Adv. Stat. Clim. Meteorol. Oceanogr., 11, 73-87, 2025
https://doi.org/10.5194/ascmo-11-73-2025

© Author(s) 2025. This work is distributed under

the Creative Commons Attribution 4.0 License.

Introduction

On inference of boxplot symbolic data:
applications in climatology

Abdolnasser Sadeghkhani' and Ali Sadeghkhani’

1Department of Mathematics and Statistics,
North Carolina Agricultural and Technical State University, Greensboro, NC, USA
2Department of Mathematics and Statistics, University of Windsor, Windsor, ON, Canada

Correspondence: Abdolnasser Sadeghkhani (asadeghkhani @ncat.edu)

Received: 20 August 2024 — Revised: 22 January 2025 — Accepted: 24 January 2025 — Published: 17 March 2025

Abstract. This paper presents a pioneering study on the inference of boxplot-valued data using both Bayesian
and frequentist approaches within a multivariate framework. This approach leverages complex yet intuitive rep-
resentations to make large datasets more manageable and enhance their interpretability, which is invaluable in
the age of big data. Boxplot-valued data are particularly important due to their ability to capture the inherent
variability and distributional characteristics of complex datasets.

In our study, we propose novel methodologies for parameter estimation and density estimation for boxplot-
valued data and apply these techniques to climatological data. Specifically, we utilize data from the Berkeley
Earth Surface Temperature Study, which aggregates 1.6 billion temperature reports from 16 pre-existing archives
affiliated with the Lawrence Berkeley National Laboratory. Our methods are validated through extensive simu-
lations comparing the efficiency and accuracy of Bayesian and frequentist estimators.

We demonstrate the practical applicability of our approach by analyzing summer average temperatures across
various European countries. The proposed techniques provide robust tools for analyzing complex data structures,
offering valuable insights into climatic trends and variations. Our study highlights the advantages and limitations
of each inferential method, offering guidance for future research and applications in the field of climatology.

of Diday and Noirhomme-Fraiture (2008), which, by intro-

Data analysts are now encountering increasingly large
datasets whose analysis, spanning decades or even centuries,
presents a complex challenge that demands more in-depth at-
tention. There are many instances where complex and vast in-
formation, due to its intrinsic structure, cannot be adequately
represented as single-valued data. As a result, symbolic data
analysis (SDA) has emerged as a crucial approach, integrat-
ing elements of data science, multivariate analysis, pattern
recognition, data mining, and artificial intelligence to analyze
such data properly without losing information. Initially con-
ceptualized by Diday (1988) and later formalized by Billard
and Diday (2003), SDA represents a significant advancement
in managing, reducing, and interpreting large datasets.

The initial steps of summarizing data to facilitate a cluster-
ing process applied to a large database appeared in the work
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ducing the cluster as a category, highlighted the importance
of data summarization using SDA. To manage data effec-
tively, SDA works without losing information, a common is-
sue in traditional analyses, and encompasses various data for-
mats, including intervals, sets, lists, histograms, trees, box-
plots, and other distributional representations. By employing
these complex yet intuitive representations, SDA not only
makes vast amounts of data more manageable but also en-
hances their comprehensibility, proving to be an invaluable
tool in the age of big data.

The importance of boxplot-valued data in real-world ap-
plications is particularly evident in climate science, where
data often span long periods and involve significant uncer-
tainty. For example, long-term datasets such as historical
temperature records or remote sensing data generate vast vol-
umes of observations that are often summarized as medians,
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quartiles, and extreme values for computational efficiency.
These boxplot-valued summaries enable researchers to ana-
lyze trends in temperature variability, extreme events, or re-
gional shifts in central tendencies, all of which are critical
for understanding climate dynamics and making policy deci-
sions.

By expanding data and converting their form from single-
valued to symbolic (e.g., multivalued data such as list data,
model-valued data such as histograms, or interval-valued
data), the need for further theoretical development of SDA in
each of its types has emerged. Diday (1995), Emilion (1997),
and Diday (1988) provided the foundational mathematical
background for various forms of symbolic data.

Among symbolic data types, interval-valued data have re-
ceived significant attention due to their simplicity, versatil-
ity, and prevalence in various applied sciences compared to
other symbolic data types. These data types, which range
from univariate to multivariate, address the needs of real-
world applications. In recent years, both frequentist and
Bayesian approaches to interval-valued data estimators have
been explored (e.g., Xu and Qin, 2022; Samadi et al., 2024;
Sadeghkhani and Sadeghkhani, 2024). Additionally, various
statistical tools for investigating relationships within interval-
valued data have been developed. For instance, principal
component analysis (PCA) using vertices to represent inter-
vals was proposed by Douzal-Chouakria et al. (2011), a re-
gression method that avoids the center and range approach
was introduced by Billard and Diday (2000) and later by
Neto and De Carvalho (2008) and Neto and De Carvalho
(2010), and interval-valued time series methods were imple-
mented by Xiong et al. (2015).

