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Abstract. Proper scoring rules are an essential tool to assess the predictive performance of probabilistic fore-
casts. However, propriety alone does not ensure an informative characterization of predictive performance, and
it is recommended to compare forecasts using multiple scoring rules. With that in mind, interpretable scoring
rules providing complementary information are necessary. We formalize a framework based on aggregation and
transformation to build interpretable multivariate proper scoring rules. Aggregation-and-transformation-based
scoring rules can target application-specific features of probabilistic forecasts, which improves the characteri-
zation of the predictive performance. This framework is illustrated through examples taken from the weather
forecasting literature, and numerical experiments are used to showcase its benefits in a controlled setting. Addi-
tionally, the framework is tested on real-world data of postprocessed wind speed forecasts over central Europe.
In particular, we show that it can help bridge the gap between proper scoring rules and spatial verification tools.

1 Introduction

Probabilistic forecasting allows for issuing forecasts carrying
information about the prediction uncertainty. It has become
an essential tool in numerous applied fields, such as weather
and climate prediction (Vannitsem et al., 2021; Palmer,
2012), earthquake forecasting (Jordan et al., 2011; Schorlem-
mer et al., 2018), electricity price forecasting (Nowotarski
and Weron, 2018), and renewable energies (Pinson, 2013;
Gneiting et al., 2023). Moreover, it is slowly reaching fields
further from historical applications of forecasting, such as
epidemiology predictions (Bosse et al., 2023) or breast can-
cer recurrence prediction (Al Masry et al., 2023). In weather
forecasting, probabilistic forecasts often take the form of en-
semble forecasts in which the dispersion among members
captures forecast uncertainty.

The development of probabilistic forecasts has induced the
need for appropriate verification methods. Forecast verifica-
tion fulfills two main purposes: quantifying how good a fore-
cast is given available observations and allowing one to rank

different forecasts according to their predictive performance.
Scoring rules provide a single value to compare forecasts
with observations. Propriety is a property of scoring rules
that encourages forecasters to follow their true beliefs and
that prevents hedging. Proper scoring rules allow for the as-
sessment of calibration and sharpness simultaneously (Win-
kler, 1977; Winkler et al., 1996). Calibration is the statistical
compatibility between forecasts and observations. Sharpness
is the uncertainty of the forecast itself. Propriety is a neces-
sary property of good scoring rules, but it does not guarantee
that a scoring rule provides an informative characterization
of predictive performance. In univariate and multivariate set-
tings, numerous studies have proven that no scoring rule has
it all, and thus, different scoring rules should be used to get
a better understanding of the predictive performance of fore-
casts (see, e.g., Scheuerer and Hamill, 2015; Taillardat, 2021;
Bjerregård et al., 2021). With that in mind, Scheuerer and
Hamill (2015) “strongly recommend that several different
scores be always considered before drawing conclusions”.
This amplifies the need for numerous complementary proper
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scoring rules that are well understood to facilitate forecast
verification. In that direction, Dorninger et al. (2018) states
that “gaining an in-depth understanding of forecast perfor-
mance depends on grasping the full meaning of the verifi-
cation results”. Interpretability of proper scoring rules can
arise from being induced by a consistent scoring function for
a functional (e.g., the squared error is induced by a scoring
function consistent for the mean; Gneiting, 2011), knowing
what aspects of the forecast the scoring rule is able to distin-
guish (e.g., the Dawid–Sebastiani score only discriminates
forecasts based on their mean and variance; Dawid and Se-
bastiani, 1999) or knowing the limitations of a certain proper
scoring rule (e.g., the variogram score is incapable of dis-
criminating two forecasts that only differ by a constant bias;
Scheuerer and Hamill, 2015). In this context, interpretable
proper scoring rules become verification methods of choice
as the ranking of forecasts they produce can be more infor-
mative than the ranking of a more complex but less inter-
pretable scoring rule. Section 2 provides an in-depth expla-
nation of this in the case of univariate scoring rules. It is
worth noting that the interpretability of a scoring rule can
also arise from its decomposition into meaningful terms (see,
e.g., Bröcker, 2009). This type of interpretability can be used
complementarily to the framework proposed in this article.

Scheuerer and Hamill (2015) proposed the variogram
score to target the verification of the dependence structure.
The variogram score of order p (p > 0) is defined as

VSp(F,y)=
d∑

i,j=1
wij

(
EF

[
|Xi −Xj |

p
]
− |yi − yj |

p
)2
,

where Xi and Xj are, respectively, the ith and j th compo-
nents of the random vector X ∈ Rd following F , wij is the
set of non-negative weights, and y ∈ Rd is an observation.
The construction of the variogram score relies on two main
principles. First, the variogram score is the weighted sum of
scoring rules acting on the distribution of Xi,j = (Xi,Xj )
and on paired components of the set of observations yi,j .
This aggregation principle allows the combination of proper
scoring rules and summarizes them into a proper scoring rule
acting on the whole distribution F and observation y. Sec-
ond, the scoring rules composing the weighted sum can be
seen as a standard proper scoring rule applied to transfor-
mations of both forecasts and observations. Let us denote
γi,j : x 7−→ |xi − xj |

p as the transformation related to the
variogram of order p, and then the variogram score can be
rewritten as

VSp(F,y)=
d∑

i,j=1
wijSE(γi,j (F ),γi,j (y)),

where SE(F,y)= (EF [X]−y)2 is the univariate squared er-
ror and γi,j (F ) is the distribution of γi,j (X) for X following
F . This second principle is the transformation principle, al-
lowing us to build transformation-based proper scoring rules

that can benefit from interpretability arising from a transfor-
mation (here, the variogram transformation γi,j ) and the sim-
plicity and interoperability of the proper scoring rule they
rely on (here, the squared error).

We provide an overview of univariate and multivariate
proper scoring rules through the lens of interpretability and
by mentioning their known benefits and limitations. We for-
malize these two principles of aggregation and transforma-
tion to construct interpretable proper scoring rules for multi-
variate forecasts. To illustrate the use of these principles, we
provide examples of transformation-and-aggregation-based
scoring rules from the literature on probabilistic forecast ver-
ification and original propositions. The examples are backed
with application-specific illustrations of their relevance. We
conduct a simulation study to show in a controlled setting
how transformation-and-aggregation-based scoring rules can
be used. Moreover, the framework is confronted with real-
world data in a case study of wind speed forecasts over Eu-
rope. Additionally, we show how the aggregation and trans-
formation principles can help to bridge the gap between the
proper scoring rule framework and the spatial verification
tools (Gilleland et al., 2009; Dorninger et al., 2018).

The remainder of this article is organized as follows. Sec-
tion 2 gives a general overview of verification methods for
univariate and multivariate forecasts. Section 3 introduces
the framework of proper scoring rules based on aggrega-
tion and transformation for multivariate forecasts. Section 4
provides examples of aggregation-and-transformation-based
scoring rules. Then, Sect. 5 showcases through different sim-
ulation setups the interpretability of the aggregation-and-
transformation-based framework. Section 6 confronts the
proposed framework with real-world data. Finally, Sect. 7
provides a summary as well as a discussion on the verifi-
cation of multivariate forecasts. Throughout the article, we
focus on spatial forecasts for simplicity. However, the points
made remain valid for any multivariate forecasts, including
spatial forecasts, temporal forecasts, multivariable forecasts,
or any combination of these categories (e.g., spatio-temporal
forecasts of multiple variables).

The code associated with the numerical experiments of
Sect. 5 and the case study of Sect. 6 is publicly available
(https://github.com/pic-romain/aggregation-transformation,
last access: 6 March 2025). The implementation is in R and
relies mainly on the packages scoringRules (Jordan
et al., 2019), RandomFields (Schlather et al., 2015), and
MultivCalibration (Allen et al., 2024).

2 Overview of verification tools for univariate and
multivariate forecasts

2.1 Calibration, sharpness, and propriety

Gneiting et al. (2007) proposed a paradigm for the evalua-
tion of probabilistic forecasts: “maximizing the sharpness of
the predictive distributions subject to calibration”. Calibra-
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tion is the statistical compatibility between the forecast and
the observations. Sharpness is the concentration of the fore-
cast and is a property of the forecast itself. In other words,
the paradigm aims at minimizing the uncertainty of the fore-
cast given that the forecast is statistically consistent with the
observations. Tsyplakov (2011) states that the notion of cali-
bration in the paradigm is too vague, but it holds if the defini-
tion of calibration is refined. This principle for the evaluation
of probabilistic forecasts has reached a consensus in the field
of probabilistic forecasting (see, e.g., Gneiting and Katzfuss,
2014; Thorarinsdottir and Schuhen, 2018). The paradigm
proposed in Gneiting et al. (2007) is not the first mention
of the link between sharpness and calibration: for example,
Murphy and Winkler (1987) mentioned the relation between
refinement (i.e., sharpness) and calibration.

For univariate forecasts, multiple definitions of calibration
are available depending on the setting. The most used defi-
nition is probabilistic calibration, and, broadly speaking, it
consists of computing the rank of observations among sam-
ples of the forecast and checking for uniformity with re-
spect to observations. If the forecast is calibrated, observa-
tions should not be distinguishable from forecast samples,
and thus, the distribution of their ranks should be uniform.
Probabilistic calibration can be assessed by probability inte-
gral transform (PIT) histograms (Dawid, 1984) or rank his-
tograms (Anderson, 1996; Talagrand et al., 1997) for ensem-
ble forecasts when observations are stationary (i.e., their dis-
tribution is the same across time). PIT and rank histograms
are popular diagnostic tools thanks to their interpretability.
The shape of the PIT or rank histogram gives information
about the type of (potential) miscalibration: a triangular-
shaped histogram suggests that the probabilistic forecast has
a systematic bias, a ∪-shaped histogram suggests that the
probabilistic forecast is underdispersed, and a ∩-shaped his-
togram suggests that the probabilistic forecast is overdis-
persed. Moreover, probabilistic calibration implies that rank
histograms should be uniform, but uniformity is not suffi-
cient. For example, rank histograms should also be uniform
conditionally on different forecast scenarios (e.g., condition-
ally on the value of the observations available when the fore-
cast is issued). Additionally, under certain hypotheses, cali-
bration tools have been developed to consider real-world lim-
itations, such as serial dependence (Bröcker and Ben Boual-
lègue, 2020). Statistical tests have been developed to check
the uniformity of rank histograms (Jolliffe and Primo, 2008).
Readers interested in a more in-depth understanding of uni-
variate forecast calibration are encouraged to consult Tsy-
plakov (2013, 2020).

For multivariate forecasts, a popular approach relies on
a similar principle: first, multivariate forecast samples are
transformed into univariate quantities using so-called pre-
rank functions, and then the calibration is assessed by tech-
niques used in the univariate case (see, e.g., Gneiting et al.,
2008). Pre-rank functions may be interpretable and allow for
targeting the calibration of specific aspects of the forecast,

such as the dependence structure. Readers interested in the
calibration of multivariate forecasts can refer to Allen et al.
(2024) for a comprehensive review of multivariate calibra-
tion.

A scoring rule S assigns a real-valued quantity S(F,y) to
a forecast–observation pair (F,y), where F ∈ F is a proba-
bilistic forecast and y ∈ Rd is an observation. In the negative-
oriented convention, a scoring rule S is proper relative to the
class F if

EG[S(G,Y )] ≤ EG[S(F,Y )] (1)

for all F,G ∈ F , where EG[. . .] is the expectation with re-
spect to Y ∼G. In simple terms, a scoring rule is proper rel-
ative to a class of distribution if its expected value is min-
imal when the true distribution is predicted for any distri-
bution within the class. Forecasts minimizing the expected
scoring rule are said to be optimal, and other forecasts are
said to be sub-optimal. Moreover, the scoring rule S is strictly
proper relative to the class F if the equality in Eq. (1) holds
if and only if F =G. This ensures the characterization of the
ideal forecast (i.e., there is a unique optimal forecast and it
is the true distribution). Moreover, proper scoring rules are
powerful tools as they allow for the assessment of calibra-
tion and sharpness simultaneously (Winkler, 1977; Winkler
et al., 1996). Sharpness can be assessed individually using
the entropy associated with proper scoring rules, defined by
eS(F )= EF [S(F,Y )]. The sharper the forecast, the smaller
its entropy. Strictly proper scoring rules can also be used
to infer the parameters of a parametric probabilistic forecast
(see, e.g., Gneiting et al., 2005; Pacchiardi et al., 2024).

2.2 Univariate scoring rules

We recall a selection of univariate scoring rules as a means
to explain key concepts involved in the multivariate scoring
rules construction framework proposed in Sect. 3. For d ≥ 1,
let P(Rd ) denote the class of probabilities on Rd and let
Pα(Rd ) denote the class of probabilities with a finite mo-
ment of order α. In this section on univariate scoring rules,
we consider the case d = 1 and F ∈ P(R) denotes a prob-
abilistic forecast in the form of its cumulative distribution
function (CDF) and y ∈ R denotes an observation.

The simplest scoring rules can be derived from scoring
functions used to assess point forecasts. The squared error
(SE) is the most popular one and is known through its aver-
aged value (the mean squared error; MSE) or the square root
of its average (the root mean squared error; RMSE) which
has the advantage of being expressed in the same units as the
observations. As a scoring rule, the SE is expressed as

SE(F,y)= (µF − y)2, (2)

where µF denotes the mean of the predicted distribution F .
The SE solely discriminates the mean of the forecast (see
Sect. B1); optimal forecasts for SE match the mean of the
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true distribution. The SE is proper relative to P2(R), the class
of probabilities on R with a finite second moment (i.e., finite
variance). Note that the SE cannot be strictly proper as the
equality of mean does not imply the equality of distributions.

Another well-known scoring rule is the absolute error
(AE) defined by

AE(F,y)= |med(F )− y|, (3)

where med(F ) is the median of the predicted distribution F .
The mean absolute error (MAE), the average of the absolute
error, is the most often seen form of the AE and it is also ex-
pressed in the same units as the observations. Optimal fore-
casts are forecasts that have a median equal to the median of
the true distribution. The AE is proper relative to P1(R) but
not strictly proper. Similarly, the quantile score (QS), also
known as the pinball loss, is a scoring rule focusing on quan-
tiles of level α defined by

QSα(F,y)= (1y≤F−1(α)−α)(F−1(α)− y), (4)

where 0< α < 1 is a probability level and F−1(α) is the pre-
dicted quantile of level α. The case α = 0.5 corresponds to
the AE up to a factor of 2. The QS of level α is proper rel-
ative to P1(R) but not strictly proper since optimal forecasts
are ones correctly predicting the quantile of level α (see, e.g.,
Friederichs and Hense, 2008).

Another summary statistic of interest is the exceedance of
a threshold t ∈ R. The Brier score (BS; Brier, 1950) was ini-
tially introduced for binary predictions but also allows for
evaluating forecasts based on the exceedance of a threshold
t . For probabilistic forecasts, the BS is defined as

BSt (F,y)= ((1−F (t))− 1y>t )2
= (F (t)− 1y≤t )2, (5)

where 1−F (t) is the predicted probability that the threshold t
is exceeded. The BS is proper relative to P(R) but not strictly
proper. Binary events (e.g., exceedance of thresholds) are rel-
evant in weather forecasting as they are used, for example, in
operational settings for decision-making.

All the scoring rules presented above are proper but not
strictly proper since they only compare forecasts through
specific summary statistics instead of the whole distribution.
Nonetheless, they are still used as they allow forecasters to
verify specific characteristics of the forecast: the mean, the
median, the quantile of level α, or the exceedance of a thresh-
old t . The simplicity and the specificity of these scoring rules
make them interpretable, thus making them essential verifi-
cation tools. They are used as diagnostic tools to check valu-
able characteristics of forecasts.

Some univariate scoring rules contain a summary statis-
tic: for example, the formulas of the QS (Eq. 4) or the BS
(Eq. 5) contain the exceedance of a threshold t and the quan-
tile of level α, respectively. They can be seen as a scoring
function applied to a summary statistic. This duality can be
understood through the link between scoring functions and

scoring rules through consistent functionals as presented in
Gneiting (2011) or Sect. 2.2 in Lerch et al. (2017).

Other summary statistics can be of interest depending on
applications. Nonetheless, it is worth noting that misspeci-
fications of numerous summary statistics cannot be targeted
because of their non-elicitability. Non-elicitability of a trans-
formation implies that no proper scoring rule can be con-
structed such that optimal forecasts are forecasts where the
transformation is equal to the one of the true distribution. For
example, the variance is known to be non-elicitable; how-
ever, it is jointly elicitable with the mean (see, e.g., Brehmer,
2017). Readers interested in details regarding elicitable, non-
elicitable, and jointly elicitable transformations may refer to
Gneiting (2011), Brehmer and Strokorb (2019), and refer-
ences therein.

