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Abstract. Stochastic weather generators are efficient statistical models producing synthetic weather series by
replicating key statistical properties without the computational cost of physical models. However, for applica-
tions requiring temperature simulation over a large area, challenges arise due to non-stationarity over time and
spatial-temporal dependencies. This paper introduces a daily stochastic weather generator for temperature with
arbitrary spatial resolution. The non-stationarity issue is addressed using a decomposition method to separate de-
terministic terms (trends and seasonality), from the stochastic part representing the underlying climate variability.
We extend the existing local decomposition method to extrapolate to any point in space. The spatial-temporal
dependence is modeled through a Gaussian field with a non-separable covariance function, accommodating
complex interactions between time and space. Our generator, calibrated on a few French weather stations, is
validated using several spatio-temporal indicators. First, we evaluate the generator’s performance at the fitting
stations, comparing simulated and observed indicators. Subsequently, we compare our spatial simulations to a
high resolution gridded observation dataset. Results demonstrate that the proposed generator accurately captures
the observed spatio-temporal statistics, even for extreme events such as large scale persistent heat waves.

1 Introduction

Many fields are impacted by climate change, from agricul-
ture and health to energy management. These impacts can be
studied through risk evaluation, which often relies on prob-
abilistic models that use meteorological variables as inputs.
While historical records can provide such data, they are of-
ten limited in both space and time and may not represent
future conditions accurately. Another limitation is that they
typically offer only a single realization, which can lead to an
underestimation of variability.

Physical climate models can generate additional data, but
they are computationally expensive, making it difficult to
perform many simulations. Moreover, their coarse spatial
resolution makes them unsuitable for local studies. In this
context, stochastic weather generators have emerged as pow-
erful tools for simulating weather data that captures both spa-
tial and temporal variability (see IPCC, 2023, Sect. 10.3.3.7).

These generators consider observations of meteorological
variables as one of the infinite possible trajectories of a
stochastic model. The primary objective is to simulate nu-
merous plausible sequences of the desired variables that
share common statistical properties with the observations.
These simulations are fast and allow for a more comprehen-
sive sampling of climate variables than physical models.

In the context of climate adaptation in the energy sector,
it is crucial for decision-makers to understand the potential
risks associated with events that affect large areas simultane-
ously or involve a set of specific sites distributed across the
area, such as production sites. A desirable model must effec-
tively capture the spatial dependence in temperature and be
capable of generating simulations for sites where no data is
available. Another key objective is to separate the contribu-
tion of the changing climate (long-term trend) from station-
ary effects. This distinction allows the model, once calibrated
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to the present climate, to be adapted for future climate con-
ditions.

Since the development of the first single-site weather gen-
erator by Richardson (1981), many others have been pro-
posed using various approaches to produce spatially corre-
lated series. Resampling methods do not require a model for
the spatial relationship, instead, the values of all variables at
all sites at time t+1 are generated based on the nearest neigh-
bors at time t (Rajagopalan and Lall, 1999; Buishand and
Brandsma, 2001; Prairie et al., 2006). The resampling pro-
cedure can be conditioned on weather states (Apipattanavis
et al., 2007) or circulation variables (Beersma and Buishand,
2003). More recent techniques use analogues (Yiou, 2014).
Although these non-parametric methods have the advantage
of being distribution-free, their limitation lies in their inabil-
ity to generate new, unobserved values, which often leads to
simulations that are overly similar to historical events and un-
derestimate variability. Semi-parametric procedures mitigate
this problem by fitting single-site margins, generate simula-
tions, and reconstruct the relationships between all variables
and sites using a shuffling method, related to empirical cop-
ulas (Clark et al., 2004; Li, 2014; Li and Babovic, 2019; Li
et al., 2019; Wang et al., 2021). Recent works have also ex-
plored the use of neural networks (Ji et al., 2024; Sha et al.,
2024).

When constructing a model for the spatial relationship,
two different approaches can be separated. Multisite mod-
els focus on a small number of distributed sites and treat
each location as a separate variable and rely on multivari-
ate statistics to represent inter-site correlations, employing
methods such as multivariate autoregressive models (Wilks,
2009; Dubrovsky et al., 2020) or copulas (Kroiz et al., 2021;
Dawkins et al., 2022). These methods have two main limita-
tions: they cannot generate data for new locations, and they
often require estimating a large number of parameters, mak-
ing them difficult to scale. While feasible for small numbers
of sites, they do not efficiently utilise spatial information and
become impractical for larger grids. The use of Empirical
Orthogonal Functions (EOFs) as in Sparks et al. (2018) of-
fers dimensionality reduction but does not resolve location
dependence issues. Contrary to that, approaches making use
of spatial statistics focus on dense, local grids. They use
Gaussian process models, which treat dependence as a spa-
tial or spatio-temporal field, allowing for data generation at
unobserved locations once the model is fitted (Wilks, 2009;
Kleiber et al., 2012; Baxevani and Lennartsson, 2015; Verdin
et al., 2015; Bourotte et al., 2016; Sparks et al., 2018; Verdin
et al., 2019). However, their application as of now has mostly
been limited to specific regions, while broader applications
require simulations across larger areas.

The temporal dependence for each location is usually
modeled using the same autoregressive (AR) structure intro-
duced in Richardson (1981). It captures both the temporal de-
pendence and the distribution of the variables (Wilks, 2009;
Dubrovsky et al., 2020). The AR model can be modified to

accomodate various distributions such as the skew exponen-
tial power distribution used by Evin et al. (2019), to better
represent the tails of the distribution. The parameters can de-
pend on time to represent the spatial-temporal interactions.
In a spatial model, the AR approach can be replaced by a co-
variance model that quantifies variability between two points
separated in space, for every time difference, and the space-
time interactions.

Weather variables have strong non-stationarity. When
available, covariates can be introduced in the model to
tackle both spatial and temporal instationarity using Gener-
alised Linear Models (GLMs), Generalised Additive Mod-
els (GAMs), or related methods (Furrer and Katz, 2007;
Holsclaw et al., 2016; Chandler, 2020; Dawkins et al., 2022).
Common covariates for this purpose include large-scale in-
formation such as sea surface temperature (SST) or climate
indices. One drawback of these approaches is that they may
be unable to generate events that differ significantly from ob-
servations, as they constrain generation to observed patterns.
A proxy for this large-scale information is the use of weather
types which are fitted directly on the weather data; see Al-
lard et al. (2015) for a review, Gobet et al. (2025) for a recent
application. The temporal non-stationarity include seasonal
effects. They can be addressed by fitting a separate set of pa-
rameters for each month, as in Verdin et al. (2015), or by
using smooth periodic functions (Evin et al., 2019). Global
warming can be taken into account by using a linear model
to represent the increase in mean temperature over the past
century. This increase can include a breakpoint to capture re-
cent acceleration (Touron, 2019; Evin et al., 2019).

In this work, we build from the preprocessing approach of
Hoang (2010) that decomposes the temperature series for one
location into deterministic and stochastic terms. We propose
a spatial-temporal model for temperature by extending this
concept to a spatial grid.

The chosen approach uses non-parametric LOESS (LO-
cally Estimated Scatterplot Smoothing; Cleveland, 1979) re-
gression to extract long-term trends from station data spread
across France. Compared to simpler approaches based on lin-
ear trends, it better represents interannual variability caused
by large-scale atmospheric patterns. It also captures the vary-
ing pace of warming over time more effectively. The season-
ality of the temperature is obtained through parametric re-
gression with trigonometric functions, in the mean and the
variance. We propose an interpolation method to obtain spa-
tial trends and seasonality from components computed sepa-
rately for each location.

Residuals from the decomposition are assumed to be a
centered Gaussian process for each location. Here, they are
modeled as a spatio-temporal stationary Gaussian process.
The interactions between space and time are modeled using a
non-separable covariance function as in Allard et al. (2022).
While previous applications of such a model have focused
on smaller regions, we show that this approach allows to ac-
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count for the strong spatial dependence in temperature across
a large area.

