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Abstract. We present a novel flexible bi-level spatiotemporal clustering algorithm to extract events based on
their intensity and spatiotemporal structures. Our algorithm consists of using (i) a novel space-time k-means
clustering to obtain spatiotemporally coherent intensity clusters, and (ii) a density-based spatial clustering of
applications with noise (DBSCAN) to spatiotemporally section the intensity clusters into individual events. We
discuss the development of the algorithm, the selection, tuning and meaning of the parameters within each step,
as well as its validation. Finally, we apply the algorithm to a spatiotemporal drought index, standardized vapor
pressure deficit drought index (SVDI), over the continental United States (US) from 1980–2021 and show that it
captures historical drought events over the continental United States and their spatiotemporal extents.
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1 Introduction

Droughts that are characterized by hot and dry weather con-
ditions have severe social, environmental, and economic ef-
fects. For example, during the years 2011 and 2012, droughts
in the central United States caused over 30 million dollars in
agricultural losses (Smith, 2020). Methodologies that can ef-
fectively monitor, detect, and assess drought are important
tools in managing risks of drought. To this end, we propose
a novel and generalizable bi-level spatiotemporal clustering
algorithm that is demonstrated on a numerical drought index
to extract and characterized drought events over a 42-year
period. For this study, we use a drought index based on va-
por pressure deficit (VPD). VPD is a measure of atmospheric
demand and a key indicator signaling when water vapor is

extracted from soil and vegetation, depleting moisture in the
landscape. The standard VPD drought index (SVDI) is based
on VPD and was first introduced in Gamelin et al. (2022)
to detect flash droughts. Flash droughts are intense but brief
droughts characterized by rapid onset, short duration, and
rapid recovery. More generally, SVDI has been successful in
identifying larger-scale drought patterns and events (Gamelin
et al., 2025). By applying the proposed spatiotemporal clus-
tering algorithm to the SVDI index, we present a new and
automated approach to extract and understand spatiotempo-
ral clusters of droughts.

The foundational spatial clustering algorithm upon which
many other drought extraction approaches are based was first
presented in Andreadis et al. (2005). Andreadis et al. (2005)
created a spatial clustering algorithm in which the spatial ex-
tent of drought clusters was found over monthly summaries
of simulated soil moisture and run-off data. Following this,
many drought analyses provide static snapshots of spatial ex-
tent of drought at specific time points. Recent analyses have
been developed that treat drought as a spatiotemporal phe-
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nomenon. The spatiotemporal treatment of drought, and geo-
referenced data more generally, can be done either by treat-
ing space and time as separate subsequent steps, or by treat-
ing them together at all levels of the clustering. Clustering
methods presented in Corzo Perez et al. (2011) and Xu et al.
(2015) treat space and time separately by first finding spa-
tial clusters and then connecting them across time points.
Drought trajectories are another subset of 3D drought cluster
research that grew from Andreadis et al. (2005), as in Diaz
et al. (2020) and Herrera-Estrada et al. (2017). Although they
offer a new way to determine drought movement and evo-
lution through drought trajectories, they ultimately rely on
the same space-time separation framework as in Andreadis
et al. (2005). Space and time are non-separable dimensions
and treating them separately is to introduce some degree of
error, so it is our goal to develop a clustering method that
considers them jointly at all steps.

The 3D-clustering algorithms used specifically for drought
are a subset of spatiotemporal clustering algorithms. Spa-
tiotemporal clustering has remained a challenging area due
to the differing nature of the spatial dimension and tempo-
ral dimensions, their relative weight and interpretation with
respect to the target application, and the need to combine
them into a single mathematical procedure. Depending on
the problem, various representations (e.g. trajectories, geo-
referenced time series, movement data, etc.) have been used
to describe spatiotemporal data requiring specific methods
(Maimon and Rokach, 2005). Some of the most popular clus-
tering algorithms are based on model, distance or density,
see Chap. 4 of Maimon and Rokach (2005) for a review. In
the first case, one typically builds a statistical model embed-
ding a latent variable that caries information about belong-
ing to a cluster (for instance mixture models) and that needs
to be estimated via specific algorithms such as expectation-
maximization. In this case, the challenges lie in the speci-
fication of the spatiotemporal statistical model and its as-
sociated inference computations, which can be a challenge
(Cressie and Johannesson, 2008). In the second case, data
are often re-arranged to make the use of classical clustering
algorithms possible while maintaining characteristics of in-
terest. This technique also relies on adequate distance func-
tions, which remain challenging to express for spatiotempo-
ral features. Finally, in density-based clustering, clusters are
defined as areas of higher density than the remainder of the
dataset. Commonly used density-based algorithms are DB-
SCAN from Ester et al. (1996) and ordering points to iden-
tify the clustering structure (OPTICS) from Ankerst et al.
(1999), for which spatiotemporal extensions have been de-
veloped, e.g. ST-DBSCAN Birant and Kut (2007) and ST-
OPTICS from Agrawal et al. (2016) and Ansari et al. (2020).
ST-DBSCAN addressed a limitation of DBSCAN by mod-
ifying the algorithm to find clusters of differing densities.
ST-OPTICS further improved upon ST-DBSCAN by creat-
ing the ability to handle nested clusters. Ultimately, density-
based clustering relies on low- and high-density areas to sep-