A strictly proper scoring rule should compare the whole
distribution and not only specific summary statistics. The
continuous ranked probability score (CRPS; Matheson and
Winkler, 1976) is the most popular univariate scoring rule in
weather forecasting applications and can be expressed by the
following:

CRPS(F,y)= EF |X− y| −
1
2
EF |X−X′| (6)

=

∫
R

BSz(F,y)dz (7)

= 2

1∫
0

QSα(F,y)dα, (8)

where y ∈ R andX andX′ are independent random variables
following F with a finite first moment. Equations (7) and
(8) show that the CRPS is linked with the BS and the QS.
Broadly speaking, as the QS discriminates a quantile associ-
ated with a specific level, integrating the QS across all lev-
els discriminates the quantile function that fully characterizes
univariate distributions. Similarly, integrating the BS across
all thresholds discriminates the cumulative distribution func-
tion that also fully characterizes univariate distributions. The
CRPS is a strictly proper scoring rule relative to P1(R). In ad-
dition, Eq. (6) indicates that the CRPS values have the same
units as observations. In the case of deterministic forecasts,
the CRPS reduces to the absolute error in its scoring function
form (Hersbach, 2000). The use of the CRPS for ensemble
forecast is straightforward using expectations as in Eq. (6).
Ferro et al. (2008), and Zamo and Naveau (2017) studied es-
timators of the CRPS for ensemble forecasts.

In addition to scoring rules based on scoring functions,
some scoring rules use the moments of the probabilistic fore-
cast F . The SE (Eq. 2) depends on the forecast only through
its mean µF . The Dawid–Sebastiani score (DSS; Dawid and
Sebastiani, 1999) is a scoring rule depending on the forecast
F only through its first two central moments. The DSS is
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expressed as

DSS(F,y)= 2log(σF )+
(µF − y)2

σF 2 , (9)

whereµF and σF 2 are the mean and the variance of the distri-
bution F . The DSS is proper relative to P2(R) but not strictly
proper since optimal forecasts only need to correctly predict
the first two central moments (see Sect. B1). Dawid and Se-
bastiani (1999) proposed a more general class of proper scor-
ing rules but the DSS, as defined in Eq. (9), can be seen as a
special case of the logarithmic score (up to an additive con-
stant), introduced in Appendix A.

Another scoring rule relying on the central moments of the
probabilistic forecast F up to order three is the error-spread
score (ESS; Christensen et al., 2014). The ESS is defined as

ESS(F,y)= (σF 2
− (µF − y)2

− (µF − y)σF γF )2, (10)

where µF , σ 2
F , and γF are the mean, the variance, and the

skewness of the probabilistic forecast F . The ESS is proper
relative to P4(R). As for the other scoring rules only based on
moments of the forecast presented above, the expected ESS
compares the probabilistic forecast F with the true distribu-
tion only via their four first moments (see Sect. B1). Scoring
rules based on central moments of higher order could be built
following the process described in Christensen et al. (2014).
Such scoring rules benefit from the interpretability induced
by their construction and the ease of application to ensemble
forecasts. However, they would also inherit the limitation of
being only proper.

Additional scoring rules relying on the existence of the
probability density function (PDF) of the forecasts are pre-
sented in Appendix A. Readers may refer to the various re-
views of scoring rules available (see, e.g., Bröcker and Smith,
2007; Gneiting and Raftery, 2007; Gneiting and Katzfuss,
2014; Thorarinsdottir and Schuhen, 2018; Alexander et al.,
2022). Formulas of the expected scoring rules presented are
available in Sect. B1.

Strictly proper scoring rules can be seen as more powerful
than proper scoring rules. This is theoretically true when the
interest is in identifying the ideal forecast (i.e., the true dis-
tribution). Regardless, in practice, scoring rules are also used
to rank probabilistic forecasts and diagnostic tools, and with
that in mind, a given ranking of forecasts in terms of the ex-
pectation of a strictly proper scoring rule (such as the CRPS)
is harder to interpret than a ranking in terms of the expec-
tation of a proper but more interpretable scoring rule (such
as the SE). The SE is known to discriminate the mean, and
thus, a better rank in terms of expected SE implies a better
prediction of the mean of the true distribution. Conversely, a
better ranking in terms of CRPS implies a better prediction
of the whole prediction, but it might not be useful as is, and
other verification tools are needed to know what caused this
ranking. When forecasts are not calibrated, there seems to be
a trade-off between interpretability and strict propriety. This

becomes more prominent in a multivariate setting as fore-
casts are more complex to characterize. However, simpler in-
terpretable scoring rules and strictly proper scoring rules can
be used complementarily. The framework proposed in Sect. 3
aims at helping the construction of interpretable proper scor-
ing rules.

2.3 Multivariate scoring rules

In a multivariate setting, forecasters cannot solely use uni-
variate scoring rules as they are not able to distinguish fore-
casts beyond their 1-dimensional marginals. Univariate scor-
ing rules cannot discriminate the dependence structure be-
tween the univariate margins. In the following, we consider
F ∈ F ⊂ P(Rd ) a multivariate probabilistic forecast and y ∈
Rd an observation.

Even if there is no natural ordering in the multivariate case,
the notions of median and quantile can be adapted using level
sets, and then scoring rules using these quantities can be con-
structed (see, e.g., Meng et al., 2023). Nonetheless, as the
mean is well defined, the squared error (SE) can be defined
in the multivariate setting:

SE(F,y)= ‖µF − y‖
2
2, (11)

where µF is the mean vector of the distribution F . Similar
to the univariate case, the SE is proper relative to P2(Rd ).
Moments are well defined in the multivariate case allowing
the multivariate version of the Dawid–Sebastiani score to be
defined. The Dawid–Sebastiani score (DSS) was proposed in
Dawid and Sebastiani (1999) as

DSS(F,y)= log(det6F )+ (µF − y)T6−1
F (µF − y),

where µF and 6F are the mean vector and the covariance
matrix of the distribution F . The DSS is proper relative to
P2(Rd ). The second term in the DSS is the squared Maha-
lanobis distance between y and µF .

To define a strictly proper scoring rule for multivariate
forecast, Gneiting and Raftery (2007) proposed the energy
score (ES) as a generalization of the CRPS to the multivari-
ate case. The ES is defined by

ESα(F,y)= EF ‖X− y‖α2 −
1
2
EF ‖X−X′‖α2 , (12)

where α ∈ (0,2) and F ∈ Pα(Rd ), the class of probabilities
on Rd such that the moment of order α is finite. The defi-
nition of the ES is related to the kernel form of the CRPS
(Eq. 6), to which the ES reduces for d = 1 and α = 1. As
pointed out in Gneiting and Raftery (2007), in the limit-
ing case α = 2, the ES becomes the SE (Eq. 11). The ES
is strictly proper relative to Pα(Rd ) (Székely, 2003; Gneit-
ing and Raftery, 2007) and is suited for ensemble fore-
casts (Gneiting et al., 2008). Moreover, the parameter α
gives some flexibility: a small value of α can be chosen
and still lead to a strictly proper scoring rule, for example,
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when higher-order moments are ill-defined. The discrimina-
tion ability of the ES has been studied in numerous studies
(see, e.g., Pinson and Girard, 2012; Pinson and Tastu, 2013;
Scheuerer and Hamill, 2015). Pinson and Girard (2012) stud-
ied the ability of the ES to discriminate among rival sets
of scenarios (i.e., forecasts) of wind power generation. In
the case of bivariate Gaussian processes, Pinson and Tastu
(2013) illustrated that the ES appears to be more sensitive to
misspecifications of the mean rather than misspecifications
of the variance or dependence structure. The lack of sensitiv-
ity to misspecifications of the dependence structure has been
confirmed in Scheuerer and Hamill (2015) using multivariate
Gaussian random vectors of higher dimension. Moreover, the
discriminatory power of the ES deteriorates in higher dimen-
sions (Pinson and Tastu, 2013).

To overcome the discriminatory limitation of the ES,
Scheuerer and Hamill (2015) proposed the variogram score
(VS), a score targeting the verification of the dependence
structure. The VS of order p is defined as

VSp(F,y)=
d∑

i,j=1
wij

(
EF

[
|Xi −Xj |

p
]
− |yi − yj |

p
)2
, (13)

where Xi and Xj are, respectively, the ith and j th compo-
nents of the random vector X following F , wij are non-
negative weights and p > 0. The variogram score capitalizes
on the variogram used in spatial statistics to access the depen-
dence structure. The VS cannot detect an equal bias across
all components. The VS of order p is proper relative to the
class of probabilities on Rd such that the 2pth moments of
all univariate margins are finite. The weight values wij can
be selected to emphasize or depreciate certain pair interac-
tions. For example, in a spatial context, it can be expected the
dependence between pairs decays with the distance: choos-
ing the weights proportional to the inverse of the distance
between locations can increase the signal-to-noise ratio and
improve the discriminatory power of the VS (Scheuerer and
Hamill, 2015).

Multivariate counterparts of univariate scoring rules re-
lying on the existence of forecast PDFs are presented and
discussed in Appendix A. Additionally, other multivari-
ate scoring rules have been proposed among which the
marginal-copula score (Ziel and Berk, 2019) or wavelet-
based scoring rules (see, e.g., Buschow et al., 2019), which
are briefly mentioned in Sect. 4 in light of the aggregation-
and-transformation-based framework. However, fewer mul-
tivariate scoring rules have been proposed compared to the
univariate setting. These scoring rules are briefly mentioned
in Sect. 4 in light of the proper scoring rule construction
framework proposed in this article. Section B2 provides for-
mulas for the expected multivariate scoring rules presented
above.

2.4 Spatial verification tools

Spatial forecasts are a very important group of multivariate
forecasts as they are involved in various applications (e.g.,
weather or renewable energy forecasting). Spatial fields are
often characterized by high dimensionality and potentially
strong correlations between neighboring locations. These
characteristics make the verification of spatial forecasts very
demanding in terms of discriminating misspecified depen-
dence structures, for example. In the case of spatial fore-
casts, it is known that traditional verification methods (e.g.,
grid point-by-grid point verification) may result in a dou-
ble penalty. The double-penalty effect was pinned in Ebert
(2008) and refers to the fact that if a forecast presents a spa-
tial (or temporal) shift with respect to observations, the error
made would be penalized twice: once where the event was
observed and again where the forecast predicted it. In partic-
ular, high-resolution forecasts are more penalized than less
realistic blurry forecasts. The double-penalty effect may also
affect spatio-temporal forecasts in general.

In parallel with the development of scoring rules, various
application-focused spatial verification methods have been
developed to evaluate weather forecasts. The efforts toward
improving spatial verification methods have been guided by
two projects: the intercomparison project (ICP; Gilleland
et al., 2009) and its second phase, called Mesoscale Verifi-
cation Intercomparison over Complex Terrain (MesoVICT;
Dorninger et al., 2018). These projects resulted in the com-
parison of spatial verification methods with a particular focus
on understanding their limitations and clarifying their inter-
pretability. Only a few links exist between the approaches
studied in these projects (and the work they induced) and
the proper scoring rule framework. In particular, Casati et al.
(2022) noted “a lack of representation of novel spatial verifi-
cation methods for ensemble prediction systems”. In general,
there is a clear lack of methods focusing on the spatial ver-
ification of probabilistic forecasts. Moreover, to help bridge
the gap between the two communities, we would like to re-
call the approach of spatial verification tools in the light of
the scoring rule framework introduced above.

One of the goals of the ICP was to provide insights into
how to develop methods robust to the double-penalty effect.
In particular, Gilleland et al. (2009) proposed a classification
of spatial verification tools updated later in Dorninger et al.
(2018), resulting in a five-category classification. The classes
differ in the computing principle they rely on. Not all spatial
verification tools mentioned in these studies can be applied
to probabilistic forecasts, some of them can solely be applied
to deterministic forecasts. In the following description of the
classes, we try to focus on methods suited to probabilistic
forecasts or at least the special case of ensemble forecasts.

Neighborhood-based methods consist of applying a
smoothing filter to the forecast and observation fields to
prevent the double-penalty effect. The smoothing filter can
take various forms (e.g., a minimum, a maximum, a mean,
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or a Gaussian filter) and be applied over a given neigh-
borhood. For example, Stein and Stoop (2022) proposed a
neighborhood-based CRPS for ensemble forecasts gathering
forecasts and observations made within the neighborhood
of the location considered. The use of a neighborhood pre-
vents the double-penalty effect from taking place at scales
smaller than that of the neighborhood. In this general defini-
tion, neighborhood-based methods can lead to proper scoring
rules; in particular, see the notion of patches in Sect. 4.

Scale-separation techniques denote methods for which the
verification is obtained after comparing forecast and observa-
tion fields across different scales. The scale-separation pro-
cess can be seen as several single-bandpass spatial filters
(e.g., projection onto a base of wavelets as wavelet-based
scoring rules; Buschow et al., 2019). However, to obtain
proper scoring rules, the comparison of the scale-specific
characteristics needs to be performed using a proper scor-
ing rule. Section 4 provides a discussion on wavelet-based
scoring rules and their propriety.

Object-based methods rely on the identification of objects
of interest and the comparison of the objects obtained in
the forecast and observation fields. Object identification is
application-dependent and can take the form of objects that
forecasters are familiar with (e.g., storm cells for precipi-
tation forecasts). A well-known verification tool within this
class is the structure–amplitude–location (SAL; Wernli et al.,
2008) method which has been generalized to ensemble fore-
casts in Radanovics et al. (2018). The three components of
the ensemble SAL do not lead to proper scoring rules. They
rely on the mean of the forecast within scoring functions in-
consistent with the mean. Thus, the ideal forecast does not
minimize the expected value. Nonetheless, the three compo-
nents of the SAL method could be adapted to use proper scor-
ing rules sensitive to the misspecification of the same fea-
tures.

Field-deformation techniques consist of deforming the
forecasts field into the observation field (the similarity be-
tween the fields can be ensured by a metric of interest). The
field of distortion associated with the morphing of the fore-
cast field into the observation field becomes a measure of
the predictive performance of the forecast (see, e.g., Han and
Szunyogh, 2018).

Distance measures between binary images, such as ex-
ceedance of a threshold of interest, of the forecast and ob-
servation fields. These methods are inspired by development
in image processing (e.g., Baddeley’s delta measure, Gille-
land, 2011).

These five categories partially overlap as it can be argued
that some methods belong to multiple categories (e.g., some
distance measures techniques can be seen as a mix of field
deformation and object-based). They define different prin-
ciples that can be used to build verification tools that are
not subject to the double-penalty effect. The reader may re-
fer to Dorninger et al. (2018) and references therein for de-
tails on the classification and the spatial verification meth-

ods not used thereafter. The frontier between the aforemen-
tioned spatial verification methods and the proper scoring
rule framework is porous with, for example, wavelet-based
scoring rules belonging to both. It appears that numerous spa-
tial verification methods seek interpretability, and we believe
that this is not incompatible with the use of proper scoring
rules. We propose the following framework to facilitate the
construction of interpretable proper scoring rules.

3 A framework for interpretable proper scoring rules

We define a framework to design proper scoring rules for
multivariate forecasts. Its definition is motivated by remarks
on the multivariate forecast literature and operational use.
There seems to be a growing consensus around the fact that
no single verification method has it all (see, e.g., Bjerregård
et al., 2021). Most of the studies comparing forecast verifi-
cation methods highlight that verification procedures should
not be reduced to the use of a single method and that each
procedure needs to be well suited to the context (see, e.g.,
Scheuerer and Hamill, 2015; Thorarinsdottir and Schuhen,
2018). Moreover, from a more theoretical point of view,
(strict) propriety does not ensure discrimination ability, and
different (strictly) proper scoring rules can lead to different
rankings of sub-optimal forecasts. Proper scoring rules may
have multiple optimal forecasts, and, in a general setting, no
guarantee is given on their relevance. Moreover, strict pro-
priety ensures that the optimal forecast is unique and that it
is the ideal forecast (i.e., the true distribution); however, no
guarantee is available for forecasts within the vicinity of the
minimum in the general case. This is particularly problematic
since, in practice, the unavailability of the ideal distribution
makes it impossible to know if the minimum expected score
is achieved. In the case of calibrated forecasts, the expected
scoring rule is the entropy of the forecast, and the ranking
of forecasts is thus linked to the information carried by the
forecast (see Corollary 4, Holzmann and Eulert, 2014, for
the complete result).