We also propose indicators to validate the model, focus-
ing on important properties of the temperature. We com-
pare these indicators computed on observations to simula-
tions generated with our model. These indicators include cor-
relations in space and time. We show that our model accu-
rately reproduces these correlations, showing a good capacity
to reproduce the spatial-temporal relationships. We develop
a particular focus on extremes, using first pairwise threshold
exceedance. We also develop an indicator for spatial events
called the quantile exceedance ratio, that is used to represent
the spatial size of heat events, and show that the simulations
from our model slightly underestimate the real size of spa-
tial events, producing heat episodes that are quite as large as
observed events.

The paper is organised as follows. In Sect. 2, we describe
the data used to train our model. The model is described in
detail in Sect. 3. In Sect. 4, we first simulate and test the
model on weather stations used during the training. Then, we
validate it on a high resolution gridded dataset at the scale of
France. Finally, we conclude with a discussion of future work
in Sect. 5.

2 Data

The generator developed in this work is applied to French
daily average temperature data. We use weather station data
from the ECA&D dataset to fit the model parameters and
validate it by comparing gridded spatial simulations to the
E-OBS gridded dataset.

2.1 The ECA&D dataset

The ECA&D dataset (https://www.ecad.eu/, last access:
March 2023; Klein Tank, 2002) is a high-quality European
dataset of observed daily station data, covering periods that
range from centuries for some stations to decades for others.
We used the February 2023 version of the dataset, which in-
cludes 2068 stations across Europe with less than 8 % miss-
ing data for the period 1985–2015. From these, we selected
41 stations located in France, as shown in Fig. 1, forming
the set of locations in space Sstations ⊂D, where D= [6° W;
10° E]× [42° N; 52° N].

These stations are distributed regularly in space, with dis-
tances between pairs ranging from 70.95 to 1263.78 km, as
illustrated in Fig. 2 (left). They are mostly situated in low-
elevation areas (less than 500 m), as depicted in the histogram
in Fig. 2 (right).

For each location, missing values in the temperature se-
ries were replaced with the average value for the correspond-
ing calendar day. As there are only few stations with missing
data, and at most 6.99 % of missing values in that case, using
this method does not have a significant impact on the vari-
ance of the data. Days corresponding to the 29 February were

Figure 1. Selected 41 stations from the ECA&D dataset.

removed for simplification. The remaining data is indexed by
day t ∈ T = [[1,nT ]], with nT = 11 315 the number of days
in the series.

2.2 The E-OBS dataset

The E-OBS dataset (Cornes et al., 2018) is a gridded version
of the ECA&D dataset. It is obtained from the station data
by statistical learning methods. Each day is interpolated in-
dependently first by fitting a spatial trend with a Generalised
Additive Model (GAM) on the coordinates and background
field, and then a kriging of the residuals with an exponential
variogram and a fixed nugget parameter representing mea-
surement uncertainty. The background field represents the
monthly values of temperature. The GAM uses smoothing
splines in order to model the large-scale spatial trends. The
E-OBS dataset exists in 2 versions with different resolutions,
0.1 or 0.25°, we use the 0.25° version of April 2023 (version
27.0e). In the following, the set of grid points will be named
Sgrid ⊂D, with |Sgrid| = 1071.

3 Methodology

In this section, we present the methodology for constructing
a spatio-temporal model for daily average temperature. This
model extends the single-site temporal model introduced by
Hoang (2010) to a spatial context. We adapt the procedures
for estimation, simulation, and validation to accommodate
the spatio-temporal framework.
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Figure 2. Histograms of the distances between stations (a) and of the elevation within the dataset (b).

3.1 Model

Let X(s, t) be the temperature field at location s ∈D and day
t ∈ T . X(s, t) is written as a combination of deterministic
and stochastic terms. As in the very first weather generator
of Richardson (1981), the temperature series is standardised
by its variance. Following Hoang (2010), our decomposition
also accounts for the annual cycle of variance and its tempo-
ral trend.

X(s, t)= Tm(s, t)+ Sm(s, t)

+
√
Tσ 2 (s, t)

√
Sσ 2 (s, t)Z(s, t), s ∈D, t ∈ T , (1)

where Tm(s, t) and Sm(s, t) are the trend and the seasonality
in the mean, Tσ 2 (s, t) and Sσ 2 (s, t) are the trend and season-
ality in the variance. Z is the stochastic part called residu-
als. The trend terms are interpreted as representing long-term
climate variations, and the seasonality terms represent the
cyclic influence of the sun’s radiation. Both of them repre-
sent the deterministic components of the temperature, while
the stochastic part represents the intra-annual climate vari-
ability. The main assumption made in this work is that spa-
tial and temporal non-stationarities are in the margins, while
the dependence structure can be assumed stationary. Conse-
quently, all the non stationarities are taken into account in the
trend which is a function of time and space, and the depen-
dence structure is handled in the residuals covariance which
is stationary.

3.1.1 Deterministic terms

The trends in temperature over time for a given point in space
s, Tm(s, ·),Tσ 2 (s, ·) are commonly modeled using linear re-
gression or constants. However, to better capture long-term
dynamics, we prefer as in Hoang (2010) to use LOESS (LO-
cally Estimated Scatterplot Smoothing; Cleveland, 1979).
LOESS regression fits local linear regression lines at time
t to the data at time t1, . . ., tn based on a chosen span parame-

ter sps , with tri-cubic weighting proportional to (1−| t−tisps
|
3)3.

This non-parametric approach provides a more accurate rep-
resentation of long-term variations compared to a simple lin-
ear trend.

The seasonality terms are modeled as trigonometric poly-
nomials of the following form:

S
(βθ )
θ (s, t)= βθ,1(s)+

dθ∑
i=1

[
βθ,2i(s)cos

(
2iπt
365

)
+βθ,2i+1(s) sin

(
2iπt
365

)]
, s ∈D, t ∈ T , (2)

with βθ ∈ R2dθ+1 the seasonality parameters, with θ =m or
σ 2 either the mean or the variance, and dθ the degree of the
trigonometric polynomial. The value of dθ has to be cho-
sen large enough to capture seasonal details (summer, winter,
transitions) but not too large to avoid overfitting.

3.1.2 A spatio-temporal model for the residuals

Due to the decomposition of Eq. (1), we assume that the
spatio-temporal residuals Z(s, t), s ∈D, t ∈ T is a Gaussian
random field (Cressie and Wikle, 2015) with zero mean, sta-
tionary, and isotropic properties. Under these assumptions,
the residuals are fully characterised by their covariance func-
tion

C(h,u)= Cov(Z(s+h, t + u),Z(s, t)),

h ∈ R+,u ∈ R+, (3)

where h is the spatial distance and u is the temporal lag.
Choosing a covariance model that reflects the properties

of the data is not an easy task. There are numerous covari-
ance models that can describe spatio-temporal dependence,
see Porcu et al. (2021).

A straightforward approach to constructing a spatio-
temporal covariance function is to use the product of a spatial
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covariance function CS and a temporal covariance function
CT:

Csep(h,u)= CS(h)CT(u). (4)

This model is known as separable and is computationally
convenient because the full covariance matrix can be ex-
pressed as the Kronecker product of two smaller matrices.
However, as noted in the literature (De Iaco et al., 2019;
Porcu et al., 2021), separable models may not adequately
capture complex interactions between space and time, partic-
ularly for environmental or meteorological variables. In such
cases, more sophisticated models that account for space-time
interactions are required.

Non-separable spatio-temporal covariance functions can
be constructed easily from spatial and temporal covariance
functions. For instance the product-sum model is obtained
using the two covariance functions CS and CT and positive
weights a1,a2,a3 by constructing the spatio-temporal func-
tion CST(h,u)= a1CS(h)+ a2CT(u)+ a3CS(h)CT(u). An-
other construction can be made using a single covari-
ance function C and two positive scaling factors a1,a2 by

CST(h,u)= C(
√
a2

1h
2+ a2

2u
2).

√
a2

1h
2+ a2

2u
2 can be seen

as a space-time distance. This construction considers time
as a 3rd dimension of space, which oversimplifies the funda-
mentally different behaviors and units of space and time.

