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Abstract. Drought is one of the recurring natural phenomena affecting the socio-economic and environmen-
tal well-being of southern Ethiopia’s society. The availability of insufficient ground-based rainfall observatory
networks is limiting drought-monitoring and early-warning investigations. The main objective of this study is to
analyze spatial and temporal drought characteristics using high-resolution satellite-based rainfall products for the
1991–2022 period in the Southern Nations, Nationalities, and Peoples (SNNP) region of Ethiopia. The satellite-
based rainfall product used in this study was selected after the evaluation of three satellite products, namely
the Africa Rainfall Climatology version 2 (ARC2), the Climate Hazards Group InfraRed Precipitation with Sta-
tions (CHIRPS), and the Tropical Applications of Meteorology using SATellite and ground-based observations
(TAMSAT), against station-based rainfall for the study area space and time domains. The statistical metrics
of correlation coefficient (CORR), bias (BIAS), percent bias (PBIAS), mean error (ME), mean absolute error
(MAE), root mean square error (RMSE), and Nash–Sutcliffe efficiency coefficient (NSE) were used to compare
and evaluate the satellite rainfall products. Accordingly, the CHIRPS shows the highest CORR of 0.96 and the
highest BIAS of 1.02, which is very near to the perfect value (BIAS = 1), followed by the TAMSAT. Hence,
the CHIRPS-based satellite rainfall product was used to assess the spatio-temporal patterns of meteorological
drought based on the 3-month and 12-month standardized precipitation index (SPI). The results successfully
grasped the known historical and recent droughts of 2022, 2021, 2015, 2014, 2010, 2009, and 2000. A high
intensity and a high severity of drought were noted in the SPI-3, while the least occurrences of extreme events
were recorded in the SPI-12. Additionally, severe drought situations were detected in the drought-prone areas
in the southern and southeastern parts of the SNNP region. Finally, the study concludes that, to construct grid-
based drought-monitoring tools for the development of early-warning systems, the CHIRPS rainfall product can
be used as an additional source of information.

1 Introduction

Drought is one of the most hazardous climate extremes that
affects different parts of the planet annually. It has a wide
range of effects, results in significant financial losses, and
endangers both human life and the environment (Olagunju,
2015; Vicente-Serrano et al., 2020; Wilhite and Buchanan-
Smith, 2005). A significant section of Ethiopia’s popula-
tion has been harmed by frequent, protracted drought oc-
currences that have damaged crops and killed livestock. In
recent decades, the country has experienced severe and un-

precedented drought episodes (Bayissa et al., 2019; Degefu
and Bewket, 2015; Mekonen et al., 2020). A few of the big
droughts that affected most of the nation were those that
occurred in 2014–2015, 2009–2010, 1994–1995, and 1983–
1984, among others (Ayugi et al., 2022; Mera, 2018; Viste
et al., 2013). The 1983–1984 drought was one of the worst
in Ethiopian history, affecting almost 35 million people or
22 % of the country’s entire population at that time accord-
ing to figures from historical studies on drought. The agricul-
ture sector is impacted by drought since it depends on regular
and sufficient seasonal rainfall. In Ethiopia, the income from
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agricultural production supports almost 85 % of the popu-
lation (Gezie, 2019; Yigezu, 2021). However, the farming
methods are quite archaic and mostly rain-fed (Hordofa et
al., 2008; Moges and Bhat, 2021). Furthermore, a high de-
gree of spatial and temporal variability in rainfall results in
a large degree of fluctuation in the amount of water avail-
able for crops at the root zone (Brocca et al., 2010; Wilson et
al., 2004). To diminish the negative effects of drought on the
country, early-warning systems and drought monitoring are
essential (Boken et al., 2005).

Drought indices, which quantify the shortfall of
hydrologic-cycle components relative to the long-term
mean, are often widely applied in drought monitoring (Ntale
and Gan, 2003; Paulo and Pereira, 2006; Salimi et al., 2021;
Zargar et al., 2011). The climatological mean serves as
a benchmark for calculating an event’s variance. Conse-
quently, the degree of dryness – or the departure from the
typical or average amount of rainfall over an extended period
– is what is used to characterize meteorological drought
(Quiring, 2009). Hydrological drought, on the other hand, is
the absence of certain hydrological-water-cycle components,
such as river flow, groundwater flow, and reservoir storage,
and is caused by a lack of certain meteorological parameters,
primarily rainfall (Van Loon, 2015). Similarly, agricultural
drought is commonly characterized as the lack of readily
available water for plants to use to meet their water demands
(Liu et al., 2016; Wilhelmi and Wilhite, 2002; Wilhite and
Buchanan-Smith, 2005). Before affecting agricultural and
hydrological water components, meteorological drought can
be considered to be an early indication of drought (Han et
al., 2023).