arate clusters, which may be a limitation in some cases. Ad-
ditionally, the current state of the literature lacks heuristic
on choosing parameters for ST-DBSCAN and ST-OPTICS
methods that require more parameters than their standard
versions. In the meantime, novel methods have been devel-
oped combining multiples steps and techniques to alleviate
the aforementioned drawbacks when working with a single
technique and to gain flexibility. A recent method for gener-
alized clustering called spatiotemporal threshold clustering
(STTC) was proposed in Kholodovsky and Liang (2021) tar-
geting extreme events. STTC finds spatiotemporal clusters
over a range of extreme event intensities that include natu-
ral variations in individual pixels within the extreme event.
STTC uses a sequence of several different techniques to gen-
erate spatiotemporal clusters, including spatial dimension re-
duction, quantile-based threshold selection, and time series
clustering. Recently, in Davis et al. (2025), a k-means clus-
tering is combined with natural language processing (NLP)-
based data mining to identify and track changes in spatiotem-
poral atmospheric climate variables. Their use of k-means
sidesteps the problem of spatiotemporal clustering by clus-
tering percentiles computed over spatial partitions in the do-
main, and tracking those signature cluster assignments over
time.

We propose a bi-level algorithm combining modified ex-
isting clustering methods. The proposed space-time cluster-
ing algorithm treats space and time simultaneously and con-
sistently at all steps by (1) creating space-time neighbor-
hoods associated with each data point, and (2) modifying the
assignment step of the classical k-mean clustering by consid-
ering space-time neighborhoods from (1) instead of distances
between isolated space-time data points. This provides a
clustering of the data based on intensity and local spatiotem-
poral consistency. Finally, (3) we separate spatiotemporal k-
means clusters into individual events using DBSCAN. The
proposed method provides a way to partition large space-
time environmental data into a user-defined number of in-
tensity classes, and is generalizable to many environmental
datasets as it retains flexibility for events occurring at differ-
ent spatiotemporal scales by controlling the space-time width
of neighborhoods in the k-means step and parameters in DB-
SCAN. We apply this proposed algorithm on SVDI data over
the continental United States from 1980 to 2021 and show
that it captures historical drought events over the continental
United States.

2 Data and Proposed Methodology

In the following section, we describe the data used in this
study together with the proposed new clustering technique
for space-time events. The proposed clustering consists of
two steps: (1) A modified space-time k-means that separates
the studied variable intensities within consistent space-time
clusters. An intermediate step, based on expert knowledge,
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performs a severity-based selection of potential drought clus-
ters that are separated into individual events during the sec-
ond step. This step can be omitted depending on the ap-
plication. (2) A DBSCAN-based step separates individual
space-time drought events from each other. The k-mean
step first enables the extraction of spatiotemporally con-
sistent structures in which statistical properties are consis-
tent, often regardless of their spatial distance, hence creating
non-contiguous clusters of similar statistical properties. DB-
SCAN, which is based on considerations of datapoint densi-
ties, allows to separate spatiotemporally distinct events. Ad-
ditionally, the use of the space-time k-means prior to DB-
SCAN reduces the computational burden of this latter and
lowers the reliance on its parameter tuning including its dis-
tance, which is less explicitly tunable in the space-time con-
text than the proposed first step. The choice of two steps en-
hances their interpretability and reduces the dependence on
each method’s drawbacks.

2.1 Data

SVDI is a temperature-based index that was developed to
identify drought based on evaporative demand and is calcu-
lated using daily maximum air temperature and daily min-
imum relative humidity (Gamelin et al., 2022). SVDI rep-
resents a simplified method for drought index calculation
capable of early calculations, drought detection, and has
been shown additionally to accurately identify known flash
drought events and large-scale drought variability (Gamelin
et al., 2022, 2025). For more information about the calcu-
lation of SVDI, we refer to Gamelin et al. (2022). For this
work, VPD, and subsequently SVDI, are calculated using
the North American land data assimilation systems (NL-
DAS) data (Xia et al., 2012). NLDAS-SVDI is stored in
a 4-tuple space-time format: time, latitude, longitude, lati-
tude, and drought index. Time is incremented daily between
1 January 1980 and 31 December 2021. 29 February is
omitted from leap years to standardize the number of days
to 365. The longitude and latitude ranges are respectively
λ ∈ [−124.938,−67.063] and θ ∈ [25.063,52.938], and dis-
cretized at intervals of 0.125° representing approximately
14 km. The corresponding SVDI value ranges from approx-
imately −4 to 4, with higher (respectively, smaller) values
associated with drier (respectively wetter) conditions. Fig-
ure 1 shows the differences in the distribution of SVDI over
North America during a known drought year 2003 and a non-
drought year 1995. The distribution of SVDI in the drought
year has a wider right tail (corresponding to higher values of
SVDI) than a non-drought year.