To tackle this problem, Gneiting (2002) proposes a con-
struction method for classes of non-separable covariance
function, that is, covariance functions that do not satisfy
Eq. (4). It was extended by Allard et al. (2020) for the class
of Gneiting-type covariance functions. Given φ a completely
monotone function, γ a continuous variogram , i.e., a condi-
tionally negative semidefinite function (Chilès and Delfiner,
2012),

Cγ,φ(h,u)=
σ 2

(γ (u)+ 1)
φ

(
||h||2

γ (u)+ 1

)
,

h ∈ R2,u ∈ R, (5)

is a spatio-temporal non-separable covariance function that
propose more flexibility in the interaction between the decay
of spatial correlation over time than separable models. Usu-
ally, the spatial function φ(h) is of the form φ0(h/r) with r a
spatial scale parameter. In the case of Eq. (5), the space-time
relationship can be considered as using a spatial scale pa-
rameter that varies with the temporal lag, with the variogram
γ representing how the temporal distance interacts with the
spatial distance. Another advantage of this construction is
the existence of ad hoc simulation methods as described in
Sect. 3.3.2.

We use the following functions for ψ , γ as in Allard et al.
(2022):

φ(x)=M(
√
x;r,ν),

where M(·, r,ν) is the Matérn function with spatial range
r > 0, regularity ν > 0.

γ (t)=

((
t

a

)2α

+ 1

)b
− 1, a > 0, b ∈ [0,1],

α ∈ [0,1]

This leads to the model defined as:

Cγ,φ(h,u)=
σ 2((

u
a

)2α
+ 1

)bM
 h√((

u
a

)2α
+ 1

)b ;r;ν
 (6)

The parameter b is called the separability parameter. When it
equals to 0, the model reduces to a separable function. When
b > 0, the model is non-separable.

One drawback of this model is that the temporal co-
variance C(0,u), which describes the covariance at a fixed
spatial location, can be overly constrained by the cho-
sen parameters. A solution to this problem is to multiply
Eq. (6) by a purely temporal covariance function of the form((
u
a

)2α
+ 1

)−δ
. By introducing a slight reparametrization,

τ = δ+ b, this yields the Gneiting-Matern covariance model
Gneiting (2002, Eq. 16)

CGM(h,u)=
σ 2(1− η2)((
u
a

)2α
+ 1

)τ M
 h√((

u
a

)2α
+ 1

)b ;r;ν


+ σ 2η21h=0,u=0 (7)

The nugget effect η2 is added to account for small-scale
variability and measurement error, as a proportion of the total
variance.

This model has recently found applications and exten-
sions, particularly for meteorological variables. Gneiting
et al. (2010) introduced a multivariate spatial version of the
model. Subsequently, Bourotte et al. (2016) and Allard et al.
(2022) refined it by proposing multivariate spatio-temporal
classes.

3.2 Estimation

Estimating the parameters of the trend and seasonality terms
βθ and the parameters σ 2,η2,α,a,b,r,δ,ν of the covariance
function simultaneously is theoretically possible maximis-
ing the whole likelihood function. However, estimating that
many parameters at the same time may cause computational
challenges due to identifiability issues. We prefer proceeding
by a multi-stage approach and estimate “deterministic terms”
first (site-by-site), introducing robustness in the estimation.
This approach comes down to estimate marginal parameters
first, then the covariance parameters, ensuring a stable and
interpretable decomposition of the spatiotemporal structure.
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3.2.1 Deterministic terms

The different components describing the temperature X(s, t)
in Eq. (1) are first obtained for each station location s ∈

Sstations, for t ∈ T = [[1 : nT ]] in 4 steps:

1. First, a LOESS regression on X(s, ·) is used to get
Tm(s, ·). The span parameter sps is chosen using
the Modified Partitioned Cross-Validation (MPCV) of
Hoang (2010).

2. The trigonometric polynomial coefficients βm(s)
(Eq. 2) involved in the seasonality of the mean
S

(βm)
m (s, ·), are obtained by linear regression on
X(s, ·)− Tm(s, ·). The order of the polynomial dm(s) is
chosen using the Akaike criterion.

3. The variance term defined as V (s, ·)=
(X(s, ·)− Tm(s, ·)− Sm(s, ·))2. Tσ 2 (s, t), is obtained by
LOESS regression on the variance V (s, ·) with the same
span parameter sps as in the trend in mean.

4. The trigonometric polynomial coefficients βσ 2 (s) in

S

(
β
σ2
)

σ 2 (s, ·), are obtained by linear regression on V (s,·)
T
σ2 (s,·) .

The order of the polynomial dσ 2 (s) is also chosen with
the Akaike criterion and can be different from dm(s).

This decomposition approach is described in detail in Hoang
(2010). It relies on a modified partitioned validation criterion
suited to heteroscedastic and dependent data to choose the
optimal smoothing parameter. The obtained residuals Z are
zero-mean, stationary in time for each site s and with vari-
ance that averages to 1 over the year. The order in which
the components are estimated bears some importance: if the
smoothing parameter is fixed, estimating seasonality first
then trends leads to the same results as estimating trends first
then seasonality. However, if seasonality is identified first, it
includes some part of the trend, and the optimal parameter
may not be the same as the one obtained when identifying
the trend first.

3.2.2 Residuals

Once the trends and seasonality components are obtained,
the values of the residual field Z(s, t)s∈Sstations,t∈[[1 ...,nT ]] can
be calculated and used to estimate the parameters of the
Gneiting-Matern covariance model in Eq. (7).

The covariance matrix of the vector residuals Z is
of size (|Sstations| × nT )2 , and computing its inverse be-
comes infeasible when |Sstations| and nT exceed a few tens,
which limits the use of full likelihood methods. Com-
posite Likelihood methods (Lindsay, 1988; Varin et al.,
2011), which involve only pairwise likelihoods, are much
easier to compute and exhibit good convergence proper-
ties. For a dataset (y1, . . .,yn) and a vector of parame-
ters θ , this approach means replacing the optimisation of
the likelihood L(y1, . . .,yn;θ ) by the pairwise likelihood

PL(y1, . . .,yn;θ )=
∏
i<jL(yi,yj ;θ ). To further reduce the

number of terms in the pairwise likelihood, we employ the
Weighted Composite Likelihood (WCL), assigning a weight
of 0 to pairs of sites that are far apart based on a thresh-
old distance, chosen as half the maximum observed distance
(around 650 km in this study) and a weight of 1 otherwise.
This choice of half the observed distance is a usual practice
in the field of geostatistics. Bourotte et al. (2016) for example
have studied the relative efficiency of the pairwise likelihood
estimator, showing that it first increases then decreases as a
function of this cutoff parameter.

In the pairwise estimation procedure, the score func-
tion ∇L(y1, . . .,yn;θ ) is replaced by the composite score
∇PL(y1, . . .,yn;θ ). In that case, the classical Fisher informa-
tion matrix is no longer appropriate for variance estimation.
Instead, we rely on the Godambe information matrix (Lind-
say, 1988) defined as

G(θ )=H(θ )−1J(θ )H(θ )−1, (8)

where H(θ ) is the sensitivity matrix (the negative expected
derivative of the pairwise score function) and J(θ ) is the vari-
ability matrix (the variance of the pairwise score). Because
these components are not directly available from the pair-
wise likelihood, they are estimated via empirical averages of
the observed scores and their derivatives (Varin et al., 2011).

3.3 Simulation

Simulations are to be performed over an arbitrary set of
points in space S, such as a grid of points Sgrid covering the
country, according to Eq. (1), where the deterministic com-
ponents are extrapolated on each point, and the residuals are
simulated as a spatio-temporal Gaussian field with covari-
ance function determined by Eq. (7).

3.3.1 Spatial extension of the deterministic terms

Spatial extrapolation of parameters computed at station lo-
cations is achieved using ordinary kriging (Cressie, 1991) a
statistical interpolation method that leverages spatial correla-
tion between data points. The key to kriging is the variogram
model γ (h), which quantifies the spatial dependence between
points at distance h. For a spatial variable W , the variogram
is defined as γ (h)= 1

2E
[
(W (x)−W (x+h))2]. Prediction

at a location x0 is a weighted sum of the observed values
W ∗(x0)=

∑n
i=1λiW (xi), where the weights depend on the

chosen variogram model.