Standard verification procedures gradually increase the
complexity of the quantities verified. Procedures often start
by verifying simple quantities such as quantiles, mean, or
binary events (e.g., prediction of dry/wet events for precip-
itation). If multiple forecasts have a satisfying performance
for these quantities, marginal distributions of the multivari-
ate forecast can be verified using univariate scoring rules. Fi-
nally, multivariate-related quantities, such as the dependence
structure, can be verified through multivariate scoring rules.
Forecasters rely on multiple verification methods to evalu-
ate a forecast, and ideally, the verification method should be
interpretable by targeting specific aspects of the distribution
or thanks to the forecaster’s experience. This type of verifi-
cation, or diagnostic, procedure allows the forecaster to un-
derstand what characterizes the predictive performance of a
forecast instead of directly looking at a strictly proper scor-
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ing rule giving an encapsulated summary of the predictive
performance.

As mentioned in Sect. 2.1, various multivariate forecast
calibration methods rely on the calibration of univariate
quantities obtained by dimension reduction techniques. As
the general principle of multivariate calibration leans on
studying the calibration of quantities obtained by pre-rank
functions, Allen et al. (2024) argue that calibration pro-
cedures should not rely on a single pre-rank function and
should instead use multiple simple pre-rank functions and
leverage the interpretability of the associated PIT/rank his-
tograms. A similar principle can be applied to increase the in-
terpretability of verification methods based on scoring rules.

As general multivariate strictly proper scoring rules fail
to distinguish forecasts for arbitrary misspecifications and
they may lead to different ranking of sub-optimal forecasts,
multivariate verification could benefit from using multiple
proper scoring rules targeting specific aspects of the fore-
casts. Thereby, forecasters know which aspect of the obser-
vations are well predicted by the forecast and can update their
forecast or select the best forecast among others in the light
of this better understanding of the forecast. To facilitate the
construction of interpretable proper scoring rules, we define
a framework based on two principles: transformation and ag-
gregation.

The transformation principle consists of transforming both
the forecast and observation before applying a scoring rule.
Heinrich-Mertsching et al. (2024) introduced this general
principle in the context of point processes. In particular, they
present scoring rules based on summary statistics targeting
the clustering behavior or the intensity of the processes.
In a more general context, the use of transformations was
disseminated in the literature for several years (see Sect. 4).
Proposition 1 shows how transformations can be used to
construct proper scoring rules.

Proposition 1. Let F ⊂ P(Rd ), and let F ∈ F be a
forecast and y ∈ Rd an observation. Let T : Rd→ Rk be
a transformation, and let S be a scoring rule on Rk that is
proper relative to T (F)= {L(T (X)),X ∼ F ∈ F}. Then,
the scoring rule

ST (F,y)= S(T (F ),T (y))

is proper relative to F . If S is strictly proper relative to
T (F) and T is injective, then the resulting scoring rule ST
is strictly proper relative to F .

To gain interpretability, it is natural to have dimension-
reducing transformations (i.e., k < d), which generally leads
to T not being injective and ST not being strictly proper.
Nonetheless, as expressed previously, interpretability is im-
portant, and it can mostly be leveraged if the transformation
simplifies the multivariate quantities. Particularly, it is gener-
ally preferred to choose k = 1 to make the quantity easier to
interpret and focus on specific information contained in the

forecast or the observation. Straightforward transformations
can be projections on a k-dimensional margin or a summary
statistic relevant to the application, such as the total over a
catchment area in the case of precipitation. Simple trans-
formations may be preferred for their interpretability, and
their potential lack of general discrimination ability can be
made up for by multiple simpler transformations. Numerous
examples of transformations are presented, discussed, and
linked to the literature and applications in Sect. 4. The proof
of Proposition 1 is provided in Sect. E1.

The second principle is the aggregation of scoring rules.
Aggregation can be used on scoring rules to combine them
and obtain a single scoring rule summarizing the evaluation.
Note that Dawid and Musio (2014) introduced the notion
of composite score, which is related to the aggregation
principle but is closer to the combined application of both
principles. Proposition 2 presents a general aggregation
principle to build proper scoring rules. This principle has
been known since proper scoring rules were introduced.

Proposition 2. Let S = {Si}1≤i≤m be a set of proper
scoring rules relative to F ⊂ P(Rd ). Let w = {wi}1≤i≤m be
non-negative weights. Then, the scoring rule

SS,w(F,y)=
m∑
i=1

wiSi(F,y)

is proper relative to F . If at least one scoring rule Si is
strictly proper relative to F and wi > 0, the aggregated
scoring rule SS,w is strictly proper relative to F .

It is worth noting that Proposition 2 does not specify
any strict condition for the scoring rules used. For example,
the scoring rules aggregated do not need to be the same, do
not need to be expressed in the same units, or even act on
the same objects. Aggregated scoring rules can be used to
summarize the evaluation of univariate probabilistic fore-
casts (e.g., aggregation of CRPS at different locations) or to
summarize complementary scoring rules (e.g., aggregation
of the Brier score and a threshold-weighted CRPS). Unless
stated otherwise, for simplicity, we restrict ourselves to cases
where the aggregated scoring rules are of the same type.

Bolin and Wallin (2023) showed that the aggregation of
scoring rules can lead to unintuitive behaviors. For the ag-
gregation of univariate scoring rules, they showed that scor-
ing rules do not necessarily have the same dependence on
the scale of the forecasted phenomenon: this leads to scoring
rules putting more (or less) emphasis on the forecasts with
larger scales. They define and propose local scale-invariant
scoring rules to make scale-agnostic scoring rules. When per-
forming aggregation, it is important to be aware of potential
preferences or biases of the scoring rules.

We only consider aggregation of proper scoring rules
through a weighted sum. To conserve (strict) propriety of
scoring rules, aggregations can take, more generally, the form
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of (strictly) isotonic transformations, such as a multiplicative
structure when positive scoring rules are considered (Ziel and
Berk, 2019).

The two principles of Proposition 1 and Proposition 2
can be used simultaneously to create proper scoring rules
based on both aggregation and transformation as presented
in Corollary 1.

Corollary 1. Let T = {Ti}1≤i≤m be a set of transfor-
mations from Rd to Rk . Let ST = {STi }1≤i≤m be a set of
proper scoring rules where S is proper relative to Ti(F) for
all 1≤ i ≤m. Let w = {wi}1≤i≤m be non-negative weights.
Then, the scoring rule

SST ,w(F,y)=
m∑
i=1

wiSTi (F,y)

is proper relative to F .

Strict propriety relative to F of the resulting scoring
rule is obtained as soon as there exists 1≤ i ≤m such
that S is strictly proper relative to Ti(F), Ti is injective,
and wi > 0. The result of Corollary 1 can be extended to
transformations with images in different dimensions and
paired with different scoring rules (see Appendix C).

Any kernel score (which encapsulates the BS, the CRPS,
the ES, and the VS) can be expressed as an aggregation
of squared errors between transformations of the forecast–
observation pair; see Appendix D. As we see in the examples
developed in the following section, numerous scoring rules
used in the literature are based on these two principles of ag-
gregation and transformation.

4 Applications of the aggregation and
transformation principles

4.1 Projections

Certainly, the most direct type of transformation is projec-
tions of forecasts and observations on their k-dimensional
marginals. We denote Ti as the projection on the ith com-
ponent such that Ti(X)=Xi for all X ∈ Rd . This allows the
forecaster to assess the predictive performance of a forecast
for a specific univariate marginal independently of the other
variables. If S is a univariate scoring rule proper relative to
P(R), then Proposition 1 leads to STi being proper relative to
P(Rd ). The resulting scoring rule STi can be useful if a given
marginal is of particular interest (e.g., location of high inter-
est in a spatial forecast). However, it can be more interest-
ing to aggregate such scoring rules across all 1-dimensional
marginals. This leads to the following scoring rule:

SST ,w(F,y)=
d∑
i=1

wiSTi (F,y),

where ST is {STi }1≤i≤d . This setting is popular for assess-
ing the performance of multivariate forecasts, and we briefly
present examples from the literature falling under this set-
ting. Aggregation of CRPS (Eq. 6) across locations and/or
lead times is common practice for plots or comparison tables
with uniform weights (Gneiting et al., 2005; Taillardat et al.,
2016; Rasp and Lerch, 2018; Schulz and Lerch, 2022; Lerch
and Polsterer, 2022; Hu et al., 2023) or with more complex
schemes such as weights proportional to the cosine of the
latitude (Ben Bouallègue et al., 2024b). The SE (Eq. 2) and
AE (Eq. 3) can be aggregated to obtain RMSE and MAE, re-
spectively (Delle Monache et al., 2013; Gneiting et al., 2005;
Lerch and Polsterer, 2022; Pathak et al., 2022). Bremnes
(2019) aggregated QSs (Eq. 4) across stations and different
quantile levels of interest with uniform weights. Note that
the multivariate SE (Eq. 11) can be rewritten as the sum of
univariate SE across 1-marginals: SE(F,y)= ‖µF − y‖22 =∑d
i=1SETi (F,y).
The second simplest choice is the 2-dimensional case, al-

lowing for a focus on pair dependency. We denote T(i,j ) as
the projection on the ith and j th components (i.e., the (i,j )
pair of components) such that T(i,j )(X)=Xi,j = (Xi,Xj ).
In this setting, S has to be a bivariate proper scoring rule
to construct a proper scoring rule ST(i,j ) . The aggregation of
such scoring rules becomes

SST ,w(F,y)=
d∑

i,j=1
i 6=j

wi,jST(i,j ) (F,y).

As suggested in Scheuerer and Hamill (2015) for the VS
(Eq. 13), the weight values wi,j can be chosen appropriately
to optimize the signal-to-noise ratio. For example, in a spatial
setting where the dependence between locations is believed
to decrease with the distance separating them, the weight val-
ues wi,j can be chosen to be proportional to the inverse of
the distance. This bivariate setting is less used in the liter-
ature; we present two articles using or mentioning scoring
rules within this scope. In a general multivariate setting, Ziel
and Berk (2019) suggest the use of a marginal-copula scor-
ing rule where the copula score is the bivariate copula energy
score (i.e., the aggregation of the energy scores across all the
regularized pairs). To focus on the verification of the tempo-
ral dependence of spatio-temporal forecasts, Ben Bouallègue
et al. (2024b) use the bivariate energy score over consecutive
lead times.

In a more general setup, we consider projection on k-
dimensional marginals. In order to reduce the number of
transformation-based scores to aggregate, it is standard to
focus on localized marginals (e.g., belonging to patches of
a given spatial size). Denote P = {Pi}1≤i≤m as a set of valid
patches (for some criterion or of a given size) and SP as the
set of transformation-based scores associated with the pro-
jections on the patches P . Given a multivariate scoring rule
S proper relative to P(Rk), we can construct the following
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aggregated score:

SSP ,w(F,y)=
∑
P∈P

wP SP (F,y).

This construction can be used to create a scoring rule only
considering the dependence of localized components given
that the patches are defined in that sense. The use of patches
has similar benefits as the weighting of pairs given a belief
on their correlations: obtain a better signal-to-noise ratio and
improve the discrimination of the resulting scoring rule. For
example, Pacchiardi et al. (2024) introduced patched energy
scores as scoring rules to minimize in order to train a gener-
ative neural network. The patched energy scores are defined
for S = ES and square patches spaced by a given stride. In
a general setting, the patched ES, resulting from the aggre-
gation of the ES (with α = 1) over the set of patches P , is
defined as

ESP,wP (F,y)=
∑
P∈P

wPES1(FP ,yP ), (14)

where P is an ensemble of spatial patches, wP is the weight
associated with a patch P ∈ P , and FP is the marginal of F
over the patch P . To make the scoring more interpretable, it
is preferable to consider patches with a fixed size and uni-
form weights (wP = 1/|P|). The patched ES reduces to the
aggregated CRPS and the ES when the patches span a single
location and all the locations, respectively.

Patch-based scoring rules appear as a natural member of
the neighborhood-based methods of the spatial verification
classification mentioned in Sect. 2.4. Given that the patches
are correctly chosen (e.g., of a size appropriate to the prob-
lem at hand), patch-based scoring rules are not subject to the
double-penalty effect.

As noticeable by the low number of examples available
in the literature, aggregation (and direct use) of scoring
rules based on projection in dimension k ≥ 2 is not stan-
dard practice, probably because such projections may lack
interpretability. Instead, to assess the multivariate aspects of
a forecast, scoring rules relying on summary statistics are of-
ten favored.

4.2 Summary statistics

Summary statistics are a central tool of statisticians’ tool-
boxes as they provide interpretable and understandable quan-
tities that can be linked to the behavior of the phenomenon
studied. Moreover, their interpretability can be enhanced by
the forecaster’s experience, and this can be leveraged when
constructing scoring rules based on them. Summary statis-
tics are commonly present during the verification procedure
and this can be extended by the use of new scoring rules de-
rived from any summary statistic of interest. For example,
numerous summary statistics can come in handy when study-
ing precipitations over a region covered by gridded observa-
tion and forecasts. Firstly, it is common practice to focus on

binary events, such as the exceedance of a threshold (e.g.,
the presence or absence of precipitation). This can be studied
using the BS (Eq. 5) on all 1-dimensional marginals, as men-
tioned in the previous subsection, but also in a multivariate
manner through the fraction of threshold exceedances (FTE)
over patches as presented further. Regarding precipitation, it
is standard to be interested in the prediction of total precip-
itation over a spatial region or a time period. This transfor-
mation of the field can be leveraged to construct a scoring
rule. Finally, it is important to verify that the spatial structure
of the forecast matches the spatial structure of observations.
The spatial structure can be (partially) summarized by the
variogram or by wavelet transformations. The predictive per-
formance for the spatial structure can be assessed by their
associated scoring rules: the VS of order p (Eq. 13) and the
wavelet-based score (Buschow et al., 2019). Other summary
statistics can be of interest to the phenomenon studied, Hein-
rich-Mertsching et al. (2024) present summary statistics spe-
cific to point processes focusing on clustering and intensity.

The best-known summary statistic is certainly the mean. In
spatial statistics, it can be used to avoid double penalization
when we are less interested in the exact location of the fore-
cast but rather in a regional prediction. The transformation
associated with the mean is

meanP (X)=
1
|P |

∑
i∈P

Xi, (15)

where P denotes a patch and |P | its dimension. meanP (X)
is the average value of X over the spatial patch P . Propo-
sition 1 ensures that this transformation can be used to con-
struct proper scoring rules. The scoring rule involved in the
construction has to be univariate; however, the choice de-
pends on the general properties preferred. For example, the
SE would focus on the mean of the transformed quantity,
whereas the AE would target its median. We propose the ag-
gregated CRPS of the spatial mean, which is defined as

CRPSmeanP ,wP (F,y)=
∑
P∈P

wP CRPSmeanP (F,y)

=

∑
P∈P

wP CRPS(meanP (F ),meanP (y)), (16)

where P is an ensemble of spatial patches, wP is the weight
associated with a patch P ∈ P , and meanP is the spatial
mean over the patch P (Eq. 15). Practical details regarding
the insensitivity to the double-penalty effect and the choice
of patches are given in Sect. 5.4.

It is worth noting that the total can be derived by the mean
transformation by removing the prefactor:

totalP (X)=
∑
i∈P

Xi .

In the case of precipitation, the total is more used than the
mean since the total precipitation over a river basin can be
decisive in evaluating flood risk. For example, one could con-
struct an adapted version of the amplitude component of the
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SAL method (Wernli et al., 2008; Radanovics et al., 2018)
using the SE if the mean total precipitation is of interest.
Gneiting (2011) presents other possible links between the
quantity of interest and the scoring rule associated. Simi-
larly, the transformations associated with the minimum and
the maximum over a patch P can be obtained:

minP (X)=min
i∈P

(Xi),

maxP (X)=max
i∈P

(Xi).

The maximum or minimum can be useful when considering
extreme events. It can help understand if the severity of an
event is well captured. For example, as minimum and max-
imum temperatures affect crop yields (see, e.g., Agnolucci
et al., 2020), it can be of particular interest that a weather
forecast within an agricultural model correctly predicts the
minimum and maximum temperatures. After studying the
mean, it is natural to think of the moments of higher order.
We can define the transformation associated with the vari-
ance over a patch P as

VarP (X)=
1
|P |

∑
i∈P

(Xi −meanP (X))2.

The variance transformation can provide information on the
fluctuations, or variability, of X over a patch and be used to
assess the prediction of the local variability by the forecast. In
a more general setup, it can be of interest to use a transforma-
tion related to the moment of order n, and the transformation
associated follows naturally:

Mn,P (X)=
1
|P |

∑
i∈P

Xni .

