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Abstract. The aim of this study is to provide a probabilistic gust analysis for the region of Germany that is
calibrated with station observations and with an interpolation to unobserved locations. To this end, we develop
a spatial Bayesian hierarchical model (BHM) for the post-processing of surface maximum wind gusts from the
COSMO-REAG reanalysis. Our approach uses a non-stationary extreme value distribution for the gust obser-
vations at the top level, with parameters that vary according to a linear model using COSMO-REAG6 predictor
variables. To capture spatial patterns in surface extreme wind gust behavior, the regression coefficients are mod-
eled as 2-dimensional Gaussian random fields with a constant mean and an isotropic covariance function that
depends only on the distance between locations. In addition, we include an elevation offset in the distance metric
for the covariance function to account for differences in topography. This allows us to include data from moun-
taintop stations in the training process and to utilize all available information. The training of the BHM is carried
out with an independent data set from which the data at the station to be predicted are excluded. We evaluate
the spatial prediction performance at the withheld station using Brier score and quantile score, including their
decomposition, and compare the performance of our BHM to climatological forecasts and a non-hierarchical,
spatially constant baseline model. This is done for 109 weather stations in Germany. Compared to the spa-
tially constant baseline model, the spatial BHM significantly improves the estimation of local gust parameters.
It shows up to 5 % higher skill for prediction quantiles and provides a particularly improved skill for extreme
wind gusts. In addition, the BHM improves the prediction of threshold levels at most of the stations. Although
a spatially constant approach already provides high skill, our BHM further improves predictions and improves
spatial consistency.

analysis models is therefore essential for the development of
an effective warning strategy.

1 Introduction

Wind warnings are among the most frequent types of
weather warning issued by the German Meteorological Ser-
vice (DWD). Key users are emergency managers, air and rail
traffic, energy companies, and the general public. Improving
the quality of extreme wind warnings is therefore an impor-
tant task for, e.g., meteorological services such as the DWD.
A central characteristic of atmospheric wind speed is its high
spatial variability with a comparatively sparse observation
network for wind speed measurements. In addition, severe
wind gusts are recurring but rare, so they are inherently ex-
treme events. This makes forecasting a challenge and com-
plicates the verification of wind gust warnings. A suitable
representation of wind gusts that includes uncertainties in re-
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State-of-the-art numerical weather prediction (NWP)
models provide a deterministic wind gust diagnostic based
on the current simulated turbulent and convective state (e.g.
Schulz and Heise, 2003; Schulz, 2008). Brasseur (2001) pro-
posed a peak wind speed diagnostic, which assumes that
gusts are generated by the deflection of high-flowing air
parcels in the upper boundary layer and are brought down
by turbulent eddies. The deflection of high-flowing parcels
to the surface occurs when the vertical component of the tur-
bulent kinetic energy (TKE) associated with a given air par-
cel is strong enough to overcome the buoyancy forces. An-
other mechanism for the generation of surface wind gusts is
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described by Nakamura et al. (1996). They suggested that
the gusts originate from a convective downdraft that is de-
flected horizontally when it reaches the surface. Both theo-
ries motivate a diagnosis in NWP models for wind gust fore-
casts based on turbulent kinetic energy and the stability of
the vertical stratification of the atmosphere. However, these
are mostly deterministic in nature and do not incorporate un-
certainty in the gust forecasts.

One approach for addressing uncertainties in the descrip-
tion of wind gusts is a probabilistic post-processing provid-
ing a conditional probability distribution for surface wind
gusts based on predictor variables from the reanalysis. Given
that wind gusts represent extreme values, extreme value
statistics is a suitable probabilistic model (Coles, 2001; Beir-
lant et al., 2004). A basic application of extreme value statis-
tics to maximum wind gusts can be found in Walshaw (1994),
who develop a threshold model for wind gusts. The model is
expanded with spatial covariates by Walshaw and Anderson
(2000). They demonstrate that the model performance at sin-
gle locations can be enhanced by the use of predictor vari-
ables such as the local mean wind speed. These simple mod-
els can be readily adapted into a post-processing approach by
taking time series of the covariates for the model parameters.
As shown in Friederichs et al. (2009) and Friederichs et al.
(2018), these simple approaches already possess high skill.

Wessel et al. (2025) present an interesting approach for the
post-processing of extreme wind speed, based on ensemble
model output statistics (Gneiting et al., 2005). They do not
use extreme value theory but train truncated normal and lo-
gistic distributions using threshold weighted scoring rules to
enhance the predictive performance for extremes. To increase
the training data size, data from stations with similar wind
characteristics, based on a clustering approach, is pooled to-
gether and one model is trained for each cluster of stations.
However, it is also possible to include a spatial structure di-
rectly into the model by modeling the dependency structure
between stations.

Modeling spatial dependency in extreme value theory
poses the challenge that there are no parametric forms for
multivariate extreme value distributions (Coles, 2001). Davi-
son et al. (2012) present several approaches to incorporate
the spatial dependency structure into statistical extreme value
models. These approaches include latent spatial process vari-
ables (Cooley et al., 2007; Apputhurai and Stephenson, 2013;
Stephenson et al., 2016), copula models (Sang and Gelfand,
2010) and max-stable processes (Oesting et al., 2016; Davi-
son and Gholamrezaee, 2012). Latent process variables are
introduced in a Bayesian hierarchical model (BHM) frame-
work, while assuming conditional independence between
gusts at different locations, whereas copula models and
max-stable processes explicitly model dependencies between
gusts at different locations. Davison et al. (2012) demon-
strate that latent process variables offer the greatest flexibil-
ity, while possessing a high degree of accuracy. However, the
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assumptions on stationarity and the covariance function may
result in the generation of implausible extremal patterns.

The general theory for hierarchical spatial process mod-
els is outlined, for example, in Banerjee et al. (2003). The
use of a BHM allows for the pooling of information across
locations and time, facilitating an optimal spatial and tem-
poral representation. A groundbreaking example of a latent
Gaussian process model for extreme weather can be found
in Cooley et al. (2007). The authors construct a hierarchical
Bayesian extreme value model for maximum precipitation
in Colorado. At the initial level, they utilize a generalized
Pareto distribution whose parameters vary as a function of
covariates and a latent spatial Gaussian process in climate
space, which is defined by elevation and mean precipitation.
More recent examples of spatial modeling of extreme values
in atmospheric sciences include the model developed by Ap-
puthurai and Stephenson (2013), which was used to predict
extreme precipitation in Western Australia. This model em-
ployed a spatio-temporal hierarchical model with anisotropic
Gaussian random fields (GRFs) based on spatial explana-
tory variables and included trends in the model parameters.
Dyrrdal et al. (2015) model extreme precipitation return lev-
els in Norway in a similar vein.

In Friederichs et al. (2018), the authors fit a regression
model to the predictor variables of the NWP model using
a conditional Gumbel distribution for the marginals. Sub-
sequently, the non-explained residuals are modeled as a bi-
variate Brown-Resnick process to account for the remaining
spatial dependency structure. Similarly, Oesting et al. (2016)
use a bivariate, maximally stable Brown-Resnick process and
Gumbel margins to directly model the dependency between
forecasts and observed wind gust fields.

Baran and Lakatos (2024) demonstrate, with reference to
the example of 10m wind speed, that the spatial interpola-
tion of post-processing schemes can achieve a high level of
skill at locations where observations are lacking. The inter-
polated model demonstrates superior skill compared to both
a globally trained model and a locally trained model at each
individual location. Consequently, it can be concluded that
the spatial interpolation of post-processing approaches ef-
fectively addresses the challenge of limited training data for
post-processing gridded data sets, due to the restricted num-
ber and irregular distribution of observation stations.

This paper presents an integration of the post-processing
approach originally proposed by Friederichs et al. (2018)
with the spatial hierarchical modeling techniques derived
from the precipitation model developed by Cooley et al.
(2007). We utilize the flexible implementation of latent pro-
cess models, assuming conditional independence between
maxima at two different locations. As wind gusts are typi-
cally very localized phenomena, the spatial dependency of
maxima at two locations can be disregarded during model-
ing. Furthermore, our model is designed for spatial interpola-
tion and incorporates spatio-temporal predictors for the gen-
eralized extreme value distribution (GEV) parameters, en-
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abling us to interpolate the model to unobserved locations
via kriging (Stein, 1999). This provides comprehensive post-
processing across the entire NWP model domain.

Our methodology is similar to the spatially adaptive
Bayesian post-processing approach by Moller et al. (2016)
for ensemble temperature forecasts. It employs Gaussian
Markov random fields and integrated nested Laplace approx-
imations (INLA) of stochastic partial differential equations
(SPDE) (Rue et al., 2009; Lindgren et al., 2011). However, as
we investigate wind gusts, we are examining non-Gaussian
distributed observations, and in addition, we are incorporat-
ing a spatially variable and non-stationary variance. Further-
more, our post-processing approach is currently not designed
for ensemble predictions, but it can be readily extended to
ensemble post-processing through the selection of suitable
predictors, such as the ensemble mean.

The remainder of this paper is structured as follows. Sec-
tion 2 presents the data used in this study and in Sect. 3, we
present our model formulation. The methods used for train-
ing and evaluating the model are explained in Sect. 4. Sec-
tion 5 will show and discuss the results of the verification on
observational data. Finally, we will conclude with a summary
of our findings in Sect. 6.

2 Data

2.1 Station data

The wind gust observations FX were selected from a to-
tal of 109 synoptic observation stations (SYNOP), including
mountain top stations. Please refer to Fig. 2 in Sect. 5.1 for a
map of the corresponding locations. Additionally, Fig. 2 pro-
vides an overview over mean wind characteristics at these
locations. Data are retrieved from the DWD Climate Data
Center (Climate Data Center, 2023). DWD performs basic
quality control of the incoming data. The stations are selected
based on the least number of missing observations between
1995 and 2018. The observation time series are available in
hourly resolution.

The two fundamental mechanisms of wind gusts produc-
tion are shear-driven turbulent wind gusts and convective
wind gusts driven by thunderstorm activity (Bradbury et al.,
1994). Given the increased convective activity during the
summer months, it is expected that the behavior of wind gust
will differ from that observed in winter, when the characteris-
tics of gusts are largely influenced by the occurrence of win-
ter storms. Accordingly, the data set employed in this study
comprises observations from the warm months between May
and October, thus avoiding the need to consider the annual
cycle of deep convection. Similarly, wind gusts display a
pronounced diurnal cycle. During nocturnal hours, a stable
boundary layer forms and lower wind gust values are ob-
served, whereas stronger peak gusts occur during the con-
vective maximum in the late afternoon. To include the peak
gusts of the day, our investigation window is focused on the
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afternoon hours from 13:00-18:00 UTC. Then, we generate
daily time series using the maximum value inside the win-
dow for each day.

The availability of wind gust measurements from the years
preceding 2001 is limited, and thus these years have been
excluded from the analysis. Additionally, to ensure spatial
homogeneity within the data set, days with fewer than four
measurements within the specified investigation window at a
given station have been omitted.