Seasonality

The seasonality coefficients βm(s),βσ (s) for s ∈ S are ob-
tained by ordinary kriging of the coefficients calculated at
locations s ∈ Sstations using a Gaussian variogram fitted to the
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observed data. The Gaussian variogram is defined as follows:

γg(h)= g1+ g2

(
1− exp

(
−
h2

g2
3

))
, g1,g2,g3 ≥ 0. (9)

The annual cycles are then obtained by plugging these es-
timated coefficients in the seasonality functions defined in
Eq. (2).

Trends

To provide the trends at each grid point, we first correct
the trend in mean at sites s ∈ Sstations using the International
Standard Atmosphere (ISA) model (ISO, 1975) which de-
scribes the evolution of the standard temperature as a func-
tion of altitude:

T (z)= T0− cz, (10)

where c = 6.5×10−3 °C m−1 and T0 is the temperature at sea
level (0 elevation). An equivalent temperature trend at z= 0
is given by

Teq(s, t)= Tm(s, t)+ cz(s), s ∈ Sstations. (11)

Teq is interpolated from Sstations to S by kriging with a linear
variogram γl(h)= g+h,g ≥ 0. The trend at any grid point s
is then recovered by:

Tm(s, t)= Teq(s, t)− cz(s), s ∈ S. (12)

3.3.2 Spatio-temporal Gaussian process simulation

Simulating from the covariance function in Eq. (7) at sites
S and times t ∈ T means simulating from a Multivariate
Gaussian process with |S| × |T | components. Working with
large spatiotemporal grids makes it unmanageable to simu-
late a Gaussian process using standard procedures like the
Cholesky decomposition, which has in general a complexity
in O(|S|3×|T |3), and requires the manipulation of matrices
of size |S|2×|T |2. To address this issue, we use two different
methods: an iterative method and a spectral method.

Iterative simulation

We take advantage of the temporal structure of the data, not-
ing that time steps far apart are unlikely to be dependent.
Using this observation, simulations at time t are obtained it-
eratively, conditioned only on the ` previous time steps, ac-
cording to the conditional distribution of Gaussian vectors.
The choice of ` is consistent to the temporal range parameter
estimated in the covariance model. The Cholesky decompo-
sition is then computed on matrices of size (|S|×`)2 at most,
which is reasonable if ` is not too large.

Spectral simulation

Allard et al. (2020) propose various algorithms based on
spectral decomposition for simulating spatial and spatio-
temporal processes with covariance models of Gneiting type,
such as in Eq. (5). We use the algorithm known as the substi-
tution approach.

Let Y be the spatio-temporal process defined by

Y (s, t)=
√
−2log(U )cos

(√
2R〈�,x(s)〉

+ |�|/
√

2W (t)+8
)
, s ∈ S, t ∈ T , (13)

where, with the notations of Eq. (5), x(s) are the cartesian co-
ordinates of s, U ∼ U([0,1]), R ∼ µ, �∼N (0,I2), W ∼ γ ,
8∼ U ([0,2π ]) and the measure µ is the measure related to
the Bernstein representation of φ. This process has the co-
variance function in Eq. (5). For p copies of such a process
Yi, i ∈ [[1, . . .,p]], the Central Limit Theorem states that

Z̃(s, t)=
1
√
p

p∑
i=1

Yi(s, t), s ∈ S, t ∈ T , (14)

converges to a Gaussian process with the covariance function
of Eq. (5) when p→∞.

This approach separates the simulation of the spatial com-
ponent (simulated from µ) and the temporal component
(simulated from γ ), thereby reducing the dimensionality of
the problem in both space and time. It is more scalable than
the iterative method, which is faster for smaller grids but be-
comes very slow as the grid size increases. Conversely, the
spectral simulation remains tractable even for larger grids,
with a complexity in O(p|S| × |T |)

3.4 Validation

To assess the validity of the weather generator, several in-
dicators are computed for the simulations and compared to
those obtained from the observations. We will compare the
envelope of the simulated values with the observed values to
evaluate the generator.

For spatio-temporal models, informative indicators are
correlation between pairs of stations (si, sj ) ∈ S2

stations both
in the temperature Cor(X(si, ·),X(sj , ·)) and in the residuals
Cor(Z(si, ·),Z(sj , ·)) (Sparks et al., 2018; Wilks, 1998).

Because of the non-separable assumption, it is also im-
portant to evaluate the spatio-temporal correlations, between
different stations and at different time lags: Cor(Z(si, · +
1t),Z(sj , ·)).

Finally, to evaluate the ability of the model to generate
joint spatial extremes, we consider the pairwise conditional
threshold exceedances for high (or low) quantiles, pαi,j (and
pαi,j ): for 0< α < 1 and qα(i) such that α = P(X(si, ·)<
qα(i)) and a pair of stations (si, sj ) ∈ S2

stations

pαi,j = P(X(si, ·)< qα(i)|X(sj , ·)< qα(j )) and

pαi,j = P(X(si, ·)> q1−α(i)|X(sj , ·)> q1−α(j )), (15)
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They provide insight into how pairs of stations behave during
extreme temperature events and are empirically estimated by

p̂αi,j =

∑
t∈T 1X(si ,t)<qα(i)∩X(sj ,t)<qα(j )∑

t∈T 1X(sj ,t)<qα(j )
and

p̂
α

i,j =

∑
t∈T 1X(si ,t)>q1−α(i)∩X(sj ,t)>q1−α(j )∑

t∈T 1X(sj ,t)>q1−α(j )
. (16)

The values of p̂αi,j for the winter season and p̂
α

i,j for the
summer season, for all pairs {i,j}, are then compared with
the values from the simulations. Note that qα(i) is not neces-
sarily equal to qα(j ).

In order to better understand the capacity of the model to
show spatial dynamics, let us define the quantile exceedance
ratio Rα(t). It represents the proportion of locations in a set
of locations S exceeding a given quantile at any time. For
t ∈ T , 0< α < 1, this proportion is written as

Rα(t)=
∑
s∈S1X(s,t)>q1−α(i)

|S|
. (17)

This indicator serves two main purposes. First, its survival
function P(Rα(t)≥ ·), computed over all time samples, de-
scribes the model’s ability to generate “spatial hot days”.
These are days when at least a certain (high) percentage of
the domain exceeds their (high) quantile of a specified order.
Second, the indicator can be used to examine the temporal
evolution of this proportion, which relates to persistent heat
waves. Heat waves with the most significant impact (large
spatial extent over several days) are expected to exhibit a
plateau for most quantiles, including even higher ones.

It is similar to the heatwave indicator of Miloshevich et al.
(2023), where a measure of persistence and amplitude of
anomalies is given by

A(t)=
1
T

t+T∫
t

1
D

∫
D

(
X(t ′, s)−E(X(t ′, s))

)
dsdt ′, (18)

where T is the time scale of interest, D the spatial domain,
X the temperature. E(X(t ′, s)) is the expected value of tem-
perature at day t ′. This indicator averages the temperature
anomaly over both space and a time period of length T . Com-
pared to our quantile exceedance ratio of Eq. (17), it can yield
non-zero values even for mild events, as long as the temper-
ature remains above its expected value over the given period
and space. However, the resulting value may be low if ex-
treme temperatures occur only in part of the domain, while
the rest of the area experiences mild or even cool temper-
atures, making it difficult to distinguish between different
types of events. In contrast, our indicator reflects the pres-
ence of extreme values within part of the area. Additionally,
this indicator is limited to detecting events that occur on a
time scale close to T . Isolated hot days may go undetected.

4 Application: temperature over France

4.1 Estimated parameters

4.1.1 Deterministic components

The decomposition for each station in the ECA&D dataset
is computed on the 1960–2015 data when available, or oth-
erwise on the longest available period. Because of the initial
choice of stations, it is ensured that at least the 1985–2015
period is covered. The decomposition produces the non-
parametric trends and the seasonality parameters for each
station.