The availability of rainfall data at appropriate spatial and
temporal scales is a prerequisite for the drought-monitoring
system. However, one of the major challenges, particularly
for emerging countries like Ethiopia, is to obtain from me-
teorological observation stations reliable climatic records
on rainfall that are balanced across the area (Dinku et al.,
2008; Worqlul et al., 2017). Satellite-based rainfall estima-
tion products are increasingly available for use on a global
and regional scale to address these challenges. The primary
benefit of rainfall products derived from remote sensing is
their decent coverage in terms of both space and time, which
has served to demonstrate their suitability for use in hy-
drological and climatic research (Bitew et al., 2012; Tan et
al., 2017; Tobin and Bennett, 2014). However, before adopt-
ing them for further use in research on drought and other
natural hazards, their accuracy must be assessed and con-
trasted with ground-truth rainfall measurements (Dembélé
and Zwart, 2016; Dinku et al., 2008; Stampoulis and Anag-
nostou, 2012).

Numerous studies have tried to assess and compare satel-
lite rainfall products with measurements made on the ground
in a variety of locations (Ayehu et al., 2018; Bayissa et al.,
2019; Dembélé and Zwart, 2016; Feidas, 2010; Wiwoho et
al., 2021). Among these, Dembélé and Zwart (2016) eval-

uated the performance of the Africa Rainfall Climatology
(ARC2), the Climate Hazards Group InfraRed Precipitation
with Stations (CHIRPS), the Precipitation Estimation from
Remotely Sensed Information using Artificial Neural Net-
works (PERSIANN), the African Rainfall Estimation (RFE
2.0), the Tropical Applications of Meteorology using SATel-
lite (TAMSAT), the African Rainfall Climatology and Time-
series (TARCAT), and the Multi-satellite Precipitation Anal-
ysis (TMPA) satellite rainfall products for Burkina Faso and
suggested the applicability of the ARC, RFE, and TAR-
CAT for drought-monitoring research. In Ethiopia, Bitew et
al. (2012) evaluated the Climate Hazards Group InfraRed
Precipitation with Stations (CHIRPS) v2.0, the Precipitation
Estimation from Remotely Sensed Information using Arti-
ficial Neural Networks (PERSIANN), the African Rainfall
Climatology and Time-series (TARCAT) v2.0, the Tropical
Rainfall Measuring Mission (TRMM), and the Africa Rain-
fall Climatology version 2 (ARC2). Their study selected the
CHIRPS as the best-performing satellite rainfall product and
used it for meteorological drought variability assessments in
the Upper Blue Nile basin. Nevertheless, not much research
has been done to determine whether satellite rainfall esti-
mations can be used for meteorological drought-monitoring
and early-warning systems, especially in Ethiopia’s SNNP
region.

The SNNP region is one of the drought-prone areas in
Ethiopia. The topography of the region is complex, consist-
ing of lakes, forest highlands, and lowlands (Asefa et al.,
2020). The need for accurate rainfall products with higher
spatio-temporal resolutions and long-term records for var-
ious hydroclimatic assessment purposes in relation to wa-
ter resources, floods, and droughts has increased in the re-
gion. This study therefore aims to (1) validate three high-
resolution satellite-based rainfall products, namely the Africa
Rainfall Climatology version 2 (ARC2), the Climate Hazards
Group InfraRed Precipitation with Stations (CHIRPS), and
the Tropical Applications of Meteorology using SATellite
and ground-based observations (TAMSAT3), against ground-
based rainfall measurements and (2) analyze the spatio-
temporal distribution of meteorological drought using the
standard precipitation index (SPI) for the 1991 to 2022 study
period in the SNNP region of Ethiopia.

2 Materials and methods

2.1 The study area

The SNNP region is located in the southern part of
Ethiopia between 4.4–8.5° N latitude and 35.8–38.7° E lon-
gitude (Fig. 1). The study region covers an area of about
51 813 km2, and the topography of the area ranges from 235
to 3470 m above sea level. The lakes Abaya and Chamo,
which are part of the greater Ethiopian Rift Valley lakes, are
located in the region. The agro-climatic characteristics of the
SNNP region are classified as semi-arid to humid, and the

Adv. Stat. Clim. Meteorol. Oceanogr., 11, 59–71, 2025 https://doi.org/10.5194/ascmo-11-59-2025



T. M. Weldegerima and T. B. Gebresilassie: Analysis of meteorological drought 61

region receives a bimodal rainfall distribution, with its main
rainy season from March to May (MAM) and a short rainy
season from September to November (SON) (Wakjira et al.,
2021). The mean annual rainfall received by the area ranges
from 900 to 1400 mm. About 70 %–90 % of the total annual
rainfall is contributed by the main rainy season (Legesse,
2016; Salimi et al., 2021). The short rainy season is gener-
ally inconsistent and confined to the highland areas. The av-
erage annual temperature of the area ranges from 15 °C in the
lowlands to over 28 °C in the highlands (Esayas et al., 2018).