2.2 COSMO-REA6

COSMO-REA6 (Bollmeyer et al., 2015) is a regional re-
analysis model for the CORDEX-EURO11 domain (Giorgi
et al., 2009) based on the COnsortium for Small scale MOd-
elling (COSMO) climate model COSMO-CLM (Rockel
et al., 2008). It was developed through a collaborative ef-
fort between the Hans-Ertel-Center for Weather Research
(HErZ), Climate Monitoring and Diagnostics, from Bonn
and Cologne Universities and DWD. The horizontal grid
spacing is 0.055°, which is approximately 6km, and the
model operates on 40 vertical levels. The data included in
this study encompass the 10 m values for mean horizon-
tal wind, obtained from the horizontal components U_10M
and V_10M, and the 10 m horizontal maximum wind speed
VMAX_10M. The deterministic gust diagnostic in COSMO-
CLM, VABSMX_10M, is not publicly available in COSMO-
REAG. In the following sections, mean horizontal wind will
be referred to as V;, and VMAX_10M as Viax.

The 2D fields from COSMO-REAG6 are available in
15min intervals from 1995 to 2019. However, we re-
trieved hourly values from COSMO-REAG6 between 12:00-
18:00 UTC from May to October 2001 to 2018, to be in line
with the SYNOP observations. The reanalysis time series
were aligned with the weather stations by selecting the clos-
est grid cell to the station in terms of distance on a sphere
(distance along great circles). Subsequently, the reanalysis
data underwent the same preprocessing as the observational
data, with daily maxima employed for Vip,x and daily mean
values for V.

For the purpose of our simulation study, we assume that
the predictor data from COSMO-REAG6 and the wind gust
observations are independent. This might not necessarily be
the case, as mean wind observations from the SYNOP sta-
tions are assimilated into COSMO-REAG6 and usually, wind
gust and mean wind observations are collinear to some de-
gree. However, as the gust observations are not assimilated
directly and we do not use any other observational data, the
assumption of independence should hold. However, it should
be noted that the spatial alignment of weather stations and
model grid cells is also imperfect, and that a statistical post-
processing is precisely used to address model deficiencies in
the reanalysis.
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3 Model formulation

We propose a Bayesian hierarchical model based on the ex-
treme precipitation model of Cooley et al. (2007) for the spa-
tial post-processing of wind gusts. The complete version of
the spatial Bayesian hierarchical model, henceforth referred
to as SpatBHM, is depicted as a directed acyclic graph in
Fig. 1. For readers who are unfamiliar with Bayesian hier-
archical models, we recommend consulting Gelman et al.
(2014, Chap. 5).

Our model comprises three levels: a data level, which de-
scribes the actual modeling of wind gust observations using
extreme value statistics; an underlying predictor level which
includes the predictor variables from COSMO-REAG; and
a prior level, which contains our prior knowledge about the
model hyperparameters (cf. Fig. 1), as required for Bayesian
inference. To accommodate the spatial dependency structure,
we introduce an additional level between the predictor level
and the prior level. This level will henceforth be referred to
as the spatial dependency level or process level.

3.1 Data level

Extreme value theory provides an asymptotic theory for the
distribution for sample maxima (Coles, 2001; Beirlant et al.,
2004). As gust measurements refer to the highest 3s aver-
age wind speed recorded over the course of a 1 h interval, a
generalized extreme value (GEV) distribution serves as a the-
oretically consistent model for gust observations. The GEV
distribution is characterized by three parameters: location u,
scale ¢ and shape £. These parameters may vary both spa-
tially and temporally. However, allowing for non-stationarity
in & largely increases the sampling uncertainty not only for
&, but also for the other parameters (Friederichs et al., 2009).
Therefore we decided to use a constant shape parameter. To
obtain an estimate of a reasonable &-value, we conducted sin-
gle station fits for all weather stations. These fits showed ei-
ther no clear signal or resulted in slightly negative values,
implying a Weibull-type GEV (Appendix D). The Weibull-
type GEV imposes an unrealistic upper bound for wind gusts
extremes (Perrin et al., 2006). In order to obtain stable pa-
rameter estimates and avoid making assumptions regarding
an upper bound for wind gusts, we assume & = 0, resulting
in a Gumbel distribution. We model the gust measurements
yi; at location r;, i € {1,...,q}, and time t € {1,...,n} as a
Gumbel-distribution

G(yir) = exp (—exp (—%)) (1)
it

with non-stationary location p;; ans scale ¢;;. As indicated
by the indices i =1, ..., ¢ for location and t =1, ..., N for
time, the Gumbel parameters are allowed to vary in space
and time. The reader is referred to Table A in Appendix A
for a thorough list of notations.
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3.2 Predictor level

On the next underlying level, the predictor level, we intro-
duce spatio-temporal predictor variables x; ;x as covariates
for pi; and ¢;;. The Gumbel parameters w;; and g;; are con-
structed as a linear model with regression coefficients ,ui] and
gl.] for the jth predictor variable. The vector of the predic-
tor variables is constructed including a constant intercept, so
that xf‘, =(1, X1,itsenes xmwi,) and xft =(1, X1,itse-s xmg’,-,).
. L m m
With B = (9, ..., 1)) and B5 = (s,...,c; )T, we ob-

tain
Mit = xfttﬂfl
Git = exp(x;,B7). 2)

An exponential link for ¢;; ensures positive definiteness of
the scale parameter. The regression coefficient vectors ﬂf.‘
and B f are stationary over time, but vary in space.

3.3 Spatial dependency structure

To address the spatial dependency structure, we assume that
the regression coefficients ,uij and gij are realizations of a
spatial random process observed at locations r;, i = 1,...,q.
These spatial random processes will be referenced by 11/ (r)
and ¢/ (r), respectively, where j indicates the respective co-
variate. We therefore assume that the regression coefficients,
which in turn determine the GEV parameters, are spatially
dependent fields. This approach enables the integration of
data within the spatial domain, thereby facilitating the incor-
poration of information regarding the distribution at neigh-
boring stations. However, the degree of the spatial depen-
dency is estimated in the BHM. In order to model the spatial
dependency structure, a Gaussian process level is introduced
below the predictor level. This means that each spatial re-
gression coefficient is assigned a spatial process in the form
of a GRF, namely 7 (r) and ¢l (r), where r represents the
spatial coordinates and y! = w/(r;) and ¢/ = ¢/(r;).

If u/(r) is a GRE, then p/ = (w/(ry),....pu/(ry)7" is
multivariate normally distributed random vector. This ap-
plies analogously to g-/ = (gj(rl), e gj(rq))T. We assume
the GRFs as spatially homogeneous with constant expec-
tation values «,,;(r)=a,, and a_j(r) =« ;, respectively.
The process level for the regression coefficients then reads

w ~ MVYN (e, 1, %) 3)
and
¢/ ~ MVN(1.Z ). (4)

Here, I is a unit vector of length g. We further as-
sume spatially homogeneous and isotropic covariance
functions such that COV(/J,j(ri),,bLj(rk))ZCM_j(hik) and
Cov(s/(ri), ¢/ (rv)) = C_j(hix), where hj; = |r; —ri| is the
distance between two locations.
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i=1,..

g, t=1,...,n

Prior level

Spatial dependency structure
Predictor level

Observed variable/data level

000

Figure 1. Directed acyclic graph for SpatBHM with predictand y;x, covariates x; jx and station coordinates r;, for location i and time .
m,, /¢ refer to the respective number of covariates for location and scale. Please refer to Table A for a comprehensive notation reference.

In our study we use a Matérn-class isotropic covari-
ance function with parameters A = (o, v, p). In general, the
Matérn covariance function takes a functional form involv-
ing the gamma function I'(x) and modified Bessel functions
of the second kind /C,(x). In the case of half-integer val-
ues for the smoothness parameter v, this expression can be
simplified as a product of a polynomial and an exponen-
tial term (Rasmussen and Williams, 2008; Gneiting et al.,
2012). Therefore, we decided to fix the smoothness param-
eter at v = 3/2 for numerical convenience. With the defini-
tions above for the parameters we obtain the following for-
mulation for the covariance functions

5 V3h V3h
COVHj(h)Z(O’Mj) <1+p—w) exp(—p—ﬂj) (5)
and

V3h V3h
Covgi(h) = (Ug-f)2 (1 + Pei )eXp ( P ) ©

The Matérn-class covariance models are recommended by
Stein (1999) for the statistical interpolation of spatial data,
due to their mean squares differentiability and their suitabil-
ity for application in more than one dimension. Moreover,
preliminary tests demonstrated a higher numerical stability
for the Matérn-model than for the exponential covariance
function.

The introduction of the covariance function results in the
incorporation of two additional parameters for each covari-
ate at the process level. In the following, the two parameters,
O/ and Ppuijcis are referred to as the sill and range of
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the covariance function for Mj (r) and gf (r), although these
terms do not directly correspond to the terms in the exponen-
tial covariance function. Therefore, terms “process variance”
and “correlation length” also exist (Gneiting et al., 2012). In
contrast to the approach proposed by Stein (1999), we di-
rectly model the covariance function using the expression
(UW )2 and (ag ,-)2 (i.e. in form of a variance), rather than the
more conventional form of a standard deviation. This is done
for the purpose of ensuring consistency in the variance of
the GRF at a given location and the variance of the marginal
normal distribution at that location.

3.4 Distance metric for the spatial dependency structure

We model the spatial fields on the Earth’s surface in geo-
graphical coordinates with longitude A, latitude ¢ and al-
titude z, yielding r = (X, ¢, z). Therefore, the distance be-
tween the training locations is calculated using the distance
on a sphere, often called great-circle distance, which we cal-
culate as

dgc(ri, ri) = 2Rgarcsin

\/ 1 —cos Ap + cosg; cosgr(l —cos AA) e

5 )
for Ap = ¢; —¢; and AL =X ; — A; with the Earth’s radius
Rg that we take at 6371 km. The inclusion of mountain top
stations into the training data poses a challenge for the spa-
tial interpolation due to the existence of valley locations with
nearby mountain stations (e.g. Braunlage and Brocken in the
Harz Mountains). Despite considerable differences in gust
behavior due to the different topographical altitudes, the two
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stations are treated as if they were close to each other. This
deteriorates the estimation of the dependency structure at all
stations. It is therefore necessary to achieve a separation of
valley and mountain stations to improve the estimation of the
spatial dependency structure. To this end, the station altitude
is included in the distance metric used for the covariance
structure of the GRFs. This is achieved by introducing an
elevation offset to the distance between mountain and val-
ley locations. The altitude difference between two stations is
scaled by a factor f, and added as an increment to the dis-
tance along a great circle yielding

dy(ri,ri) = fo(lzk — zi), ®)

where | - | represents the absolute value, and z; the station al-
titude at location r;. f; is the scaling factor, which we treat
as an additional parameter to be estimated. As the Matérn-
covariance function requires a Euclidean metric, the full dis-
tance between locations i, k is calculated as

d(ri,ry) = \/d2.(ri,ri) + f2z — 2% )

This approach artificially increases the distance between two
stations that are in close proximity but at markedly distinct
elevations, while maintaining the general spatial dependency
structure for locations in flat terrain.