An example of single-site decomposition is shown in
Fig. 3 for the Toulouse-Blagnac station. The seasonality re-
veals the typical winter/summer oscillation. The trend in the
mean indicates a general increase with occasional low peaks,
showing an average increase of 2° over the years of obser-
vations. This highlights the necessity of including a trend
and using a non-linear model. For this station, as for the
others, the seasonal variance is higher in winter compared
to summer. The trend in variance reflects contrasting pat-
terns in winter and summer, along with interannual variabil-
ity. The seasonality term in the variance acts as a modulating
factor on the trend component, together forming the over-
all variance structure. The trend captures long-term changes
and can be considered approximately constant throughout a
single year. The seasonal component adjusts this baseline,
meaning that the variance is more pronounced in winter than
in summer. The slight increase in variance observed during
summer in Toulouse in Fig. 3 likely reflects an increasing
trend in summer compared to the annual trend, possibly be-
cause extreme events with higher amplitude tend to occur
more frequently in summer in the context of French clima-
tology. Other sites may not have this increase, instead have
something like a low plateau in the summer.

4.1.2 Spatial model

The decomposition into deterministic and stochastic terms
has removed most of the seasonality from the signal. We as-
sume hence that the model is stationary in time. However,
initial investigations revealed differences between seasons in
the empirical spatial covariance structure of the residuals Z.
To address this, the model for the residuals is built separately
for two seasons: the extended winter (October, November,
December, January, February, March – ONDJFM) and the
extended summer (April, May, June, July, August, Septem-
ber – AMJJAS). The residualsZ are assumed to be stationary
in those seasons.

The estimation of covariance parameters was conducted
for all years at once, for each season, by implementing the
pairwise likelihood in Julia. The optimization was done us-
ing the LBFGS algorithm and automatic differentiation (AD)
using an appropriate package compatible with AD for the
Matérn function (Geoga et al., 2022). A maximum distance

Adv. Stat. Clim. Meteorol. Oceanogr., 11, 203–228, 2025 https://doi.org/10.5194/ascmo-11-203-2025



C. Cognot et al.: A spatio-temporal weather generator for the temperature over France 211

Figure 3. Decomposition at the Toulouse station (south-west of France). From left to right and top to bottom: seasonality in mean, trend in
mean, 3 years of residuals Z, seasonality in variance, trend in variance and monthly boxplots of the residuals Z.

cutoff of 650 km in space and 5 d in time was applied to re-
duce the number of pairs and avoid rare spatial differences.

We also estimated the variance of our pairwise likelihood
estimator, using the Godambe information matrix (see Varin
et al., 2011). The H matrix in Eq. (8) is estimated using the
Hessian of the objective function for the observations. The
J matrix is estimated by computing the variance-covariance
matrix of the gradient on 100 simulations.

To check the robustness of the parameter estimation, the
training data is split into 4 groups of equal size, with each
group removed once from the estimation stage to construct
4 models in addition to the complete model estimated using
all available station data. This provides insight on the im-
pact of different input data on the estimation and simulations.
The obtained parameters are shown in Table 1. Except for the
spatial range parameter r , there are not many differences be-
tween estimations using the full data or estimations removing
a fourth of the data.

Several strategies for estimation were conducted by fixing
different sets of parameters to better understand their rela-
tionships, the likelihood, and the corresponding covariance
function.

The first thing to notice is that adding the flexibility in the
temporal covariance with the parameter δ was in the end not
necessary. In practice, the best value for this parameter is 0.
As this is the minimum allowed value, estimating the hes-
sian and gradient is not relevant and the estimated standard
deviation for this parameter is not meaningful.

The spatial shape parameter ν is estimated close to 1 in
both seasons, meaning the spatial regularity is not very differ-

ent in the two seasons. It is interesting to see that the Matérn
model for ν = 1 corresponds to a linear× exponential covari-
ance model, which is coherent with the observed empirical
curves. The fact that ν is close between the seasons allows
the comparison of the spatial scale parameter r , related to the
typical correlation distance. It is estimated at around 800 km
for both seasons, though higher in the winter than in the sum-
mer. In a Matérn model with ν ' 1, the correlation drops
below 0.05 at around h= 5.6r . In our case, this means that
for u= 0 the stations become uncorrelated for a distance of
more than 4000 km, which is quite large, but expected as the
temperature variable exhibits strong large-scale correlation.
The estimated spatial scale is inherently dependent on the
data used to estimate it. When removing a fourth of the sta-
tions from the dataset, the estimated r can be quite increased
in some cases, however when that happens, the summer and
winter values stay coherent.

The temporal scale parameter a is estimated as higher in
the winter than in the summer, but the associated standard
deviation of the estimate is also quite larger. This highlights
the difficulty to fit a model in the winter, where the data has
both large-scale episodes and sudden variations.

The separability parameter b ∈ [0,1] is estimated as 0.663
in the summer and 0.883 in the winter. Both of these values
are far from 0 and indicate a clear non-separable behaviour
of the spatio-temporal dependence.

The obtained variogram functions 0(h,u)=
1
2 Var[Z(s, t)−Z(s+h, t + u)], along with the empiri-
cal function computed on the observed data 0̂(h,u), are
shown in Fig. 4. The Gneiting-Matérn model fits the data
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better than the separable model, which struggles to represent
space-time interactions even for small time differences.
The nugget effect accounts for approximately 10 % of the
total variability and reflects short-range variation caused
by several factors, including measurement error, micro-
topographic features, and spatial variability at scales smaller
than the sampling resolution.

4.2 Simulation at the training sites

Temperature series were simulated 100 times at each of the
41 fitting data points by first simulating residuals over 31
summers and 31 winters from the fitted spatio-temporal co-
variance model (Eq. 7) and then adding the deterministic
parts in Eq. (1).

For the stochastic component, different simulation meth-
ods were employed. The Gneiting-Matérn model was sim-
ulated using both the iterative and spectral methods. Addi-
tionally, the iterative method was applied to simulate from
two alternative models: first, a purely temporal version of the
covariance model (no spatial component), aimed at assess-
ing how much spatial information is conveyed by the deter-
ministic trend and seasonality versus the spatial model in the
stochastic component. A separable exponential model was
also used to demonstrate the limitations of an overly simpli-
fied model.

4.2.1 An example of simulation

An example of 4 consecutive days in one simulation is pre-
sented in Fig. 5. The first column displays the observations,
the second column shows a simulation based on a separable
spatio-temporal covariance model, and the next two columns
present simulations generated using the non-separable co-
variance function (via the iterative and spectral methods, re-
spectively). The last column illustrates a simulation accord-
ing to a spatially independent model. While a direct compar-
ison of the values is not meaningful, we can evaluate whether
the range of values is reasonable and whether the spatial pat-
tern is adequately reproduced. Obviously, the last column
shows a more discontinuous pattern compared to the others,
highlighting the importance of incorporating a spatial com-
ponent in the model.

4.2.2 Marginal properties

Figure 6 presents the violin plots of the observed and simu-
lated temperatures at several stations for both extended sea-
sons (summer on the top row, winter in the bottom row).
Across all models and simulation methods, the distribution
of simulated temperatures closely matches the distribution of
observed temperatures, demonstrating the model’s ability to
accurately reproduce the temperature distribution.
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Figure 4. Variogram functions corresponding to the fitted parameter in winter (ONDJFM) and in summer (AMJJAS) for the separable model
(Exp-Exp) and the Gneiting-Matérn model (Gneiting-Matern). The x-axis represents the distance in space, the y-axis holds the values of the
variogram for several values of temporal distances u denoted each by a colored curve. The empirical variogram in the data is represented by
the circle points. The vertical line indicates the spatial cutoff, beyond which the pairs were not taken into account in estimation. The value for
h= u= 0 is missing from the empirical values because it should be the value of the nugget effect and cannot be computed in the empirical
variogram.

Figure 5. Observations and simulations using the separable model (Exp-Exp), the 10 d-memory simulation algorithm (GM-iterative), the
spectral method (GM-spectral) and the purely temporal model (Temporal).

4.2.3 Spatial correlation

Figure 7 (left) illustrates the pairwise correlation coeffi-
cients between stations, comparing simulated correlation in
the residuals Cor(Z(si, ·),Z(sj , ·)) (right) and temperatures
Cor(X(si, ·),X(sj , ·)) (left) with their observed counterpart.
For both simulation methods based on the spatio-temporal
Gneiting-Matérn model – conditional simulation over the

previous 10 d and spectral simulation – the observed and
simulated correlations align closely with the 1 : 1 line. This
indicates that this choice of correlation function effectively
captures the spatial dependence structure in the data. In con-
trast, using a purely temporal model results in a correlation
of zero for the residuals (Z). Although the corresponding
simulated temperature values are non-zero due to the de-
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Figure 6. Violin-plot of the temperature in the two extended seasons (summer on the top row, winter in the bottom row) for 4 stations,
with their corresponding locations. For simulations, 100 simulations were made using a temporal only model, a separable model and the
non-separable model using the methods described in Sect. 3.3.2.

terministic components, they deviate significantly from the
observed values, emphasizing the benefit of incorporating a
spatial model. The separable model performs similarly to the
non-separable model but overestimates lower correlations.
Although the significance of the non-separability property is
not immediately evident in this specific graph, its advantages
may become clearer when analyzing more complex spatial
patterns or longer time scales.

