21|u|51 and T = 366.

(D1)

Appendix E: Baum-Welch algorithm for seasonal
hierarchical HMM

We use the same model C,,-¢ as described in Sect. 2 and
will describe the inference procedure using the Baum—Welch
algorithm for a seasonal hierarchical HMM (SHHMM).

We recall that 6 stands for all the SHHMM

(&, Q¢ frtnek.reT newen parameters (see Sect. 2.3).
To fit the model, we must find the 6 maximizing the
observed likelihood,

Lo (y(I:N)) =P, (Y(I:N) _ y(l;N)>

= Z Py Y(I:N)zy(lzN)’Z(lzN)ZZ(I:N)>
Z(“,-..,Z(")

_ Z Ee(y(l;N),Z(lzN))

,,,,,

=T o (5 15
P, (Y(I:Nfl) — y(lszl)’ 7(LN) _ Z(1;N)>

= Z Jontn (y(N) | h(N)) Q1<N_”,ZN(ZN)

RO

P(YIZN717Z(1:N—1) _ Z(1:1\/—1))

= Z sz('),hlfz“),tl (y(]) | h(1)>

zZD, .z

N

[T Cev e, @) oty (¥ 15). (ED)
n=2

where the index z,, € [[1, K]] for all n € D values.

The Baum—Welch algorithm is an iterative expectation
maximization, where the likelihood is increased sequentially,
i.e., at each step (i) of the algorithm Lyi) < Lyai+1).

Let us detail the procedure and show that the classical ele-
ment of the Baum—Welch algorithm for an HMM (homoge-
neous) proof remains valid when considering an SHHMM.
The first step is to consider the conditional expectation of
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the log-likelihood of the parameter 6, Ly, with respect to the
parameter at step (i), @,

R (9, e(i)) — Eo" [10g/3 (Y(I:N)’ Z0). 9) | Y(l:N)]

K N-1 o
=3 > w1k DlogQy, (k. D)

K N
(i)
+ 3wy k)log fis, (Y | A

k
K (@)
+> wf, ()logé. (E2)

where we recall the smoothing probabilities under the current
parameter @),

7w ) =Py (2 =k | YIN), vae[IN), (B3

o kD) = Py (Z(") =k, Z"V =1 YU:N)),

Vnel[l,N—1]. (E3b)
These probabilities can be computed using the forward-
backward procedure, which is also valid for periodic hier-
archical HMM.

The E and M steps alternate as follows:

1. Initialization. We initialize the algorithm with an initial
HMM of parameters 6©).

2. E-step: Compute R(6,6%), which corresponds here to
getting the smoothing probabilities for the current pa-
rameter 6.

3. M-step: Maximize R(6, 0@y with respect to 6. Due to
the sum expression of R, this step can be done indepen-
dently for each parameter 6 = (£, Q, f). In particular,
one can update the distributions f; x(y, | h,) indepen-
dently of the transition matrix. If we did not assume a
periodic parametric form for the transition matrices, the
maximization of each Q; could be done analytically and
independently.

4. Steps E and M are repeated iteratively until the ob-
served likelihood has converged to a local maximum.

E1 Fundamental inequality of the EM algorithm

To prove that increasing R(6 | 6®)) also increases the ob-
served likelihood, £y (Y*¥)), we first rewrite the observed
likelihood as

log Lg (Y(I:N)) =log Ly (Y(“V), Z(“*”)

—log Ly (z(”\” | Y(I:N)) . (E4)
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The conditional expectation of Ly with respect to the current
parameter 0D for all § and 6, gives

Ey) [10g£9 (y(l:N)) | Y(l:N)] — log g (Y(lzN))
= Ey [logﬁe (Y(lzN)’ Z(l:N))

“log Lo (Z(]:N) | Y(l:N)) | Y(l:N)]

= R(e,e(">) =Y Py (Z(I:N) | Y(l:N))

Z(L:N)
log Py (Z(I:N) | Y(I:N))

=R(9,9“>) +R(0,9<">). (ES)

The Gibbs inequality ensures that R (9, G(i)) >R (G(i), G(i)),
so that we obtain

logLy (Y(IZN)> —log Lyi <Y(1:N)> > ’R(Q7 9(0)
R <9<z‘)’ 9(,-)) _ E6)

Hence, when we maximize (or increase) R (6,0®) with re-
spect to 8, we also increase the observed log-likelihood.

E2 Smoothing and filtering probabilities

The smoothing probabilities can be expressed as
T () =Py (27 =k | YN = i)
Py (Z(n) =k, YN = y(l:N))
= Py (Y (M) = y(:V))

Py (Z(n) =k y(m = y(lzn))
Py (YN = e EN) | 70 — oy (lin) — (1:N))

Py (Y(l:N) — y(lzn))
o (k) B (k)

ISy OTA0) D
with
(k) =Py (z(’” —k, Y — y(k")) : (E8a)
Bulk) =Py (Yiry =y | 20
=k, y(m = y<1:n>)
=P, (Y(n+l:N) _ y(n+1:N) | 7
= k, YO oyt (ESb)

Similarly,
Tu Nk, ) =
P, (Z(n) —k, Z0HD — | YN = y(l:N)) (E9)

(Bt 1(D) f1, 1D | ROTDQuk, )
- Py (Y(I:N) — y(I:N)) :

(E10)
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E3 Forward—backward procedure

The forward o and backward § variables are computed iter-
atively.

an(k) = fir ™ | RS Qo ban—1 (1), (Ella)

forl <n <N,

[ﬁN(k)= 1,

[al(k) = fin GV Th D),

Bak) = YK | fire d D ROTNQuk, D (1), (B11b)

forl>n<N.