Beyond interval-valued data, boxplot-valued data provide
additional distributional insights by including medians, quar-
tiles, and extremes, making them well suited to summariz-
ing massive datasets. In climate science, examples include
datasets where raw observations (e.g., hourly or daily tem-
peratures) are summarized into annual or monthly boxplots
for computational feasibility. Historical datasets from pre-
digital eras often come as summarized statistics (e.g., me-
dians and extremes), making boxplot-valued data analysis
indispensable. Such datasets allow for the study of trends
in variability and centrality, which are critical for analyzing
long-term climate change impacts.

The relevance of boxplot-valued data is also evident in
studies of regional variability, where data collection is aggre-
gated to minimize measurement noise. For example, climate
model datasets often summarize temperature and precipita-
tion data across spatial grids, which could naturally be rep-
resented and analyzed as boxplot-valued data. This approach
reduces computational complexity while preserving the es-
sential distributional features of the data.

Through this work, we aim to develop a methodological
framework for analyzing boxplot-valued data and providing
tools that are computationally efficient and applicable to a
wide range of fields, including but not limited to climate sci-
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ence. By addressing the unique challenges posed by such
data, we contribute to the broader goal of managing and in-
terpreting massive datasets in the applied sciences.

While interval-valued data capture the range of variability,
boxplot-valued data provide a richer summary by including
additional distributional characteristics such as quartiles and
the median. Boxplots are widely used for comparing distri-
butions across different groups, detecting outliers, and under-
standing the spread and symmetry of the data. The concept
of boxplots was first proposed by Tukey (1977) and further
developed by Benjamini (1988). However, the mathematical
foundation for statistical inference using boxplot-valued data
has not been assessed thoroughly.

Though boxplots are valuable for comparing distributions
across different groups, detecting outliers, and understand-
ing the spread and symmetry of the data, their mathemati-
cal foundation has not been assessed thoroughly. They are
widely used in various fields due to their simplicity and ef-
fectiveness in summarizing complex datasets. The concept
of boxplots was first proposed by Tukey (1977) and was de-
veloped by Benjamini (1988). The importance of data visu-
alization was further emphasized by Chambers (2018), who
explored graphical methods for data analysis. Wickham and
Wickham (2016) focused on modern approaches to creat-
ing boxplots using the ggplot2 package in R, highlighting
practical aspects of their implementation.

To compare the role of boxplot-valued data, Arroyo et al.
(2006) contrasted these types of data with interval-valued
data and histograms. Boxplot variables serve as an intermedi-
ate point between the simplicity of interval variables and the
detailed information provided by histogram variables. While
interval variables do not convey information about the cen-
tral area of an empirical distribution, boxplot variables do
so using three quartiles. In contrast, histogram variables of-
fer detailed insights into the empirical distribution, though
their structure is more complex, requiring a set of consecu-
tive intervals with associated weights. Despite their simpler
structure, boxplot variables effectively capture the shape of
the distribution.

To the best of our knowledge, there are no specific math-
ematical considerations for boxplot-valued data parameter
estimation in the context of symbolic data, whether from a
frequentist or Bayesian perspective. However, Reyes et al.
(2024) proposed a parameterized regression method for
boxplot-valued data by applying a Box—Cox transformation.
Additionally, Reyes et al. (2022) focused on forecasting time
series of these types of data.

Let X; be a boxplot-valued observation summarized by
its five-number summary statistics: the minimum (a;), first
quartile (g1;), median (m;), third quartile (¢3;), and max-
imum (b;). This structure effectively captures the distribu-
tional characteristics of the data for each observation. To fa-
cilitate more precise parameter estimation, we decompose X;
into two components, i.e., Q; = (qli,m,',q3,~)T, which fo-
cuses on the central tendency and the shape of the distri-

https://doi.org/10.5194/ascmo-11-73-2025



A. Sadeghkhani and A. Sadeghkhani: On inference of boxplot symbolic data 75

bution, and R; = b; — a;, which represents the range, thus
capturing the overall spread of the data. By separating these
components, we are able to model the central distribution and
variability independently, thereby enhancing the accuracy of
our parameter estimates.

While Le-Rademacher and Billard (2011) focused on uni-
variate interval-valued data, modeling the midpoints in a fre-
quentist framework, we extend their methodology to handle
boxplot-valued data. They assumed that the midpoints of in-
tervals are normally distributed and derived maximum like-
lihood estimators for the mean and variance. By assuming
a uniform distribution within each interval, we leverage the
properties outlined by Le-Rademacher and Billard to justify
the normality of Q; =[q1;,mi,q3i]1", where, for instance,
q1; 1s the midpoint between a; and m; = ¢»;.

However, it is important to note that this extension from
univariate intervals to multivariate quartiles relies on specific
assumptions. These include the assumption that the quartiles
are derived from sufficiently large datasets where the central
limit theorem (CLT) ensures the approximation of normality.
Additionally, we assume that the data within the intervals are
uniformly distributed. While this assumption is commonly
employed in interval-valued data analysis, deviations from
uniformity or smaller datasets could impact the validity of the
multivariate normal model. In such cases, a larger Q; dataset
would be required to approximate normality using the CLT.

In our approach, we model Q; as following a trivariate nor-
mal distribution N3(1, T), where w = (14g,, ilm> [Lg;) | is the
mean vector and X is the covariance matrix. This extension
allows us to capture more detailed distributional character-
istics inherent in boxplot data, offering a balance between
theoretical rigor and practical applicability.