Figure 1. Histogram (counts) of SVDI for the year 2003 in which a
major drought event occurred compared with the year 1993 without
a major drought event.

2.2 Level 1: Space-time k-means for Intensity
Clustering

2.2.1 Standard k-means

The standard workhorse for clustering is the k-means algo-
rithm discussed in MacQueen (1967) and is formally de-
scribed as follows. Consider a matrix X ∈ Rd×n that de-
scribes the dataset {xi}ni=1 with n instances of d-dimensional
datapoints. The aim is to assign each datapoint to one of the k
clusters whose centroids {cj }kj=1 are described as the matrix
C ∈ Rd×k . This assignment is described by the matrix W ∈
Rn×k where each element wij ∈ {0,1} and ∀i,

∑k
j=1wi,j =

1. The k-means optimization problem that solves for both
cluster assignment and cluster centroids consists of the fol-
lowing minimization:

argminW,C
k∑
j=1

n∑
i=1

wijd(xi,cj ), (1)

where d is a distance metric of choice. This standard k-means
applied to SVDI values indexed in space and time, results
in space-time agnostic clustering solely based on SVDI in-
tensity. Standard k-means creates clusters that are stratified
along SVDI intensities as shown on the right plot of panel (a)
in Fig. 3. Due to the temporal dynamics of SVDI, the cor-
responding cluster assignment (with thresholding effect) re-
sults in a location rapidly transitions between clusters over
time, as seen in the bottom plot of panel (b) in Fig. 2. These
rapid time shifts are nonphysical. Hence, we propose to in-
corporate space-time information into the standard k-means
as described in the following section.
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Figure 2. (a) Spatial extents of the five extracted clusters from the newly introduced space-time minibatch k-means on 2 June 2003. (b) Time
series of cluster assignments showing drought regimes and their transitions for 2003 for space-time k-means (top), and standard minibatch
k-means (bottom), of the region highlighted in red in (a).

2.2.2 Proposed Space-time k-means

In the following, the distance in Eq. (1) d(x,c) is based on
a spatiotemporal neighborhood of x in order to account for
spatiotemporal information in the cluster assignment and de-
scription. Note that d can be any chosen distance, here we
base it on the Euclidean distance and modify Eq. (1) as fol-
lows:

argminW,C

k∑
j=1

n∑
i=1

wij
1

|N (xi)|

∑
x̃i∈N (xi )

d(x̃i,cj ) (2)

where N (xi) is a spatiotemporal neighborhood of the space-
time datapoint xi and |N (xi)| is the cardinality of the neigh-
borhood N (xi). In this work, due to the spatiotemporal na-
ture of the data, the neighborhoods constitute of adjacent spa-
tiotemporal datapoints. The neighborhood size is determined
by the correlation strength of these adjacent spatiotempo-
ral datapoints, see implementation details in Sect. 3.1.2. One
can envision general neighborhoods defined according to dif-
ferent criteria in the context of dependent data and not re-
stricted to spatiotemporal data, as for instance in multivariate
contexts. However, this exploration is left for future work.
Finally, this heuristic equalizes all points’ contributions in
the neighborhood of xi , each neighborhood point could be
weighted according to its proximity to xi . This was explored
in the early stages and not pursued due to low improvements
compared to the increased number of tunable parameters.

The top plot in panel (b) of Fig. 2 illustrates the benefit
of using a space-time neighborhood, where now temporally
consistent regimes are formed with realistic regime durations
and transitions between drought regimes. With traditional k-
means, the within-cluster variance is minimized regardless of
space-time information, leading to clustering based on non-
temporal mean and variance intensities, which creates rapid
transitions between drought regimes due to the nature of the
data. With the addition of the spatiotemporal k-means assign-

ment, temporal durations and transitions better reflect physi-
cal drought evolution with more persistent regimes. This per-
sistence is realistic when drought behaviors are considered as
locations do not transition between drought states instantly.
This new spatiotemporal assignment removes the stratifica-
tion in the clusters distributions seen in the top right panel
of Fig. 3, and blends out the boundaries between clusters
by enabling cluster centroids and cluster assignment to de-
pend on spatiotemporal information (top left panel of Fig. 3).
In bottom panel (b) of Fig. 3, time series of k-means cen-
troids exhibit different behaviors from the standard to space-
time k-means. Each cluster centroid created using the stan-
dard k-means has stratified means with no overlap between
clusters and small ranges of values. Moreover, these stan-
dard k-means centroids exhibit few changes in their tempo-
ral dynamics. With the proposed space-time k-means, clus-
ter centroids can vary significantly in their range of values
but also in their temporal dynamics. This behavior reflects
a more flexible clustering algorithm to capture a variety of
behaviors.