Appendix F: Initialization of the HMM fitting: the slice
estimate algorithm

In Sect. 3.2, we use the slice estimate to initialize the Baum—
Welch algorithm with parameters 6©). We detail in this Ap-
pendix the inference of this slice estimate. Indeed, a random
choice of #© in the Baum—Welch algorithm could lead to
bad local maxima or longer convergence time.

F1 The EM algorithm for the distribution of the
observations

The 64 years of data provide on each day ¢ a sample of
size 64, considered independent and identically distributed.
Hence, for each ¢t € T, independently of each other, we use a
standard EM algorithm to fit the distribution { f1.,---, fx.r}-
For a given date ¢, e.g., 28 February, the samples will consist
of all 28 February dates from the dataset, i.e., from the year
1956 to the year 2019. The ensemble of date n corresponding
to the same day 7 is denoted as ;. To enrich each of these
small datasets, we add the observations of every £+ 6 and
t +12d to each N; (with periodicity T = 366). These addi-
tional days should come from very similar distributions to the
one from date 7, as assumed by the smoothness assumption
(see Sect. 2.4), but also be far enough to be considered inde-
pendent samples. For our current dataset, each day ¢ has sam-
ples for all the dates n with associated t,, € {t,t £6,¢ + 12},
which gives |N;T| = 320 samples for each?, where we denote
by A" the enriched dataset.

On a day ¢, the mixture probability for an observation vec-
tor, y = (y1, - -+, ys), with history h = (hy, - -+, hg), is written
as

2Except for 29 February (and 17 and 23 February as well as 6
and 12 March)

https://doi.org/10.5194/ascmo-11-159-2025



E. Gobet et al.: Interpretable seasonal multisite hidden Markov model 195

fiy | h)= IF’(Y(”) =y |H" = h) =

K
y_ S FE e S
k; (z<" k)P(Y" Y| H® =p, z k)

P(Y =y, | H® = hy, 2 = k)

M= T
=
e

Tkt fk,t,s(ys | ),

.

»
I
_
w
I
_

where we use the conditional independence (see Sect. 2.3)
and denoted the weight P (Z ) — k) as 7y ;. The parameters
to fit are the mixture weights 7 ; and the Bernoulli param-
eters Ak ps fork e K, s € S, and h € Z{. We denote with a
hat and tilde the estimated parameters 7y ; and 6k ; 5.

F2 Algorithm

The different steps, expectation (E), and maximization (M)
of the algorithm are standard. The mixture to fit is composed
of products of Bernoulli distributions given the history vec-
tor h. The same mixtures appear a lot in classification prob-
lems, for example, for digit reconnaissance (Bishop, 2006,
Sect. 9.3.3).

F3 Random initialization
We choose 10 random initial parameters (n,ﬁ?t) , kg, p.s)> TUN
the algorithm, and select the converged point with the largest

observed likelihood, defined as

Latice(V | 15 Op 15,15 Tk 1) =

Ny

log | T] P(y(n) — 00 | g = h(n)) (F1)
neN;t
K S
= ) log (Zﬁk,, [ frsG h§">>), (F2)
n€M+ k=1 s=1

where fk s denotes the distribution with the estimated pa-
rameters O ; s -

F4 Ordering the hidden states

A mixture distribution is identifiable up to relabeling of its
components, meaning the mixture defined by (mi, Aks h.s)
cannot be distinguished from the mixture (74 k), Ao (k),7,h,s)
where o is a permutation of /. In our case, we need to ensure
that the parameters evolve coherently with ¢ so that labels k
always refer to the same hidden states. To do so, we select
one reference station in our study, Bourges, and for all 1 € T
values relabel as follows:

https://doi.org/10.5194/ascmo-11-159-2025
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Figure F1. Relative improvement (Ljice— . )/|Lglice| of the fi-

rand

nal log-likelihood obtained with random or slice initialization. The
slice estimate always gives a better or equal log-likelihood.

— Model Cy. Sort the probability of rain for k € {1,---, K}
from the lowest to the largest at the reference station
Bourges:

9k=(1),t,s=Bourges > 9k=(2),t,s=B0urges > > 9k=(K),t,s=B0urges-

— Model C,. Sort the probability of rain for ke
{1,---, K} conditional on the driest history variable
hdry = (dry, - -+, dry) from the lowest to the largest at the
reference station Bourges:

Ok=(1).t,s=Bourges,hg > Ok=(2).t,s=Bourges,hy
>+ > Ok=(K),r,s=Bourges,hy -

This sorting provides a natural interpretation to each hid-
den state: k = (1) corresponds to a “rainy” climate where the
probability of rain is the largest in Bourges and hopefully in
the rest of the métropole (continental France). The k = (K)
state corresponds to a “dry” climate where the probability of
no rain is the largest.