Therefore, we have

1
(zn)3/2|2|1/2

cexol = L0 — i Ts-1(0; —
p 2(Qz w) X0 — ) ()

f(Qis u, X)=

and

1
f(Ri; Ruin, Rmax) =

Rmax — Rmin

for Riyin < R; < Rmax, )

where we assume that Q; (the quantiles) and R; (the range)
are conditionally independent under the assumption that the
internal distribution (quantiles) of the interval is not directly
driven by the overall width of the interval.

It is worth noting that, in our model, the range R; = b; —a;
is assumed to follow a uniform distribution over the inter-
val [ Rmin, Rmax]. This assumption is commonly employed in
the context of interval-valued data analysis (e.g., Neto and
De Carvalho, 2008; Zhao et al., 2023). The uniform distribu-
tion is chosen due to its simplicity and practical effectiveness,
particularly when there is no prior information suggesting a
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different underlying distribution. The bounds Ry, and Rpax
are determined empirically based on the observed data, en-
suring that they capture the full range of variability in our
dataset.

Note that, by defining the scaling parameter A, the bounds
a; and b; are hence related to the quantiles ¢1; and g3; as

IOR:
aizqh-—x(l—%’)&, 3)
IQR;
bi:‘ISi‘f‘(l_)V)(l_T)Riv 4)

where IQR; = ¢3; — q1;, which is known as the interquartile
range.

The rest of the paper is organized as follows. In Sect. 2,
we elaborate on the maximum likelihood (ML) method for
estimating the unknown parameters of a p-variate boxplot-
valued random variable where p > 1. This section also in-
cludes a simulation to assess this method as well as the
asymptotic distribution of the ML estimators. Section 3 deals
with Bayesian estimation of the parameters and evaluates
the proposed methods. Section 4 investigates the methods
of density estimation in boxplot-valued data, ranging from
plugin types to posterior predictive density estimators. In
Sect. 5, we illustrate the practical utility and effectiveness of
the proposed techniques in analyzing and interpreting com-
plex boxplot-valued environmental data. Finally, we con-
clude with a discussion in Sect. 6.

2 Maximum likelihood estimators

The likelihood function of the unknown parameters
W, 2, Rmin, Rmax, and A based on a random sample of size
n, X; =lai,q1i,mi,q3i,b;i] for i =1,...,n, assuming that
Egs. (1) and (2) are conditionally independent despite the in-
herent relationship between R; and Q;, is given by

n
L(1, 3, Rinin, Rax, 1) = [ [ £(Qi3 11, %)
i=1

- f(Ri; Rmin, Rmax)- )

It can easily be seen that the ML estimators of y are the sam-
ple means of ¢y;, m;, and g3;, i.e.,

R 1 & R 1 & . 1<

Mg, Z—ZCIU, Mmz—zml', Mq3=—ZCI3i- (6)
i3 e i3

The ML estimator of X is the sample covariance matrix

1
n—1

S=——) (Qi-Qi-)T,
i=1

while the ML estimators for Ry, and Ryax are

A A n
by 3
Rmin =min;_; R;, Rpyax = ma]x R;.

i=
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The scaling parameter X is estimated by minimizing an ob-
jective function. That is,

n 2
). = argmin; ) (R,- - (q3,» +(1—=2) (1 — I?%) Ri>) )
i=1

1

Our assumption of conditional independence between R;
and Q; is made to simplify the estimation process, recogniz-
ing that R; and Q; are functionally related via the quartiles
and the scaling parameter A. However, by assuming that A is
constant across observations, we reduce the direct influence
of Q; on R;, making this approximation reasonable in prac-
tice.

The primary reason we applied an objective function for
minimizing A was to directly assess how well the model cap-
tures the relationship between the observed ranges R; and the
estimated upper quantiles ¢3;. Furthermore, while maximum
likelihood estimation (MLE) is a robust method for parame-
ter estimation, it relies on certain assumptions about the dis-
tributional properties of the data. Minimizing the objective
function allows for greater flexibility in modeling this rela-
tionship without imposing strict distributional assumptions.
Future work could explore models that explicitly incorporate
this dependency, potentially enhancing the accuracy of the
parameter estimates.

In the next subsection, we generalize the univariate X into
the p-variate X; = [X;1, X;2,..., Xjp] with i =1,...,n for
p > 1, and we focus on estimating the multivariate boxplot
data.