2.2.3 Minibatched k-means

For high-dimensional data (i.e., for large n) where X do not
fit in memory, the minimization will take an unreasonable
time to converge. To circumvent this, the minibatched k-
mean iteratively performs the optimization of the k-means
cost function (Eq. 1) over random batches of the data, making
it greedy but also faster to converge (Sculley, 2010). In the
following, all k-means procedures are performed by mini-
batching to tackle the large amount of data.

2.2.4 Expert-based Step: Drought Severity Assignment

This step is specific to the studied application and can be
omitted depending on the application. However, it enables to
select a reduced number of clusters to be processed by DB-
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Figure 3. Panel (a) shows histograms between the new modified space-time k-means (left) and standard k-means (right). Panel (b) shows
daily centroid means for the corresponding clusters found using the proposed space-time minibatched k-means (top), and standard mini-
batched k-means (bottom).

Table 1. Drought severity categories based on ranges of SVDI.

Drought Strength Category SVDI Range

Extreme Drought SVDI> 2
Severe Drought 1.5< SVDI≤ 2
Moderate Drought 1< SVDI≤ 1.5
Mild Drought 0.5< SVDI≤ 1
Neutral −0.5< SVDI≤ 0.5
Mild Wetness −1< SVDI≤−0.5
Moderate Wetness −2< SVDI≤−1
Severe Wetness −3< SVDI≤−2
Extreme Wetness SVDI≤−3

SCAN and potentially creates regions with lesser datapoint
density, hence enabling more potent DBSCAN step. After
the space-time k-means step, cluster means are computed to
determine drought severity. We perform a finer classification
based on cluster-mean intensity following Table 1, similar to
the dry and wet categories employed by the standardized pre-
cipitation evapotranspiration index (SPEI) (Vicente-Serrano
et al., 2010). We select clusters identified by the space-time
k-means whose cluster’s mean is greater than 0.5, corre-
sponding to mild, moderate, severe and extreme droughts.
These selected clusters are passed to the next step to separate
individual events. Clusters with means belonging to the same
drought category were collapsed into a larger single cluster.

2.3 Level 2: Event-level Clustering

As a final step, we choose the density-based spatial cluster-
ing of applications with noise (DBSCAN) algorithm (Ester
et al., 1996) to separate individual events from the previously

extracted space-time k-means clusters. Indeed, Fig. 7 shows
drought intensity clustering in a spatiotemporal consistent
way; however, space-time points with similar statistical prop-
erties belong to the same cluster although they are spatially
far apart and most likely pertain to different drought events.
DBSCAN is a density-based algorithm that clusters points
based on high- and low-density regions, hence accounting
for their closeness to other high-density regions in the data
domain. DBSCAN requires a distance function for which
we used a normalized Euclidean distance, but any distance
can be chosen. The modifiable parameters in DBSCAN are
ε and nmin, where ε determines the minimum distance be-
tween neighbors, and nmin determines the minimum number
of points required to form a dense region and start a clus-
ter. Ultimately, DBSCAN finds the fewest number of clus-
ters while requiring every pair of points in each cluster to be
reachable within radius ε. A description of the algorithm is
as follows.

1. Start with an unvisited point, mark it as visited, and find
all its neighbors within a radius of ε:

– If more than the minimum number of neighbors
(nmin) within the radius ε are found, the visited
point is assigned as a core point,

– If not, then the point is considered as non-core. It
is assigned to a cluster if there is one within radius
ε, otherwise it is temporarily classified as a noise
point,

2. If a core point is found in the previous step, a new clus-
ter is started with this core point and all its density-
reachable points (neighbors) are added to this cluster.
Density-reachable points are points that can be reached
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via any sequence of intermediate neighbors within a dis-
tance ε (also called path of connected core points),

3. Repeat until all points are visited.

DBSCAN was chosen for this step as it does not require an
a-priori number of clusters and creates clusters of arbitrary
shapes based of datapoint local densities, hence enabling
to identify individual drought events. Specifically, it creates
separate clusters that have similar statistical properties (for
instance drought-like) but spatially separated. DBSCAN is
applied to each cluster extracted from Level 1 to obtain indi-
vidual spatiotemporal individual drought events. While nmin
was left fixed, ε was tuned in a similar fashion to k to cre-
ate distinct and well-separated drought clusters that reflect
known historical drought conditions. Before further analysis
of these drought clusters, we trim the drought events of negli-
gible size (i.e, having volume below the value of the parame-
ter trimvolume). Note that ST-DBSCAN could have been used
in this step; however, we found that the standard DBSCAN
provided expected results, most likely because space-time
structures are handled during the first space-time k-means
step. Moreover, ST-DBSCAN requires tuning four param-
eters, reducing the control and interpretability of the algo-
rithm.

3 Results and Discussion

In the following, we exemplify the algorithm parameter tun-
ing on the historical drought of 2003, then we analyze the
clustering performance of a known drought in 2000. Finally,
we analyze statistics and long-term trends of the extracted
space-time drought clusters.