The choice of Bourges to extract the hidden variable is
heuristically justified by the fact that this station is located
roughly at the center of the geographic area under study, and
its parameters 6 ; s—Bourges,h, are well-separated for differ-
ent k.

F5 Transition matrices

To finish the SHHMM inference, we estimate the transition
matrices Q(¢). To do so, we will first infer the filtered prob-
ability of all hidden states given the model and observations
using fx.; and 7 ;,

y = P( 70— y® =y g h<”)>

~ S ~
ORI feans GO TR
- K ~S 7 .
YK AT frs G 1R

(F3)
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The maximum a posteriori estimator is then
7 = argmaxke{l,_..,K}yk("). (F4)

This yields the sequence of hidden states {Z™ : n € D}. The
transition matrices can be estimated by counting the number
of transitions on a day ¢ from a state k to [ divided by the
total number of transitions from k,

ZHGM lz(n):k”z(n+l):l
X .
ZneM Zl:ll}i("):kz("“):l

Qu(r) = (F5)

F6 Multiple random initialization

To prevent the EM procedure from reaching an irrelevant
local minimum, we run the algorithm 10 times with added
noise around the initial state. For each coefficient ¢ € 96lic®),
we randomize as ¢ = ¢ (1 4+ o Z), where we take ¢ = 0.5
and Z ~ N(0, 1).

F7 Slice estimate initialization vs. naive random
initialization

Here we show the improvement given by the slice estimate
compared to pure random initialization. The log-likelihood
obtained with this initialization is compared with 10 pure
random initializations, where all Brang ~ N(0, 0.5). The rela-
tive improvement is plotted in Fig. F1. It is greater than 10% in
21 of 36 models shown here and equal for the other cases, in-
cluding the small models with K =2 and 3 where inference
is easier. Note that even an improvement of a percent can lead
to quite different models, in particular regarding the inter-
pretability of the hidden states. This can be seen in the model
selection in Fig. 4, where the difference between models is
typically of the order of a percent or less. Furthermore, the
number of steps for Algorithm 1 to converge iy is smaller
in most cases, e.g., for 3 < K < 6 and for the best selected

models, the mean of iéfg;d) - igf(l)i;e) ~226.

Code availability. The programming language used to develop
the model and produce the results of the paper is Julia
(Bezanson et al., 2017). The code to build, fit, and use the
SHHMM and WGEN models is available as a Julia package:
StochasticWeatherGenerators. jl (Métivier, 2024). The
package was constructed with an emphasis on computational ef-
ficiency and ease of use. It is maintained by one of the au-
thors of this paper to facilitate ease of use by others. To per-
form the numerical expectation and maximization steps of the
Baum—Welch algorithm, the JuMP . j1 (Lubin et al., 2023) mod-
eling framework was utilized alongside the Ipopt (Wichter and
Biegler, 2006) solver. Figures 1, 5, 6, and C2 were made using
GeoMakie.jl (Danisch and Krumbiegel, 2021), and all other
plots were made with P1lots. j1 (Christ et al., 2023). The other
main packages used in this work are Distributions. j1 (Be-
sancon et al., 2021), Copulas. j1 (Laverny and Jimenez, 2024),
and DataFrames. j1 (Bouchet-Valat and Kaminski, 2023).
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The EC&D rain data from the S = 10 weather stations are di-
rectly available on the GitHub repository of the package. A tutorial
built through continuous integration — ensuring compatibility and
reproducibility — allows one to reproduce, step by step, most of the
figures in this work. The complete tutorial, including loading pack-
ages, downloading the station data, training, simulating, generating,
and saving the figures, takes only ~ 11 min to execute (for J = 10%)
on a regular laptop. Note that the package offers an option to use
parallel (distributed) computing during the training phase, signifi-
cantly speeding up computations. For the sake of storage space, the
datasets extracted from DRIAS and ERAS are not included in the
package repository, and the associated figures are therefore not re-
produced. Figures 4 and F1 take the longest to compute, as they
require training multiple models and are also not included in the
tutorial.

Data availability. The data for the weather stations are extracted
from the European Climate Assessment & Dataset (Klein Tank,
2002). In Sect. 8, the data from the climate models and scenarios
are requested on the French DRIAS (Soubeyroux et al., 2021). The
reanalysis ERAS hourly data on single levels (Hersbach et al., 2020)
for the dataset from 1979 to 2017 used in Fig. 6 were requested
on the Copernicus website at https://cds-beta.climate.copernicus.
eu/datasets/reanalysis-eraS-single-levels?tab=download (Hersbach
et al., 2018). The data were downloaded at the end of the year 2021.

Author contributions. DM and EG developed the mathematical
model with domain knowledge from SP. DM wrote the paper with
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and visualization were performed by DM with suggestions from SP
for the interpretation and EG for the statistical analysis. The code
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