2.1 Multivariate ML estimators

Consider a p-variate boxplot-valued random vari-
able X; =[X;1,X;2,...,Xipl, where each X;;=
laij, q1ij, mij, q3ij, bij] for i=1,...,n and j=1,...,p.
Moreover, we assume that

Qi =(Qi1,- Qip) " ~ Nap(p, 2),
such that

Qij = (quij.mij, q3ij) ~ N3(uj, ;)
fori=1,...,n,j=1,...,p,

where MZ(M],...,MP)T is the mean vector with p; =
(Mqua MHmgj» Mq3j)T and

Y10 Zi2 0 Zip
o1 o2 0 X2
Xp1 Xp2 - Xpp

is the covariance matrix, with Xj; representing the co-
variance between Qf and Q; for k,l=1,..., p. More-
over, the range R;; = b;; — a;; is uniformly distributed over

[Rmin,j s Rmax,j]-
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In a similar fashion to the univariate case with p = 1, to es-
timate the parameters in a multivariate setting, we maximize
the likelihood function

L(1, T, Ruin, R, V) = [ [ £(Qi 1, )

i=1

P
: l_[ f(Rij; Rmin,j7 Rmax,j), @)
Jj=1

where f(Q;; p, X) represents the multivariate normal den-
sity function and f(R;;; Rmin,j, Rmax, ;) is the density func-
tion of the uniform distribution for each component R; 7, with
Ry and R, denoting the vectors of the minimum and
maximum values for each component j of the range.

This results in the ML estimator of the parameters as
presented in the following theorem.

Theorem 1. Consider a p-variate boxplot-valued
random variable X =[Xii, Xi2, ..., Xipl, where
Xij =laij, quij, mij,q3ij, bij] and pj = (/quj,ﬂmj,u%j)T.
Suppose that

Qi =(Qi1y-- Qip) " ~ Nip(p, 2),

with  Qij = (quij.mij,q3ij)| for i=1,...n and j=
1,...,p. The ML estimators of the mean vector L=
(/l],...,;lp)T, where [L; = ([quj,/lmj,;l%j)T, are given by

. 1<
Rg; ==Y quij. ()
i
1 n
fmj =;Zmij, )
i=1
1 n
ﬂq3j = ;Zq&] (10)
i=1

The ML estimator of the covariance matrix X is

. [ - .

D= (0 -0 - (11)
i=1

The ML estimators of the range parameters are

Ruin,j = min_ Ry}, (12)

A n

Rmax,j = max R;j, (13)

i=1

and the ML estimator of the scaling parameter Xj is

n
Aj = argminy, Z (Rij - <q3ij +(1=2;)
i=1

2
q3ij — q1ij

1———— ) -R;; . 14

< Rij ) ”)) (1
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Proof. The proof involves straightforward maximiza-

tion of the likelihood function. For brevity, it is omitted
here.

O

The following subsection details the simulation setup for

the proposed MLE method for symbolic boxplot-valued data.

2.2 Simulation study of ML estimators

To demonstrate the estimation procedure, we simulate data
for p =3 variables with a sample size of n =100 and the
following true parameters:

w1 =5,10,15", ur=4,8,12)7,

w3 =(6,11,16)", (15)
2 1 1 1.5 0.8 0.8

Tii=|1 2 1|, %,=[08 15 08 |,
112 08 08 1.5
25 1.2 1.2 7

Si3=112 25 12 |,
(1.2 12 25 |
1.2 0.5 0.5 7 1.8 09 0.9

Yho=[05 1.2 05 |, =3=[09 1.8 09 |,
105 05 1.2 | 09 09 18
2 09 0.9 7

¥33=[09 2 09 |, (16)
109 09 2 |

Rmin,j=51 Rmax,jzlsv j:17273- (17

The true values for the scaling parameters are A; = 0.48,
A2 =0.49, and A3 =0.51.

In the simulation, we generate the components Q; and
R; separately to simplify the estimation. Specifically, Q; =
(q1i,mi, q3i) is generated from a trivariate normal distribu-
tion M3(u, ) as outlined in Eq. (1), and R; = b; —a; is as-
sumed to follow a uniform distribution over [ Rmin, Rmax], as
given in Eq. (2). This approach enables independent handling
of each component’s characteristics.

The mean squared error (MSE) is computed for the mean
vector p and the covariance matrices X ; ; for j,k =1,2,3,
as follows:

NS R ,
MSE(ij) =~ (@ji =)’ j=12.3,
i=1
and

. 1 3 3 i
MSE(S;0)=—-Y Y > (S}[a.b] - 5 la.b)? (18)

i=1a=1b=1

S

where f)%[a, b] and X%; ([a, D] represent the (a, b)th ele-
ments of the estimated and true covariance matrices, respec-
tively, in the ith simulation.
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Table 1. ML estimates and MSEs.

Parameters Estimates (MSEs)

“i (5.21,9.86, 14.88) T (0.025)

wo (3.87,7.89, 11.99)T (0.0096)

w3 (5.66,10.79, 15.65) T (0.0929)
[2.25 144 1.67 ]

211 1.44 225 1.56 | (0.1302)
| 1.67 1.56 2.89 |
[1.78 1.01 1.13 ]

X2 1.01 1.52 0.71 | (0.0541)
| 1.13 071 L1.78 |
[3.18 1.70 1.35 ]

%13 1.70 228 1.04 | (0.1608)
| 1.35 1.04 1.90 |
[1.09 0.57 047 ]

%22 0.57 1.48 0.66 | (0.0178)
1047 0.66 1.28 |
[1.89 0.89 0.87 |

%3 0.89 1.95 0.96 | (0.0112)
10.87 096 1.55 |
[1.96 0.88 0.87 |

%33 0.88 2.05 0.96 | (0.0174)
10.87 096 1.78 |

5.0389, 14.7589 (0.0015, 0.0580)
5.0510, 14.888 (0.001, 0.0670)
4.998, 15.008 (0.0015, 0.0580)

Rmin,] s Rmax,l
Rmin,2s Rmax,2
Rmin,3a Rmax,3

A, A2, A3

0.48, 0.49, 0.51 (NA)

NA — no variation across simulations.