The SNNP region is one of the most populated areas in
Ethiopia, with a total population of about 5.4 million and
with estimated landholding capacity of 0.75 ha, which falls
under the national average of 1.2 ha (Amenu and Mamo,
2021). About 90 % of the population lives in rural areas,
sustaining themselves through agricultural practices. Mixed
agriculture, agroforestry, intensive cropping, intercropping,
and enset- and coffee-based land use types are the farming
systems dominantly practiced in the different agroecologies.
The dominant crops cultivated in the area include teff, barley,
maize, lentils, horse beans, chickpeas, and field peas. Despite
the availability of rich land resources, crop productivity in the
region has not increased to its full potential because of nutri-
ent mining, soil erosion, acidity, and nutrient depletion, as
well as a lack of balanced fertilization (Aleminew and Ale-
mayehu, 2020). Chromic Luvisols and Haplic Luvisols are
the dominant soil types in the region.

2.2 Data sources

2.2.1 Station data

Daily rainfall data from ground-based meteorological sta-
tions were obtained from the Ethiopian Meteorological In-
state (EMI) for the 1991–2022 study period. Station selection
was based on long-range records that cover the whole study
period and represent different agro-climatic zones. The study
period was chosen based on the availability of the satellite
measurements. Additionally, drought index calculation needs
a long period of at least 30 years of data (Yihdego et al.,
2019). Hence, 12 stations that have a common record period
(1991–2022) and that cover all climate types in the study re-
gion are selected for this study (Table 1). The validation and
comparison of the three satellite rainfall products against the
station-based rainfall were conducted at a monthly timescale.

2.2.2 Satellite data

To fill the gap relating to the spatial and temporal inconsis-
tencies of ground-based meteorological stations in record-
ing rainfall, the study assessed several satellite-based rain-
fall products and selected three of these, namely the Africa
Rainfall Climatology version 2 (ARC2), the Climate Haz-
ards Group InfraRed Precipitation with Stations (CHIRPS),
and the Tropical Applications of Meteorology using SATel-
lite and ground-based observations (TAMSAT). These satel-

lite rainfall products have high spatial resolutions that range
from 0.05°× 0.05° to 0.25°× 0.25° (≤ 25 km) and high tem-
poral resolutions that range from hourly to monthly, and they
cover relatively long time series of 1981 to the near-present
(> 30 years). These satellite products are freely available
and have been extensively used for rainfall variability and
trends globally and in Ethiopia (Bayissa et al., 2019). How-
ever, these satellites have not been used to analyze drought
indices, particularly in the SNNP region. Although the satel-
lite products are freely available at high spatial and temporal
resolutions, they have their advantages and limitations (Lev-
izzani et al., 2002). The satellite-based rainfall used in this
study was downloaded from the International Research Insti-
tute for Climate and Society (IRI) of Columbia University’s
data library (Dinku et al., 2008). A detailed description of
each satellite rainfall product is given below.

The ARC2 satellite rainfall product, which is a revised
version of the ARC1 and extends back to 1981, is becom-
ing homogenous over time and is essential for rainfall trend
and variability analysis (Ayehu et al., 2018; Novella and
Thiaw, 2013). The ARC2 rainfall product algorithm mainly
combines 3-hourly geostationary infrared (IR) data centered
over Africa from the European Organization for the Ex-
ploitation of Meteorological Satellites (EUMETSAT) and
quality-controlled global telecommunication system (GTS)
gauge observations reporting 24 h rainfall accumulations
over Africa (Novella and Thiaw, 2013). The ARC2 rainfall
product provides data at a spatial resolution of 0.10°× 0.10°
and at daily and monthly temporal resolutions over the
African continent, covering 40° S–40° N and 20° W–55° E.
Details of the ARC2 satellite rainfall product can be found in
Novella and Thiaw (2013).

The CHIRPS dataset is developed by the US Geological
Survey (USGS) and the Climate Hazards Group (CHG) at
the University of California (Funk et al., 2015). The CHIRPS
is a hybrid product that uses databases primarily from three
sources: first, in situ ground-based precipitation measure-
ments; second, pentad (5 d)-based rainfall estimates from
thermal infrared (TIR) satellite measurements from clima-
tology archives of the National Oceanic and Atmospheric
Administration (NOAA) Climate Prediction Center dataset
(CPC) and the Tropical Rainfall Measuring Mission Multi-
satellite Precipitation Analysis (TMPA 3B42); and, third, the
National Climate Forecast System version 2 (CFSv2) (Ayehu
et al., 2018; Shalishe et al., 2022). The CHIRPS rainfall
product is available at a quasi-global (50° S–50° N) cover-
age, with a spatial resolution of 0.05°× 0.05° (∼ 5.3 km) and
a temporal resolution of daily, pentad, decadal, and monthly
timescales (Funk et al., 2015). Figure 2 illustrates the boxplot
of the monthly rainfall in the study area for 1991–2022. The
line plot indicates the mean rainfall value for each month.
The rainy seasons (MAM and SON) of the present study area
are well explained by the plot unless affected by some sta-
tions in the northern part of the study area, which receives
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Figure 1. Geographical location and elevation map of the study area.

only some rainfall during what is otherwise the main rainy
season for most parts of Ethiopia (June–August).