3.1 Parameter Tuning for Clustering of Historical
Drought of 2003

3.1.1 Historical Drought of 2003

We choose the summer 2003 droughts in the United States
as our comparison criteria for parameter tuning. In 2003,
there were two identified drought events. One drought was
located in the central United States and the other in the
Southwest. We focus on the evolution of the 2003 drought
in the central United States (https://www.ncei.noaa.gov/
access/monitoring/monthly-report/drought/200313, last ac-
cess: January 2025), see Fig. 4a, because this region has been
prone to extreme flash drought events over the last 40 years
(Christian et al., 2019; Edris et al., 2023). In their review,
(Lisonbee et al., 2021) highlighted two known constants in
identifying a flash drought: rapid intensification and short
duration. Thus, the 2003 drought event has been classified
as a flash drought due to its rapid intensification (Otkin et al.,
2018; Liu et al., 2020; Lisonbee et al., 2021; Edris et al.,
2023) beginning in late June, and short duration, with a rapid
demise and ending before September (Chen et al., 2019;

Christian et al., 2019; Gamelin et al., 2022). The proposed
algorithm has a total of six tunable parameters. We discuss
the role each plays in the algorithm and their tuning on these
historical data.

3.1.2 Spatiotemporal Neighborhood

First, as the spatial region is large and covered at fine reso-
lution, we downsample the grid by retaining every 10 grid-
points to reduce the overall number of points while still re-
maining true to the spatial structure present in the full dataset.

Next, we define space-time neighborhoods for the pro-
posed modified space-time k-means. We base space-time
neighborhoods on the spatiotemporal correlation of SVDI.
Spatiotemporal neighborhoods are centered around each dat-
apoint and consist of points having non-zero space-time cor-
relation with the neighborhood center point. Temporal auto-
correlations decreased quickly within a week’s lag time, as
shown in Fig. 5. Thus, we choose a temporal neighborhood
of 14 d (day) window around each datapoint (i.e., 7 d before
and 7 d after the datapoint). On average, SVDI spatial corre-
lations become negligible after around 127 km (kilometers)
(not shown here), thus we choose circular spatial neighbor-
hood of that radius.

Finally, we explore the joint effect of the spatiotemporal
neighborhood’s size on the accuracy of the associated clus-
tering. Specifically, we evaluated how well different sizes of
spatiotemporal neighborhoods created clusters that aligned
with the historical drought of 2003, as shown in Fig. 6. The
bounding box represents the observed extent of the 2003
flash drought. The latitudes extend from 35 to 50.5° N and the
longitudes from −100.5 to −85.5 °W. Increasing the tempo-
ral window in the spatiotemporal neighborhood increases the
number of points assigned to the driest cluster, while increas-
ing the spatial neighborhoods spatially smooths the clus-
ter assignments. The spatial neighborhood of 0.02 radians
(around 120 km) and temporal neighborhood of 7 d aligned
with similar patterns to the ones as seen in Fig. 4.

3.1.3 Number of k-means Clusters

After choosing spatiotemporal neighborhoods, the number k
of clusters in the proposed space-time k-means has to be se-
lected. The value of k is related to the spanned range of in-
tensity of drought and how well the clusters correspond to
known drought events. In situations without ground truth,
scores such as silhouette, presented in Rousseeuw (1987),
Davies-Bouldin index, presented in Davies and Bouldin
(1979), and Calinski-Harabasz index, presented in Calinski
and Harabasz (1974), are used to assess clustering quality for
a range of values of k, typically trading off inter- and intra-
cluster properties. In practice, these scores are combined with
domain knowledge to select a suitable value of k. In our
case, domain knowledge alone was sufficient to find k that
created clusters that aligned with the known drought. We in-
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Figure 4. Panel (a), which is a recreation of Fig. 1 from Gamelin et al. (2022), shows the average SVDI for the month of August 2003.
The spatial extent of the 2003 summer flash drought is given by the black bounding box. The region between latitudes 95 and 87° W of and
longitudes 37.5 and 45° N within the bounding box shows the area of peak intensity of the 2003 central US Drought. Panel (b) shows the
results of the proposed space-time clustering. The color is the proportion of days assigned to the driest space-time k-means cluster during
August 2003. The red bounding box marks the approximate area of the 2003 summer flash drought over the period 1 July to 3 September
2003. Note that the resolution is different from one panel to another as (a) shows SVDI in its original spatial resolution and (b) shows results
of the proposed k-means performed on downsampled data as described in this section. The same color palette as in Gamelin et al. (2022) is
used.