Table 1 presents the MLE parameters along with their
MSEs. Note that the MSEs for A; (j =1,2,3) are reported
as “NA”, indicating no variation in these parameters across
simulations.

2.3 Asymptotic distribution of ML estimators for
boxplot-valued data

In this subsection, we derive the asymptotic distribution of
the ML estimators for the parameters of a boxplot-valued
random variable.

Theorem 2. Let 6 = (I, 3, i) denote the ML estima-
tors for the parameters @ = (., X, L) of boxplot-valued data.
Under regularity conditions (see, e.g., Ferguson, 2017), the
asymptotic distribution of the ML estimators is given as

V0 —0) 5 Ny, 0,70)7),

2

where L(0) is the Fisher information matrix and is given by

I, 0 0
Z@)=|0 Iz O
0 0 T
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with
Zy=nl, %,
n
Is = 5(2—1 @z,

I (1 1 1
A = ndiag R ERER e I
227227773

where 13, is the 3p x 3p identity matrix and @ denotes the
Kronecker product.

Proof. The Fisher information matrix is the expected value
of the outer product of the score function V£(6) = ag_(ﬂg»’ and

it is given as
7(0)=E [ve(o)vz(o)T] .

For the multivariate normal distribution Q; ~ N3,(n, X), the
score function for u is

8( n
— =371 (Qi-p.
and hence

—_— FAVE AN M
= —_— —_— =n .
{2 o I 3p

Similarly, for X, we have the score function
14 1
o ():—1 - z—ls):—l) ,
X 2
and therefore we have

n _ _
Iy = JE[Z7'Qi-w@Qi —p) ' =7

T Qi —mwQi—w T

Since E [(Qi —n)(Q; — [L)T] = ¥, we can write
Ty = g(z—l @z ).

For the uniform distribution R;; ~ U(Rujn, j, Rmax, j)» the
Fisher information for the parameter A ; (related to the range)
is derived as

I (1 1 1
y=ndiag| =, 5,... 5 |-
)Ll )LZ )\1’

This expression reflects the dependence of the Fisher infor-
mation on the individual A; values.

Using the central limit theorem, the score function evalu-
ated at the true parameter values 6 is asymptotically normally
distributed as

JAVEO) S Ny, (0,T(0)).

2

Adv. Stat. Clim. Meteorol. Oceanogr., 11, 73-87, 2025

The covariance of the score function is related to the Fisher
information matrix by the information matrix equality

Cov(VL(0)) =1(0).

The dimension of the parameter vector @ = (u, X, X) is given
by

3pBp+1) . 9p>+1lp

dim(@) =3
im(f) =3p + > p 2

This completes the proof.

3 Bayesian estimation for boxplot-valued data

Sadeghkhani and Sadeghkhani (2024) studied the Bayesian
inference of symbolic interval-valued data by introducing
noninformative priors, including the Jeffreys prior, into the
multivariate setting. In this section, we use informative pri-
ors for boxplot-valued data, which allows us to update our
prior knowledge based on the observed data. We derive the
posterior distributions and find the Bayes estimators under
the squared error loss (SEL) criterion.

3.1 Likelihood and priors

Consider the model where Q, Q,,..., @, are indepen-
dent and identically distributed (iid) from N3,(g, %)
with additional parameters Rminj, and A;
for j=1,2,...,p included in the likelihood function
L(p, Z, {Rminj}, {Rmaxj}, {2} | Q).

We assume the following priors for the parameters:

Rmaxj P

u'ZNMp(MOvz/K)’ (19)
= ~ Wy, (v, W), (20)
where p is the prior mean, « is the scaling factor, v is the

degrees of freedom, and W is the scale matrix of the inverse
Wishart distribution. Additionally, we have

Rminj ~U(aj,bj), Rmaxj ~U(cj,d}),

Aj~ Blaj, B, Q1)
where aj,b;,cj, and d; are the bounds of the uniform distri-
butions and «; and B; are the parameters of the Beta distri-
bution for each j.

Next, we find the posterior distributions of the parameters
in the following lemma.

Lemma 1 (posterior distributions). Under the given
priors in Egs. (19), (20), and (21) and the observed data
0, 0,,..., 0,, we have the following.

i. The posterior distribution of X is given by

T Q~W lvg4n, ¥+ Sy, (22)
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where
nK  — — T
Sp=8+—(Q — pno)(Q — o)
n+k

and
S=) Q-0 -0,
i=1

ii. The posterior distribution of | is

Wy + Sn
k(n+«k)

1
11 @~ Tsp (et (1 L) = pet1) - @3)

with

_”E+Kﬂo
- n+x

ILH

where T,(m, A, v) represents a multivariate Student’s
t distribution with mean vector m, variance matrix A,
and v degrees of freedom.

iii. The posterior distribution of Ruyinj is given by
Ruinj | Q@ ~U(max(a;, Rminj,obs): D),
where Ruyinj,obs is the minimum observed Ry .
iv. The posterior distribution of Rmax is given by
Rmax | @~ U(Cj, min(djs Rmaxj,obs))a
where Ryax j,obs IS the maximum observed Rpax .

v. The posterior distribution of A j is given by

Aj| @~ Blaj+n,B;+n).