More application-oriented transformations are the central or
standardized moments (e.g., skewness or kurtosis). Their
transformations can be obtained directly from estimators. As
underlined in Heinrich-Mertsching et al. (2024), since Propo-
sition 1 applies to any transformation, there is no condition
on having an unbiased estimator to obtain proper scoring
rules.

Threshold exceedance plays an important role in decision-
making such as weather alerts. For example, MeteoSwiss’
heat warning levels are based on the exceedance of daily
mean temperature over three consecutive days (Allen et al.,
2023a). They can be defined by the simultaneous exceedance
of a certain threshold, and the fraction of threshold ex-
ceedance (FTE) is the summary statistic associated.

FTEP,t (X)=
1
|P |

∑
i∈P

1{Xi≥t} (17)

FTEs can be used as an extension of univariate threshold ex-
ceedances, and it prevents the double-penalty effect. FTEs
may be used to target compound events (e.g., the simultane-
ous exceedances of a threshold at multiple locations of inter-
est). Roberts and Lean (2008) used an FTE-based SE over

different sizes of neighborhoods (patches) to verify at which
scale forecasts become skillful. To assess extreme precipi-
tation forecasts, Rivoire et al. (2023) introduces scores for
extremes with temporal and spatial aggregation separately.
Extreme events are defined as values higher than the seasonal
95 % quantile. In the subseasonal-to-seasonal range, the tem-
poral patches are 7 d windows centered on the extreme event,
and the spatial patches are square boxes of 150 km× 150 km
centered on the extreme event. The final scores are trans-
formed BSs (Eq. 5) with a threshold of one event predicted
across the patch. We propose the aggregated SE of the FTE,
which is defined as

SEFTEP,t ,wP (F,y)=
∑
P∈P

wP SEFTEP,t (F,y)

=

∑
P∈P

wP SE
(
FTEP,t (F ),FTEP,t (y)

)
=

∑
P∈P

wP
(
EF [FTEP,t (X)] −FTEP,t (y)

)2
, (18)

where P is an ensemble of spatial patches, wP is the weight
associated with a patch P ∈ P , and FTEP,t is the fraction of
threshold exceedance over the patch P and for the threshold
t (Eq. 17). This scoring rule is proper and focuses on the
prediction of the exceedance of a threshold t via the fraction
of locations over a patch P exceeding said threshold. The
resemblance with the Brier score is clear and the aggregated
SE of FTE becomes the aggregated BS when patches of a
single location are considered.

Correctly predicting the structure dependence is crucial in
multivariate forecasting. Variograms are summary statistics
representing the dependence structure. The variogram of or-
der p of the pair (i,j ) corresponds to the following transfor-
mation:

γ
p
ij (X)= |Xi −Xj |p.

As mentioned in the Introduction, using both the transforma-
tion and aggregation principles, we can recover the VS of
order p (Eq. 13) introduced in Scheuerer and Hamill (2015):

VSp(F,y)=
d∑

i,j=1
wijSEγ pij (F,y)

=

d∑
i,j=1

wij
(
EF [|Xi −Xj |p] − |yi − yj |p

)2
.

Along with the well-known VS of order p, Scheuerer and
Hamill (2015) introduced alternatives where the scoring rule
applied on the transformation is the CRPS (Eq. 6) or the
AE (Eq. 3) instead of the SE (Eq. 2). As mentioned pre-
viously, under the intrinsic hypothesis of Matheron (1963)
(i.e., pairwise differences only depend on the distance be-
tween locations), the weights can be selected to obtain an
optimal signal-to-noise ratio. Moreover, the weights could be
selected to investigate a specific scale by giving a non-zero
weight to pairs separated by a given distance.
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In the case of spatial forecasts over a grid of size d × d , a
spatial version of the variogram transformation is available:

γ
p

i,j (X)= |Xi −Xj |p,

where i,j ∈D = {1, . . .,d}2 are the coordinates of grid
points. Under the intrinsic hypothesis of Matheron (1963),
the variogram between grid points separated by the vector h
can be estimated by

γX(h)=
1

2|D(h)|

∑
i∈D(h)

γi,i+h(X),

where D(h)= {i ∈D : i+h ∈D}. This directed variogram
can be used to target the verification of the anisotropy of
the dependence structure. The isotropy transformation asso-
ciated with the vector h can be defined by

Tiso,h(h)=−

(
γX(h)− γX(h⊥)

)2
2γX(h)2

|D(h)| +
2γX(h⊥)2

|D(h⊥)|

, (19)

where h⊥ = (−h2,h1) is orthogonal to h := (h1,h2). This
transformation is the isotropy pre-rank function proposed in
Allen et al. (2024) when h= (h,0). The isotropy transfor-
mation considers the orthogonal directions formed by the
abscissa and ordinate axes and evaluates how the variogram
changes between these directions. The transformation leads
to negative or zero quantities, with values close to zero char-
acterizing isotropy and negative values corresponding to the
anisotropy of the variograms in the directions and at the scale
involved.

We propose two scoring rules that are used in Sects. 5 and
6: the anisotropic score and the power-variation score. We
define the anisotropic score (AS), in its general form, as

AS(F,y)=
∑
h

wh STiso,h (F,y)

=

∑
h

wh S(Tiso,h(F ),Tiso,h(y)), (20)

where Tiso,h is a transformation summarizing the anisotropy
of a field (Eq. 19). The anisotropic score is constructed based
on the transformation principle to target misspecifications of
anisotropy in the dependence structure between forecast and
observations.

We propose the power-variation score of order p (PVS),
which is based on the power-variation transformation of or-
der p to focus on the discrimination of the regularity of the
random fields:

Tp,s(X)= |Xs+(1,1)−Xs+(1,0)−Xs+(0,1)+Xs |
p,

pVS(F,y)=
∑
s∈D∗

wsSETp,s (F,y)

=

∑
s∈D∗

ws(EF [Tp,s(X)] − Tp,s(y))2, (21)

where D∗ is the domain D restricted to grid points such
that Tp,s is defined (i.e., D∗ = {1, . . .,19}×{1, . . .,19}). Note
that in the literature on fractional random fields, the power-
variation of order p is an important characteristic used to
characterize the roughness of a random field and is com-
monly used for estimation purposes; see Benassi et al.
(2004), Basse-O’Connor (2021) and the references therein.

4.3 Other transformations

Transformations other than projections or summary statistics
can be used to target forecast characteristics. For example,
a transformation in the form of a change in coordinates or a
change in scale (e.g., a logarithmic scale) can be used to ob-
tain proper scoring rules. We highlight two families of scor-
ing rules that can be seen as transformation-based scoring
rules: wavelet-based scoring rules and threshold-weighted
scoring rules.

Generally speaking, wavelet-based scoring rules are built
thanks to a projection of forecast and observation fields onto
a wavelet basis. Based on the wavelet coefficients, dimension
reduction might be performed to target specific characteris-
tics such as the dependence structure or the location. The
resulting coefficients of the forecast fields are compared to
the coefficients of the observations fields using scoring rules
(e.g., squared error, SE, or energy score, ES). Wavelet trans-
formations are (complex) transformations, and thus, the scor-
ing rules associated fall within the scope of Proposition 1. In
particular, Buschow et al. (2019) used a dimension reduction
procedure resulting in the obtention of a mean and a scale
spectra and used scoring rules to compare forecasts and ob-
servation spectra. For example, the ES of the mean spectrum
is used and shows good discrimination ability when the scale
structure is misspecified.

Note that Buschow et al. (2019) proposed two other
wavelet-based scoring rules: one based on the earth mover’s
distance (EMD) of the scale histograms and one based on the
distance in the scale histograms’ center of mass. The EMD-
based scoring rules are not proper since the EMD is not a
proper scoring rule (Thorarinsdottir et al., 2013), and the so-
called distance between centers of mass is not a distance but
rather a difference in position, leading to an improper scor-
ing rule. However, the ES-based scoring rules are proper and
could be derived from scale histograms.

Despite their apparent complexity, wavelet transforma-
tions allow for targeting interpretable characteristics such as
the location (Buschow, 2022), the scale structure (Buschow
et al., 2019; Buschow and Friederichs, 2020) or the
anisotropy (Buschow and Friederichs, 2021). The transfor-
mations proposed for the deterministic forecasts setting in
most of these articles could be used as foundations for future
work willing to propose wavelet-based proper scoring rules
targeting the location, the scale structure, or the anisotropy.

As showcased in Heinrich-Mertsching et al. (2024) for a
specific example and hinted in Allen et al. (2024), trans-
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formations can also be used to emphasize certain outputs.
Threshold weighting is one of the three main types of weight-
ing conserving the propriety of scoring rules. Its name comes
from the fact that it corresponds to a weighting over differ-
ent thresholds in the case of CRPS (Eq. 7; Gneiting, 2011).
Recall that given a conditionally negative definite kernel ρ,
the associated kernel scoring rule Sρ is proper relative to
Pρ . Many popular scoring rules are kernel scores such as
the BS (Eq. 5), the CRPS (Eq. 6), the ES (Eq. 12), and the
VS (Eq. 13). By definition (Allen et al., 2023b, Definition 4),
threshold-weighted kernel scores are constructed as follows:

twSρ(F,y;v)= EF [ρ(v(X),v(y))]

−
1
2
EF [ρ(v(X),v(X′))] −

1
2
ρ(v(y),v(y))

= Sρ(v(F ),v(y)),

where v is the chaining function capturing how the empha-
sis is put on certain outputs. With this explicit definition,
it is obvious that threshold-weighted kernel scores are cov-
ered by the framework of Proposition 1. It can be noted that
Proposition 4 in Allen et al. (2023b) states that strict propri-
ety of the kernel score is preserved by the chaining function
v if and only if v is injective. Weighted scoring rules allow
for emphasizing particular outcomes: when studying extreme
events, it is often of particular interest to focus on values
larger than a given threshold t , and this can be achieved us-
ing the chaining rule v(x)= 1x≥t . Threshold-weighted scor-
ing rules have been used in verification procedures in the
literature; we illustrate its use through three different stud-
ies. Lerch and Thorarinsdottir (2013) aggregated across sta-
tion threshold-weighted CRPS to compare the upper tail per-
formance of different daily maximum wind speed forecasts.
Chapman et al. (2022) aggregated the threshold-weighted
CRPS across locations to study the improvement of statisti-
cal postprocessing techniques, the importance of predictors,
and the influence of the size of the training set on the perfor-
mance. Allen et al. (2023a) used threshold-weighted versions
of the CRPS, the ES, and the VS to compare the predictive
performance of forecasts regarding heat wave severity; the
scoring rules were aggregated across stations. Readers may
refer to Allen et al. (2023a) and Allen et al. (2023b) for in-
sightful reviews of weighted scoring rules in both univariate
and multivariate settings.

5 Simulation study

This section provides simulated examples to showcase the
different uses of the framework introduced in Sect. 3 to con-
struct interpretable proper scoring rules for multivariate fore-
casts. Four examples are developed. Firstly, a setup where the
emphasis is put on 1-marginal verification is proposed. This
setup serves as a means of recalling and showing the limita-
tions of strictly proper scoring rules and the benefits of inter-
pretable scoring rules in a concrete setting. Secondly, a stan-

dard multivariate setup is studied where popular multivariate
scoring rules (i.e., VS and ES) are compared to a multivari-
ate scoring rule aggregated over patches and an aggregation-
and-transformation-based scoring rule in their discrimination
ability regarding the dependence structure. Thirdly, a setup
introducing anisotropy in both observations and forecasts is
introduced. Fourthly, we propose a setup to test the sensitiv-
ity of scoring rules to the double-penalty effect, and we in-
troduce scoring rules that can be built to be resilient to some
manifestation of the double-penalty effect.

In these four numerical experiments, the spatial field
is observed and predicted on a regular 20× 20 grid D =
{1, . . .,20}× {1, . . .,20}. Observations are realizations of a
Gaussian random field (G(s))s∈D with zero mean and a
power-exponential covariance defined as

cov(G(s),G(s′))= σ0
2 exp

(
−

(
‖s− s′‖

λ0

)β0
)
,

s,s′ ∈D, (22)

where σ0
2 is the variance, λ0 is the range parameter, and β0

is the smoothness (or roughness) parameter. The parameters
are taken to be equal to σ0 = 1, λ0 = 3 and β0 = 1.

In each numerical experiment, we compare a few predic-
tive distributions, including the distribution generating ob-
servations and other ones deviating from the generative dis-
tributions in a specific way. These different predictive dis-
tributions are evaluated with different scoring rules, and the
aim is to illustrate the discriminatory ability of the different
scoring rules.

The simulation study uses 500 observations of the ran-
dom field (G(s))s∈D. The scoring rules are computed using
exact formulas when possible (see Appendix F), and, when
exact formulas are not available, they are computed based
on ensemble forecasts of 100 members. Estimated expecta-
tions over the 500 observations are computed, and the ex-
periment is repeated 10 times. The corresponding results are
represented by box plots. The units of the scoring rules are
rescaled by the average expected score of the true distribu-
tion (i.e., the ideal forecast). The statistical significance of the
ranking between forecasts is tested using a Diebold–Mariano
test (Diebold and Mariano, 1995). When deemed necessary,
statistical significance is mentioned for a confidence level of
95 %.

5.1 Marginals

This first numerical experiment focuses on the prediction of
the 1-dimensional marginal distributions and the aggregation
of univariate scoring rules. For simplicity, we consider only
stationary random fields so that the 1-marginal distribution
is the same at all grid points. Although similar conclusions
could be drawn from a univariate framework (i.e., with in-
dependent 1-dimensional rather than spatial observations),
this example aims to clarify the notion of interpretability and
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presents notions that is reused in the following examples. The
verification of marginals, along with other simple quantities,
is usually one of the first steps of any multivariate forecast
verification process.

Observations follow the model of Eq. (22), and multiple
competing forecasts are considered:

– the ideal forecast is the Gaussian distribution generating
observations and is used as a reference;

– the biased forecast is a Gaussian predictive distribution
with the same covariance structure as the observation
but a different mean, E[Fbias(s)] = c = 0.255;

– the overdispersed forecast and the underdispersed fore-
cast are Gaussian predictive distributions from the same
model as the observations, except for an overestimation
(σ = 1.4) and an underestimation (σ = 2/3) of the vari-
ance, respectively;

– the location-scale Student forecast is used where the
marginals follow location-scale Student t distributions
with parameters µ= 0 and df= 5, and τ is such that the
standard deviation is 0.745 and the covariance structure
the same as in Eq. (22).

In order to compare the predictive performance of fore-
casts, we use scoring rules constructed by aggregating uni-
variate scoring rules. Here, the aggregation is done with uni-
form weights since there is no prior knowledge on the loca-
tions. The univariate scoring rules considered are the con-
tinuous ranked probability score (CRPS), the Brier score
(BS), the quantile score (QS), the squared error (SE), and
the Dawid–Sebastiani score (DSS). Figure 1a compares five
different forecasts based on their expected CRPS. It can be
seen that all forecasts except for the ideal one have similar
expected values and no sub-optimal forecast is significantly
better than the others. In order to gain more insight into the
predictive performance of the forecast, it is necessary to use
other scoring rules. In practice, the distribution is unknown;
thus, it is impossible to know if a forecast is optimal. It is only
possible to provide a ranking linked to the closeness of the
forecast with respect to the observations. The definition of
closeness depends on the scoring rule used: for example, the
CRPS defines closeness in terms of the integrated quadratic
distance between the two cumulative distribution functions
(see, e.g., Thorarinsdottir and Schuhen, 2018).

If the quantity of interest is the value of a quantile of a cer-
tain level α, the aggregated QS is an appropriate scoring rule.
Figure 1b shows the expected aggregated QS for three dif-
ferent levels of α: α = 0.5, α = 0.75, and α = 0.95. α = 0.5
is associated with the prediction of the median, and, since
all the forecasts are symmetric and only the biased forecast
is not centered on zero, the other forecasts are equally the
best and optimal forecasts. If the third quartile is of inter-
est (α = 0.75), the location-scale Student forecast appears as
significantly the best (among the non-ideal). For the higher

level of α = 0.95, the biased forecast is significantly the best
since its bias error seems to be compensated by its correct
prediction of the variance. Depending on the level of interest,
the best forecast varies; the only forecast that would appear
to be the best regardless of the level α is the ideal forecast, as
implied by Eq. (8).