As noted by Gneiting (2013), Matérn covariance func-
tions are not positive definite on the sphere when combined
with the great-circle distance and a smoothness parameter
v > 0.5. Nevertheless, we adopted the Matérn-3/2 covariance
model because its local smoothness properties yielded nu-
merically more stable covariance matrices for the short dis-
tances present in our data. In addition, since we only model
a small portion of the sphere, the numerical distortions that
could otherwise result in invalid covariance matrices, are un-
likely to arise.

To verify that our covariance matrices remain positive defi-
nite in practice, we conducted an experiment using the station
coordinates and the prior distributions described in Sect. 4.1
As shown in Appendix E, this analysis revealed a parameter
region in which the covariance matrices became non—positive
definite, specifically when p ~ (’)(105)km. However, as the
posterior ranges in our application remain within @(10%) km,
we conclude that the chosen combination of distance metric
and covariance function is valid for the spatial domain under
consideration.

4 Model training and verification

4.1 Specifying prior distributions

In order to perform Bayesian inference, it is necessary to
specify prior distributions for the model parameters. These
prior distributions summarize the researcher’s prior knowl-
edge and assumptions regarding the distribution of these pa-
rameters. To ensure a fast convergence of the Markov chains,
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Table 1. Prior distributions of the model parameters used for
SpatBHM. The parameters of the spatial dependency structure, o
and p, are simulated using the same prior distribution for all regres-
sion coefficients ,uj and gf .

Parameter  Prior SpatBHM
1 N vz, 7)) = N(0.23,0.1)
fz Gamma(15,0.15)

S L 22
Qpijci N()’,,_.//;./ , TM_,'/;,')
Oi)ci InvGamma(§ =5,¢ =2)
Puijci InvGamma(¢ = 1.05, n = 100)

we use informative priors for the means of the GRFs, « wijci
and weakly informative priors for the parameters of the spa-
tial dependency structure Ouijcis Puijci- The impact of the
priors in our configuration is small, as the extensive data set
reduces the contribution of the prior belief on the inference
process. Thus, the primary information is drawn from the
training data. A summary of the prior distributions used in
this study is presented in Table 1.

For the expectation values i/ of the GRFs, we

choose normal priors v.wth.parameters Yuijei and ri J/eit
We first estimate the w/, ¢/ from the linear model individ-
ually at each station. Subsequently, the prior distribution
assumes the expectation values for each coefficient from
the fit of the linear model on all stations simultaneously.
The prior variances were informed by the variability of
the results from individual station fits and rounded to
facilitate interpretation and reporting. The resulting prior
distributions for the model defined in Sect. 5.1 are u ~
N(y =(4.74,1.49,-0.89,0.22)", 7 = (2,1,0.3,0.D)7)
and ¢ ~ N (y =(0.53,0.4,-0.23)7 7 = (0.2,0.2,0.1)).

In the case of positive definite parameters, such as the
sill and range of the GRFs, inverse gamma priors are
selected. We use the same priors for all spatial depen-
dency structures, independent of u//c/. Consequently, a
single prior value is set for the shapes §,¢ and the scales
€,n of the inverse gamma distributions. All sill param-
eters are assigned Oui)ci ~ InvGamma(5, 2), constraining
them to a reasonable value range regarding the variabil-
ity of the parameters. All range parameters are assigned
Puijci ™~ InvGamma(1.05, 100), favoring values between 0
and 500 km but otherwise not effecting major influence on
the parameter estimation.

The scaling factor f, for the elevation offset in Eq. (8) is
assigned a Gamma-distributed prior, to ensure positive defi-
niteness. The expectation value of f, is derived from a quasi-
geostrophic scale analysis and is set to the ratio of the Cori-
olis force and the buoyancy force on synoptic scales. This
ratio is approximated as % with the Brunt-Viisili frequency
N and the Coriolis parameter f. In the mid-latitudes, typ-

https://doi.org/10.5194/ascmo-11-229-2025



P. Ertz and P. Friederichs: Spatial Bayesian post-processing of wind-gust extremes 235

wind speed [ms™!]

wind speed [ms™!]

Figure 2. (a) Spatial distribution of the skill of LocMod against climatology for exceedances of the 14ms~! threshold (BSS 14). Blue
colors indicate positive skill, red colors indicate negative skill. Each dot is one SYNOP station used for training. (b) Mean FX value used for

training. (¢) Mean Vy, value used for training.

ical values are found around 100. Hence, we model f, as
Gamma(15, 0.15).

4.2 Parameter estimation

The Bayesian parameter estimation was performed using
Stan (Stan Development Team, 2022). Stan is a statistical
software package designed for Bayesian inference based on
Markov chain Monte Carlo (MCMC) techniques. In MCMC,
the posterior distribution of the parameters is approximated
through the sampling of Markov chains, whose transition
properties are tuned such that they converge to a target distri-
bution (Gelman et al., 2014; Gilks et al., 1995). We accessed
Stan via its python interface, pystan (Riddell et al., 2021).
Stan makes use of the No-U-Turn-sampler (NUTS, Hoffman
and Gelman, 2014), which presents an adaptive and tuning-
easy implementation of Hamiltonian Monte Carlo, leading
to reasonably quick convergence of the Markov chains while
remaining user-friendly.

For the training of SpatBHM, the sampling parameters for
the tuning of the step size and the acceptance rate of the new
proposals are set to the default values proposed by Hoffman
and Gelman (2014). A chain length of 1500 was simulated,
with the first 500 iterations discarded as burn-in. The sam-
pler is initialized with the expectation value from the fit of
the linear model with constant coefficients u/, ¢/ (Sect. 5.1)
and assuming a value of one for all sills and a value of 60 km
for all ranges of the GRF. While the initialization is iden-
tical for all covariance parameters, the posterior estimates
of the GRFs show distinguishable spatial dependency struc-
tures, depending on the parameter and model in question.
Therefore, it can be concluded that it is fair to use the same
priors and initialization for all covariance structures, as dif-
ferences can successfully be inferred from the data. Further-
more, all parameters converge to stable distributions within
the first 500 iterations, indicating that the Markov chains
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have reached convergence and that the resulting posterior
samples can be assumed as representative of their limit dis-
tributions.

All spatio-temporal predictors are standardized before
training. They enter the parameter estimation process as de-
viations from the spatio-temporal mean, expressed in units of
the standard deviation of the entire training data set. This nor-
malization is performed with respect to the spatio-temporal
mean rather than the local station means to preserve the spa-
tial information contained in the local climatologies of the
predictor variables.

4.3 Spatio-temporal prediction
4.3.1 Predictive distribution of gusts

In the Bayesian framework, probabilistic predictions are gen-
erated via a posterior predictive distribution. This is the con-
ditional distribution of new observations, given the train-
ing observations. The posterior predictive distribution can
be derived from the posterior distributions of the parameters
through integration over the uncertainties. In practice for a
BHM, this integration is achieved by a multi-stage sampling
strategy (cf. Gelman et al., 2014, Chap. 5).

In our gust model, the posterior distributions of the param-
eters are represented by the MCMC samples. The uncertain-
ties associated with the parameter estimates are integrated by
iteratively drawing from the posterior samples, using a tar-
get sample size of N =10000. For each k=1,..., N, one
regression coefficient vector B; is drawn from the MCMC
samples, for location i. Subsequently, the Gumbel param-
eters Wit, Gir are calculated via the regressions specified in
Eq. (23) and the current local observations of the predic-
tor variables xﬁt/ ¢. Ultimately, a single wind gust value is
sampled from the resulting Gumbel distribution. This proce-
dure is repeated N times to generate a predictive sample of
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wind gusts, conditional on location and predictor variables.
In consequence, the predictive distribution, as represented by
the predictive sample, describes the whole uncertainty inher-
ent to the model predictions. From the predictive samples,
predictive quantiles and threshold excess probabilities are
calculated via the empirical distribution function, a method
which is consistent with our verification framework outlined
in Sect. 4.4 (Kriiger et al., 2021). The quantiles are calcu-
lated using the median-unbiased method, as defined by Hyn-
dman and Fan (1996). The threshold excesses are calculated
as the fraction of draws from the posterior distribution that
exceed the threshold. As our sample size is large, the effect
of the ensemble size on the estimation of the threshold excess
probabilities is negligible (Ferro, 2014).

4.3.2 Spatial interpolation of model parameters

In order to make predictions at p unobserved locations
s;, I =1,..., p, the spatial fields for the regression coeffi-
cients u/(r) and ¢/(r) need to be simulated at the respec-
tive prediction location, while conditioning on the parameter
estimates at the training locations r;,i = 1, ..., g. The condi-
tional simulation yields a multivariate Gaussian distribution
for the prediction locations.

Following Stein (1999), we can write the joint distribution
of #; and the predictions #s = 11/ /¢/(s1,...,s)) as

()~ G 3)) 0
ﬂr oy 2:rs Zr

The covariance matrices X,, X, and X are calculated us-
ing the Bayesian parameter estimates Oui)ci and Pyi)ci COI-
responding to the regression coefficient in question and the
Matérn covariance function from Eq. (5). X; is the covari-
ance matrix at the observed locations, X the covariance
at the predicted locations and X5 = (Z)! represents the
cross-covariance matrix between the estimated locations and

the predicted locations. Representations of the predictive pa-
rameters are obtained by sampling from N (Fs)r, Tg|r), where

For =y + T T, (e — g 0) (11
represents the estimate of the conditional mean and

2;s|r= ES—Zer;IZrS (12)
the conditional covariance matrix. This process is repeated
for all 1000 elements of the MCMC samples to obtain a pos-
terior sample of the spatial parameter fields at the prediction
locations. This posterior sample is then used for the multi-
stage sampling strategy outlined in Sect. 4.3.1.

4.4 \lerification

The resulting predictive distributions are compared to ob-
servation values and evaluated by scoring rules to assess
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the models’ predictive quality. To this end, we apply cross-
validation in space and time. In time, the data is separated
in two approximately equal-sized data sets, one for training
and one for evaluation. This separation ensures that all pre-
dictions used for model verification are out-of-sample with
respect to the training period. To account for possible auto-
correlation and an annual cycle, the data set is partitioned by
year, with odd-numbered years designated for training and
even-numbered years for verification. To guarantee that the
spatial prediction is out-of-sample, that is, that no data from
the verifying location was used for model training, we em-
ploy leave-one-out cross-validation by always withholding
the data for one station. Subsequently, the u//c/ are pre-
dicted in space for the withheld location and the wind gusts
are predicted using the days from the evaluation years. This
way, time series of probabilistic predictions and observations
are generated for all stations and dates.