Figure 5. Point-wise SVDI temporal autocorrelation values at lag times of 1, 7, 14, and 21 d (clockwise starting at the top-left corner) during
the summer.

spected several values of k to see how well they spatially cor-
responded to the areas of known drought in the central United
States during the 2003 drought. Following this, it was empir-
ically chosen to work with k = 5 clusters for this dataset. Fig-
ure 7 illustrates several time snapshots of the algorithm using
five spatiotemporal clusters and the spatiotemporal neigh-
borhood defined above. The newly proposed spatiotemporal
k-means mirrored the development of the 2003 central US
drought event, which is partially shown in panel (a) of Fig. 4.
The region is absent of drought-identified clusters beginning

in September as reported in literature (Gamelin et al., 2022).
Additionally, in panel (b) of Fig. 4, which shows the results
of the space-time k-means clustering, the red bounding box
represents the known drought area from 1 July to 2 Septem-
ber 2003. Within this bounding box, the area assigned to
the driest cluster during the month of August corresponds to
the location of peak intensity identified in Fig. 1 of Gamelin
et al. (2022) recreated in panel (a). From the five space-time
k-means clusters, we assign these into four distinct drought
clusters each corresponding to a single drought severity cate-
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Figure 6. Proportion of points assigned to the driest cluster during the 2003 drought with spatial windows 0.01, 0.02, 0.04 radians (60, 120,
and 240 km) (rows) and temporal windows of 3, 7, 14 d (columns). The bounding box correspond to the approximate area of the known
drought, with latitudes from 35 to 50.5° N and longitudes from −100.5 to −85.5 °W.

gory (mild, moderate, severe and extreme) from Table 1. For
2003, only two of five SVDI cluster means were identified
as drought and moved to DBSCAN. Cluster 4 with a mean
of 1.44 and Cluster 3 with a mean of 0.644 were considered
moderate and mild drought, respectively. Within these two
drought categories, we prioritized tuning DBSCAN parame-
ters to the cluster corresponding to moderate drought. While
it may seem redundant to start with 5 spatiotemporal k-means
clusters to condense down to 4 drought severity categories,
the number of k-means clusters actually creates more reso-
lution in identifying drought spatiotemporal events from the
data and associated observed severity. Specifically, running
the initial k-means with fewer clusters leads to larger clus-
ters mismatching with known distinct spatiotemporal events
of different severity.

3.1.4 DBSCAN Tuning

Once the value of k is selected, the next parameters to tune
are ε related to the distance between clusters and nmin (min-
imum cluster size) in DBSCAN, and trimvolume (minimum
volume of space-time clusters).

We select ε by inspecting the space-time clusters along a
range of values. Once these space-time clusters are found,
we compare drought centroid evolutions for sufficient spatial
and temporal overlap for each cluster to determine whether
they should be consolidated into the same drought event.
nmin, which controls the minimum cluster size around core
points during cluster creation, was fixed at a value of 5.

Finally, trimvolume is the final tuning step for DBSCAN; it
controls the minimum volume (500) of any space-time clus-

ters. This parameter is related to ε; depending on ε small
drought clusters may be classified as part of a larger clus-
ter, remaining in the final space-time cluster since they sur-
pass the minimal allowable volume indicated by trimvolume
parameter.

Figure 8 shows the effects on cluster shapes of a range of ε
values. Low values of ε result in space-time clusters that are
stratified regardless of their spatiotemporal structures. As we
increase the value of ε, we notice that three distinct space-
time clusters emerge: one early in the year in the Southwest,
a second one in the middle of the year also in the South-
west, and a large drought in the southwestern and central US
spanning the remainder of the year. A small window of ε re-
sults in three distinct clusters. Once that threshold is passed,
the smaller southwestern cluster is subsumed into the larger
cluster. Finally, too high values of ε result in a single clus-
ter. Overall, the effect of ε also shows the robustness of the
space-time clusters – aside from the unrealistic clusters seen
for low values of epsilon – the general structure of the space-
time clusters remains consistent across a given range of ε.
Ultimately, we choose ε = 0.25 as it best represents the gen-
eral trends in the known droughts of 2003. Figure 9 illustrates
the individual events identified with these parameters for the
moderate and mild categories. We note that the mild drought
has a larger spatiotemporal extent than the moderate one cor-
responding to physical expectations.

Figure 10 shows the spatial centroids of the 2003 clus-
ters, labeled by their pentad (5 d interval) number and linked
with directional arrows to indicate their space-time propa-
gation. With ε = 0.25, moderate-drought Cluster 5 (purple)
is contemporaneous to the larger drought cluster, moderate-
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Figure 7. Maps of the spatial extent of the five space-time k-means extracted clusters in two-week intervals between July and September
2003. The red bounding box indicates the approximate known area of the 2003 central US flash drought over the period 1 July to 3 September
2003.

Figure 8. Effect of different values of ε on DBSCAN clusters in 2003.

drought Cluster 6 (yellow), but is considerably spatially sep-
arated and properly assigned to a different clustering accord-
ing to historical records. In this case, the decision to consider
moderate-drought Cluster 5 as distinct, rather than include
it alongside the larger drought moderate-drought cluster, in-
formed our selection of ε, but highlight the ability of the
method to separate clusters of the same severity into different
events as needed.

Finally, to explore within cluster dynamics, we assign to
each grid point a drought severity based on the value of SVDI
from Table 1. This refined partition allows us to investigate
developing drought within each drought category. In Fig. 11,
the histogram displays aspects of the development of the 3
moderate drought clusters in 2003 (between dashed black
lines). The height of the bar provides an idea of the spatial
extent of the drought, with taller bars indicating more spatial
points involved in the drought. The color fill of the bars in-
dicates the drought severity. The color of the frame (black,
green and yellow) of each bar indicates cluster assignment,
hence different drought events.