The TAMSAT product is developed by the University of
Reading based on Meteosat thermal infrared (TIR) measure-
ments for the whole of Africa. The TAMSAT rainfall estima-
tion algorithm based on the TIR imagery is used to collect in-
formation about the cloud top of cumulonimbus clouds, con-
sidering the convective cloud tops to be indicators of rainfall
(Estébanez-Camarena et al., 2023; Maidment et al., 2020).
These estimates are validated and show good performance
in that rainfall is generally associated with these convective
clouds. The TAMSAT is available in various versions, specif-
ically the TAMSAT2 and TAMSAT3. The TAMSAT2 has
been validated over the complex topography of Ethiopia and
performs well and is skillful (Young et al., 2014). The TAM-
SAT rainfall products have been available since 1983 until
the near-present at a spatial resolution of 0.25°× 0.25° and
on decadal, monthly, and seasonal timescales. The TAMSAT
rainfall estimation algorithm was developed over West Africa
during the 1980s; however, currently, it is available for the
whole African continent at monthly timescales (Tarnavsky et
al., 2014). The present study assessed the performance of the
recent version of the TAMSAT product (TAMSAT3). Even
though the development principles and methods of the TAM-
SAT2 and TAMSAT3 are similar, some improvement pro-
cedures have been applied to the latest version, the TAM-
SAT3 (Ayehu et al., 2018). The TAMSAT3 was validated
over many parts of Africa (e.g., Mozambique, Niger, Nige-
ria, Uganda, and Zambia), and small were found errors, with
lower RMSE and MAE values, as compared to the TAM-
SAT2.

Figure 2. Boxplot of monthly precipitation based on CHIRPS data
over southern Ethiopia, 1991–2022.

3 Methodology

The analysis conducted to achieve the results of this study
follows two primary approaches: (1) validation of the three
satellite products by comparison with station-based measure-
ments using selected statistical measures and (2) drought in-
dex estimation using the SPI. The Climate Data Tool (CDT)
version 8 was used for the statistical comparisons and SPI
calculations. The CDT is a free, open-source, R-based soft-
ware package used to organize, quality control, merge, val-
idate, analyze, and visualize meteorological data (Dinku et
al., 2021). The tool is widely used by meteorological service
offices and other researchers in Africa.
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Table 1. Description of the meteorological stations used in this study and areal averages.

Station Longitude Latitude Elevation Seasonal rainfall Annual rainfall

MAM SON

Alaba Kulito 38.1 7.3 1772 343.8 206.2 971.3
Arba Minch 37.6 6.1 1220 385.2 299.4 938.2
Bilate 38.1 6.8 1361 330.3 246.7 938.2
Boditi School 37.9 7.0 2043 431.9 252.2 1231.6
Chencha 37.6 6.2 2632 418.7 334.7 1170.6
Hossana 37.9 7.6 2306 395.7 260.9 1202.6
Jinka 36.6 5.8 1373 469.0 413.2 1335.2
Konso 37.4 5.3 1431 346.1 243.6 783.5
Sawla 36.8 6.3 1348 488.1 363.7 1302.9
Wolaita 37.7 6.8 1854 465.0 282.3 1360.8
Wulbareg 38.1 7.4 1986 356.6 242.6 1184.6
Zigity 37.6 6.1 1760 401.2 323.7 1136.3

Areal avg. – – – 402.6 289.1 1129.6

3.1 Validation of satellite products

The study used aggregated data from 12 meteorological sta-
tions at monthly timescales to validate and compare the per-
formance of the three satellite rainfall products over the
SNNP region for the 1991–2022 period. A comparison of
the satellite products with the ground-based rainfall measure-
ments was performed based on grid-to-point approaches as
described in Tadesse et al. (2022). The statistical techniques
used for validation in this study are partially adopted from
Shalishe et al. (2022). These statistical techniques are the
correlation coefficient (CORR), coefficient of determination
(R2), bias (BIAS), percent bias (PBIAS), mean absolute error
(MAE), root mean square error (RMSE), and Nash–Sutcliffe
efficiency coefficient (NSE). The Pearson correlation co-
efficient CORR calculates the linear relationship between
the ground-based observed rainfalls and satellite estimates
(Zambrano-Bigiarini et al., 2017). Bias measures how the
average satellite rainfall estimate compares with the ground-
based observed rainfall (Kimani et al., 2017). An overall
satellite overestimation (underestimation) of ground-based
precipitation levels is indicated by a bias value above (below)
1. RMSE quantifies the patterns of similarity between values
of satellite estimates and observed measurements. The mean
absolute error (MAE) indicates the absolute mean deviation
of the satellite rainfall estimates from the ground-based rain-
fall measurements (Santos et al., 2018). Values that are closer
to zero for both MAE and RMSE indicate good performance.
The mathematical representation and corresponding value of
each statistical metric used in this study are given in Table 2.