The post-processing models are evaluated and compared
by out-of-sample predictive performance. Therefore, the ver-
ification is conducted via proper scoring rules (Gneiting and
Raftery, 2007). We use Brier score (Brier, 1950) for the ver-
ification of threshold exceedance probabilities and the quan-
tile score (Koenker, 2005; Koenker and Machado, 1999;
Friederichs and Hense, 2007), also referred to as general
piecewise linear score (Gneiting et al., 2023), for the veri-
fication of predictive quantiles. Brier score (BS) is given by
(Wilks, 2019)

SU(F,y) = (pu — I{y > u})?, (13)

and quantile score (QS) is given by Bentzien and Friederichs
(2014) as

S§(F,y) = pe(y — F~(x)), (14)

where p;(#) = tu if u > 0, and p; (1) = (r — 1)u otherwise.
Both scores are negatively oriented, so that lower values im-
ply better predictive performance.

The decomposition of the scoring rules into uncertainty,
reliability and resolution components is also calculated
(Murphy, 1973; Brocker, 2009). We refer to the decom-
position components as “uncertainty”, “miscalibration” and
“resolution”. With respect to miscalibration (MCB), we fol-
low Gneiting et al. (2023). In Murphy’s original decompo-
sition (Murphy, 1973), a lower reliability value implies a
higher reliability of the model prediction. Hence, to avoid se-
mantic ambiguity, we use the term “miscalibration” instead.
With the term “resolution” (RES), we adhere to the standard
nomenclature within the calibration-refinement factorization
of the joint distribution of forecasts and observations (Wilks,
2019). The uncertainty (UNC) only depends on the obser-
vations and is defined as the score of the climatology fore-
cast and quantifies the data-immanent difficulty to forecast
the variable in question. UNC and MCB are negatively ori-
ented, so that higher values correspond to lower skill. RES is
positively oriented, so that higher values correspond to larger
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skill. The total score S can be decomposed as
S =MCB — RES + UNC. (15)

Estimating the decomposition from real-valued data
presents challenges regarding the binning of the forecast-
observation pairs (Bentzien and Friederichs, 2014; Atger,
2004). In this work, we follow the approach by Dimitriadis
et al. (2021), who develop a stable estimation of the de-
composition terms of BS that produces consistent, optimally
binned, reproducible and PAV (pool adjacent violators)-
based (CORP) results. Similarly, the CORP approach for
general metrics, including QS, was derived by Jordan et al.
(2022). This procedure performs an isotonic regression on
the forecast and observation values using the pool-adjacent-
violators algorithm (PAVA, Ayer et al., 1955; Miles, 1959;
Best and Chakravarti, 1990; de Leeuw et al., 2009), thereby
conditionally calibrating the forecast values on the observa-
tions. For BS, the threshold exceedance forecasts are cali-
brated to the mean of the corresponding binary-converted
observations. For QS, the forecast values are calibrated to
the respective quantile functional of the corresponding gust
observations. Miscalibration is calculated from the original
score S and the recalibrated score S;. as

MCB = REL =: § — Sy, (16)

and the discrimination/resolution part is obtained from the
recalibrated score and the marginal score as

RES = DSC =: §;c — Smg = Sic — UNC, a7

where the marginal score Spg refers to the score obtained
from the climatology forecast (Gneiting et al., 2023). The
marginal score is identical to the uncertainty. In this work,
we follow the CORP-based QS decomposition from Gneit-
ing et al. (2023), using their own implementation (Wolfram,
2022), and the BS decomposition from Dimitriadis et al.
(2021), which is implemented in R (R Development Core
Team, 2023) in the package reliabilitydiag.

The skill of a model can be assessed through derived skill
scores (Wilks, 2019). Skill scores are obtained from a scoring
rule S via

S—Set _,_ S

e SR B
Sperf — Sref Sref

(18)

where Sy refers to the perfect score. The simplification on
the right-hand side of Eq. (18) is possible, as both BS and
QS have a perfect score of Sperr = 0. If the climatology is
used as reference, the skill score can be obtained from the
decomposition components as

_ RES—MCB
~  UNC

SS (19)

Skill scores are positively oriented, indicating higher skill
with higher values. The perfect forecast has a value of 1.
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Positive values indicate superior skill to the reference model,
whereas negative values indicate lower skill. If we refer to
skill against climatology in this work, we refer to a locally
calculated climatology of the gust observations at each sta-
tion.

4.4.1 Verification of the posterior distribution

Additionally, we assess the quality of the parameter estima-
tion using the continuous ranked probability score (CRPS,
Hersbach, 2000). CRPS evaluates the whole probability dis-
tribution and can be regarded as either the integral of BS
over all real-numbered thresholds (Hersbach, 2000) or the
integral of QS over all possible quantiles (Gneiting and Ran-
jan, 2011). We use CRPS in the form given by Gneiting and
Raftery (2007) as

1
SCRP:EF|Y_0|_§EF|Y_Y/L (20)

for forecast Y and observations o, with ¥’ being an indepen-
dent random copy of Y. The expectation values Er can be
approximated numerically or calculated in closed form under
distributional assumptions. As the marginal posterior distri-
butions of our gust model are sufficiently close to Gaussian,
we approximate CRPS using the closed form CRPS (Gneit-
ing et al., 2005)

SCRp(/L,oz,o):a{o_M [2¢(o_“)—1}

o o

2g (2 =1) - 21
20 (1) -] a
for mean . and variance o2 of a Gaussian distribution. ® and
¢ denote the cumulative distribution function and the prob-
ability density function of the standard normal distribution.
For a joint evaluation of the posterior distribution for the re-
gression coefficients, we apply the energy score (ES, Gneit-
ing and Raftery, 2007), which is the multivariate extension
of the CRPS. ES is given as

1
SEZEFHY_OH_EEF”Y_Y/”a (22)

where || - || denotes an euclidean distance. We scale the re-
gression coefficients by the inverse of their spatial variance
obtained from maximum likelihood fits on the data from each
station to ensure that they contribute homogeneously to the
distance. In the case of ES, we approximate the expectation
values Er numerically by averaging over all representations
from the MCMC samples.

5 Results

5.1 Spatially constant and local models

The benefit of SpatBHM for wind gust post-processing is
assessed against a spatially constant baseline model (Con-
stMod), where all regression coefficients u/ and ¢’/ are
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spatially constant. Although ConstMod is technically not a
Bayesian hierarchical model, we treat it as such and use the
same Bayesian inference methods as for SpatBHM. To en-
sure consistency in the model formulation, the priors of the
corresponding GRF mean values are assigned to the constant
regression coefficients of ConstMod. Provided that the co-
variates are available at the prediction location, ConstMod
also allows the post-processing of wind gusts at unobserved
locations, since it is assumed that the regression coefficients
do not vary in space in this case.

In search of a strong baseline, we conducted a selection of
predictors and predictand for the linear model, based on pre-
dictive skill (Appendix B). Models using FX — V;,, as predic-
tand showed higher skill as models predicting FX directly.
By testing various combinations of predictors, we find the
best linear model for the location w;; and the scale o;; pa-
rameter as

Mit = /LO + Ml Vmax,it + MZVm,it + I/LZAZi
1og(gir) = 6%+ ¢! Vinax.it + 6% Vin,ir (23)

for locations i = 1,...,q and times r = 1, ..., n, and predict-
ing FX — V. Viax represents the maximum wind speed in
COSMO-REA®6, Vi, represents the mean horizontal wind
from COSMO-REAG6 and Agz; is a spatial covariate for the
influence of the station altitude, given by Az; = zsynop,i —
zZcosmo,i- For the training of ConstMod, we simulated
Markov chains of length N = 1250, using only 250 iterations
as burn-in because of the lower complexity of the model.

The results are further contextualized by comparing them
to the results from a local model (LocMod), where individual
regression coefficients are estimated at each station. While in
the cases of ConstMod and SpatBHM, the local data are ex-
cluded for each station in cross-validation, LocMod is specif-
ically trained on the local data only. Consequently, we expect
LocMod to represent the maximum attainable skill from the
data with the type of linear model utilized.

As visible from the map in Fig. 2a, even LocMod demon-
strates negative skill against the climatology at some loca-
tions. The stations with negative skill are mostly situated in
mountainous terrain, except for QSS 0.999, where a more
general decrease in skill is observed (not shown). This sug-
gests that the COSMO-REAG predictor data lack explana-
tory power for the wind gust observations at these stations,
pointing to deficiencies in the representation of topography
in COSMO-CLM. Additionally, there is a coastward gradi-
ent with lower possible skill in southern Germany and higher
skill near the coast.

Figure 3 shows that the maximum attainable skill depends
on the local mean wind characteristics. LocMod skill against
climatology is strongly correlated with the mean wind at
each station over all investigated threshold exceedance prob-
abilities and quantiles, except for the most extreme quantile.
This mean wind dependency of the attainable skill leads to
a more successful post-processing at windy locations, which

Adv. Stat. Clim. Meteorol. Oceanogr., 11, 229-256, 2025

explains why the highest level of attainable skill is found near
the coastlines and in mountainous areas. Particularly, the sta-
tion with lowest attainable skill is Garmisch-Partenkirchen,
which is also the station recording the lowest average gust
speed among the 109 locations.

Figure 4 shows the cross-validated skill scores for
ConstMod compared to the local climatology and LocMod
for the 14 and 18 ms~! threshold (cf. Deutscher Wetterdi-
enst, 2024) and the 0.75, 0.95, 0.99 and 0.999-quantiles ob-
tained at all investigated locations. ConstMod demonstrates
a high level of skill against the local climatology. The skill is
high over all investigated distributional features with average
skill score values between 10 % and 45 % and approaches the
skill of LocMod. The highest median skill is found for the
0.75-quantile at values greater than 40 %. The 0.75-quantile
also has the least spread in skill, implying that the prediction
skill for this quantile is spatially homogeneous. For higher
thresholds and outer quantiles, we observe less skill and also
locations with negative skill against climatology. However,
the number of instances with negative skill remains simi-
lar to the instances with negative skill found from LocMod.
Moreover, the 18 ms~! threshold is rarely exceeded within
the data set, resulting in a large dispersion of BSS values.
Likewise, the 0.999-quantile is extreme and therefore suf-
fers from the generally low predictability of extreme events.
The comparison to LocMod shows that ConstMod already
closely approaches the maximum attainable skill, and there-
fore offers an excellent baseline model that is hard to beat.

5.2 Effect of the elevation offset

We evaluate the benefit of including the elevation offset from
Eq. (8) in the distance metric for the covariance calculation
in a simple version of SpatBHM. In this simple version only
one GREF is assigned to ,uO, while the rest of the regression
coefficients are kept spatially constant. The model is trained
once using Eq. (7) as distance metric and once using Eq. (9).
As aresult of the elevation offset, the estimated values for the
range parameter p,,; for SpatBHM become larger and show
higher stability during cross-validation. The larger range pa-
rameter values lead to a smoother spatial dependency struc-
ture, as the elevation offset effectively mitigates the impact
of the mountain stations on their direct neighbors. This en-
hances the discernibility of the large-scale spatial depen-
dency structure.