If a quantity of interest is the exceedance of a thresh-
old t at each location, then the aggregated BS is an inter-
esting scoring rule. Figure 1c shows the expectation of ag-
gregated BS for the different forecasts and for two different
thresholds (t = 0.5 and t = 1). Among the non-ideal fore-
casts, there seems to be a clearer ranking than for the CRPS.
The overdispersed forecast is significantly the best regarding
the prediction of the exceedance of the threshold t = 0.5, and
the biased forecast is significantly the best regarding the ex-
ceedance of t = 1. As for the aggregated quantile score, the
best forecast depends on the threshold t considered and the
only forecast that is the best regardless of the threshold t is
the ideal one (see Eq. 7).

If the moments are of interest, the aggregated SE dis-
criminates the first moment (i.e., the mean), and the aggre-
gated DSS discriminates the first two moments (i.e., the mean
and the variance). Figure 1d presents the expected values
of these scoring rules for the different forecasts considered
in this example. The aggregated SEs of all forecasts, except
the biased forecast, are equal since they have the same (cor-
rect) marginal means. The aggregated DSS presents the bi-
ased forecast as significantly the best one (among non-ideal).
This is caused by the combined discrimination of the first
two moments of the Dawid–Sebastiani score (see Eq. 9 and
Sect. B1).

5.2 Multivariate scores over patches

This second numerical experiment focuses on the prediction
of the dependence structure. Observations are sampled from
the model of Eq. (22), and we compare forecasts that differ
only in their dependence structure through misspecification
of the range parameter λ and the smoothness parameter β:

– the ideal forecast is the Gaussian distribution generating
the observations;

– the small-range forecast and the large-range forecast are
Gaussian predictive distributions from the same model
(Eq. 22) as the observations, except for an underestima-
tion (λ= 1) and an overestimation (λ= 5), respectively,
of the range;

– the under-smoothed forecast and the over-smoothed
forecast are Gaussian predictive distributions from the
same model as the observations except for an underes-
timation (β = 0.5) and an overestimation (β = 2), re-
spectively, of the smoothness.

Since the forecasts differ only in their dependence struc-
ture, scoring rules acting on the 1-dimensional marginals
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Figure 1. Expectation of aggregated univariate scoring rules: (a) the CRPS, (b) the quantile score, (c) the Brier score, and (d) the squared
error and the Dawid–Sebastiani score for the ideal forecast (light violet), a biased forecast (orange), an underdispersed forecast (lighter blue),
an overdispersed forecast (darker blue) and a local-scale Student forecast (green). More details are available in the main text.

would not be able to distinguish the ideal forecast from the
others. We use the variogram score (VS) as a reference since
it is known to be able to differentiate misspecifications of the
dependence structure. We also use the patched ES (Eq. 14)
with square patches of a given size s and uniform weights.
Moreover, we consider the aggregated CRPS and the ES
since they are limiting cases of the patched ES for 1× 1
patches and a single patch over the whole domain D, respec-
tively. Additionally, we consider the power-variation score
(PVS) of order p (Eq. 21). The PVS is meant to target mis-
specifications of the dependence structure at short scales and
of roughness in forecasts.

In Fig. 2, the ES and the patched ES were computed using
samples from the forecasts since closed expressions could
not be derived. However, closed formulas for the VS and
the PVS were derived and are available in Appendix F. As
already shown in Scheuerer and Hamill (2015), the VS is
able to significantly discriminate misspecification of the de-
pendence structure induced by the range parameter λ (see

Fig. 2a). Smaller orders of p (such as p = 0.5) appear as
more informative than higher ones. Moreover, it is able to
discriminate misspecifications induced by the smoothness
parameter β (significantly for all orders p considered) even
if it is less marked than for the misspecification of the range
λ.

Figure 2b compares the forecasts using the p-variation
score with p ∈ {0.5,1,2}. Note that the forecasts are pro-
vided in the same order as in the other panels. The PVS is
able to (significantly) discriminate all four sub-optimal fore-
casts from the ideal forecast at all the orders of p. In the
cases considered, the PVS has a stronger discriminating abil-
ity than the VS, in particular for the misspecification of the
smoothness parameter β. The overall improvement in the dis-
crimination ability of the PVS compared to the VS is because
it only considers local pair interactions between grid points,
which in the experimental setup considered greatly improves
the signal-to-noise ratio compared to the VS. For example, it
would be incapable of differentiating between two forecasts
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Figure 2. Expectation of scoring rules focused the dependence structure: (a) the variogram score, (b) the p-variation score and (c) the
patched energy score (and its limiting cases: the aggregated CRPS and the energy score) for the ideal forecast (violet), the small-range
forecast (lighter blue), the large-range forecast (darker blue), the under-smoothed forecast (lighter orange), and the over-smoothed forecast
(darker orange). More details are available in the main text.

that only differ in their longer-range dependence structure,
whereas the VS could.

Figure 2c shows that the patched ESs have a better dis-
crimination ability than the ES. As expected by the clear
analogy between the variogram score weights and the selec-
tion of valid patches, focusing on smaller patches improves
the signal-to-noise ratio. For all patch size s values con-
sidered, the patched ES significantly differentiates the ideal
forecast from the others. Whereas the ES does not signifi-
cantly discriminate the misspecification of smoothness of the
under-smoothed and over-smoothed forecasts. Nonetheless,
the patched ES remains less sensitive than the VS to mis-
specifications in the dependence structure through the range
parameter λ or the smoothness parameter β.

The VS relies on the aggregation and transformation prin-
ciples and is able to discriminate misspecifications of the de-
pendence structure. Similarly, the PVS is able to discriminate
misspecifications of the dependence structure. Being based

on more local transformations (i.e., p-variation transforma-
tion instead of variogram transformation), it has a greater dis-
crimination ability than the VS in this experimental setup.
In addition to this known application of the aggregation and
transformation principles, it has been shown that multivariate
transformations can be used to obtain patched scores that, in
the case of the ES, lead to an improvement in the signal-to-
noise ratio with respect to the original scoring rule.

5.3 Anisotropy

In this example, we focus on the anisotropy of the depen-
dence structure. We introduce geometric anisotropy in ob-
servations and forecasts via the covariance function in the
following way:

cov(G(s),G(s′))= exp
(
−

(
‖s− s′‖A

λ0

))
,
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with ‖s−s′‖A = (s−s′)TA(s−s′). The matrix A has the fol-
lowing form:

A=
[

cosθ −sinθ
ρ sinθ ρ cosθ

]
,

with θ ∈ [−π/2,π/2] being the direction of the anisotropy
and ρ the ratio between the axes.

The observations follow the anisotropic version of the
model in Eq. (22), where the covariance function presents the
geometric anisotropy introduced above with λ0 = 3 (as previ-
ously) and ρ0 = 2 and θ0 = π/4. Multiple forecasts are con-
sidered that only differ in their prediction of the anisotropy
in the model:

– the ideal forecast has the same distribution as the obser-
vations and is used as a reference;

– the small-angle forecast and the large-angle forecast
have a correct ratio ρ but an under- and over-estimation
of the angle, respectively (i.e., θsmall = 0 and θlarge =

π/2);

– the isotropic forecast and the over-anisotropic forecast
have a ratio of ρ = 1 and ρ = 3, respectively, but a cor-
rect angle θ .

Since these forecasts differ only in the anisotropy of their
dependence structure, scoring rules not suited to discriminate
the dependence structure would not be able to differentiate
them. We compare two proper scoring rules: the variogram
score and the anisotropic scoring rule. The variogram score
is studied in two different settings: one where the weights are
proportional to the inverse of the distance and one where the
weights are proportional to the inverse of the anisotropic dis-
tance ‖ · ‖A, which is supposed to be more informed since it
is the quantity present in the covariance function. We use the
anisotropic score (Eq. 20) in a special case of this where we
do not aggregate across vectors h and where S is the squared
error:

STiso,h (F,y)= SE(Tiso,h(F ),Tiso,h(y))

=
(
ETiso,h(F )[X] − Tiso,h(y)

)2
. (23)

We consider vectors on the first bisector (i.e., of the form
h= (h,h)). The choice of this transformation instead of the
transformation based on the anisotropy along the abscissa
and ordinate is motivated by the fact that it leads to a clearer
differentiation of the forecasts (not shown).

Figure 3a presents the variogram score of order p = 0.5 in
its two variants. Both the standard VS and the informed VS
can significantly distinguish the ideal forecast from the other
forecasts but they have a weak sensitivity to misspecification
of the geometric anisotropy. Even though the informed VS
is supposed to increase the signal-to-noise ratio compared to
the standard VS, it is not more sensitive to misspecifications

in the experimental setup considered. Other orders of vari-
ograms were tested and worsened the discrimination ability
of both standard and informed VS (not shown).

Figure 3b shows the AS (Eq. 23) with scales 1≤ h≤ 5
for the different forecasts and the aggregated AS (Eq. 20),
where the scales are aggregated with weight wh = 1/h. The
anisotropic scores were computed using samples drawn from
the forecasts; this explains why the ideal forecast may appear
sub-optimal for some values of h (e.g., h= 4). As aimed by
its construction, the AS is able to significantly distinguish
the correct anisotropy behavior in the dependence structure
for values of h up to h= 3 included. For h= 4, the AS does
not significantly discriminate the isotropic forecast and the
over-anisotropic forecast from the ideal one. The fact that
h= 1 is the most sensitive to misspecifications is probably
caused by the fact that the strength of the dependence struc-
ture decays with the distance (i.e., with h). This shows that
the hyperparameter h plays an important role in having an
informative AS (as do the weights and the order p for the
variogram score). For h= 2 in particular, it can be seen that
the AS is not sensitive to misspecifications of the ratio ρ and
the angle θ in the same manner. This depends on the degree
of misspecification but also on the hyperparameters of the
AS. The aggregated AS allows us to avoid the selection of
a scale h while conserving the discrimination ability of the
lower values of h.

The anisotropic score is an interpretable scoring rule tar-
geting the anisotropy of the dependence structure. However,
it has the limitation of introducing hyperparameters in the
form of the scale h and the axes along which the anisotropy
is measured. Aggregation across scales and axes can cir-
cumvent the selection of these hyperparameters; however, a
clever choice of weights is required to maintain the signal-
to-noise ratio.

5.4 Double-penalty effect

In this example, we illustrate in a simple setting how scoring
rules over patches can be robust to the double-penalty effect
(see Sect. 2.4). The double-penalty effect is introduced in the
form of forecasts that deviate from the ideal forecast by an
additive or multiplicative noise term (i.e., nugget effect). The
noises are centered uniforms such that the forecasts are cor-
rect on average but incorrect over each grid point.

Observations follow the model of Eq. (22) with the param-
eters σ0 = 1, λ0 = 3, and β0 = 1. As per usual the ideal fore-
cast, having the same distribution as the observations, is used
as a reference. Additive-noised forecasts are the first type of
forecast introduced to test the sensitivity of scoring rules to
the form of the double-penalty effect (presented above). They
differ from the ideal forecast through their marginals in the
following way:

Fadd(s)=N (εs,σ 2
0 ),
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Figure 3. Expectation of interpretable proper scoring rules focused the dependence structure: (a) the variogram score and (b) the anisotropic
score for the ideal forecast (violet), the small-angle forecast (lighter blue), the large-angle forecast (darker blue), the isotropic forecast (lighter
orange) and the over-anisotropic forecast (darker orange). More details are available in the main text.

where εs ∼ Unif([−r,r]) is a spatial white noise independent
at each location s ∈D. This has an effect on the mean of the
marginals at each grid point. Three different noise range val-
ues are tested, r ∈ {0.1,0.25,0.5}. Similarly, multiplicative-
noised forecasts that differ from the ideal forecast through
their marginals are introduced:

Fmul(s)=N (0,σ 2(1+ ηs)2),

where ηs ∼ Unif([−r,r]) and s ∈D. This has an effect on
the variance of the marginals at each grid point and, thus,
on the covariance. The same noise range values are tested,
r ∈ {0.1,0.25,0.5}.

The aggregated CRPS is a naive scoring rule that is sen-
sitive to the double-penalty effect. We use the aggregated
CRPS of the spatial mean (Eq. 16). It is proper and has an in-
terpretation similar to the aggregated CRPS, but the forecasts
are only evaluated on the performance of their spatial mean.
In order to make the scoring more interpretable, only square
patches of a given size s are considered and the weight values

wP are uniform. The size of the patches s can be determined
by multiple factors such as the physics of the problem, the
constraints of the verification in the case of models on differ-
ent scales, or the hypotheses on a different behavior below
and above the scale of the patch (e.g., independent and iden-
tically distributed; Taillardat and Mestre, 2020). Note that the
aggregated CRPS of the spatial mean is equal to the aggre-
gated CRPS when patches of size s = 1 are considered.

If a quantity of interest is the exceedance of a threshold t ,
the scoring rule associated with that is the Brier score (Eq. 5).
We compare the aggregated BS with its multivariate counter-
part over patches: the aggregated SE of the fraction of thresh-
old exceedance (Eq. 18).

In Fig. 4, the values of the aggregated SE of FTE have
been obtained by sampling the forecasts’ distribution. Fig-
ure 4a compares the aggregated CRPS and the aggregated
CRPS of the spatial mean for different values of the patch
size s. For all the scoring rules, we observe an increase in the
expected value with the increase in the range of the noise r .
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Figure 4. Expectation of scoring rules tested on their sensitivity to double-penalty effect: (a) the aggregated CRPS and the aggregated CRPS
of the spatial mean, and (b) the aggregated Brier score and the aggregated squared error of fraction of threshold exceedances for the ideal
forecast (violet), the additive-noised forecasts (shades of blue), and the multiplicative-noised forecasts (shades of orange). For the noised
forecasts, darker colors correspond to larger values of the range r ∈ {0.1, 0.25, 0.5}. More details are available in the main text.

As expected, the aggregated CRPS is very sensitive to noise
in the mean or the variance and, thus, is prone to the double-
penalty effect. The aggregated CRPS of the spatial mean is
less sensitive to noise of the mean or the variance. Moreover,
different patch sizes allow us to select the spatial scale be-
low which we want to avoid a double penalty. Given that the
distribution of the noise is fixed in this simulation (i.e., uni-
form), patch size is related to the level of random fluctuations
(i.e., the range r) tolerated by the scoring rule before signif-
icant discrimination with respect to the ideal forecast. It is
worth noting that the range r of the noise leads to a stronger
increase in the values of these CRPS-related scoring rules
when the noise is on the mean rather than on the variance.

Figure 4b compares the aggregated BS and the aggregated
squared error of the fraction of threshold exceedances. For
simplicity, we fix the threshold at t = 1. The aggregated BS
is, as expected, sensitive to noise in the mean or the variance,
and an increase in the range of the noise leads to an increase
in the expected value of the score. The aggregated SE of FTE
acts as a natural extension of the aggregated BS to patches
and provides scoring rules that are less sensitive to noise on

the mean or the variance. The sensitivity evolves differently
with the increase in the patch size s compared to the aggre-
gated CRPS of the spatial mean since the aggregated SE of
FTE measures the effect on the average exceedance over a
patch. The range r of the noise apparently leads to a com-
parable increase in the values of the aggregated SE of FTE
when the noise is additive or multiplicative.

The use of transformations over patches is similar to
neighborhood-based methods in the spatial verification tools
framework. Even though avoiding the double-penalty effect
is not restricted to tools that do not penalize forecasts below
a certain scale, this simulation setup presents a type of test
relevant to probability forecasts. The patched-based scoring
rules proposed here are not by themselves a sufficient ver-
ification tool since they are insensitive to some unrealistic
forecast (e.g., if the mean value over the patch is correct, but
deviations may be as large as possible and lead to unchanged
values of the scoring rule). As for any other scoring rule, they
should be used with other scoring rules.
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Figure 5. Model orography obtained by dividing the model sur-
face geopotential by g = 9.80665 m s−2 (as in Fig. 2a of Demaeyer
et al., 2023).

6 Case study: postprocessed wind speed forecasts
from EUPPBench

6.1 Data

We consider 10 m wind speed forecasts and reanalysis from
the MultivCalibration package (Allen et al., 2024) re-
lying on the European Meteorological Network’s (EUMET-
NET) postprocessing benchmark dataset (EUPPBench; De-
maeyer et al., 2023). EUPPBench has been developed to pro-
vide common ground to compare postprocessing techniques,
but it also provides a common ground to illustrate forecast
evaluation methods.

The dataset considered uses 20 years of reforecasts (sim-
ply forecasts thereafter) issued by the European Center
for Medium-range Weather Forecasts’ (ECMWF) Integrated
Forecasting System (IFS). The forecasts are 11-member en-
semble forecasts with a lead time of 5 d and are com-
pared to ERA5 reanalyses (Hersbach et al., 2020) for their
evaluation. Both forecasts and reanalyses are on a regu-
lar longitude–latitude grid with a resolution of 0.25° (ap-
proximately 25 km) over a part of central Europe (45.75–
53.5° N, 2.5–10.5° E). Figure 5 shows the region covered by
the dataset.