In the drought progression snapshots shown in Fig. 12, the
2003 summer drought is captured by Cluster 6 of moderate
drought (yellow). Moderate-drought Cluster 6 also contains
components of a flash drought that occurred in the Amer-

ican Southwest prior to the summer 2003 central US flash
drought, which can be observed in the peak in the histogram
around pentad 45 of Fig. 11. In both the drought progres-
sion spatial snapshots in Fig. 12 and the drought progression
histogram in Fig. 11, the 2003 flash drought event is asso-
ciated within a larger drought event and does not stand out
in Cluster 6, highlighting the potential difficulty in capturing
spatiotemporally smaller drought events, like flash droughts,
occurring within a larger-scale drought.

3.2 Analysis of Clustered Droughts in 2000

To further demonstrate the performance of the clustering al-
gorithm, we apply the proposed bi-level clustering approach
to identify drought events in 2000 with SVDI. In the follow-
ing, we investigate two settings of the clustering: (1) we tune
the clustering algorithm to the year 2000 data and (2) we
keep the parameters tuned to 2003, and apply the correspond-
ing clustering procedure to the unseen year 2000 that also
contained a historical drought. This second step enables to
test the applicability of the tuned method to unseen data. The
year 2000 has a well-documented summer flash drought that
originated in Florida, Mississippi and Georgia in the south-
eastern United States. Simultaneously, there was a longer-
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Figure 9. Distinct drought clusters found for the year 2003 for and moderate (a) and mild (b) drought severity categories.

Figure 10. Spatial trajectories of centroids for Clusters 5 (purple) and 6 (yellow) representing individual moderate drought events shown in
Fig. 9 over pentads 24 to 32 in 2003.

term drought occurring in Texas, the Plains and Southwest
that increased in intensity and spatial area from July through
October. The historical development of the southeastern flash
drought is shown in the supplemental figures of Gamelin
et al. (2022), republished in Fig. 13.

When the algorithm’s parameters are tuned to the year
2000, the associated space-time clustering correctly captures
the timing and spatial location of the historical 2000 drought,
see Fig. 14 (top panels in yellow) compared to Fig. 13. With
these parameters, the extracted drought is classified as ex-
treme. This figure shows the weekly location of the extracted
drought cluster during the summer of 2000, starting from
July and ending in October. For this tuning case, the same
space-time neighborhood and number of clusters in the k-

means steps was kept the same and only the ε was tuned in
the DBSCAN step.

In comparison, with 2003-tuned parameters, the 2000
drought is classified as severe (less severe than extreme) and
was captured in one of the severe drought space-time clus-
ters, as seen in Fig. 14 (bottom panels in purple). The spa-
tiotemporal cluster correctly places the area of drought in
the southeast in early July. However, the cluster misiden-
tified the drought in late July and early August, conflating
the drought with a contemporaneous drought in Texas and
across the Plains. This misidentifying only lasted for around
2 weeks before shifting back to approximately the right loca-
tion in the week of August 8th onwards, mirroring the histor-
ical flash drought once more. The issues with the misidenti-
fication of the flash drought were completely rectified above
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Figure 11. Stacked histogram showing the number of grid points experiencing different severity of droughts and their temporal development
for the 3 spatiotemporal drought clusters for 2003 (between dashed black lines). The color of the outline (black, green and yellow) of each
bar indicates cluster assignment.

Figure 12. Weekly evolution of the three individual moderate drought events with different colors across the year 2003. Weeks are labeled
by the starting date of that week.
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Figure 13. Reprinted from Gamelin et al. (2022, supplementary Fig. S1). SVDI monthly averages (bottom) for June, July, August, and
September in 2000 alongside corresponding monthly United States Drought Monitor snapshots (top). The black bounding box encloses the
area of the 2000 flash drought.

by tuning the DBSCAN parameters to the year 2000 specif-
ically (top panels in yellow) as observed above. Addition-
ally, it is worthwhile to mention that the misidentification
issues that arose from applying 2003-tuned parameters to
2000 could be due to the smoothness of SVDI. Sometimes,
a lack of spatial separation in SVDI values is observed, as in
Fig. 13, linking areas experiencing different drought events.
In this figure, although the area in the flash drought is high-
lighted, a large portion of the West is spatially linked through
a high SVDI with the area of flash drought. Overall, although
the parameters were tuned for a completely different year,
the resulting space-time clustering provided a fairly accurate
representation of the flash drought in 2000, highlighting the
robustness of the proposed clustering method. However, as
observed here, drought severity classification may be under-
or over-estimated when spatiotemporal clusters differ from
one method to the other.