The added value in terms of miscalibation for SpatBHM
is displayed in Fig. 5. For BS 14 (Fig. 5a), the elevation
offset has a positive impact on the calibration of SpatBHM,
which is improved particularly for stations with large MCB.
For QS 0.75 (Fig. 5b), we see a similar effect, although it
is not as pronounced as for BS 14. There are cases where
the introduction of the elevation offset has a negative impact,
but these stations generally show a good calibration, regard-
less of the elevation offset. For the more extreme 0.99 quan-
tile (Fig. 5c), mean MCB is higher than without the offset,
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Figure 3. Spearman rank correlation coefficient between various variables and LocMod skill against climatology, shown for exceedance
probabilities of the 14ms~—! (BSS 14) and 18 ms~! (BSS 18) threshold, and the 0.75 to 0.999 quantiles (QSS 0.75 to QSS 0.999). Cor-
relations are shown (a) for the gust observations FX, (b) the maximum wind speed Vinax and (c¢) the mean wind Vi,. Boxes represent the
interquartile range and whiskers extend to the 0.01 and 0.99-quantiles. Uncertainty estimates are based on 5000 bootstrap iterations. In each
iteration, both the dates for the calculation of the mean wind and the stations to calculate the correlation are resampled.
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Figure 4. Cross-validated skill scores of ConstMod and LocMod against climatology, and ConstMod against LocMod for exceedance
probabilities of the 14ms~1 (BSS 14) and 18 ms~! (BSS 18) thresholds, and the 0.75 to 0.999 quantiles (QSS 0.75 to QSS 0.999). Each
box plot contains skill scores at 109 locations. Boxes represent the interquartile range and whiskers extend to the 0.01 and 0.99-quantiles.
Bold lines mark the median skill scores. Median score values are given in Table B1.

but this is mainly caused by the deterioration at one single 5.3 Predictive performance of SpatBHM

station, i.e. Zugspitze. Since this station repeatedly appears

as an outlier in our investigation, one possible explanation We conducted a non-exhaustive model selection in order to

is that the Zugspitze station has a significantly different gust find a good combination of spatial fields for the parame-

climatology corppared to Othefr locgtions apd might be poorly ters (Appendix C). For each GREF, all local representations

represented by its corresppndmg grid cell in COSMO'REA& at the training locations have to be estimated, leading to a
In summary, the elevation offset enables the mountain sta- significant increase in the number of parameters. Thereby,

tions to be retained in the training data set and mostly im- the computational burden for the parameter estimation in-

proves the calibr?tion of the model without unduly i.nﬂuenc— creases substantially with more GRFs, without necessarily

ing the model skill at already well represented locations. improving the predictive skill. We decided for a compromise

using a model with only a limited number of spatial parame-
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Figure 5. Miscalibration of SpatBHM with and without the elevation offset in the covariance function. Each data point represents the
miscalibration at one station. The coloring represents station altitude of the station in question. Miscalibration values are shown for (a) BS
14, (b) QS 0.75, and (c¢) QS 0.99. The gray line represents the identity function. Note that the axes are scaled logarithmically, so that smaller

values are overrepresented.

ters that shows high skill, while keeping the computations for
the parameter estimation practicable. The SpatBHM version
that was found best has two spatial regression coefficients:
the intercept for the location parameter 110 and the regression
coefficient for Vp, for the location parameter ;2. Please note
that 3 which controls a purely spatial covariate, is always
assumed as spatially constant. There is limited evidence that
a spatial field for the scale parameter improves the estimation
of the threshold exceeedance probabilities. However, it also
leads to a significant loss in QS, which is the reason why it
was discarded. The fitted values of the model parameters are
shown in Table C2.

Figure 6 shows the skill score values of SpatBHM
against ConstMod for the 14 and 18 ms~! threshold and the
0.75, 0.95, 0.99 and 0.999-quantiles obtained at all inves-
tigated locations. The BSS values of SpatBHM compared
to ConstMod for the threshold exceedance probabilities are
close to 0. However, the median and the larger part of the
interquartile range are found above 0, pointing to a slight
improvement in prediction quality compared to ConstMod.
The median BSS is found around 2 %. For the prediction
quantiles, there is a clear improvement in skill, especially
for the higher quantiles. The median skill score values range
from 2 %-5 %, depending on the exact quantile. For the 0.95
and 0.99-quantiles, almost the whole interquartile range is
positive and for the 0.999-quantile, SpatBHM skill nearly
achieves the same skill as LocMod. At least for the rep-
resentation of the prediction quantiles, the relative skill of
SpatBHM compared to ConstMod can be regarded as a proof
of concept of the spatial hierarchical approach.

However, there are some instances, where SpatBHM per-
forms poorly compared to ConstMod. These are mostly
stations, where the local wind gust characteristics change
rapidly over space. In some cases, the spatial mean of the
GREF is more representative for the local gust model than the
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coefficients at the surrounding stations. Therefore, the spa-
tial interpolation procedure introduces a bias and the skill of
SpatBHM is reduced compared to ConstMod. Nevertheless,
the skill against the climatology forecast remains high at the
majority of these locations.

Given the spatial model’s notable predictive skill for
higher quantiles, we proceed to evaluate its performance in
stronger wind conditions. Absolute extreme events are eval-
uated in terms of the exceedance probability of high thresh-
olds. Due to the scarcity of observations for high threshold
exceedances, it is not reasonable to calculate BS for each sta-
tion individually. Instead, we compute the average BS over
all stations. Thereby, we increase the number of observations
and obtain interpretable values for BSS, which are shown in
Fig. 7. As higher thresholds, the next three warning levels by
the DWD, i.e. 25, 29 and 33 ms—! (Deutscher Wetterdienst,
2024), are selected.

SpatBHM performs very similar to ConstMod on the
higher thresholds. Only for the highest threshold (33 ms™1),
it has visibly higher skill. The skill is lowest for the u = 18
and u =25ms™~! thresholds. The skill against the climatol-
ogy in Fig. 7b provides context on the skill for the threshold
exceedance probabilities: Owing to the extreme nature of the
events, neither SpatBHM nor ConstMod show any signifi-
cant skill against the climatology for the highest threshold,
and the skill for all thresholds above 25ms~! is generally
low. In summary, the spatial approach does not significantly
improve the prediction of threshold excess probabilities from
the spatially constant approach, but neither does it perform
significantly worse.

In order to quantify SpatBHM’s performance for quantile
predictions in higher wind conditions, we stratify the data
and calculate QS for the largest 25 % of the forecast values.
The stratification is based on the forecast values, rather than
the observations, in order to avoid the forecaster’s dilemma
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Figure 7. (a) BSS of SpatBHM against ConstMod, aggregated over all stations. Each boxplot comprises 9 values, one for each year included
in the evaluation data set. The skill score values are calculated from the mean score at all stations throughout each year. (b) As in (a) but for

SpatBHM and ConstMod against climatology.

(Lerch et al., 2017). The top 25 %-wind gust events are se-
lected from the whole data set. The majority of these events
is observed at coastal locations and mountain tops. As the
stratification significantly reduces the data at some stations,
the score values are averaged over all locations. We strat-
ify once based on the predictions from SpatBHM and once
based on the predictions from ConstMod. For the estimation
of uncertainties, score values are calculated for each year
of the verification data set, resulting in a sample of 9 inde-
pendent score estimations. The sample size is insufficient to
yield statistically robust results, but it provides an indication
of the potential outcome. The resulting skill score values for
SpatBHM and ConstMod are depicted in Fig. 8.
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In contrast to the threshold exceedance probabilities, the
prediction quantiles in Fig. 8a almost consistently exhibit
higher skill for SpatBHM than for ConstMod, across all
evaluated quantiles. The spatial model exhibits considerably
higher quantile skill for the top 25 % gust events than for
the complete data set. This skill improvement is found for
both types of stratification, so it does not depend on the
model used for the stratification, although there are minor
differences. Similar to the separate evaluation for all loca-
tions, the spatially aggregated skill compared to ConstMod
increases with higher quantile. Moreover, SpatBHM con-
sistently outperforms ConstMod, independent of which of
the two models was used to select the top 25 % of predic-
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Figure 8. (a) QSS for SpatBHM against ConstMod. Each boxplot comprises one value for each of the 9 years included in the evaluation
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ConstMod. The time series for verification are stratified based on the predictions from ConstMod (white) and SpatBHM (gray).

tions. Therefore, the spatial modeling approach can be con-
sidered to particularly improve the prediction of rare or ex-
treme events in terms of prediction quantiles. However, in
this context it should be noted, that the overall skill of both
models compared to the climatology decreases with higher
quantile (Fig. 8b).

For a better understanding of the origin for the improved
skill, Fig. 9 shows the score decomposition from Eq. (15) for
BS and QS. The inter-model differences of MCB and RES
for the prediction of threshold exceedance probabilities (cf.
Fig. 9c and d) are small. MCB is better in SpatBHM for the
higher thresholds, whereas RES is better in ConstMod for the
higher thresholds. However, the inter-model differences are
more distinctive for the prediction quantiles in Fig. 9a and b.
MCB is higher for SpatBHM and lower for ConstMod, point-
ing to poorer calibration in the spatial approach. The 0.999-
quantile is an exception in that MCB is similar for both mod-
els and slightly better for SpatBHM for both the complete
and reduced data sets. A possible reason for the inferior cal-
ibration of SpatBHM compared to ConstMod is the spatial
interpolation procedure. For locations with wind gust char-
acteristics similar to the spatial mean, ConstMod already has
high skill and the spatial approach would not be required. If
a station exhibits distinct wind gust characteristics from its
surrounding stations, the kriging process results in a value
too close to nearby observations and introduces a bias. This
bias can only partially be removed by the elevation offset in
Eq. (8). Consequently, SpatBHM only exhibits better cali-
bration at locations, where the wind gust characteristics di-
verge from the spatial mean, yet align with the surrounding
stations. Therefore, the calibration of SpatBHM is reduced
compared to ConstMod. RES, shown in Fig. 9b and d, is very

Adv. Stat. Clim. Meteorol. Oceanogr., 11, 229-256, 2025

similar for both models. RES is slightly better for SpatBHM,
most visibly for the extreme quantiles. As RES values are an
order of magnitude larger than MCB, the resolution part of
the score is what defines the local skill. Therefore we con-
clude that SpatBHM outperforms ConstBHM not due to bet-
ter calibration but rather due to a better resolution.