The dataset provides raw ensemble forecasts issued by IFS
as well as two postprocessed forecasts and we use multivari-
ate scoring rules to evaluate and compare these three differ-
ent forecasts. Both postprocessed forecasts are obtained with
a two-step procedure: (i) a standard ensemble model output
statistics (EMOS; Gneiting et al., 2005) approach is applied
at each grid point to postprocess the marginal distributions;
(ii) then, the multivariate dependencies are retrieved either
using ensemble copula coupling (ECC; Schefzik et al., 2013)
or Schaake shuffle (ScS; Clark et al., 2004). The EMOS

approach assumes that the predicted wind speeds follow a
truncated logistic distribution (Scheuerer and Möller, 2015)
with location and scale parameters linearly dependent on the
ensemble mean forecast and the ensemble standard devia-
tion, respectively. The parameters are estimated using the
first 15 years of forecast-reanalysis pairs. The multivariate
dependence is lost in the univariate postprocessing. It is re-
trieved by reordering evenly spaced quantiles from the post-
processed distribution at each grid point according to an ap-
propriate dependence template. ECC uses the raw ensemble
forecast as a template. While ScS uses a random sample of
past observations (in our case reanalyses) to construct the de-
pendence template.

The three forecasts (IFS, ECC, and ScS) are then com-
pared on the remaining 5 years of unseen data (correspond-
ing to 1045 forecast-reanalysis pairs). For more details on the
dataset, readers may refer to Allen et al. (2024), Demaeyer
et al. (2023), and references therein.

In Sect. 5, the multiple settings considered are controlled
and the ideal forecast is known. However, in a real-world set-
ting (such as the one considered in this case study), some
limitations appear. First, the ideal forecast corresponding to
the true distribution of the variable of interest is unknown.
This implies that, when comparing competing forecasts, it
is likely that no single forecast is better overall and that all
forecasts considered present misspecifications. Scoring rules
can help to describe which aspects are best captured by the
different forecasts. Second, the quality of the estimation of
expected scoring rules (and of their comparison) depends on
the quantity and the quality of the data available for verifica-
tion. Ideally, the verification data should be consistent and be
composed of enough realizations.

Given the heterogeneity of the wind speed over the do-
main, some regions might have a stronger influence on ag-
gregated scoring rules. However, if any prior knowledge is
available, it can be used in the weights of the aggregated
scoring rules, or the individual contribution can be investi-
gated separately.

We compare the three forecasts using a standard verifi-
cation procedure and show how interpretable scoring rules
constructed using the aggregation-and-transformation-based
framework can fit within the procedure and enable the char-
acterization of differences between forecasts.

6.2 Results

Forecasts are compared using multiple scoring rules, and,
as in Sect. 5, Diebold–Mariano tests (Diebold and Mariano,
1995) are used to test the statistical significance of the rank-
ing between forecasts. Since the scoring rules considered are
proper, the comparison of the expected scoring rules of two
forecasts can be summarized by the skill score. For a proper
scoring rule S, the skill score of a forecast F with respect to
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a reference forecast Fref is defined as

SS(F,Fref)=
EG[S(Fref,Y )] −EG[S(F,Y )]

EG[S(Fref,Y )]
, (24)

where G is the distribution of the observations and EG[. . .]
is the expectation with respect to Y ∼G. The skill score is
positive if the forecast F improves the expected score with
respect to the reference forecast Fref and negative otherwise.
The skill score can be expressed in percentage. Given that
we consider the postprocessing of wind speed forecasts, the
reference of choice is the raw ensemble (IFS) that the post-
processed forecasts (ECC and ScS) aim to improve upon.

We start by evaluating forecasts using aggregated univari-
ate scoring rules to compare the performance of the fore-
casts on 1-dimensional marginals. Table 1 relates the aver-
age values of the scoring rules considered for IFS, ECC, and
ScS. Values are reported in bold if they correspond to the
statistically significant lowest value for a confidence level
of 95 %. Both postprocessed forecasts have the same values
since they provide the same 1-dimensional predictive distri-
butions and differ only in their dependence structure. Thus,
the difference observed between the raw forecast and the
postprocessed forecasts is only the effect of the univariate
EMOS postprocessing. The postprocessing of marginals us-
ing EMOS significantly improves the predictive performance
overall (as shown by the aggregated CRPS) but also in terms
of specific characteristics of the wind speed forecasts: the
first two moments (aggregated SE and aggregated DSS), ex-
ceedance of selected thresholds (aggregated BS with thresh-
olds t ∈ {2.5,5,7.5,10}m s−1), and quantiles of selected lev-
els (aggregated QS of levels α ∈ {0.7,0.8,0.9}).

We next proceed with scoring rules assessing the mul-
tivariate/spatial structure of the forecasts. We compute the
ES and aggregation-and-transformation-based scoring rules
that are introduced above and used in the numerical exper-
iments (see Sect. 5). Table 2 relates the average values for
the three competing forecasts. The scoring rules based on
patches only consider a patch size of 3× 3 grid points. This
corresponds to a patch size close to an average administrative
region; forecasts over such administrative regions are consid-
ered when issuing warnings (see, e.g., EUMETNET, 2024).
The ES (Eq. 12), which is strictly proper, evaluates the over-
all multivariate predictive performance and ranks ECC as the
best forecast. On the opposite, the patched ES (Eq. 14) con-
sidered shows ScS as the significantly best forecast when the
spatial dependence is limited on a patch of 3× 3 grid points.
This seems to indicate that ScS produces a better forecast of
the dependence structure at a short range while ECC is bet-
ter at larger ranges. For both scoring rules, the postprocessed
forecasts ECC and ScS significantly improve upon the raw
forecast IFS.

The VS (Eq. 13) with different values of the parameter
p shows that ECC seems to have a better predictive perfor-
mance of the dependence structure when aggregating across
all spatial scales. Where the PVS (Eq. 21) shows that ScS ap-

pears to have a better prediction of the dependence structure
at smaller scales and in terms of roughness. These results
corroborate the previous finding that ECC and ScS better
account for the short-range and large-range spatial depen-
dence, respectively. Quite surprisingly, for the short-range
dependence and roughness as scored with PVS, IFS per-
forms significantly better than ECC. Anisotropy is another
characteristic of the dependence structure that is targeted by
AS (Eq. 23). Given the large-scale circulations over the re-
gion of interest, the eastward direction can be considered to
be well suited to investigate the anisotropy of wind speeds.
Hence, we consider AS with h= (h,0). For h= 1 (i.e., a lag
of one grid point), IFS appears to have the best prediction of
the anisotropy dependence structure. Similarly, Allen et al.
(2024) have found that ECC and ScS are not able to improve
the calibration of the dependence structure anisotropy at a
lag of h= 1 compared to IFS. For a different lag, h= 2, ScS
and IFS have comparable performances and, at h= 3, ScS
becomes significantly the best in terms of AS.

Finally, we compare forecasts using scoring rules that are
robust to the double-penalty effect: the aggregated CRPS of
the spatial mean (Eq. 16) and the aggregated SE of FTE
(Eq. 18). The CRPS of the spatial mean shows ScS as the
significantly best where ECC and ScS have the same perfor-
mance in terms of aggregated CRPS. This indicates that, if
location errors at the scale of 3×3 patches are tolerated, ScS
is the best forecast in terms of the mean wind speed over
patches. Note that when investigating peak wind speed (or
wind gusts), the preferred transformation is the maximum
over patches. The aggregated SE of FTE shows that ECC and
ScS have the best performance regarding the exceedance of
various values of the threshold t over patches. As for the ag-
gregated univariate scoring rules, the aggregated SE of FTE
is invariant to the reordering of forecasts at each grid point
and thus leads to strictly the same values for ECC and ScS.

The aggregation-and-transformation-based scoring rules
can explain and mitigate the ranking of competing fore-
casts in terms of their overall performance associated with
a strictly proper scoring rule (such as the ES). In particular,
they allow us to investigate specific characteristics when the
overall performance does not grasp the complexity of the dif-
ferences between competing forecasts.

7 Conclusions

Verification of probabilistic forecasts is an essential but com-
plex step of all forecasting procedures. Scoring rules may
appear as the perfect tool to compare forecast performance
since, when proper, they can simultaneously assess calibra-
tion and sharpness. However, propriety, even if strict, does
not ensure that a scoring rule is relevant to the problem at
hand. With that in mind, we agree with the recommendation
of Scheuerer and Hamill (2015) that “several different scores
be always considered before drawing conclusions”. This is
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Table 1. Skill scores of aggregated scoring rules acting on the 1-marginals with respect to IFS. The values of the threshold t of the aggregated
Brier scores are expressed in m s−1. Values reported in bold identify the significantly best forecast (according to a Diebold–Mariano test
with a confidence level of 95 %).

Agg. SE Agg. DSS Agg. BS Agg. QS Agg. CRPS

t = 2.5 t = 5 t = 7.5 t = 10 α = 0.7 α = 0.8 α = 0.9

ECC 7.03 % 33.64 % 4.87 % 6.55 % 7.55 % 6.96 % 5.82 % 6.65 % 8.62 % 6.64 %
ScS 7.03 % 33.64 % 4.87 % 6.55 % 7.55 % 6.96 % 5.82 % 6.65 % 8.62 % 6.64 %

Table 2. Skill scores of multivariate scoring rules, including aggregation-and-transformation-based scoring rules, with respect to IFS. The
values of the threshold t of the aggregated Brier scores are expressed in m s−1. Values reported in bold identify the significantly best forecast
(according to a Diebold–Mariano test with a confidence level of 95 %). More details on the construction of the scoring rules are provided in
the text.

ES Patched ES VS PVS

p = 0.5 p = 1 p = 2 p = 0.5 p = 1 p = 2

ECC 3.93 % 5.77 % 5.20 % 6.44 % 6.38 % −18.62 % −22.02 % −13.36 %
ScS 3.61 % 6.01 % 3.44 % 5.19 % 5.70 % 9.90 % 13.63 % 20.80 %

AS Agg. CRPS of Agg. SE of FTE

h= 1 h= 2 h= 3 spatial mean t = 2.5 t = 5 t = 7.5 t = 10

IFS 0.00 % 0.00 % 0.00 % 0.00 % 0.00 % 0.00 % 0.00 % 0.00 %
ECC −11.31 % −7.28 % −5.00 % 4.86 % 2.77 % 5.88 % 7.47 % 7.73 %
ScS −15.30 % 0.04 % 2.56 % 5.25 % 2.77 % 5.88 % 7.47 % 7.73 %

even more important in a multivariate setting where forecasts
are characterized by more complex objects.

We proposed a framework to construct proper scoring
rules in a multivariate setting using aggregation and trans-
formation principles. Aggregation-and-transformation-based
scoring rules can improve the conclusions drawn since they
enable the verification of specific aspects of the forecast (e.g.,
anisotropy of the dependence structure). This has been illus-
trated using examples from the literature and original ones.
Moreover, more practical usages have been showcased in
multiple numerical experiment settings and a case study of
wind speed forecasts over central Europe. In particular, we
have observed in the numerical experiments that the vari-
ogram score is more sensitive to large-scale misspecifications
of the dependency, and the power-variation score is more
sensitive to small-scale ones. This has been confirmed in the
case study with the different ranking of the postprocessed
forecasts based on the Schaake shuffle and ensemble copula
coupling. Overall, we have shown that the aggregation and
transformation principles can be used to construct scoring
rules that are proper, interpretable, and not affected by the
double-penalty effect. This could be a starting point to help
bridge the gap between the proper scoring rule community
and the spatial verification tools community.

As the interest in machine learning-based weather fore-
cast is increasing (see, e.g., Ben Bouallègue et al.,
2024a), multiple approaches have performance comparable

to ECMWF deterministic high-resolution forecasts (Keisler,
2022; Pathak et al., 2022; Bi et al., 2023; Lam et al., 2022;
Chen et al., 2023). The natural extension to probabilistic
forecast is already developing and enabled by publicly avail-
able benchmark datasets such as WeatherBench 2 (Rasp
et al., 2024). Aggregation-and-transformation-based meth-
ods can help ensure that parameter inference does not hedge
certain important aspects of the multivariate probabilistic
forecasts.

There seems to be a trade-off between discrimination abil-
ity and strict propriety. Discrimination ability comes from
the ability of scoring rules to differentiate misspecification
of certain characteristics. By definition, the expectation of
strictly proper scoring rules is minimized when the proba-
bilistic forecast is the true distribution. Nonetheless, it does
not guarantee that this global minimum is steep in any mis-
specification direction. However, interpretable scoring rules
can discriminate the misspecification of their target charac-
teristic. We believe that both interpretable and strictly proper
scoring rules should coexist in any verification procedure and
provide complementary information. Forecasters should be
aware of the limitations and benefits of the verification tools
they use and how they relate to the application of interest in
order to take advantage of the available information. Regard-
ing the theoretical existence of a trade-off between discrimi-
nation ability and strict propriety, the question is open, and its
exploration in future research could help untangle this link.
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Appendix A: Additional scoring rules

A1 Univariate scoring rules

When the probabilistic forecast F has a probability density
function (PDF) f , scoring rules of a different type can be
defined. Let Lα(R) denote the class of probabilities on R that
are absolutely continuous with respect to µ (usually taken as
the Lebesgue measure) and have µ density f such that

‖f ‖α =

∫
R

f (x)αµ(dx)

1/α

<∞.

The most popular scoring rule based on the PDF is the log-
arithmic score (also known as ignorance score; Good, 1952;
Roulston and Smith, 2002). The logarithmic score is defined
as

logS(F,y)=− log(f (y)), (A1)

for y such that f (y)> 0. In its formulation, the logarith-
mic score is different from the scoring rules seen previously.
Good (1952) proposed the logarithmic score knowing its link
with the theory of information: its entropy is the Shannon en-
tropy (Shannon, 1948), and its expectation is related to the
Kullback–Leibler divergence (Kullback and Leibler, 1951)
(see Sect. B1). The logarithmic score is strictly proper rela-
tive to the class L1(R). Moreover, inference via minimization
of the expected logarithmic score is equivalent to maximum
likelihood estimation (see, e.g., Dawid et al., 2015). The log-
arithmic score belongs to the family of local scoring rules,
which are scoring rules only depending on y, f (y), and its
derivatives up to a finite order. Another local scoring rule is
the Hyvärinen score (HS; also known as the gradient scoring
rule; Hyvärinen, 2005), and it is defined as

HS(F,y)= 2
f ′′(y)
f (y)

−
f ′(y)2

f (y)2

for y such that f (y)> 0. The Hyvärinen score is proper
relative to the subclass of P(R) such that the density f

exists, is twice continuously differentiable, and satisfies
f ′(x)/f (x)→ 0 as |x| →∞. It is worth noticing that the
Hyvärinen score can be computed even if f is only known
up to a scale factor (e.g., up to a normalizing constant). This
property allows for circumventing the use of Monte Carlo
methods or approximations of the normalizing constant when
it is unavailable or hard to compute. This is a property of
local proper scoring rules, except for the logarithmic score
(Parry et al., 2012). Readers eager to learn more about local
proper scoring rules may refer to Parry et al. (2012) and Ehm
and Gneiting (2012).

The logarithmic score and the Hyvärinen score do not al-
low f to be zero. To overcome this limitation, scoring rules
expressed in terms of the Lα norm have been proposed. The

quadratic score is defined as

QuadS(F,y)= ‖f ‖22− 2f (y),

where ‖f ‖22 =
∫
Rf (y)2dy. The quadratic score is strictly

proper relative to the class L2(R).
The pseudospherical score is defined as

PseudoS(F,y)=−f (y)α−1/‖f ‖α−1
α ,

with α > 1. For α = 2, it reduces to the spherical score (see,
e.g., Jose, 2007). The pseudospherical score is strictly proper
relative to the class Lα(R). The four scoring rules presented
above have been criticized as they do not encourage a high
probability in the vicinity of the observation y (Gneiting and
Raftery, 2007). In particular, as the logarithmic score is more
sensitive to outliers, probabilistic forecasts inferred by its
minimization may be overdispersive (Gneiting et al., 2005).
Moreover, the PDF is not always available, for example, in
the case of ensemble forecasts.