Proof. According to Bayes’ rule, the posterior distributions
are derived as follows:

i. The posterior of X is given by

(X | Q) x LI, X, {Rminj}> {Rmaxj}, {Aj} | @) (X)

-1 1 ¢ Ty—1

o |Z|" 2 exp (—2;((2,- -w'z7Q; —u))

1

x | B0+ +D/2 e (—Etr(\llgifl)>
—(vo+n+3p+1)/2 1 -1

o [Z|~ 0 exp —Etr((\l—'o—i—Sn)Z ) ,

which is the kernel of an inverse Wishart distribution:

T 0 ~W N vo+n, o+ Sy).
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ii. The posterior of u is given by
mp] @, X)L, X | Q)(p| X)

1 n
o exp (—2 > @i-m'=7; —u))
i=1

1 —1
X exp (fi(u - uo)T<%) (- uo))

e (2 5) e
ocexp | —=(pn — o = — ,
p 3 n—=R, K ) n—=HK,
which results in a multivariate normal distribution for u
given X, i.e.,

X
L X~ N ,— ).
IL|Q Sp(”“n n—{—/c)
By integrating out X, we have
Wo+ S, 1
~ ,— 1+, — 1).
rlQ 73p<un K(n+K)( +n) vo+n—p+ )

iii. For Rpinj, combining the likelihood with the uniform
prior results in the posterior distribution

Rminj | QO NU(max(aj, Rminj,obs)v bj)~

iv. For Ryaxj, combining the likelihood with the uniform
prior results in the posterior distribution

Rimax; | 0~ U(Cj, min(djv Rmax j,obs))-

v. For A j, combining the likelihood with the Beta prior re-
sults in the posterior distribution

Aj| Q@ ~ B(aj+n,Bj+n).

|
Next, Theorem 3 provides the Bayes estimator of un-
known parameters of a boxplot-valued random variable.

Theorem 3 (Bayes estimators under SEL). Under the
assumptions of Lemma 1, the Bayes estimators under SEL,
which are the means of the marginal posteriors, are obtained
as follows:

i. The Bayes estimator of p is

N nQ +kpg
PBayes = — —— - (24)
ii. The Bayes estimator of X is
ﬁ: _ lI/0 + Sn
Bayes = —vo~|—n _3P_ 1
where

Su=S+—(Q—no)(C—no)"
n+«k
and

SZZ(Q[ -00,-0', 0= %Z 0.
i=1 i=1
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iii. The Bayes estimators of Ruyinj and Ruyaxj are

max(aj, Rminj,obs) + bj

Rminj,Bayes =

> s
Ii’ . € + min(dj, Rmaxj,obs)
max j,Bayes = 2 ’

where Rminjobs and Rmaxjobs are the minimum ob-
served Ryinj and maximum observed Ry j, respec-
tively.

iv. The Bayes estimator of A j is

Iy oj+n

Bayes = —— >~

WET o i+ B i+ 2n

Proof. The Bayes estimators are the means of the posterior

distributions given in Lemma 1, and this completes the proof.
O

3.2 Simulation study in the Bayesian setup

Similar to Sect. 2.2, we conduct a simulation study to demon-
strate the Bayesian estimation procedure. The simulation is
carried out with the same setup and true values as described
there, i.e., for p = 3 variables with a sample size of n = 100
and the true parameters specified in Egs. (15)-(17).

Here, we use noninformative priors to ensure that the data
predominantly influence the parameter estimates. In this sim-
ulation, a normal prior distribution with mean vector 0 and
covariance matrix 10°I, is used for x. An inverse Wishart
prior distribution is employed for ¥ with a scale matrix So =
I, and degrees of freedom v = p+1.ForeachA;, j =1,2,3
a uniform U(0, 1) (B(aj =1, B; = 1)) is used, which covers
a broad range of values to avoid imposing any strong con-
straints.

The results of the Bayesian estimation, including the
MSEs for each parameter, are summarized in Table 2.

In order to compare the efficiency of the proposed ML and
Bayesian estimators for different sample sizes n, we use the
same simulation settings as those in Sects. 2.2 and 3.2. Fig-
ure 1 illustrates the relative efficiency (RE), defined as the
MSE of the ML estimator over the MSE of the Bayesian es-
timator for the parameters u and X. It can be seen that, for
smaller sample sizes n, the efficiency of the Bayesian esti-
mators is generally better (RE > 1). As n increases, thanks
to the consistency of the ML estimators, the ML estimators
tend to outperform the Bayesian estimators (RE < 1).

4 Posterior predictive density estimator

Given the posterior distributions of the parameters u, X,
Aj, Rminj, and Rpayx; derived in Lemma 1, we can obtain
the posterior predictive density for a new observation Q*.
Theorem 4 finds the posterior predictive density estimator
for a future or new random variable Q*.
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Table 2. Bayesian estimates and MSEs.