In summary, our results can be regarded as a proof of con-
cept, that the spatial hierarchical approach can contribute to
an improved wind gust post-processing from reanalysis data,
as it provides on average more spatially homogeneous es-
timates of the observed wind gusts. Our stratified analysis
showed that the increase in skill is especially noteworthy for
higher prediction quantiles and in higher wind conditions,
which points to a better representation of the variability of
the wind gusts. Nevertheless, these results do not generalize
to locations with low average windiness with low LocMod
skill against climatology. Consequently, the spatial proba-
bilistic post-processing provides high skill for coastal sta-
tions and some mountain tops, and less skill for valley lo-
cations. The high skill at coastal stations, however, suggests
that the spatial model successfully detects and corrects sys-
tematic regional gust behavior deviations.

5.4 Quality of the spatial parameter prediction

To assess the added value of SpatBHM over ConstMod with
regard to the spatial prediction of the model parameters, we
calculate the CRPS for the marginal posterior predictive dis-
tributions of the regression coefficients ' and ¢’. As ob-
servations, the parameter estimations from the LocMod-fits
are used (Sect. 5.1). In the case of ConstMod, the poste-
rior predictive distribution is obtained from the MCMC sam-
ples (Sect. 4.2), while we use the posterior predictive distri-
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bution obtained from the spatial interpolation for SpatBHM
(Sect. 4.3.2). As LocMod is similarly estimated by MCMC,
we calculate CRPS once for each element of the LocMod
posterior samples, in order to obtain an estimate of the un-
certainty of CRPS at each station. Both the posterior distribu-
tion of the constant coefficients in ConstMod and SpatBHM
and the spatially interpolated distribution from SpatBHM are
assumed as Gaussian, so that we evaluate CRPS following
Eq. (21). The spatially constant coefficients in SpatBHM
were sampled from their posterior distribution for this part
of the evaluation, as are their counterparts in LocMod.

The resulting score values are displayed in Fig. 10 for the
six regression coefficients. As u* was not estimated locally,
the altitude predictor contribution 4>Az; in ConstMod and
SpatBHM is added to the intercept for the location parame-
ter, i.e. ,uo, for each station. The CRPS values show a gen-
eral improvement of the parameter prediction in SpatBHM
compared to ConstMod. The superiority of SpatBHM is most
pronounced for ;' and 112 and less for the scale coefficients.
For the ¢? there are hardly any differences. From these val-
ues, we calculated the skill scores via Eq. (18), shown in
Fig. 11a. The CRPS values translate into skill values of up
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to 50 % for 2 of SpatBHM over ConstMod. As 2 is one of
the GRFs, this clearly points to the added value of the spatial
approach.

Following from this, we evaluate the multivariate posterior
distribution of the regression coefficients using energy score
(Eq. 22). As can be seen in Fig. 11b, ES shows similarly high
skill values of SpatBHM against ConstMod, likewise found
around 50 %. In the multivariate case, the skill is rather ho-
mogeneous over all stations, pointing to a clear superiority of
SpatBHM with regard to the spatial prediction of the param-
eters.

5.5 Post-processing time series

The objective of the spatial hierarchical extreme value model
is to provide an enhanced description of surface wind gusts
in reanalysis by providing a probabilistic diagnostic for wind
gusts based on a statistical post-processing of predictor vari-
ables. SpatBHM stands to the task quite well as illustrated
by Fig. 12, depicting time series of postprocessed wind gust
from SpatBHM at three distinct locations for September and
October 2002. The observations consistently fall within the
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displayed distributional range. Moreover, at the first station,
the median of the predicted distributions is visibly corrected
towards the corresponding observations, indicating that the
statistical model improves the calibration of the reanalysis.
The third location in Fig. 12c is used to contrast the results
with a location with no skill.

Figure 12a depicts the postprocessed wind gusts at
Arkona, a coastal station in northeastern Germany. The post-
processing is capable of capturing the transient weather pat-
terns, which is especially evident from 21 September to 7
October. The skill score values against climatology are quite
high with values larger than 50 %, and the observations typi-
cally lie inside the 98 % confidence interval of the predicted
distributions. The forecasts are well calibrated at this loca-
tion, as can be understood from the probability integral trans-
form (PIT) histogram (Dawid, 1984) in Fig. 13a for the same
station. In general, the histogram looks homogeneous with
an indication of a too high dispersion of the forecast distri-
bution.
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For central German locations, SpatBHM shows a similarly
strong performance, as illustrated by the example of Frank-
furt in Fig. 12b. In most cases, the observed wind gusts are
found close to the median of the predicted distribution. How-
ever, Vmax and the observations display usually similar val-
ues at this location, so that the surface maximum wind speed
in the reanalysis can already be regarded as a good predic-
tion for the observation. At this location, the PIT-histogram
(Fig. 13b) provides interesting added information on the gust
prediction. Apparently, there is a consistent negative bias,
combined with a too large variance of the forecast distribu-
tion. This suggests that the high skill is achieved by a bias-
variance trade-off, where a larger variance compensates the
negative bias for the quantiles and thresholds of interest.

The spatial post-processing encounters challenges in com-
plex terrain with low wind speed, as illustrated by the ex-
ample of Garmisch-Partenkirchen in Fig. 12c. This station is
the location with the lowest average wind speed among the
selected stations and even LocMod has no skill. At this lo-
cation, SpatBHM corrects the observations systematically to
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Figure 12. Predictive distributions generated by SpatBHM in 2002 for (a) Arkona, (b) Frankfurt (Main) and (¢) Garmisch-Partenkirchen.
The station observations FX are marked by the red line, while Vinax is marked in black. The blue shading denotes the various quantiles of
the predictive distribution, as given by the annotations. The displayed skill score values are calculated against climatology. It should be noted
that the time series are incomplete due to missing observations. The predictions are cross-validated, i.e. each station was removed from the

data prior to model training and prediction.

lower values, which leads to a pronounced negative bias. Ac-
cordingly, the PIT-histogram in Fig. 13c shows a similarly
strong negative bias. Different to Fig. 13b, there is no visi-
ble excess of dispersion of the forecast. Therefore, the bias-
variance trade-off does not succeed at this location. However,
we still observe a slight improvement in skill with respect to
ConstMod. The low skill at this location is due to the lack of
explanatory power of the predictor variables at this particu-
lar location, as shown by the non-systematic bias and a low
correlation between the reanalysis and the observations.

5.6 Post-processing on a spatial grid

Post-processing gridded data sets using SpatBHM involves
the application of the spatial interpolation procedure to high
dimensional data. In theory, this is readily doable because of
the use of GRFs in the model formulation. However, the in-
terpolation process involves the inversion of the covariance
matrix, which is computationally expensive in high dimen-
sions. Therefore, we advise to split the target region in subre-
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gions and to draw iteratively from the GRF. We start by sim-
ulating a horizontal slice of the data set in the south and iter-
atively simulate horizontal slices further northward. In each
iteration, the probability for the next horizontal slice is con-
ditioned on the results of the previous draw for the adjoining
slice in addition to conditioning on the fitted values at the
training locations. This iterative drawing process is repeated,
until the complete field has been simulated. In the absence of
a unique station altitude for each grid cell, we set the Az pre-
dictor to zero. Thereby, we enable a statistical downscaling
of the gust model to the subgrid-scale in the event that the
altitude predictor exists.

Figure 14a provides an example for the result of this iter-
ative interpolation, obtained for u?, for a grid of 121 times
161 cells over Germany. Each simulated horizontal slice con-
tains 5 rows of grid cells, resulting in 605 simultaneously
drawn representations in each iteration. The mean of 1° is
a smooth spatial field with some visible minima and max-
ima, not all of which are easily explainable by the geogra-
phy. However, some geographical features, such as the Hartz
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Mountains in the center and the Cologne Lowland in the west
are discernible. The parameter predictions are lower over the
ocean and the adjoining coastlines. Areas that are sufficiently
far away from any of the training locations, are estimated
close to the spatial field mean. Owing to the small range pa-
rameter estimates (cf. Table C2), the process is still consid-
erably rough, as it represents a local station correction to the
spatial mean and SpatBHM does not include a nugget ef-
fect. A nugget effect could account for outlying stations, but
we did not include it as it decreased the predictive perfor-
mance in preliminary tests. Figure 14b shows the standard
deviation of the predicted 1°-field, obtained from 100 draws
of the same spatial field. The variability of the interpolated
field is lower near the training locations and increases with
distance. Mountain stations, such as Zugspitze, Brocken and
Feldberg are not as distinctly visible as non-mountain sta-
tions, as the elevation offset (Eq. 9) successfully segregates
them from their immediate surroundings. Thereby, their in-
fluence on the direct neighborhood is reduced, albeit they re-
main inside the training data set.

Following the interpolation of the GRFs, it is possible to
estimate spatial fields of the Gumbel parameters of the wind
gust distribution. Figure 15a and b depict such spatial fields
for the location and the scale parameter, including the pre-
dictor variables. The shown area is a portion of the German
North Sea coastline. The fields are obtained from SpatBHM
by retrieving one representation of the interpolated spatial
fields for the coefficients u° and ? and evaluating Eq. (23)
for the predictor variables on 15 September 2010, while set-
ting Az; =0. There is a strong contrast between the sea
and land surfaces due to the contribution of the covariate
variables. Both location and scale parameter are estimated
higher over land than over the ocean. For the scale param-
eter, this contrast is even more pronounced. Apart from the
land-sea-difference, the fields look reasonably smooth. Al-
though the higher parameter predictions over land appear
counterintuitive at first, they are plausible considering that
SpatBHM does not predict the gust speed, but FX — Vy,.
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Adding Vi, to the expectation value of the SpatBHM pre-
diction results in overall higher postprocessed gust predic-
tions over the ocean than over land as shown, in Fig. 15c.
Concluding from this, wind gusts possess considerably less
variability over the ocean and are found closer to the mean
wind values. Therefore, the model parameters are estimated
lower. Figure 15d shows the difference between the Vpax
field from COSMO-REAG6 and the expectation value of the
postprocessed field from SpatBHM. In most areas, the cor-
rection applied by SpatBHM to the expectation is negative,
i.e. reducing the mean wind prediction. Only two regions dis-
play a positive correction, namely the northern depicted part
of the ocean and two intricate bays (Jade bight, Weser estu-
ary), which are standing out. This difference compared to the
surrounding area comes from the interpolation of land-area
location parameters, that are higher than location parameters
over sea. Simultaneously, Vi, is higher over the bay areas due
to reduced roughness. The combination of these two factors
leads to the distinctly positive correction. However, as we do
not have any verifying observations over the ocean we refrain
from making any statements about the accuracy of this cor-
rection. Nevertheless, including the land-sea-mask as spatial
predictor can be a useful addition for SpatBHM in the future.

6 Conclusions

In this study, we present a spatial probabilistic post-
processing approach (SpatBHM) for wind gusts from re-
analysis models, with the COSMO-REA6 model serving as
a case study. The probabilistic post-processing is based on
Bayesian hierarchical modeling and extreme value statis-
tics. Wind gust observations are modeled as a non-stationary
Gumbel distribution, with location and scale parameters
varying both spatially and temporally. The temporal depen-
dency is modeled as a linear model on spatio-temporal pre-
dictor variables. The spatial dependency is included by let-
ting the regression coefficients vary in space following a
Gaussian random field with an isotropic covariance structure.
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Figure 14. Posterior distribution of u0 after spatial interpolation. Left: expectation for the coefficient u?, interpolated from SpatBHM.
Right: The standard deviation of the same field based on 100 draws from the same model.