A2 Multivariate scoring rules

When the PDF f of the probabilistic forecast F is available,
multivariate versions of the univariate scoring rules based on
the PDF are available. The multivariate versions of the scor-
ing rules have the same properties and limitations as their
univariate counterpart. The logarithmic score (Eq. A1) has a
natural multivariate version:

logS(F,y)=− log(f (y))

for y such that f (y)> 0. The logarithmic score is strictly
proper relative to the class L1(Rd ).

The Hyvärinen score (HS; Hyvärinen, 2005) was initially
proposed in its multivariate form:

HS(F,y)= 21 log(f (y))+ |∇ log(f (y))|2

for y such that f (y)> 0, where 1 is the Laplace operator
(i.e., the sum of the second-order partial derivatives) and ∇
is the gradient operator (i.e., vector of the first-order partial
derivatives). In the multivariate setting, the HS can also be
computed if the predicted PDF is known up to a normalizing
constant. The HS is proper relative to the subclass of P(Rd )
such that the density f exists, is twice continuously differen-
tiable, and satisfies ‖∇ log(f (x))‖→ 0 as ‖x‖→∞.

The quadratic score and pseudospherical score are directly
suited to the multivariate setting:

QuadS(F,y)= ‖f ‖22− 2f (y),

PseudoS(F,y)=−f (y)α−1/‖f ‖α−1
α ,

where ‖f ‖α = (
∫
Rdf (x)αdx)1/α . The quadratic score is

strictly proper relative to the class L2(Rd ). The pseudospher-
ical score is strictly proper relative to the class Lα(Rd ).
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Appendix B: Expected scoring rules

B1 Univariate scoring rules

B1.1 Squared error

For any F,G ∈ P2(R), the expectation of the squared error
(Eq. 2) is

EG[SE(F,Y )] = (µF −µG)2
+ σG

2,

where µF is the mean of the distribution F and µG and σG2

are the mean and the variance of the distribution G.

Proof.

EG[SE(F,Y )] = EG[(µF −Y )2
]

= µ2
F − 2 µFEG[Y ] +EG[Y 2

]

Using the fact that E[X2
] = Var(X)+E[X]2, the following

applies:

EG[SE(F,Y )] = µ2
F − 2 µFµG+ σ 2

G+µ
2
G

= (µF −µG)2
+ σ 2

G.

�

B1.2 Quantile score

For any F,G ∈ P1(R), the expectation of the quantile score
of level α (Eq. 4) is

EG[QSα(F,Y )] =

F−1(α)∫
−∞

(F−1(α)− y)G(dy)

−α

∫
R

(F−1(α)− y)G(dy)

= EG[QSα(G,Y )]

+

{
(G(F−1(α))−α)(F−1(α)−G−1(α))

−

F−1(α)∫
G−1(α)

(y−G−1(α))G(dy)
}
.

Proof. Inspired by the proof of the propriety of the
quantile score in Friederichs and Hense (2008).

EG[QSα(F,Y )] =
∫
R

(1y≤F−1(α)−α)(F−1(α)− y)G(dy)

=

F−1(α)∫
−∞

(1−α)(F−1(α)− y)G(dy)

+

+∞∫
F−1(α)

(−α)(F−1(α)− y)G(dy)

=

F−1(α)∫
−∞

(F−1(α)− y)G(dy)

−α

∫
R

(F−1(α)− y)G(dy)

Then, using F−1(α)−y = (F−1(α)−G−1(α))+ (G−1(α)−
y),

EG[QSα(F,Y )] =

F−1(α)∫
−∞

(F−1(α)−G−1(α))G(dy)

−α

∫
R

(F−1(α)−G−1(α))G(dy)

+

F−1(α)∫
−∞

(G−1(α)− y)G(dy)

−α

∫
R

(G−1(α)− y)G(dy)

= (G(F−1(α))−α)(F−1(α)−G−1(α))

+

F−1(α)∫
−∞

(G−1(α)− y)G(dy)

−α

∫
R

(G−1(α)− y)G(dy)

= (G(F−1(α))−α)(F−1(α)−G−1(α))

+

G−1(α)∫
−∞

(G−1(α)− y)G(dy)

+

F−1(α)∫
G−1(α)

(G−1(α)− y)G(dy)−α
∫
R

(G−1(α)− y)G(dy)

= (G(F−1(α))−α)(F−1(α)−G−1(α))
+EG[QSα(G,Y )]

−

F−1(α)∫
G−1(α)

(y−G−1(α))G(dy).

�
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B1.3 Absolute error

First of all, for F ∈ P1(R) and y ∈ R, the absolute error
(Eq. 3) is equal to twice the quantile score of level α = 0.5:

AE(F,y)= |med(F )− y| = 2 QS0.5(F,y),

where med(F ) is the median of the distribution F .
It can be deduced that, for any F,G ∈ P1(R), the expecta-

tion of the absolute error is

EG[AE(F,Y )] = EG[|med(F )−Y |]

= 2

med(F )∫
−∞

(med(F )− y)G(dy)

− 2α
∫
R

(med(F )− y)G(dy)

= EG[AE(G,Y )]

+ 2
{

(G(med(F ))−α)(med(F )−med(G))

−

med(F )∫
med(G)

(y−med(G))G(dy)
}
.

B1.4 Brier score

For any F,G ∈ P(R), the expectation of the Brier score
(Eq. 5) is

EG[BSt (F,Y )] = (F (t)−G(t))2
+G(t)(1−G(t)).

Proof.

EG[BSt (F,Y )] = EG[(F (t)− 1Y≤t )2
]

= F (t)2
− 2F (t)EG[1Y≤t ] +EG[1Y≤t 2]

= F (t)2
− 2F (t)G(t)+G(t)

= F (t)2
− 2F (t)G(t)+G(t)2

−G(t)2
+G(t)

= (F (t)−G(t))2
+G(t)(1−G(t))

�

B1.5 Continuous ranked probability score

For any F,G ∈ P1(R), the expectation of the CRPS (Eq. 7)
is

EG[CRPS(F,Y )] = EF,G|X−Y | −
1
2
EF |X−X′|

=

∫
R

(F (z)−G(z))2dz

+

∫
R

G(z)(1−G(z))dz,

where the second term of the last line is the entropy of the
CRPS.

Proof.

EG[CRPS(F,Y )] = EG

∫
R

(F (z)− 1y≤z)2dz


=

∫
R

EG
[
(F (z)− 1y≤z)2

]
dz

=

∫
R

EG
[
F (z)2

− 2F (z)1y≤z+ 12
y≤z

]
dz

=

∫
R

{
F (z)2

− 2F (z)EG
[
1y≤z

]
+EG

[
1y≤z

]}
dz

=

∫
R

{
F (z)2

− 2F (z)G(z)+G(z)
}

dz

=

∫
R

{
F (z)2

− 2F (z)G(z)+G(z)2

−G(z)2
+G(z)

}
dz

=

∫
R

(F (z)−G(z))2dz+
∫
R

G(z)(1−G(z))dz

�

B1.6 Dawid–Sebastiani score

For any F,G ∈ P2(R), the expectation of the Dawid–
Sebastiani score (Eq. 9) is

EG[DSS(F,Y )] =
(µF −µG)2

σF 2 +
σG

2

σF 2 + 2logσF .

Proof.

EG[DSS(F,Y )] = EG
[

(Y −µF )2

σF 2 + 2logσF

]
=

EG
[
(Y −µF )2]
σF 2 + 2logσF

Noticing that EG
[
(Y −µF )2]

= EG [SE(F,Y )], the follow-
ing applies:

EG[DSS(F,Y )] =
(µF −µG)2

+ σG
2

σF 2 + 2logσF .

�
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B1.7 Error-spread score

For any F,G ∈ P4(R), the expectation of the error-spread
score (Eq. 10) is

EG[ESS(F,Y )] =
[
(σG2
− σF

2)+ (µG−µF )2
− σF γF (µG−µF )

]2

+ σG
2[2(µG−µF )+ (σGγG− σF γF )

]2
+ σG

4(βG− γG2
− 1),

where µF , σ 2
F , and γF are the mean, the variance, and the

skewness of the probabilistic forecast F . Similarly, µG, σ 2
G,

γG, and βG are the first four centered moments of the dis-
tribution G. The proof is available in Appendix B of Chris-
tensen et al. (2014).

B1.8 Logarithmic score

For any F,G ∈ P(R) such that F and G have probability
density functions in the class L1(R), the expectation of the
logarithmic score (Eq. A1) is

EG[LogS(F,Y )] =DKL(G||F )+H(F ),

where DKL(G||F ) is the Kullback–Leibler divergence from
F to G and H(F ) is the Shannon entropy of F . The proof is
straightforward given that the Kullback–Leibler divergence
and Shannon entropy are defined as

DKL(G||F )=
∫
R

g(y) log
(
g(y)
f (y)

)
dy,

H(F )=
∫
R

f (y) log(f (y))dy.

B1.9 Hyvärinen score

For F,G such that their densities, f and g, exist, are twice
continuously differentiable, and satisfy f ′(x)/f (x)→ 0 as
|x| →∞ and g′(x)/g(x)→ 0 as |x| →∞, the expectation
of the Hyvärinen score is

EG[HS(F,Y )] =
∫
R

(
f ′(y)2

f (y)2 − 2
f ′(y)g′(y)
f (y)g(y)

)
g(y)dy

=

∫
R

(
f ′(y)
f (y)

−
g′(y)
g(y)

)2

g(y)dy−
∫
R

g′(y)2

g(y)2 g(y)dy,

where the last formula shows the entropy of the Hyvärinen
score (second term on the right-hand side).

Proof.

EG[HS(F,Y )] = E
[

2
f ′′(Y )
f (Y )

−
f ′(Y )2

f (y)2

]
= 2

∫
R

f ′′(y)
f (y)

g(y)dy−
∫
R

f ′(y)2

f (y)2 g(y)dy

Integrating by part the integral of the first term on the right-
hand side leads to∫
R

f ′′(y)
f (y)

g(y)dy =
[
f ′(y)
f (y)

g(y)
]+∞
−∞

−

∫
R

f ′(y)
g′(y)f (y)− g(y)f ′(y)

f (y)2 dy

=−

∫
R

f ′(y)g′(y)
f (y)g(y)

g(y)dy

+

∫
R

f ′(y)2

f (y)2 g(y)dy.

The boundary term is null since f ′(x)/f (x)→ 0 as |x| →∞
and g is a probability density function.

Thus, the following applies:

EG[HS(F,Y )] = −2
∫
R

f ′(y)g′(y)
f (y)g(y)

g(y)dy

+ 2
∫
R

f ′(y)2

f (y)2 g(y)dy−
∫
R

f ′(y)2

f (y)2 g(y)dy

=−2
∫
R

f ′(y)g′(y)
f (y)g(y)

g(y)dy

+

∫
R

f ′(y)2

f (y)2 g(y)dy

=

∫
R

(
f ′(y)2

f (y)2 − 2
f ′(y)g′(y)
f (y)g(y)

)
g(y)dy.

�

B1.10 Quadratic score

For any F,G ∈ L2(R), the expectation of the quadratic score
is

EG[QuadS(F,Y )] = ‖f ‖22− 2〈f,g〉,

where 〈f,g〉 =
∫
Rf (y)g(y)dy.

B1.11 Pseudospherical score

For any F,G ∈ Lα(R), the expectation of the quadratic score
is

EG[PseudoS(F,Y )] = −
〈f α−1,g〉

‖f ‖α−1
α

,

where 〈f α−1,g〉 =
∫
Rf (y)α−1g(y)dy.
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B2 Multivariate scoring rules

B2.1 Squared error

For any F,G ∈ P2(Rd ), the expectation of the squared error
(Eq. 11) is

EG[SE(F,Y )] = ‖µF −µG‖
2
2+ tr(6G),

where µF is the mean vector of the distribution F and µG
and 6G are the mean vector and the covariance matrix of the
distribution G.

Proof. Let Ti denote the projection on the ith margin.

EG[SE(F,Y )] = EG[‖µF −Y‖22]

= EG

[
d∑
i=1

(µTi (F )− Ti(Y ))2

]

=

d∑
i=1

ETi (G) [SE(Ti(F ),Y )]

=

d∑
i=1

(
(µTi (F )−µTi (G))2

+ σ 2
Ti (G)

)
= ‖µF −µG‖

2
2+ tr(6G)

�

B2.2 Dawid–Sebastiani score

For any F,G ∈ P2(Rd ), the expectation of the Dawid–
Sebastiani score is

EG[DSS(F,Y )] = log(det6F )+ (µF −µG)T6−1
F (µF −µG)

+ tr(6G6−1
F ).

The proof is available in the original article (Dawid and Se-
bastiani, 1999).

B2.3 Energy score

In a general setting, the expected energy score does not sim-
plify. For any F,G ∈ Pα(Rd ), the expected energy score
(Eq. 12) is

EG[ESα(F,Y )] = EF,G‖X−Y‖α2 −
1
2
EF ‖X−X′‖α2 .

B2.4 Variogram score

For any F,G ∈ P(Rd ) such that the 2pth moments of all
their univariate margins are finite, the expected variogram
score of order p (Eq. 13) is

EG[VSp(F,Y )] =
d∑

i,j=1
wij

(
EF
[
|Xi −Xj |

p
]2

− 2EF
[
|Xi −Xj |

p
]
EG[|Yi −Yj |p]

+EG[|Yi −Yj |2p]
)
.

Proof.

EG[VSp(F,Y )] = EG
[ d∑
i,j=1

wij
(
EF

[
|Xi −Xj |

p
]
− |Yi −Yj |

p
)2]

= EG
[ d∑
i,j=1

wij
(
EF
[
|Xi −Xj |

p
]2

− 2EF
[
|Xi −Xj |

p
]
|Yi −Yj |

p
+ |Yi −Yj |

2p)]

=

d∑
i,j=1

wij
(
EF
[
|Xi −Xj |

p
]2

− 2EF
[
|Xi −Xj |

p
]
EG[|Yi −Yj |p]

+EG[|Yi −Yj |2p]
)

�

B2.5 Logarithmic score

For any F,G ∈ P(Rd ) such that F and G have probability
density functions that belong to L1(Rd ), the expectation of
the logarithmic score is analogous to its univariate version:

EG[LogS(F,Y )] =DKL(G||F )+H(F ),

where DKL(G||F ) is the Kullback–Leibler divergence from
F to G and H(F ) is the Shannon entropy of F .

DKL(G||F )=
∫
Rd

g(x) log
(
g(x)
f (x)

)
dx

H(F )=
∫
Rd

f (x) log(f (x))dx

B2.6 Hyvärinen score

For F,G ∈ P(Rd ) such that their probability density func-
tions f and g such that they are twice continuously dif-
ferentiable and satisfying ∇f (x)→ 0 and ∇g(x)→ 0 as
‖x‖→∞, the expectation of the Hyvärinen score is

EG[HS(F,Y )] =
∫
Rd

g(x)〈∇ log(f (x))− 2∇ log(g(x)),

∇ log(f (x))〉g(x)dx,

where ∇ is the gradient operator and 〈·, ·〉 is the scalar prod-
uct. The proof is similar to the proof for the univariate case
using integration by parts and Stoke’s theorem (Parry et al.,
2012).

B2.7 Quadratic score

For any F,G ∈ L2(Rd ), the expectation of the quadratic
score is analogous to its univariate version

EG[QuadS(F,Y )] = ‖f ‖22− 2〈f,g〉,

where 〈f,g〉 =
∫
Rdf (x)g(x)dx.
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B2.8 Pseudospherical score

For any F,G ∈ Lα(Rd ), the expectation of the quadratic
score is analogous to its univariate version

EG[PseudoS(F,Y )] = −
〈f α−1,g〉

‖f ‖α−1
α

,

where 〈f α−1,g〉 =
∫
Rdf (x)α−1g(x)dx.

Appendix C: General form of Corollary 1

Corollary 2. Let T = {Ti}1≤i≤m be a set of transformations
from Rd to Rk . Let S = {Si}1≤i≤m be a set of proper scoring
rules such that Si is proper relative to Ti(F) for all 1≤ i ≤
m. Letw = {wi}1≤i≤m be a set of non-negative weights. Then
the scoring rule

SST ,w(F,y)=
m∑
i=1

wiSiTi (F,y)=
m∑
i=1

wiSi(Ti(F ),Ti(y))

is proper relative to F .

Appendix D: Decomposition of kernel scores

We briefly discuss the link between the transformation and
aggregation principles for scoring rules and the specific class
of kernel scores. A kernel on Rd is a measurable function
k : Rd ×Rd→ R satisfying the following two properties:

i. (symmetry) k(x1,x2)= k(x2,x1) for all x1,x2 ∈ Rd ;

ii. (non-negativity)
∑

1≤i≤j≤naiajk(xi,xj )≥ 0 for all
x1, . . .,xn ∈ Rd and a1, . . .,an ∈ R for all n ∈ N.