Parameters Estimates (MSEs)

i (4.94,10.01, 15.12) T (0.0060)

ws (3.83,7.99, 12.05)T (0.0105)

"3 (6.15, 11.05, 16.00) T (0.0087)
[1.97 0.85 0.75 ]

I 0.85 1.74 0.74 | (0.0421)
1075 0.74 2.09 |
[[1.70 0.96 0.82 ]

P 0.96 1.30 0.70 | (0.0196)
[0.82 070 1.34 |
[3.06 146 1.03 ]

i3 1.46 270 0.95 | (0.0933)
[1.03 095 2.09 |
[1.04 0.31 0.28 ]

PP 0.31 1.43 0.36 | (0.0347)
[0.28 036 1.05 |
[1.51 0.55 0.84 ]

23 0.55 1.49 0.71 | (0.0561)
[0.84 071 1.79 |
[1.98 0.89 0.88 |

%33 0.89 2.02 096 | (0.0112)
|0.87 0.96 1.88 |

4.889, 14.880 (0.003, 0.0192)
5.0270, 14.970 (0.012, 0.077)
5.002, 15.167 (0.0015, 0.0471)

0.48,0.48, 0.50 (NA)

Rmin,lv Rmax,l
Rmin,2’ Rmax,Z
Rmin,3v Rmax,3

Ay A2, A3

Theorem 4 (posterior predictive density estimator).
The posterior predictive density for a new random variable
Q* given the observable Qy, ..., Qy is as follows:

i. When A; is known, the posterior predictive density esti-
mator is given by

Q" 1Qi.....Qu

T ki +nQ (k+n—+1)(Wo+ S, /)
A "(kH+nm)(vp+n—3p+1)°

v0+n—3p+1). 25)

ii. When X is unknown, the posterior predictive density
is a mixture of multivariate Student’s t distributions as
given by

P(Q* [Q1,....Qn)

—/T K[L0+l’16 (K+n+1)("p0+%sn)
- P\ T "k +n)vo+n—3p+1)

l)0+l’l—3p+1>Xp()\j|Q1,...,Qn)d)»j. (26)
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Figure 1. Relative efficiency of Bayesian and ML estimators in the simulation study (Sects. 2.2 and 3.2).

Proof. To derive the posterior predictive density, we need to
integrate the parameters g, X, and A ; from the joint posterior
distribution:

i. When 4 ; is known, from Lemma 1, the posterior distri-

il.

butions of u and X are given by

,HE,QNMI,(M x )

k+n ‘k+n
2 Q~ W, (vo+n, W +S,),

and therefore the posterior predictive density is given by
p(Q* | le cee Qn)
= //p(Q* I, ) p(n, 2 1Q1,....Qp)dpdX.

Since p(u, X |Q1,...,Q,) follows a normal inverse
Wishart distribution, the resulting predictive density is
a multivariate Student’s ¢ distribution:

Q' 1Q1,....Qu

T Kio+nQ (i +n+1)(Wo+S,)
P\ k+n T 4+no+n—=3p+1)

v0+n—3p+1>.

When A; is unknown, the posterior distributions of p,
X, and A; are

https://doi.org/10.5194/ascmo-11-73-2025

Ko +nQ b))
IL|Z7)»]7Q"’-N‘3p< 0 )7

K+n ’)»j(/c+n)
_ 1
J
A 1Q~p(; Q... Qu).

Then, the posterior predictive density is given by

pQ"1Q1,....Qn)

=///P(Q*Iu,2,kj)p(ﬂ,2,)»j Q1. Q)
~dpdXdA;,
and this completes the proof.

a
Remark 1. In addition to the posterior predictive density de-
rived in Theorem 4, two other types of density estimators can
be considered: plugin density estimators. We assume that A
is known or has been estimated using either Bayesian or ML
methods.

i. ML plugin density estimator: by plugging in the ML
estimators for i, X, and A from Theorem 2, the density
estimator is given by

PQ* | 1, 2,2) = N3, 2).

ii. Bayesian plugin density estimator: by plugging in the
Bayesian estimators for p, X, and A from Theorem 3,
the density estimator is

p(Q* | ﬁ'Bayess 2;BayeSv )‘«Bayes) = N3p(ﬁ'Bayes, z;Bayes)-
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Note that, in both cases, ) influences the range but not
the normal distribution part.

4.1 Comparison of density estimators using the
expected Kullback-Leibler (KL) Loss

The KL loss function measures the difference between two
probability distributions. For a true density p(Q) and an esti-
mated density g(Q), the KL loss is defined as

Dx(pllg) = f p(Qlog (ﬂ)) aQ. @7
q(Q)

The expected KL loss, also known as the KL risk function,
for a density estimator ¢ is the expectation of KL loss over
the distribution of the data and is given as

Rxi(q) =E[Dkr(pllg)] - (28)

To evaluate the performance of different predictive density
estimators, we compare the KL risk performance of three
methods in estimating the future density, i.e., Bayesian
predictive, Bayesian plugin, and ML plugin estimators. The
next lemma helps to find the KL risk functions.