To illustrate where the non-separability property enhances
the model’s performance, Fig. 8 presents the covariance
function C(h,u) for the residuals Z at various time lags u.
This function is computed from both the observations and
one simulation for each of the three models: temporal only,
separable, and non-separable. The purely temporal model
fails to reproduce the observed correlations, as expected. Be-
cause the observed spatial covariance is scattered, making di-
rect comparison difficult, a LOESS smoothing line is added
to help visualise the difference between the separable and
non-separable models. For u= 0, both spatio-temporal mod-
els (separable and non-separable) overestimate the covari-
ance for stations that are far apart, reflecting the previous
observations from pairwise correlations. However, the non-
separable model demonstrates a modest improvement from
the separable model in these cases. This overestimation likely
results from the fact that far-apart station pairs are under-
represented in the dataset and were not used during model
training. For non-zero time lags, the separable model tends
to overestimate high covariances and underestimate low co-
variances compared to the non-separable model. This dis-
crepancy emphasizes the necessity of using a non-separable
model, as further detailed in Appendix B, where we investi-
gate empirically the separability of the data.

Figure 7 (right) shows the pairwise conditional probabili-
ties of threshold exceedance in the observations compared to
the simulations. For all models except the spatially uncorre-
lated model, the values in simulation are in the range of the
observations. For the highest quantile (0.99), the small prob-
abilities are overestimated, and the large probabilities are un-
derestimated. This means that the dependance is overesti-
mated when it is high, and underestimated when low. Such
behaviour was to be expected as the Gaussian distribution
is known to be asymptotically independent (Coles, 2001).
Nonetheless, once the effects of trends and seasonalities are
accounted for, the resulting extremal dependence in the simu-
lated temperatures aligns reasonably well with the observed
data, except at the very most extreme quantiles. Enhancing
the model accordingly would require at least two improve-
ments. First, adopting a distribution that better captures the
behavior in the extremes, such as (extended) Pareto distri-
butions. However, this shift would introduce new complexi-
ties during parameter estimation. An alternative would be to
explicitly model the extremes in a separate statistical frame-
work. Second, choosing a dependance structure for one that
exhibits stronger dependence in the extremes such as max-
stable models which are asymptotically dependent or one in-
termediate.

4.2.4 Quantile Exceedance Ratio

Focusing on the summer months, with quantiles qi(α) and
Quantile Exceedance Ratios Rα(t) (as defined in Eq. 17)
computed only on June, July and August (JJA) data and sim-
ulations, the survival function of Rα(t) for several values of
α is represented in Fig. 9. There is about 10 % chance that
at least 15 out of the 41 stations exceed their 90 % quantile
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Figure 7. Correlations and conditional probabilities of threshold exceedance. x-axis: observed values, y-axis: median simulated values for
100 simulations. Left: Pairwise correlation coefficient for all pairs of stations, left in the full temperature Cor(X(si , ·),X(sj , ·)) and right
in the residuals Cor(Z(si , ·),Z(sj , ·)). Top row represents the result in the extended summer, second row in the winter. Right: Empirical
pairwise conditional probabilities from Eq. (15). Top: P(X(si , ·)< qα(i)|X(sj , ·)< qα(j )) for α = 0.01,0.02,0.05. Bottom: P(X(si , ·)>
q1−α(i)|X(sj , ·)> q1−α(j )), for α = 0.01,0.02,0.05.

Figure 8. Empirical covariance in the reduced variable Z, C(h,u), for different time lags u= 0,1,2,3. Each dot denotes the covariance
between a pair of stations separated by the distance h. The small dots are the covariance for each pair, the solid line the loess values. The
colored dots correspond to 100 simulations for the observations and all 3 possible models: temporal-only, separable, non-separable.
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at the same time. In the simulations, it has about 9 % chance.
Overall, the simulations tend to underestimate the probability
to exceed a threshold for several locations at the same time.
This is coherent with the previous observations on pairwise
threshold exceedance probabilities, where we found that the
simulations underestimated the high values.

4.3 Simulations on a grid

This section shows the use of the generator trained on the
station data for simulation over the E-OBS grid. The simula-
tions are then compared to the E-OBS data that serves as a
reference.

4.3.1 1985–2015 simulations

We generated 100 simulations over the same 1985–
2015 period. Examples of these simulations are shown in
Fig. 10, alongside the corresponding values from the E-OBS
database. Among the 100 simulations, we selected exam-
ples closest to the median temperature of E-OBS, as well as
the coldest and warmest simulations. Although direct com-
parison of day-to-day values is not meaningful, the overall
patterns are similar. The range of simulated temperatures is
broad, accommodating both cool and hot days with strong
temporal correlation.

The simulated temperatures appear less smooth than those
from the E-OBS dataset, which is expected for several rea-
sons. First, E-OBS is an interpolated product based on sta-
tion measurements, resulting in inherently smoother spatial
fields. In contrast, our simulation model includes a nugget ef-
fect, which explicitly captures short-range variability – such
as measurement error or micro-scale environmental effects –
as a proportion of the total variance.

The spatial resolution of E-OBS is approximately 25 km,
while the minimum distance between stations in the training
data was closer to 100 km. This relatively coarse station den-
sity limited the model’s ability to capture very short-range
spatial structure, likely leading to an overestimation of the
nugget effect and, consequently, rougher simulations.

However, the presence of a nugget effect in our model is
not necessarily a drawback. It reflects a realistic component
of spatial variability at small scales and ensures that simu-
lations account for local heterogeneity. With denser station
coverage, this short-range behavior could be estimated more
precisely, potentially yielding smoother simulated fields.
Alternatively, removing the nugget effect would produce
smoother outputs, but at the risk of under-representing lo-
cal variability and generating unrealistically homogeneous
fields.

The quantile exceedance ratioRα(t) can be analyzed in the
same manner. Figure 11 shows the survival function for vari-
ous quantiles. These quantiles are extracted from the E-OBS
database for each grid cell. The simulated survival function is
represented by a ribbon spanning the 0.1–0.9 quantile range

of the simulations, with a dotted line indicating the median
value, and the survival function in E-OBS is represented by a
full line. The simulations tend to overestimate the number
of heat days over smaller areas while underestimating the
frequency of events covering larger areas, compared to the
observed values.

It is also important to reproduce not only isolated hot days
but also sequences of hot days with length comparable to
the observed events. Figure 12 illustrates the evolution of
Rα(t) for several quantiles in some observed summers and
some simulated summers. It illustrates the model’s ability to
reproduce summer heatwave characteristics in terms of du-
ration, intensity, and spatial extent. Each panel shows the
proportion of the domain exceeding a temperature quantile
(color-coded) over the days of summer. The two left panels
show observed summers of 2003 and 2009, with 2003 no-
table for its intense and long-lasting heatwave affecting much
of France, used here as a reference. Its exceptional spatial
extent and duration are highlighted with arrows. The other
panels show examples of simulated summers. These demon-
strate the model’s capacity to generate heat events of varying
types: short and localised events (all graphs), short events
that are large in space (bottom right), events resembling the
2003 heatwave in both intensity and duration (top middle and
top right), and even a long-duration heatwave with slightly
less intensity than 2003 (bottom middle). These examples
support the model’s ability to capture realistic variability in
heatwave behavior.

We consider spatial heat episodes as sequences of days
when the temperature exceeds a specified threshold in at least
a given proportion of the domain. Figure 13 shows the distri-
bution of heat episode lengths for both E-OBS (red dots) and
the 100 simulations (black bars).