The kernel score Sk associated with the kernel k is defined
on the space of predictive distributions

Pk =

F ∈ P(Rd ) :
∫
Rd

√
k(x,x)F (dx)<+∞


by

Sk(F,y)=
1
2

∫
Rd×Rd

k(x1,x2)(F − δy)(dx1)(F − δy )(dx2),

=
1
2
EF [k(X,X′)] +

1
2
k(y,y)−EF [k(X,y)], (D1)

where y ∈ Rd , δy denotes the Dirac mass at y, and X and
X′ are independent random variables following F . Impor-
tantly, Sk is proper on Pk and, for an ensemble forecast
F = 1

M

∑M
m=1δxm with M members, x1, . . .,xM , it takes the

simple form

Sk(F,y)=
1

2M2

∑
1≤m1,m2≤M

k(xm1 ,xm2 )+
1
2
k(y,y)

−
1
M

M∑
m=1

k(xm,y), (D2)

making scoring rules particularly useful for ensemble fore-
casts.

The CRPS is surely the most widely used kernel score.
Equation (6) shows that it is associated with the kernel
k(x1,x2)= |x1|+|x2|−|x1−x2| (the function |x1−x2| is con-
ditionally semi-definite negative so that k is non-negative).
For more details on kernel scores, the reader should refer to
Gneiting et al. (2005) or Steinwart and Ziegel (2021).

The following proposition reveals that a kernel score can
always be expressed as an aggregation of squared errors
(SEs) between transformations of the forecast–observation
pair.

Proposition 3. Let Sk be the kernel score associated with
the kernel k. Then there exists a sequence of transformations
Tl : Rd→ R, l ≥ 1, such that

Sk(F,y)=
1
2

∑
l≥1

SE(Tl(F ),Tl(y))

for any predictive distribution F ∈ Pk and observation
y ∈ Rd .

In particular, the series on the right-hand side is al-
ways finite. The proof is provided in Sect. E2 and relies on
the reproducing kernel Hilbert space (RKHS) representation
of kernel scores. In particular, we see that the sequence
(Tl)l≥1 can be chosen as an orthonormal basis of the RKHS
associated with the kernel k.

This representation of kernel scores can be useful to under-
stand more deeply the comparison of the predictive forecast
F and observation y. While the definition (Eq. D1) is quite
abstract, the series representation can be rewritten as

Sk(F,y)=
∑
l≥1

(
EF [Tl(X)] − Tl(y)

)2
,

withX being a random variable following F . In other words,
for l ≥ 1, the observed value Tl(y) is compared to the pre-
dicted value Tl(X) under the predictive distribution F using
the SE; then all these contributions are aggregated in a series
forming the kernel score.

To give more intuition, we study two important cases in di-
mension d = 1. The details of the computations are provided
in Sect. E3. For the Gaussian kernel score associated with the
kernel

k(x1,x2)= exp(−(x1− x2)2/2)

some computations yield the series representation

Sk(F,y)=
1
2

∑
l≥0

1
l!

(
EF [Xle−X

2/2
] − yle−y

2/2
)2

so that this score compares the probabilistic forecast F and
the observation y through the transforms

Tl(x)=
1
√
l!
xle−x

2/2, l ≥ 0.
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For the CRPS, a possible series representation is ob-
tained thanks to the following wavelet basis of functions:
let T 0(x)= x1[0,1)(x)+ 1[1,+∞)(x) (plateau function) and
T 1(x)=

(
1/2− |x− 1/2|

)
1[0,1](x) (triangle function) and

consider the collection of functions

T 0
l (x)= T 0(x− l), T 1

l,m(x)= 2−m/2T 1(2mx− l),

l ∈ Z,m≥ 0,

where l ∈ Z is a position parameter andm≥ 0 a scale param-
eter. Then, the CRPS can be written as

CRPS(F,y)=
∑
l∈Z

SE(T 0
l (F ),T 0

l (y))

+

∑
l∈Z

∑
m≥0

SE(T 1
l,m(F ),T 1

l,m(y))

=

∑
l∈Z

(
EF [T 0(X− l)] − T 0(y− l)

)2

+

∑
l∈Z

∑
m≥0

2−m
(
EF [T 1(2mX− l)] − T (2my− l)

)2
.

We can see that the CRPS compares forecast and observa-
tion through the SE after applying the plateau and triangle
transformations for multiple positions and scales and then
aggregates all the contributions.

Appendix E: Proofs

E1 Proposition 1

Proof of Proposition 1. Let F ⊂ P(Rd ) be a class of prob-
abilities on Rd , and let F ∈ F be a forecast and y ∈ Rd an
observation. Let T : Rd→ Rk be a transformation, and let
S be a scoring rule on Rk that is proper relative to T (F)=
{L(T (X)),X ∼ F ∈ F}.

EG [ST (F,Y )]= EG [S(T (F ),T (Y ))]

= ET (G) [S(T (F ),Y )]

Given that T (F ),T (G) ∈ T (F) and S is proper relative to
T (F), the following applies:

ET (G) [S(T (G),Y )]≤ ET (G) [S(T (F ),Y )]

⇔EG [ST (G,Y )]≤ EG [ST (F,Y )] . (E1)

�
Proof of the strict propriety case in Proposition 1. The no-

tations are the same as in the proof above, except the follow-
ing. Let T : Rd→ Rk be an injective transformation, and let
S be a scoring rule on Rk that is strictly proper relative to
T (F)= {L(T (X)),X ∼ F ∈ F}.

The equality in Eq. (E1) leads to

EG [ST (G,Y )]= EG [ST (F,Y )]

⇔EG [S(T (G),T (Y ))]= EG [S(T (F ),T (Y ))]
⇔ET (G) [S(T (G),Y )]= ET (G) [S(T (F ),Y )] .

The fact that S is strictly proper relative to T (F) leads to
T (F )= T (G), and finally, since T is injective, we have F =
G.

�

E2 Proposition 3

Proof of Proposition 3. The proof relies on the reproduc-
ing kernel Hilbert space (RKHS) representation of the kernel
score Sk . For a background on kernel score, maximum mean
discrepancies, and RKHS, we refer to Smola et al. (2007) or
Steinwart and Christmann (2008, Sect. 4).

Let Hk denote the RKHS associated with k. We recall that
Hk contains all the functions k(x, ·) and that the inner prod-
uct on Hk satisfies the property

〈k(x1, ·),k(x2, ·)〉Hk
= k(x1,x2).

The kernel mean embedding is a linear application 9k :

Pk→Hk mapping an admissible distribution F ∈ Pk to a
function 9k(F ) in the RKHS and such that the image of the
point measure δx is k(x, ·). Equation (D2) giving the kernel
score for an ensemble prediction F = 1

M

∑M
m=1δxm can be

written as

Sk(F,y)=
1
2
〈9k(F )−9k(δy),9k(F )−9k(δy)〉Hk

=
1
2
‖9k(F − δy)‖2Hk

.

The properties of the kernel mean embedding ensure that
this relation still holds for any F ∈ Pk . As a consequence,
if (Tl)l≥1 is an Hilbertian basis of Hk , we have

Sk(F,y)=
1
2
‖9k(F − δy)‖2Hk

=
1
2

∑
l≥1
〈9k(F − δy),Tl〉2Hk

.

Finally, the properties of the kernel mean embedding ensure
that, for all T ∈Hk , the following applies:

〈9k(F − δy),T 〉Hk
=

∫
Rd

T (x)(F − δy )(d,x)= EF [T (X)] − T (y)

whence the result follows.
�

E3 Proof of examples illustrating Proposition 3

Next, we illustrate the Proposition 3 and provide some com-
putations in two cases: the Gaussian kernel score and the con-
tinuous rank probability score (CRPS).

E3.1 Gaussian kernel score

This is the scoring rule related to the Gaussian kernel:

k(x1,x2)= exp(−(x1− x2)2/2), x1,x2 ∈ R.
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Using a series expansion of the exponential function, we have

k(x1,x2)= e−x
2
1/2e−x

2
2/2
∑
l≥0

(x1x2)l

l!
=

∑
l≥0
Tl(x1)Tl(x2),

with Tl the transformation defined, for l ≥ 0, by

Tl(x)=
1
√
l!

e−x
2/2xl .

As a consequence, the Gaussian kernel score writes for all
F ∈ P(R) and y ∈ R; that is, the following applies:

Sk(F,y)=
1
2

∫
R×R

k(x1,x2)(F − δy )(dx1)(F − δy )(dx2)

=
1
2

∫
R×R

(∑
l≥0
Tl(x1)Tl(x2)

)
(F − δy )(dx1)(F − δy )(dx2)

=
1
2

∑
l≥0

(∫
R

Tl(x)(F − δy )(dx)
)2

=
1
2

∑
l≥0

(
EF [Tl(X)] − Tl(y)

)2
.

E3.2 Continuous ranked probability score

The CRPS is the scoring rule with kernel k(x1,x2)= |x1| +

|x2| − |x1− x2|. This kernel is the covariance of the Brown-
ian motion on R and its RKHS is known to be the Sobolev
space H1

= H1(R); see Berlinet and Thomas-Agnan (2004).
We recall the definition of the Sobolev space:

H1
=

{
f ∈ C(R,R) : f (0)= 0, ḟ ∈ L2(R)

}
,

where ḟ denotes the derivative of f assumed to be defined
almost everywhere and square-integrable. The inner product
on H1 is defined by

〈f1,f2〉H 1 =

∫
R

ḟ1(x)ḟ2(x)dx,

and one can easily check the fundamental relation

〈k(x1, ·),k(x2, ·)〉H 1 =

∫
R

k̇(x1,x)k̇(x2,x)dx = k(x1,x2).

Here the derivative k̇(x1,x)= 1[0,x1](x) is taken with respect
to the second variable x. Then, we consider the Haar system
defined as the following collection of functions:

H 0
l (x)=H 0(x− l) and H 1

l,m(x)= 2m/2H 1(2mx− l),

l ∈ Z, m≥ 0,

with H 0(x)= 1[0,1)(x) and H 1(x)= 1[0,1/2)(x)−1[1/2,1)(x).
Since the Haar system is an orthonormal basis of the space

L2(R), and the map f ∈H 1
7−→ ḟ ∈ L2 is an isomorphism

between Hilbert spaces, we obtain an orthonormal basis of
H1(R) by considering the primitives vanishing at 0 of the
Haar basis functions. Setting T 0(x)= x1[0,1)(x)+1[1,+∞)(x)
and T 1(x)=

(
1/2−|x−1/2|

)
1[0,1](x) as the primitive func-

tions of H 0 and H 1, respectively, we obtain the following
system:

T 0
l (x)= T 0(x− l), T 1

l,m(x)= 2−m/2T 1(2mx− l),

l ∈ Z, m≥ 0.

The series representation of the CRPS is then deduced from
Proposition 3 and its proof since the collection {Tl,m : l ∈
Z,m≥ 0}, is an orthonormal basis of the RKHS associated
with the kernel k of the CRPS.

Appendix F: Scoring rules of the simulation study

The following formulas are deduced for a probabilistic fore-
cast F taking the form of the Gaussian random field model
of Eq. (22). The formulas of the aggregated univariate scor-
ing rules can be obtained from the formulas in Gneiting and
Raftery (2007) and Jordan et al. (2019) and, thus, are not
presented here. We focus on the expression of the variogram
score and the CRPS of the spatial mean.

F1 Variogram score

VSp(F,y)=
∑
s,s′∈D

wss′
(
EF [|Xs −Xs′ |p] − |ys − ys′ |p

)2
For X ∼N (µ,σ 2), the absolute moment is as follows
(Winkelbauer, 2014):

E[|X|ν] = σ ν2ν/2
0
(
ν+1

2

)
√
π

1F1

(
−ν/2,1/2;−

µ2

2σ 2

)
, (F1)

where 1F1 is the confluent hypergeometric function of the
first kind. For X ∼ F , the following applies:

Xs −Xs′ ∼N (µs −µs′ ,σs2
+ σs′

2
− 2cov(Fs,Fs′ ))

∼N
(

0,2σ 2

(
1− e

−

(
‖s−s′‖
λ

)β))
.
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This leads to

EG[|Xs −Xs′ |p] =

(
2σ 2

(
1− e

−

(
‖s−s′‖
λ

)β))p/2

2p/2
0
(
p+1

2

)
√
π

1F1

(
−p/2,1/2;

−
(µs −µs′ )2

4σ 2(1− e
−

(
‖s−s′‖
λ

)β
)

)

= 2pσp
(

1− e
−

(
‖s−s′‖
λ

)β)p/2
0
(
p+1

2

)
√
π

1F1 (−p/2,1/2;0)

= 2pσp
(

1− e
−

(
‖s−s′‖
λ

)β)p/20(p+1
2

)
√
π

.

Finally, the following applies:

VSp(F,y)=
∑
ss′∈D

wss′
(
EG[|Xs −Xs′ |p] − |ys − ys′ |p

)2
=

∑
ss′∈D

wss′

((
2σ 2(1− e

−

(
‖s−s′‖
λ

)β
)
)p/2

2p/2
0
(
p+1

2

)
√
π
− |ys − ys′ |

p

)2

.

F2 Power-variation score

PVS(F,y)=
∑
s∈D∗

wsSETp,s (F,y)

=

∑
s∈D∗

ws(EF [Tp,s(X)]

− Tp,s(y))2

Denote Z =Xs+(1,1)−Xs+(1,0)−Xs+(0,1)+Xs . For X ∼
F , we have Z ∼N (µZ,σ 2

Z), with

µZ = µs+(1,1)−µs+(1,0)−µs+(0,1)+µs = 0

and

σ 2
Z = σ

2
s+(1,1)+ σ

2
s+(1,0)+ σ

2
s+(0,1)+ σ

2
s

− 2cov(F (s+ (1,1)),F (s+ (1,0)))
− 2cov(F (s+ (1,1)),F (s+ (0,1))
+ 2cov(F (s+ (1,1)),F (s))
+ 2cov(F (s+ (1,0)),F (s+ (0,1)))
− 2cov(F (s+ (1,0)),F (s))
− 2cov(F (s+ (0,1)),F (s))

= 4σ 2(1+ e−(
√

2/λ)β
− 2e−(1/λ)β ).

Using Eq. (F1), this leads to

EF [Tp,s(X)] =
(

4σ 2(1+ e−(
√

2/λ)β
− 2e−(1/λ)β )

)p/2
2p/2

0
(
p+1

2

)
√
π

1F1 (−p/2,1/2;0)

=

(
4σ 2(1+ e−(

√
2/λ)β
− 2e−(1/λ)β )

)p/2
2p/2

0
(
p+1

2

)
√
π

.

Finally,

PVS(F,y)=
∑
s∈D∗

wsSETp,s (F,y)

=

∑
s∈D∗

ws

((
4σ 2(1+ e−(

√
2/λ)β
− 2e−(1/λ)β )

)p/2

2p/2
0
(
p+1

2

)
√
π
− |ys+(1,1)− ys+(1,0)− ys+(0,1)+ ys |

p

)2

.

F3 CRPS of the spatial mean

The CRPS of the spatial mean is defined as

CRPSmeanP ,wP (F,y)=
∑
P∈P

wPCRPSmeanP (F,y)

=

∑
P∈P

wPCRPS(meanP (F ),meanP (y)),

where P is an ensemble of spatial patches and wP is the
weight associated with a patch P ∈ P . The mean of Gaus-
sian marginals follows a Gaussian distribution:

meanP (F )∼N

(∑
s∈P

µs ,
σ 2

|P |2

∑
s,s′∈P

e
−

(
‖s−s′‖
λ

)β)
=N (µP ,σ 2

P ),

where |P | is the cardinal of the patch P (i.e., the number of
grid points belonging to P ).

Finally, the following applies:

CRPSmeanP ,wP (F,y)=
∑
P∈P

wPCRPS(N (µP ,σ 2
P ),meanP (y)).

Code and data availability. The code used for the different
numerical experiments of Sect. 5 and the case study of
Sect. 6 is publicly available at https://github.com/pic-romain/
aggregation-transformation (last access: 7 March 2025) and
https://doi.org/10.5281/zenodo.14982271 (Pic, 2024). The data on
which the case study of Sect. 6 relies are taken from the
MultivCalibration package (https://doi.org/10.5281/zenodo.
10201289, Allen, 2023) and EUPPBench (https://doi.org/10.5281/
zenodo.7429236, Demaeyer, 2022).
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