We compared the SpatBHM against a model with spatially
constant coefficients (ConstMod) using proper scoring rules
for quantiles and threshold exceedance probabilities and their
decomposition to assess miscalibration, resolution, and un-
certainty.

Although we used a computationally expensive MCMC-
algorithm for model fitting, the sampling process can be
adapted for operational use. Pystan (3.9.0) with Python
(3.9.18) was run sequentially in a JupyterHub service run-
ning Debian GNU/Linux 12 (x86_64), requiring about one
hour of sampling time for the final version of SpatBHM.
Training can be sped up by about 25 % by selecting a more
informative prior for the range parameters. The spatial inter-
polation to large data sets is a computational bottleneck be-
cause the parameter fields must be interpolated to the entire
domain for all elements of the posterior sample. Thus, the en-
tire process must be repeated N times. For this analysis, the
process was carried in R (4.2.2) on a computer with an AMD
Ryzen 2400G processor, running at 3.6 GHz using 29 GB of
RAM, and an openSUSE Leap 15.5 system (x86_64). The
process described in Sect. 5.6 with N = 100 consumed about
3 h of computation time, so the complete analysis can be re-
produced on a standard desktop (> 8 cores, 16 GB RAM).
For operational purposes, the spatial interpolation can also
be run in parallel.

We have reached a proof of concept in favor of the spa-
tial modeling approach, indicating that SpatBHM possesses
higher skill than ConstMod for all investigated features of
the predictive distribution, although we find that ConstMod
already exhibits high skill against the climatology. While
SpatBHM does not show much improvement for the pre-
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diction of threshold exceedance probabilities, it clearly out-
performs ConstMod for prediction quantiles by 2 %-5 % in
terms of median skill, depending on the exact quantile under
investigation. Moreover, SpatBHM demonstrates particular
skill in predicting high quantiles, due to a better represen-
tation of the variability of wind gusts. This is evident more
when focusing the evaluation on top quartile of the predic-
tions. As a further advantage, the GRFs in SpatBHM can be
readily interpolated to large data sets by an iterative simula-
tion procedure. Therefore, the model facilitates simple post-
processing including gridded data sets.

However, the skill of all models is low at locations with
little wind. Provided that a contribution of the station alti-
tude difference is included into the estimation of the spatial
covariance structure, SpatBHM can enhance the predictive
skill at these locations to some degree. The elevation offset
stabilizes the estimation of the range parameter of the GRF
and results in a more accurate and better calibrated repre-
sentation of the spatial structure. However, even the spatial
model falls short of attaining the same level of calibration as
the simple climatology in these low wind conditions. An ex-
amination of the score decomposition in these cases revealed
that the challenges observed at these locations are not solely
caused by poor calibration, but also by a lack of model res-
olution. This is an indication of a lack of explanatory power
of the predictor variables in low-wind conditions.

In conclusion, wind gust post-processing remains a chal-
lenging topic due to the localized nature, short duration, and
inherent extremity of wind gusts. Further research is required
to account for an annual or diurnal cycle and to assess the
models’ performance in different boundary layer regimes.
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Figure 15. Spatial fields of (a) the location parameter and (b) the scale parameter on 15 September 2010, predicted by SpatBHM over the
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One way to include the annual and diurnal cycles is to use
harmonic functions with suitable frequencies as additional
predictors. Further testing is required to determine whether
their effects are best modeled as spatially constant or as
GRFs. Currently, the model code allows the flexible inclu-
sion of new predictors by adding columns to the predictor
matrix and specifying whether their coefficient is modeled as
constant or as a GRF. The spatial interpolation process re-
mains unchanged, but the prediction code requires updates
to include the harmonic function predictors. In summary, the
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annual and diurnal cycles can be easily included, but their
inclusion requires further model checking and comparison,
as well as a more extensive data preprocessing. Finally, de-
veloping a spatial prediction procedure, that is capable of
accounting for existing gust observations at specific loca-
tions, namely, conditionally sampling from the complete gust
model, can be an interesting follow up to this work. As the
spatial post-processing approach demonstrates added skill to
existing linear approaches, it can contribute to an improved
representation of wind gust characteristics in reanalysis.
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Appendix A: List of symbols

Vit observation at locationr;,i = 1,...,q and time tx, k= 1,...,n

Wity Git GEV parameters at locationr;,i = 1,...,g and time tz, k=1,...,n
xﬁik/ xiik set of covariates j =1,...,m, foru;, / j=1,...,m¢ for ¢

xf‘t/ x;, vector of covariates xﬁt = (x(‘)fl.k, RN x,’;ﬂ,ik) / xft = (x(iik, e xnig,ik)
wl g time constant regression coefficients for covariate x';,/ x7 ;¢

Bl 1B

Wil

a'uj, ):Mj /(xgj, Zgj

i Oy Pui 1O O Pei
Viud s T O €i s My
Yeis f?,wc?g/,fgz'{gf, Nei

vector with regression coefficients ﬂf = (,u?, e /Lil”) /ﬂf = (gio, e gl.mg)
W=, ...omp)l s/ =(i,....50) o
parameters of multivariate Gaussian distribution for regression coefficients u/ / ¢/
parameters of homogeneous GRFs for regression coefficients /(1) / ¢/ (r)
parameters of priors for random field parameters of 1/ (r)

parameters of priors for random field parameters of ¢/ (r)

fz scaling factor for elevation offset

Appendix B: Predictor selection for linear models

The selection of the optimal predictor variables for the spa-
tial hierarchical post-processing model was performed on
ConstMod, which also serves as baseline model during eval-
uation in Sect. 5.1. We tested and evaluated a variety com-
binations of predictors and predictands. For ConstMod, all
regression coefficients u/ and ¢/ are spatially constant. All
model versions are trained as outlined in Sect. 5.1. Table B1
provides an overview over the all trained versions, including
the selection of predictand and predictor variables for loca-
tion and scale, as well as the median score values obtained
at the 109 verification locations. The predictor variables fol-
low the nomenclature as outlined in Sect. 5.1. The locally
estimated model local model (LocMod), uses the same for-
mulation as ConstMod 4 without the altitude predictor Az.
By estimating ConstMod locally for each station, the contri-
bution of Az is directly added to the intercept 1°. LocMod
is trained on the local station data only, so it learns the lo-
cal wind gust characteristics. For purposes of comparison,
an overview of all ConstMod versions, LocMod and the cli-
matology are presented in Table Bl together with the me-
dian score values for assessment of the predictive skill. Fig-
ure B1 shows the cross-validated skill scores for ConstMod
compared to the local climatology for the 14 and 18 ms™!
threshold and the 0.75, 0.95, 0.99 and 0.999-quantiles for
the different versions of ConstMod, obtained at all inves-
tigated locations. All versions of ConstMod demonstrate a
high level of skill against the local climatology. The skill is
large over all investigated distributional features with average
skill score values between 10 % and 45 %.

The model version exhibiting the least skill is
ConstMod 1, which only uses Viyax as predictor. The
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incorporation of the altitude predictor Az (ConstMod 2) does
not improve the skill for non-mountain stations, but it is vis-
ible that the quantile predictions at some locations are im-
proved compared to the simplest model version. The first
noticeable improvement in skill is observed when the pre-
dictand is modified to FX — Vi, (ConstMod 3). This finding
is consistent with the findings of Friederichs et al. (2009).
The improvement in skill is particularly evident for the
14 ms~! threshold and for higher quantiles. The optimal spa-
tially constant linear model was found to be the full version
(ConstMod 4), as specified in Eq. (23). Therefore, we base all
spatial models on ConstMod 4. The final fitted values of the
parameters for the various ConstMod versions are presented
in Table B2.
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Figure B1. Cross-validated skill scores against climatology of various versions of ConstMod and LocMod (colored boxes) for exceedance
probabilities of the 14 ms~! (BSS 14) and 18 ms~! (BSS 18) threshold, and the 0.75 to 0.999-quantiles (QSS 0.75 to QSS 0.999). Each box
plot contains skill scores at 109 locations. Boxes represent the interquartile range and whiskers extend to the 0.01 and 0.99-quantiles. Bold
lines mark the median scores. Model definitions and median scores are given in Table B1.

Table B1. Model versions and median score values for threshold excess probabilities and quantiles. For climatology, no predictors are used
and parameters are estimated at each station, respectively. ConstMod 1-4 are estimated at all 109 stations simultaneously. LocMod refers to
a local version of ConstMod 4 without Az trained at each location separately.

Model Predictand  Predictors p Predictors ¢ BS 14 BS18 QSO0.75 QS095 QS099 QS0.999
Climatology FX none none 0.0637 0.0113 1.105 0.414 0.120 0.0163
ConstMod 1  FX Vimax Vimax 0.0479 0.0113 0.666 0.297 0.094 0.0144
ConstMod 2 FX Viax> Az Vimax 0.0477 0.0113 0.659 0.295 0.093 0.0142
ConstMod 3 FX—Vp Vmax, Az Vmax 0.0443  0.0103 0.639 0.271 0.086 0.0134
ConstMod4 FX -V, Vmax> Vm> A2 Vmax,> Vm 0.0433  0.0103 0.636 0.265 0.084 0.0127
LocMod FX —Vmn Vmax> Vm Vimax> Vm 0.0397  0.0092 0.597 0.244 0.077 0.012

Table B2. Parameter estimations for all ConstMod version together with their 99 % confidence intervals, assuming normal marginal posterior
distributions. The values are obtained from training the model on the complete traning data set.

Parameter ConstMod 1 ConstMod 2 ConstMod 3 ConstMod 4
/LO 8.3344+0.016 8.288+0.016 4.681+0.014 4.7354+0.014
ul 2.4574+0.016 2.4454+0.016 1.118+£0.014 1.843 +£0.027
2 - - —  —0.89040.025
uc — 0.152+£0.007 0.221 +0.007 0.226 +0.008
gO 0.6804+0.005 0.673+0.005 0.556 £0.005 0.5354+0.005
gl 0.3304£0.005 0.3324+0.005 0.218 £0.005 0.403 +0.009
I~ - - —  —0.23940.008
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Appendix C: Selection of spatial fields for SpatBHM
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Table C1. SpatBHM versions with model name, spatially variable regression coefficients and cross-validated median score values obtained
from the 109 stations. In each model, the remaining regression coefficients are assumed to be spatially constant.