For heat episodes that cover at least 40 % or 60 % of
the domain, and for moderate temperature quantiles such
as the 0.85 or 0.9 quantiles, the observed values fall within
the range of simulated values. The model even succeeds in
generating events longer than those observed. However, for
higher spatial proportions, the simulations struggle more to
generate extended episodes, indicating some limitations in
replicating the most extreme spatial heat events. This is co-
herent with the conclusion given by the previous Fig. 11.

Cold events can be similarly defined as sequences of
days when the temperature in winter (December–January–
February) is under a given threshold for a given proportion
of the domain. Figure 14 shows the distribution of the length
of cold events in the observations and the simulations. For
events that are below the 0.05 quantile, the model generates
an appropriate number of single-day events for all considered
spatial extents, but does not reproduce events with high tem-
poral length. However, for such a low quantile and for a large
spatial extent, the observations contain only a few events. For
milder quantiles, the model is able to generate longer events
but overestimates the number of single day events.
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Figure 9. Survival function of the Quantile Exceedance Ratio, P(Rα(t)≥ y) for several quantiles α, computed on the observations (ECA&D)
and simulations from the non-separable model.

Figure 10. From left to right: 4 d in E-OBS, an example of the same simulated 4 d, coldest and warmest simulation for the same days.
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Figure 11. Survival function P(Rα(t)≥ y) for several quantiles α, computed on E-OBS and gridded simulations.

Figure 12. Spatial coverage of extreme heat over time, Rα(t), for several quantiles α, across two observed summers and four simulated ones.

Using the E-OBS observational database as a reference,
we analyze the model’s ability to replicate heat and cold
events, defined by the exceedance of specific temperature
quantiles over large spatial areas. The model captures the
overall behavior of temperature extremes, including heat-
wave sequences similar to the notable 2003 European heat-
wave. However, while it successfully reproduces the fre-
quency and duration of moderate heat episodes, the model
tends to overestimate the occurrence of heat events in smaller
regions and underestimates those covering larger areas. For
cold episodes, the model generates realistic short-term events
but struggles to reproduce longer events, particularly those
covering large spatial extents.

4.3.2 Projections for 2016–2023

In this section, we demonstrate how the complete model can
be utilised for near future projections. The following reason-
able assumptions are made:

– The seasonality in mean and variance will remain the
same in the near future. This is because they are esti-
mated mainly as the result of the incoming solar radi-
ation linked to earth rotation. The temperature change
over time is included in the trend part which is removed
first.

– The spatio-temporal dependence in the residuals Z will
remain unchanged in the future, as far as only the near
future is considered.
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Figure 13. Length distribution of heat events for the observations and for 100 simulations. From left to right : spatial size of event (cumulative
% of surface over the quantile threshold), from top to bottom: 0.85,0.9, and 0.95 quantile. For each plot, the x-axis represents the episode
length and the y-axis holds the number of events of this length in one 1985–2015 series. Log-scale on the y-axis. The dotted bars indicate
the whole range of values found in the simulations, while the full bars represent the 0.1–0.9 quantile range of simulated values. The red dots
indicate the E-OBS values, the circled dots represent the 2003 heatwave.

Figure 14. Distribution of the length of cold events in the observations and in 100 simulations. From left to right: spatial size of event
(cumulative % of surface over the quantile threshold), from top to bottom: considered quantile. For each plot, the x-axis represent the
episode length and the y-axis holds the number of events of this length in one 1985–2015 series. Log-scale on the y-axis. The dotted bars
indicate the whole range of values found in the simulations, while the full bars represent the 0.1–0.9 quantile range of simulated values. The
red dots indicate the E-OBS values.
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– Future trends in mean and variance have been derived
here from the observations, but can be obtained from
climate projections using various scenarios if farther fu-
ture periods are targeted.

– Should the projections concern farther future periods,
the seasonality in mean and variance and the spatio-
temporal structure of the residuals may have to be fitted
again on climate projections.

The stochastic model is calibrated using data from 1985
to 2015. To validate the model’s projection capabilities, we
apply it to the period from 2016 to 2022. Trends in mean and
variance for this future period can be derived using the same
decomposition method, but with updated data from 1985 to
2022, while retaining the seasonal patterns from the earlier
period.

We generated 100 simulations based on the updated trends
and previous seasonality and stochastic models. The result-
ing mean temperatures averaged across the France grid are
illustrated in Fig. 15 by their medians and 95 % intervals, and
compared with the E-OBS values. The coverage rate of the
interval is 92.21 %, which is close to the expected 95 %, with
a small underestimation of the real variability. This demon-
strates the model’s capability to accurately project future
temperatures, provided that the trends are known. This shows
that future climate projected trends can be plugged into the
model if farther future is considered.

The year 2022 experienced many important heatwaves. In
Fig. 16, the distribution of the length of spatial heat episodes
are represented for different spatial thresholds. The quantiles
used to define the “hot days” are the 1985–2015 quantiles.

Most observed episodes fall within the range of the sim-
ulations. For all considered quantiles and spatial extents, the
model successfully generates heat episodes that are longer
than those observed. This suggests that the model can ac-
count for the possibility of longer heat waves than those
recorded.

5 Conclusions

The spatio-temporal stochastic weather generator presented
in this study and applied to French station data is a tool
to generate realistic temperature series across a large area.
By leveraging spatial statistics, the model effectively cap-
tures spatial-temporal correlations, enabling the simulation
of plausible large-scale temperature events across the study
area. This capability is particularly valuable for applica-
tions requiring temperature modeling across various loca-
tions, whether data is available for specific points, and even
when those points are spread out spatially. To our knowledge,
previous studies using spatial statistics have focused on more
localised regions and have not addressed temperature trends
with the same level of precision.

To study a changing climate, the trend components of the
model can be adjusted based on climate simulation outputs

and various scenarios. By either keeping the seasonal cycles
and spatial covariance structure stationary, or retraining them
based on corrected model output, this approach allows for
generating numerous simulations corresponding to different
scenarios or specific areas of interest. This method signifi-
cantly reduces computation time compared to physical mod-
els, thereby complementing physical simulations and provid-
ing valuable insights into future climate conditions.

Further investigation into the marginal distributions may
be necessary to improve the representation of extreme con-
ditions, such as extreme heat events. For many applica-
tions, accurately sampling these unfavorable conditions is
crucial. Some further investigation on the margins may also
be needed. For instance, the skewed-exponential-power dis-
tribution used in Evin et al. (2019) could provide a better fit
for the temperature distribution, especially in the tails.

In this paper, while the Gaussian model was used, and al-
though it is known to lack extremal dependence, the spatial
extremes were found to be reasonably well represented in the
simulations. However, there was a slight underestimation of
the high-temperature extremal pairwise correlations. Future
research should explore different non-Gaussian dependence
structures, as the Gaussian approach, while adequate for tem-
perature alone, might not be suitable for other variables or for
modeling cross-correlations.

Additionally, there are plans to extend this model to cover
the entire European continent. This expansion may require
addressing issues of non-stationarity due to varying climates
across different regions.

Many applications require modeling additional variables
such as precipitation, wind speed, or solar radiation, which
necessitates accounting for their spatial and temporal cross-
correlations. While the Gneiting-Matérn model used in this
study is well-suited for temperature, extending it to multi-
ple variables presents challenges. Authors such as Bourotte
et al. (2016) and Allard et al. (2022) have proposed flexible
multivariate covariance functions that extend the univariate
Gneiting-Matérn class. However, these models have not been
tested over large areas like ours and may not be fully suitable.
As for the marginals, they cannot be considered Gaussian.
For precipitation amounts, while mixtures of Gamma or Ex-
ponential distributions are commonly used, they may not al-
ways adequately capture the right tail of the distribution. The
Extended Pareto distribution, as proposed by Naveau et al.
(2016), could be a valuable alternative, as it is designed to
model both the bulk and the tail of the distribution effectively.

Another approach involves incorporating weather types
into the model. Weather type modeling breaks down the de-
pendence into different types of days, allowing for simpler
models to be applied to each type (Allard et al., 2015; Stoner
and Economou, 2020; Dawkins et al., 2022; Gobet et al.,
2025). The sequence of weather types can be modeled using
a Markov chain. Weather types can be learned from the data,
with the simplest classification being dry/wet states, while
more complex models might include hidden or unobserved
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Figure 15. Mean temperature over the France grid for 2016–2022. The 100 simulations are obtained using a model fitted on the 1985–2015
period. Observed temperatures are shown in red. Simulations are represented with dotted black lines for the quantiles of order 0.025 and
0.975 of the simulated temperatures, and a solid black line for the median simulated temperature.