3.2 Standardized precipitation index (SPI)

The standardized precipitation index (SPI) was developed
by McKee et al. (1993) and is one of the most widely used
meteorological drought indices applied globally and region-

ally. The SPI is recommended by the World Meteorological
Organization (WMO) to be used as an indicator of rainfall
amount at different timescales and as a reference drought in-
dex (Shalishe et al., 2022). Its simplicity in terms of com-
putation and its use of one climate variable, precipitation,
makes the SPI a widely preferable drought indicator. Previ-
ous studies that used comparisons of multiple drought indica-
tors recommend the SPI as a better drought indicator, having
good spatial and temporal consistencies (Khalili et al., 2011;
Li et al., 2020).

The SPI is an index in which the probability of rainfall is
presented for a data series greater than or equal to 30 years;
indexes are therefore given for 3-, 6-, 9-, 12-, 24-, and 48-
month scales. The assumptions for index calculation include
the following: precipitation is more variable than any other
climate variable, and any variable other than precipitation has
negligible temporal trends (Li et al., 2020). Since precipita-
tion does not show a normal distribution, the fitting of the
dataset with an appropriate frequency distribution for each
timescale is vital. Therefore, it is after the fitting to a nor-
mal distribution that the SPI values become the standard de-
viance from the median, with a mean of zero and a variance
of unity. In this study, the monthly rainfall of 1991–2022 is
fitted with a gamma distribution functionG(x), as in Shawky
and Bakoban (2012) (Eq. 1), and the 3- and 12-month SPI
values were calculated for the SNNP region. The SPI-3 cov-
ers the months of the main rainy season (March to May),
and the values of the SPI-12 were calculated for 12 months,
starting from January. The procedures for SPI calculation are
presented by the following equations, as described in McKee
et al. (1993).

g (x)=
1

βα0(α)
xα−1e

−x
β for x > 0 (1)
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Table 2. The statistical measures used for comparisons of the gauge-based and satellite rainfall measurements.

Statistic Formula Range Perfect value

Correlation coefficient (CORR) R =

∑(
Gi−Gi

)(
Si−Si

)√∑(
Gi−Gi

)2(
Si−Si

)2 −1 to 1 1

Coefficient of determination (R2) R2
= 1−

 ∑n
i=1(Gi−Si )

(
Si−Si

)(∑n
i=1
(
Gi−Gi

)2)0.5(∑n
i=1
(
Gi−Gi

)2)0.5

 0 to 1 1

Bias Bias=
∑n
i=1Si∑n
i=1Gi

0 to∞ 1

Percent bias (PBIAS) PBIAS=
∑n
i=1(Gi−Si )∑n

i=1Gi
· 100 −∞ to∞ 0

Mean absolute error (MAE) MAE= 1
n

∑n
t=1 |Si −Gi | 0 to∞ 0

Root mean square error (RMSE) RMSE=
√

1
n

∑n
i=1(Si −Gi )2 0 to∞ 0

Nash–Sutcliffe efficiency coefficient (NSE) NSE= 1−
∑

(Gi − Si )2/
∑

(Gi −Gi )2
−∞ to∞ 1

Note that Gi is the gauge rainfall observations, Si is the satellite rainfall estimates, Gi is the average gauge rainfall observations, Si is the average satellite rainfall
estimates, t is the threshold values (t ≥ 1 mm), and N is the number of data pairs.

Here, g (x) is the probability density function; x is the pre-
cipitation amount; α < 0 and β > 0 are the shape and scale
parameters, respectively; and 0(α) is the gamma function.
To find the resulting parameters used to calculate the SPI,
the components in Eq. (1) can be further refined as

0 (α)=
∞∫
0
yα−1e−ydy

α = 1
4U

(
1+

√
1+ 4U

3

) (2)

for U = ln (x)−
∑

ln (x)
n

and β =
x

α
. (3)

Then the cumulative probability distribution function in
Eq. (1) becomes

G(x)=

x∫
0

g(x)dx =
1

βα0 (α)

x∫
0

xα−1e
−x
β dx. (4)

The null-precipitation records may not be represented or may
cause the above equation to be undefined; hence, the zero
records of precipitation can be represented in the cumulative
distribution function (CDF) by

H (x)= q + (1− q)G (x) , (5)

where q is the probability of null precipitation, and G (x) is
the CDF.

Finally, after converting the CDF into standard normal dis-
tributions, the SPI can be given as

SPI=
(
t −

c0+c1t+c2t
2

1+d1t+d2t2+d3t3

)
,where

t =

√
ln
(

1
(1−H (x))2

)
for 0<H (x)< 0.5.