3.3 Long-term Drought Statistics

We investigate trends in long-term drought patterns based
on the clusters extracted by the proposed algorithm over the
42-year time period. The algorithm is applied to each year
separately with the 2003-tuned parameters. Figure 15 dis-
plays the evolution across the 42-year time period of the
annual mean SVDI in all space-time drought clusters cat-
egorized by their severity. To further compare the drought
characteristics of the extracted clusters, several descriptive
statistics are calculated at the cluster and annual levels. The
calculated statistics are based on drought intensity, duration,
and timing. The intensity is calculated as the average SVDI
in each cluster. Duration and timing are based on the num-
ber of days classified as drought. For all annual statistics,
each statistic is first calculated for each identified drought
cluster, and then averaged across clusters. Mild and mod-
erate droughts dominate in the first half of the time frame,

whereas during the latter half severe and mild droughts pre-
dominate, as observed in Fig. 15. Additionally, the frequency
of mild droughts has increased over time. While there are
years with no mild drought between 1981 and 2000, there
has been a mild drought almost every year between 2000 and
2021. Figure 16 shows the annual average duration of space-
time droughts for each severity category. Average drought
duration demonstrates trends: after 2000, mild droughts are
more likely to last the entire year, while also becoming more
frequent. Severe droughts are lasting longer, while occurring
more frequently than moderate drought. Finally, the longest
extreme drought from this dataset occurred during 2011.

4 Conclusions

Our proposed space-time extension of k-means allows for ef-
ficient and flexible clustering while incorporating space-time
information. Generally, the proposed algorithm can separate
a dataset into different intensity categories based on their
value and spatiotemporal structures, an ability that standard
k-means lacks. When applied to the SVDI drought index, our
algorithm improves on standard k-means by (1) creating tem-
porally persistent drought regimes with realistic transitions,
(2) creates spatiotemporally consistent drought events, (3)
ability to capture historically accurate clusters that capture
known drought events. Additionally, the proposed clustering
method was tested on unseen data (year 2000) that are not
used during the tuning phase (year 2003) and was able to
identify droughts in an unrelated year with reasonable accu-
racy. This indicates the robustness of the proposed method
across different data. Finally, the drought trends identified
through applying our space-time algorithm to the 42-year
time period reveal shifts in drought across the United States.
These shifts correspond to known trends in droughts (Leeper
et al., 2022; Strzepek et al., 2010).
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Figure 14. Weekly evolution of extracted historical drought cluster from the proposed method corresponding to 2000 summer flash drought.
Top: Clusters resulted from tuning method to 2000 specifically, classified as extreme. Bottom: Clusters found using algorithm parameters
tuned to 2003 and classified as severe. Colored areas show the extracted droughts.

Part of the method’s flexibility centers around the param-
eters that can be tuned for different research aims. For ex-
ample, time scales for the temporal neighborhood can be
adjusted to detect short- or long-term events, and the size
of the spatial neighborhoods could detect large- or small-
scale events. Due to this flexibility, the proposed space-
time clustering can be used to assess numbers of spatiotem-

poral continuous phenomena besides droughts. Moreover,
the proposed bi-level procedure enhances the spatiotempo-
ral interpretability over existing spatiotemporal clustering
and reduces the computational burden compared to relying
on a single clustering method. Since the proposed method
relies on two clustering techniques, future research direc-
tions could incorporate other methods in place of either k-
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Figure 15. Annual mean SVDI across extracted space-time drought clusters over all 42 years for each drought severity category.

Figure 16. Annual average drought duration across extracted space-time drought clusters over all 42 years for each drought severity category.

means or DBSCAN, including Hierarchical Density-Based
Spatial Clustering of Applications with Noise (HDBSCAN)
(Campello et al., 2013), Balanced Iterative Reducing and
Clustering using Hierarchies (BIRCH) (Zhang et al., 1996),
or Voronoi Clustering (VoroClust) (Winovich et al., in re-
visions, 2024). All of these methods are unsupervised clus-
tering methods that have additional capabilities compared to
DBSCAN. HDBSCAN allows for clusters of differing densi-
ties by performing a DBSCAN algorithm with several values
of ε. BIRCH locally clusters over subsets of the data, provid-
ing faster clustering speeds than DBSCAN. VoroClust uses
Voronoi tessellation to quickly capture complex clustering

patterns on large multidimensional datasets with computa-
tional times faster than DBSCAN, HDBSCAN, and BIRCH.
These methods work well with high-dimensional data, po-
tentially extending the spatiotemporal clustering ability into
higher dimensions.

Finally, the procedure highlights the challenges of work-
ing in an unsupervised environment where interpretable steps
and domain experts are required. Developing ways to au-
tomate the algorithm tuning towards specific environmental
phenomenon is a worthwhile future goal.
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Code and data availability. Due to its large size, the dataset is
available by request from the authors. Using the procedure outlined
in Gamelin et al. (2022) SVDI can be calculated using NLDAS-2
data created by (Xia et al., 2012) and freely available at https://ldas.
gsfc.nasa.gov/nldas/v2/models (last access: January 2025). Codes
for the proposed algorithms can be found here: https://github.com/
teachristian/bilevelclustering (last access: August 2025).
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