Figure 16. Distribution of the length of heat events in the observations (red dots) and in 100 simulations (black bars), for the period 2016–
2022.

states. Future work will build on the extensive literature on
multi-site and spatial weather type models to integrate the
temperature generator from this study into a comprehensive
multivariate generator.
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Appendix A: Data locations

The Table A1 presents the stations used in this study: sta-
tion identifier STAID, name STANAME, coordinates in the
LON/LAT format and elevation. Additionnal columns hold
the start and end date of the temperature file, and the col-
umn “missing” holds the proportion of missing data over the
period 1985–2015.

Table A1. List of the French ECA&D stations.

STAID STANAME LAT LON ELEVATION Start date End date Missing
(yyyy-mm-dd) (yyyy-mm-dd)

32 BOURGES 47.05917 2.3594444 161 1945-03-01 2023-01-31 0.0000000
33 TOULOUSE-BLAGNAC 43.62083 1.3788889 151 1947-01-01 2023-01-31 0.0000000
34 BORDEAUX-MERIGNAC 44.83056 −0.6913889 47 1924-01-01 2023-01-31 0.0000000
36 PERPIGNAN 42.73694 2.8727778 42 1924-11-17 2023-01-31 0.0000000
37 LYON – ST EXUPERY 45.72639 5.0777778 235 1975-04-20 2023-01-31 0.0000000
39 MARIGNANE 43.43778 5.2158333 9 1921-01-01 2023-01-31 0.0000000
322 RENNES-ST JACQUES 48.06889 −1.7338889 36 1945-01-01 2023-01-31 0.0000000
323 STRASBOURG-ENTZHEIM 48.54917 7.6402778 150 1924-01-01 2023-01-31 0.0000000
434 BREST-GUIPAVAS 48.44417 −4.4116667 94 1945-01-01 2023-01-31 0.0001825
736 ABBEVILLE 50.13583 1.8338889 69 1922-05-01 2023-01-31 0.0000000
737 LILLE-LESQUIN 50.57000 3.0975000 47 1944-12-01 2023-01-31 0.0000000
738 CAEN-CARPIQUET 49.18000 −0.4558333 67 1945-10-01 2023-01-31 0.0000913
740 ALENCON 48.44556 0.1102778 143 1946-01-01 2023-01-31 0.0000000
742 NANTES-BOUGUENAIS 47.15000 −1.6088889 26 1945-05-01 2023-01-31 0.0000000
745 DIJON-LONGVIC 47.26778 5.0880556 219 1921-05-29 2023-01-31 0.0000000
749 POITIERS – BIARD 46.59389 0.3141667 123 1921-05-01 2023-01-31 0.0000000
750 CLERMONT-FERRAND 45.78667 3.1491667 331 1923-01-01 2023-01-31 0.0000000
755 EMBRUN 44.56556 6.5019444 871 1947-06-24 2021-02-17 0.0000000
756 TARBES – OSSUN 43.18806 0.0000000 360 1946-01-01 2023-01-31 0.0000000
757 NICE 43.64889 7.2088889 2 1942-07-01 2020-12-31 0.0000000
758 BASTIA 42.54056 9.4852778 10 1947-01-01 2023-01-31 0.0000000
786 MONTELIMAR 44.58083 4.7330556 73 1920-08-17 2023-01-31 0.0000000
793 PTE DE LA HAGUE 49.72528 −1.9394444 6 1921-01-01 2023-01-31 0.0003651
2184 ROUEN – BOOS 49.38306 1.1816667 151 1968-03-01 2023-01-31 0.0000000
2190 TOURS 47.44417 0.7269444 108 1959-11-01 2023-01-31 0.0000000
2192 BASEL-MULHOUSE 47.61417 7.5100000 263 1947-01-01 2023-01-31 0.0000000
2195 LIMOGES – BELLEGARDE 45.86083 1.1750000 402 1973-01-01 2023-01-31 0.0000000
2196 LE PUY – LOUDES 45.07417 3.7638889 833 1984-01-01 2023-01-31 0.0000000
2199 GOURDON 44.74500 1.3966667 260 1961-02-01 2023-01-31 0.0000000
2200 MILLAU 44.11833 3.0183333 712 1964-04-01 2023-01-31 0.0000000
2203 MONT-DE-MARSAN 43.90944 −0.5002778 59 1945-01-01 2023-01-31 0.0000000
2205 ST-GIRONS 43.00528 1.1066667 414 1949-01-01 2023-01-31 0.0000000
2207 MONTPELLIER-AEROPORT 43.57667 3.9630556 2 1946-01-01 2023-01-31 0.0000000
2209 AJACCIO 41.91806 8.7927778 5 1949-10-01 2023-01-31 0.0000913
11243 TROYES-BARBEREY 48.32444 4.0197222 112 1975-05-01 2023-01-31 0.0000000
11244 PTE DE CHASSIRON 46.04667 −1.4116667 11 1917-01-01 2023-01-31 0.0000000
11245 PLOUMANACH 48.82556 −3.4730556 55 1947-08-04 2023-01-31 0.0004563
11246 NANCY-OCHEY 48.58083 5.9594444 336 1966-11-01 2023-01-31 0.0000000
11247 BELLE ILE – LE TALUT 47.29417 −3.2180556 34 1930-04-01 2023-01-31 0.0000000
11248 CAP CEPET 43.07917 5.9405556 115 1968-10-01 2020-02-07 0.0000913
11249 ORLY 48.71667 2.3841667 89 1921-03-01 2023-01-31 0.0000000
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Appendix B: Separability

The choice of covariance structure reflects the non-
separability in the data.

The separability property holds if the covariance function
of the process under study satisfies

C(h,u)= C(h,0)C(0,u) (B1)

where C(h,0)= CS(h) is the covariance in space and
C(0,u)= CT(u) is the covariance in time.

Tests have been proposed to study this assumption such as
in Li et al. (2007), but they fail in practice with our tempera-
ture data because of the strong correlation in time. However,
it can be empirically seen in Fig. B1 that for most considered
h,u ∈ [1, . . .,T ]×D, C(h,u)≥ C(h,0)C(0,u). This means
that not only is the covariance of the data non-separable,
but also that according to the definition of De Iaco and Posa
(2013), the non-separability is said to be “positive”.

Conveniently, any model of the Gneiting class satisfy this
property, which is why this class was chosen.

Figure B1. Comparison between the empirical spatial-temporal covariance function (black) and the product between the spatial and temporal
covariance function (red). Each dot denotes the covariance between a pair of stations separated by a distance h.
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Appendix C: Parameter estimates using station data

C1 Gridded trends

The Fig. C1 shows the interpolated temperature trend using
the equivalent temperature that takes into account the eleva-
tion, compared to trends obtained from the much more com-
plete E-OBS database. The addition of geographical infor-
mation seems to correct quite well the values of the trend in
mean.

Figure C1. Trend in mean interpolated from site-by-site decomposition using ordinary kriging and altitude equivalent temperature, compared
with trends obtained directly from the E-OBS database.
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Figure C2 shows the average maps over 5 years of the stan-
dard deviation trend, using the kriging method. The stations
are indicated by dots. The variance is stable in mean over 5
years.

Figure C2. Trend in standard deviation, interpolated from site-by-site decomposition using ordinary kriging.

C2 Gridded seasonality coefficients

Kriging with a Gaussian variogram model was used to in-
terpolate each seasonality coefficient. Resulting coefficients
maps are given in Figs. C3, C4. Similar to what is ob-
served when working with the trends, removing stations from
the training set sometimes introduced significant error. It is
mostly the case when several stations from the borders of the
domain are missing, or in the case of the mountainous sta-
tions pointed out previously.

Figure C3. Seasonality coefficient for the mean, interpolated from site-by-site decomposition using ordinary kriging.
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Figure C4. Seasonality coefficient for the standard deviation interpolated from site-by-site decomposition using ordinary kriging.
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