(6)

Here, c0 = 2.5155, c1 = 0.8028, c2 = 0.0103, d1 = 1.4327,
d2 = 0.1892, and d3 = 0.0013 are mathematical constants.

Droughts can be characterized by their duration (D), fre-
quency (F ), severity (S), and intensity (I ) (Brito et al., 2018).
D can be defined as the number of months between the start
of the drought and the end of the drought after the drought
events, where precipitation falls below the given threshold,
are identified (Brito et al., 2018; Van Loon, 2015). F is pre-
sented by the number of drought events in the whole study
period and depicts how often a drought occurs. S is defined
as the absolute value of the precipitation from the start to
the end of the drought period. Finally, I is expressed as the
ratio of S to D, where drought events with large intensities
will be those that have shorter durations and higher severity
(Ayugi et al., 2019). In this paper, the 3-month and 12-month
drought indexes (SPI-3 and SPI-12) were selected to indicate
the severity of droughts in the SNNP region. While the SPI-3
is more suitable for extracting the short-term duration of me-
teorological drought, which is critical for crop growth, the
SPI-12 extracts medium-term droughts and reflects the hy-
drological consequence of droughts (Li et al., 2020). Table 3
presents the classification of drought intensities as proposed
by McKee et al. (1993).

4 Results and discussions

4.1 Statistical comparison

The three satellite rainfall estimate products were compared
with the station rainfall measurements and with each other
both temporally and spatially. Initially, the three rainfall es-
timate products were validated against the gauged monthly
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Table 3. Classification of droughts based on the SPI.

SPI Category

≥ 2 Extremely wet
1.5 to 1.99 Very wet
1.0 to 1.49 Moderately wet
−0.99 to 0.99 Near normal
−1.0 to −1.49 Moderately dry
−1.5 to −1.99 Severely dry
≤−2 Extremely dry

rainfall data collected between 1991–2022. Table 4 repre-
sents the performance of the satellite-based rainfall estimates
against the gauged rainfall, and all products showed a con-
siderably good estimate, with a CORR of > 0.8. However,
the CHIRPS estimates were the best, with a CORR of 0.96,
R2 of 0.91, and BIAS of 1.02. These also showed minimal
PBIAS and RMSE values of 1.95 and 15.90, respectively.
The TAMSAT, similarly, is the second-best performer, with
CORR of 0.83 and PBIAS and RMSE values of 4.39 and
35.51, respectively. The ARC2, on the other hand, showed a
comparatively low CORR and high PBIAS and RMSE. The
main reason for the CHIRPS’s strong performance in the re-
search area is that it combines a variety of input data sources,
such as in situ precipitation observation and other satellite
estimates, among many others. The good performance of the
CHIRPS in estimating rainfall is also confirmed by the pre-
vious studies of Atiah et al. (2020) and Dembélé and Zwart
(2016). A relatively recent study in the Gamo Zone, which is
part of the present study area, by Shalishe et al. (2022) also
found that the CHIRPS performs very well, with a CORR of
0.88 and an NSE of 0.77, and it is suggested to be a valuable
rainfall product in the Gamo Zone and nearby areas.

On the other hand, the ARC2 showed poor performance
in estimating the rainfall of the SNNP region. Some of the
statistical outputs include R2 of 0.44, BIAS of 0.67, and
RMSE of 45.77, among others, implying that the estimation
is relatively poor. The PBIAS and ME values shows negative
values, indicating that the ARC2 underestimates the rainfall
over the SNNP region. The poor performance of the ARC2
is reported by the previous studies of Atiah et al. (2020) and
Diem et al. (2014), whose results have confirmed its inconsis-
tencies in rainfall estimation, particularly in the East Africa
region. Additional information about the satellite estimates
and the corresponding statistical values used for comparison
can be obtained in Table 4.

Figure 3 shows scatterplots and CDF values of the three
satellite rainfall products, and a spatial comparison of satel-
lite rainfall estimates against gauge measurements for the
main rainy season (March–May) and on an annual timescale
is given in Fig. 4. Considering the scatterplots, the CHIRPS
presents strong agreement with the gauge measurements.
Similarly, on the CDF plots, the CHIRPS shows good corre-

spondence to the gauge measurements, with a closer distribu-
tion, followed by the TAMSAT. On the other hand, the ARC2
shows the lowest correspondence between the product esti-
mate and the gauge. The ARC2 estimates that about 90 % of
the data are above 100 mm, whereas the CHIRPS and TAM-
SAT estimate that only about 60 % of the data reach 100 mm.
Hence, the scatterplot and corresponding CDF indicate that
the ARC2 remarkably overestimates rainfall over the SNNP
region. The spatial plots also show similar correspondence,
in which the CHIRPS is able to estimate the rainfall for the
main rainy season (MAM) and at annual timescales over the
SNNP region.