Model Spatial parameters BS14 BS18 QS0.75 QS095 QS099 QS0.999
SpatBHM 1 /LO 0.0427 0.01 0.633 0.261 0.082 0.0124
SpatBHM 2a 10, u! (Vimax) 0.0434 0.0101  0.6308 0.260 0.081 0.0121
SpatBHM 2b [LO, Mz (Vm) 0.0435 0.01 0.6314 0.2598 0.0805 0.0121
SpatBHM 2c¢ MO, o0 0.0427 0.0101 0.6293 0.2628 0.0833 0.0129
SpatBHM 3 10, u! (Vimax), #2 (Vm)  0.0436 001 06331 02615  0.0806 0.0122
0.4} N x
0.3} x x x *
02f x| o« | x )
X x x « % % § X% X
0.1 X % x ¥ é o é % %
0.0 ’J'-' ‘L
w0
3 |
0.2} X * M x *
Spatial parameters %
-0.3} mmE O x x
= O pt (Vinax)
-0.47 U0, 12 (Vim)
== 1, 0 x x =
-0.5F m 1O,y (Vinax), 42 (Vin)
BSS 14 BSS 18 Q55 0.75 QS5 0.95 QS5 0.99 QSS 0.999

Score

Figure C1. As Fig. 4 but for cross-validated skill scores of SpatBHM against ConstMod. Model definitions and median scores are given in

Table C1.

Subsequent to the implementation of the elevation offset,
SpatBHM is constructed in a gradual manner, commencing
from ConstMod 4 and permitting an increasing number of
model parameters to vary in space. This approach permits
the assessment of the added value of individual spatial pa-
rameters. Firstly, only the intercept of the location parameter,
u, is made variable in space, while the remaining parame-
ters are kept spatially constant. Subsequently, the number of
spatially varying parameters is increased through the testing
of different combinations of spatial and non-spatial parame-
ters, as illustrated in Table C1. The parameter p° (i.e. the re-
gression coefficient for Az) is spatially constant in all model
versions, as it controls a spatial covariate assuming a fixed
value at each location. The fitted values of the parameters are
shown in Table C2. The median score values for SpatBHM
are displayed in Table C1. All spatial models demonstrate a
comparable level of skill with respect to climatology as Con-
stMod across the entire range of distribution characteristics
investigated.
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The median skill score with respect to ConstMod (Fig. C1)
is non-negative for all model versions and for all evaluated
thresholds and quantiles. With regard to the threshold excess
probabilities, there are not many skill differences among the
models which indicates that the gain in benefit from select-
ing a more complex model is minimal. For higher quantiles,
the skill improvement is higher than for the central region of
the predictive distribution, indicating superior performance
of SpatBHM for extreme events.

A spatially variable location parameter leads to a signif-
icant improvement in the predictive skill of threshold ex-
ceedance probabilities and high quantiles. The inclusion of
a spatially variable regression coefficient for the location pa-
rameter leads to an improvement in the predictive skill of
threshold exceedance probabilities and particularly improves
the skill for the extreme quantiles. A spatially variable regres-
sion coefficient for Vi, (%) provides more skill for the upper
quantiles than a spatially variable regression coefficient for
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Vimax (,ul). A spatially variable scale parameter affects dif-
ferent prediction quantities in contradictory ways, rendering
its overall effect ambiguous. It improves the skill for the ex-
ceedance probabilities of lower thresholds and reduces the
dispersion of the Brier score, but also reduces the skill for
all shown predicted quantiles compared to the other spatial
model versions. This is particularly evident for the extreme
0.99 and 0.999 quantiles, where the median skill score com-
pared to ConstMod is approximately zero. Whether a spa-
tially variable scale parameter should be selected therefore
depends on the desired predicted property.

The addition of a third spatially variable regression coef-
ficient leads to a slight improvement in skill compared to a
model with only two spatial parameters. However, this im-
provement is not as significant and the results for different
parts of the distribution are inconsistent. The third spatial pa-
rameter improves the extreme quantiles 0.99 and 0.999, but
does not provide much more information for the prediction
of threshold exceedances. Further versions of SpatBHM with
varying regression coefficients for the scale parameter (not
shown) do not show significantly different results from those
described above and are less skillful. We therefore proceed
with SpatBHM 2b, while further refinements remain possi-
ble.

Table C2. Parameter estimations for SpatBHM within their 99 % confidence intervals, assuming normal marginal posterior distributions.
The values are obtained from training the model on the complete training data set and using Eq. (9) as distance metric. Cells with only one
number for the spatial parameters indicate spatially constant parameters.

Parameter SpatBHM 1 SpatBHM 2a SpatBHM 2b  SpatBHM 2c¢ SpatBHM 3

@0 4.78+0.2 478 £0.24 4.80+0.27 4.78£0.22 4.82+0.23

i 0,0 0.56+0.11 0.70+0.16 0.69+0.14 0.61£0.13 0.67£0.14

£y0 32+£17.5 37+£18.1 38+£22.2 32+183 30+18.7

o, 1.56 £0.17 1.544+0.20

wl o, 1.63+0.03 0.4+0.10 1.47+0.03 1.61+£0.03 0.35+0.11

Pyl 45+26.8 76 +£39.4

o, —0.30+0.28 —0.34+0.34

u? 0,0 —0.57+0.03 —0.37+£0.04 0.604+0.16 —0.52+0.03 0.63+0.22

P2 62+38.4 68 +37.3

ue 0.23+£0.08 0.26 £0.10 0.32+£0.10 0.31+£0.08 0.33+£0.09
@0 0.49 £0.08

I~ o0 0.491 +£0.005 0.473 £0.005 0.468 +0.005 0.20 £+ 0.05 0.464 +0.005
P0 35£25.7

¢! ‘ 0.373 £0.009 0.365 £0.009 0.348 £0.009 0.40+0.01 0.347 £0.009

¢? ‘ —0.224+0.008 —0.240+£0.008 —0.227+£0.008 —0.26+0.01 —0.227+0.008

Sz ‘ 116 £73.8 157+ 69.6 184+81.2 133+68.9 194 +78.8
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Appendix D: GEV shape of wind gust distributions

The GEV shape parameter £ has a great effect on the distribu-
tion. E.g., if £ < 0, the distribution becomes a Weibull-Type
distribution with an upper bound on the supported values,
while the Gumbel-type distribution for £ = 0 is unbounded.
As & is difficult to infer stably from the data, we decided
to set it to a fixed and spatially constant value. As we are
hesitant to exclude potential extreme events, we would like
to intentionally omit the Weibull-type distribution as a valid
option, although it may theoretically occur.

To determine an appropriate choice for the constant &, we
fitted non-stationary GEV-models at each station to obtain
local estimates of & for the gust model. We calculated the
model for 1000 bootstrap iterations in order to obtain 95 %-
credibility intervals for the parameter estimation. If the cred-
ibility intervals include O, we conclude there is no signal for
& > 0 at the station and the Gumbel-assumption is justified.
If the credibility intervals are entirely positive, we say wind
gusts at the station follow a Fréchet-type distribution. Fi-
nally, if the entirety of the credibly interval is below 0, we
say that wind gusts follow a Weibull-type distribution, which
we would like to exclude. Therefore, if all stations are either
Gumbel or Weibull, we regard the assumption that £ =0 as
justified for SpatBHM.

We found only one station with a Fréchet-type distribution,
but the 95 %-credibility interval is entirely & < 0.1, so that
the value is small. The majority with 84 out of 109 stations
show a Weibull-Type distribution with mean shape values be-
tween —0.3 < & < 0. The remaining stations have no clear
signal with respect to £. We could not detect a spatial pattern
for £. Some stations with low local GEV shape values coin-
cide with locations where our spatial model exhibits limited
skill. However, there are also stations with near-zero local
GEV shape values, where SpatBHM still performs poorly.
Conversely, several stations with a significantly negative &
are well captured, suggesting that factors other than the lo-
cal shape parameter influence model performance. Hence,
assuming & = 0 for SpatBHM appears justified or at least not
contradicted by the data.

Appendix E: Positive definiteness of the covariance
matrix

Applying the Matérn-3/2 covariance function is known to
be not positive definite on the sphere, when used with the
great-circle distance (Gneiting, 2013). This results from the
restriction of a function defined on R to a finite domain.
However, for SpatBHM we are only modeling a limited por-
tion on the sphere with maximum distances of O(10%) km, so
that the investigated area is almost flat. Nevertheless, we like
to work on the real distances, which is why we selected the
geat-circle distance.

In earlier stages, we experimented with an exponential co-
variance kernel, which is known to be positive definite on the
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Figure E1. Positive definiteness of the covariance matrix depend-
ing on the covariance parameters.

sphere. The exponential kernel is equivalent to the Matérn-
1/2-Kernel and therefore the roughest member of the fam-
ily. However, due to the existence of very short distances
between some of the training locations, the exponential ker-
nel produced numerical instabilities. Therefore, we selected
a function with a higher smoothness, thereby sacrificing the
guarantee of a positive definite matrix.

We ran sensitivity tests to ensure that the covariance matri-
ces in SpatBHM remain positive definite in practice for the
limited modeling window over central Europe. To this end
we calculated the covariance matrix using the coordinates of
the training locations and a wide variety of possible values
for f;, p and o, by sampling from their respective prior dis-
tributions (Table 1) 10000 times. For each set of parameters,
we determined whether the resulting covariance matrix re-
mains positive definite.

As shown in Fig. E1, from all 10000 parameter draws,
only 3 combinations resulted in a non-positive definite co-
variance matrix. These draws had in common that the range
parameter was very large at values p > 10 km, while the
values of the altitude scaling factor f, and the sill o did
not visibly affect the outcome. The largest range parame-
ters occurring in the posterior samples from SpatBHM are
of O(10%)km, so we conclude that the assumption that the
covariance matrices in SpatBHM remain positive definite in
practice, is justified.

Additionally, we conducted a sensitivity test of SpatBHM
using an even smoother Matérn-5/2 covariance function.
While the smoother covariance function had little effect on
visible roughness of the u’-field and the model’s predic-
tive performance, its numerical stability compared to the ex-
ponential covariance function supports the use of a higher
smoothness assumption for our modeling area.
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Code and data availability. The SYNOP observations and
COSMO-REAG6 reanalysis data used in this study are publicly
accessible through DWD (German weather service) via an open
data server (https://opendata.dwd.de, last access: 31 October 2023).
The model training was performed using Stan (https://mc-stan.org),
using the Python interface pystan. The spatial interpolation and pre-
diction were implemented using GNU-licensed free software from
the R Project for Statistical Computing (http://www.r-project.org,
last access: 12 May 2025). The Stan model code is provided along a
Jupyter Notebook with model training examples, the preprocessed
training and evaluation data sets and the R-Code for the spatial
interpolation and the prediction are available from Zenodo at
https://doi.org/10.5281/zenodo.15437958 (Ertz and Friederichs,
2025). The same repository contains two recreation Jupyter
Notebooks for test experiments regarding the shape parameter of
the GEV distribution and the positive definiteness of the covariance
matrix, that have been suggested by the associate editor and one
anonymous reviewer.
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