4.2 Drought analysis

In this section, the spatial and temporal patterns of drought
for the SNNP region are presented. The CHIRPS rainfall es-
timates, which perform well among the other satellite-based
rainfall products, were used in the subsequent sections to
study the temporal and spatial assessments of meteorologi-
cal drought for the period from 1991 to 2022 over the SNNP
region. The SPI-3 and SPI-12 are used to present the patterns
of drought; while the SPI-3 is critical for plant development
and farming activities, the SPI-12 can indicate the responses
of different water suppliers and reservoirs to rainfall short-
ages (Caloiero et al., 2021; Kalimeris and Kolios, 2019).

4.2.1 Temporal drought analysis

The time series plots of the 3- and 12-month-period droughts
at the six chosen meteorological stations, Arba Minch, Bi-
late, Hossana, Jinka, Konso, and Wolaita, from 1991 to 2022
are shown in Fig. 5. The blue bars indicate wet conditions
(positive SPI), and the red bars indicate dry conditions (neg-
ative SPI). The horizontal dashed lines at ±1.5 indicate the
occurrence of very wet and very dry extreme conditions dur-
ing the study period. Accordingly, the station Bilate records
the highest (33) occurrence of extreme droughts, and Konso
records the lowest number (15) of extreme droughts for the
short drought timescale of the SPI-3. Similarly, the station
Arba Minch records the highest (28) occurrence of extreme
droughts, and Jinka records the lowest number (10) of ex-
treme droughts for the medium drought timescale of the
SPI-12. Most of the meteorological stations experienced se-
vere to extreme droughts in common years (e.g., 1999, 2000,
2002, 2005, 2009, and 2010), indicating that the entire study
area had experienced severe droughts. For the areal aver-
ages, 39 mild, 17 severe, and 4 extreme drought events were
recorded for the SPI-3, and 39 mild, 15 severe, and 3 ex-
treme drought events were recorded for the SPI-12 (Fig. 6).
The outcome demonstrates that the research area experiences
periods of moderate to excessive dryness. Certain years,
such 2000–2001, 2009–2010, 2014–2015, and 2021–2022,
were among the noted Ethiopian historic drought years. The
meteorological-drought temporal assessment of the present
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Table 4. Statistical performance of the three satellite products in rainfall estimation.

Satellite CORR R2 BIAS PBIAS ME MAE RMSE NSE

ARC2 0.80 0.44 0.67 −32.78 −30.78 35.49 45.77 0.33
CHIRPS 0.96 0.91 1.02 1.95 1.82 12.07 15.90 0.92
TAMSAT 0.83 0.68 1.04 4.39 4.11 24.50 35.51 0.59

Figure 3. Comparison of the three satellite rainfall products, (a) the ARC2, (b) the CHIRPS, and (c) the TAMSAT, against ground-based
measurements over the SNNP region for 1991–2022 period.

study also revealed the existence of drought years with vary-
ing degrees of severity. In 2009–2010, for instance, all sta-
tions, with the exception of Konso, experienced severe to ex-
treme drought conditions with different intensities.

The droughts are characterized by different severity levels,
with the SPI-3 experiencing droughts ranging from −1.38 to
−1.54 and the SPI-12 experiencing droughts ranging from
−1.30 to−1.47; this indicates that most drought events were
severe droughts based on the SPI drought indices (Table 5).
At Sawla station, the lowest intensity was displayed (−1.30).
The stations located in the southern and eastern parts of the
SNNP region generally showed more signs of drought than
the stations in the northern region. Droughts that were quite
persistent were noted in the years 2000–2001 and 2009–
2010. The region’s drought duration, severity, and intensity
are further displayed in Table 5. Even though the study con-
sidered all drought durations, it was found that, when aver-
aged over the study area for both the 1991–2022 study period
and the six stations, there was a reasonably significant and in-
tense drought. Consequently, since the SPI-3 is based on the
primary rainy season in the SNNP region, regular monitoring

of these severe droughts is advised. On the other hand, the
years 2014 and 2020 are relatively wet years for the study
area. The study’s temporal evaluation results are consistent
with earlier research in one zone of the current study area;
e.g., Shalishe et al. (2022) found moderate to severe drought
events in 2000–2020. A study by Liou and Mulualem (2019)
also reveals that droughts in southern Ethiopia are severe
and cover large areas of the region. Therefore, the CHIRPS
rainfall can serve as a backup information source for early-
warning systems and drought monitoring in the SNNP region
and its surrounds.

4.2.2 Spatial drought analysis

Figure 7 shows the spatial distribution of meteorological
drought for the main rainy season (March, April, and May)
for selected recent drought years, namely 2000, 2009, and
2022, based on the SPI-3. Accordingly, In the year 2000,
the highest drought event was recorded in the northern part
of the SNNP region during March and in the southern part
of the SNNP region during April and May. Similarly, very
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Figure 4. Comparison of the three satellite products against station-based observed rainfall (a) for the main rainy season (March–May) and
(b) annually over the SNNP region for the 1991–2022 period.

Figure 5. Time series plot of the SPI-3 and SPI-12 droughts at six selected meteorological stations for 1991–2022.

https://doi.org/10.5194/ascmo-11-59-2025 Adv. Stat. Clim. Meteorol. Oceanogr., 11, 59–71, 2025



68 T. M. Weldegerima and T. B. Gebresilassie: Analysis of meteorological drought

Figure 6. Time series plot of the SPI-3 and SPI-12 droughts spatially averaged over the SNNP region for 1991–2022.

Table 5. The duration, severity, and intensity of the major dry events (SPI-3 and SPI-12) over each station and the SNNP region for 1991–
2022.

SPI-3 SPI-12

Stations Duration Severity Intensity Duration Severity Intensity

Alaba Kulito 60 −90.0 −1.50 55 −73.15 −1.33
Arba Minch 63 −88.2 −1.40 71 −100.82 −1.42
Bilate 62 −95.5 −1.54 60 −85.80 −1.43
Boditi School 68 −98.6 −1.45 59 −79.65 −1.35
Chencha 64 −92.2 −1.44 71 −102.95 −1.45
Hossana 62 −93.0 −1.50 61 −84.79 −1.39
Jinka 60 −85.2 −1.42 60 −78.60 −1.31
Konso 54 −74.5 −1.38 60 −88.20 −1.47
Sawla 62 −87.4 −1.41 66 −85.80 −1.30
Wolaita 67 −98.5 −1.47 62 −86.18 −1.39
Wulbareg 62 −93.6 −1.51 63 −82.53 −1.31
Zigity 60 −85.8 −1.43 75 −105.00 −1.40

Areal avg. 62 −90.02 −1.45 64 −87.69 −1.38

dry to extremely dry conditions are observed in the south-
ern and eastern parts of the SNNP region, particularly during
May 2009 and March 2022. Previously, a study by Viste et
al. (2013) reported that the year 2000 was all dry in the south
of Ethiopia, mainly due to dry spring seasons. The study also
reveals that the 2008–2011 dry springs (March to May) af-
fected large parts of Ethiopia, particularly the south, in which
March to May is the main rainy season. Similarly, Fig. 8 in-
dicates the spatial distribution of the wet months observed in
the study. Accordingly, the year 2020 was reported to be a
year without a drought since all regions, with the exception

of a few isolated areas experiencing a little drought, were re-
ported as having no drought. The index also revealed the spa-
tial extents of other past drought years (not depicted). Over-
all, the drought index made it quite evident which parts of the
region were wet and which were parts drought-ridden. There-
fore, it is possible to examine the geographical evaluation of
drought and create a drought-monitoring and early-warning
system in the region using the CHIRPS precipitation product.
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Figure 7. The spatial distributions of meteorological drought (SPI-
3) during recent drought years, namely 2000, 2009, and 2022.

Figure 8. The spatial distributions of meteorological drought (SPI-
3) during the recent non-drought year 2020.

5 Conclusions

In developing countries with little data, the availability of
rainfall products obtained from satellites at both local and
global scales has been helpful in bridging the data gap. How-
ever, any application that involves researching drought and
water resource issues must evaluate these rainfall products.
In this study, gauged rainfall data from 12 independent me-
teorological stations spread across the SNNP region were
compared with the performances of three satellite rainfall
products (the ARC2, the CHIRPS, and the TAMSAT). The
statistical comparison was used for the performance evalu-
ation at monthly timescales. In order to determine the opti-
mal satellite rainfall product for the study region’s temporal
and spatial assessment of meteorological drought, an eval-
uation process was carried out. Accordingly, the CHIRPS
was selected as the best product, followed by the TAMSAT.
Hence, the CHIRPS was used for the analysis of operational
drought-monitoring and early-warning systems at monthly
timescales. The good performance of the CHIRPS may be as-
sociated with the number of ground observation station data
used for reconstruction.

The drought analysis showed that the SNNP region has
had mild to severe previous drought occurrences, which is in
accordance with the temporal assessment of meteorological
drought in the region. The SPI-3 showed the occurrence of
moderate-to-severe and moderate-to-extreme drought cases
during the early 21st century, while the SPI-12 showed an
overall increase in the occurrence of severe drought over the
study location, with an observed intensity of 1.54 and a cu-
mulative frequency of 64 months during the study period.
More than half of the studied meteorological stations dis-
played the severity of the known drought years, including
2015–2016, 2009–2010, and 1999–2000. On the other hand,
the spatial analysis of drought in the SNNP region showed
the occurrence of the extreme drought event that covered
mainly the central, southern, and southeastern parts of the
region. The 2009 drought was remarkable and clearly indi-
cated in the drought-prone parts of the SNNP region (i.e.,
the southern and southeastern parts). Generally, the results
indicated that the CHIRPS rainfall product could be used as
an alternative source of information to develop the drought-
monitoring tools for an early-warning system in the SNNP
region and its surrounds.
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