Lemma 2. The KL loss between two multivariate nor-
mal distributions Np(jy, £1) and Np(py, X2) is given
by

KL, (1. Z1) [| Np(pa. Z2))
1
= E[tﬂz;]zl) (o — 1) 2y (g — 1)

det(X»)
det(zo]'

— p+log

The KL divergence between a multivariate normal distribu-
tion and a multivariate Student’s t distribution is given by

KL (1, Z0) || Tp(pa, X2, v))
_! r(z7'x —u)" =7, —
=3 LX)+ (o —py) Xy (o — py)

det(X v—p+1
—p+log (2)}—£( P >

det(X1) 2 v
where tr(-) denotes the trace of a given matrix.

Proof. The KL loss function between two multivariate
normal densities is straightforward and therefore omitted.
Given the density function of the multivariate normal
distribution as

1 1 _
Q) = WGXP (_E(Q_ ﬂ])—r21 I(Q—M1)>
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Table 3. KL risk comparison of different density estimators with
different sample sizes.

n Predictive  Bayesian plugin ML plugin

density density density
50 0.3301 0.3010 0.1077
75 0.3138 0.2942 0.0682
100 0.3083 0.2935 0.0494
125 0.3060 0.2941 0.0391
150 0.3011 0.2912 0.0318
200 0.2981 0.2907 0.0238
250 0.2967 0.2907 0.0188
300 0.2952 0.2902 0.0151
350 0.2935 0.2893 0.0132

and the density function of the multivariate Student’s ¢ dis-
tribution as
+
()
(3) wr)P/2Z, |12

q(Q) = T

_vip
2

1
: (1 +-Q- 1) 2Q - u2>) ,

substituting these into the KL loss function in Eq. (27) and
simplifying them gives the result.
O

4.1.1 KL risk function comparison simulation

We conducted a simulation study to evaluate the KL risk for
different sample sizes using three methods: Bayesian predic-
tive, Bayesian plugin, and ML plugin estimators. The true
parameters and hyperparameters used in the simulation are
as follows. The true parameters are defined as

1 1 05 03
w=[21, ==]05 2 04 |,
3 03 04 3

and the prior parameters are defined as

0 1 00
mo=10 |, k0 =0.0001, v9=3, WYo=|0 1 0 |.
0 0

As seen from Table 3 and Fig. 2, the KL risks for the
Bayesian predictive and plugin density estimators are quite
close. Both risk functions are fairly small, and the differ-
ence between them decreases as the sample size n increases.
Moreover, the KL risk for the ML plugin density estima-
tor is smaller than that for the other two estimators, and it
decreases as n increases. This suggests that the ML plugin
density estimator performs better when estimating the new
density. However, it is important to note that both Bayesian
estimators were based on noninformative priors by choosing
a very small value for «j.
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Figure 2. KL risk function comparison of different density estima-
tors for different sample sizes.

To visualize the comparison of KL divergence for different
sample sizes, we present a plot in Fig. 2.

5 Applications in climatology

In this section, we apply the methodologies discussed —
specifically the point estimation methods (both ML and
Bayesian) and density estimations — to real climatolog-
ical data. This approach demonstrates the practical util-
ity and effectiveness of these statistical techniques in an-
alyzing and interpreting complex boxplot-valued environ-
mental data. The data are sourced from the Berkeley
Earth Surface Temperature Study, which aggregates 1.6 bil-
lion temperature reports from 16 pre-existing archives af-
filiated with the Lawrence Berkeley National Laboratory
(data can be found in the Berkeley Earth Surface Tem-
perature Study at https://www.kaggle.com/berkeleyearth/
climate-change-earth-surface-temperature-data, last access:
19 July 2024).

The section is divided into two subsections, each focusing
on a distinct aspect of climatological analysis. First, we ex-
amine the monthly average temperatures in the United States
from January 2000 to September 2013. In the latter sub-
section, we analyze summer average temperatures in Euro-
pean countries, with data going back to the 18th century.
Both datasets are vast, containing extensive data. Aggregat-
ing these data into boxplots allows for computational effi-
ciency by representing large amounts of information in a con-
cise form.

https://doi.org/10.5194/ascmo-11-73-2025

5.1 Analysis of monthly average temperatures in the
United States

5.1.1 Point estimators

The dataset used for this analysis includes monthly average
temperatures from various cities across the United States,
spanning from January 2000 to September 2013. These ex-
tensive data provide a comprehensive view of temperature
trends and variations over a significant period. Here, each
X; represents the monthly average temperature summaries
across multiple cities for month i within this period, cap-
turing the variability of average temperatures in the form of
symbolic data.

For each month, the first quartile (g1), median, and third
quartile (g3) of the average temperatures across cities were
calculated. Thus, each Q; = (¢1;,m;,q3i) ' represents a vec-
tor of three summary statistics for month i, where the di-
mension of the data is defined as p = 1, corresponding to the
single temperature variable. These quartiles are then used to
estimate the mean vector and covariance matrix using both
ML and Bayesian methods.

The total number of monthly observations, n = 165, spans
from January 2000 to September 2013, resulting in 165 vec-
tors of symbolic data, each representing monthly summary
statistics of average temperatures. The hyperparameters for
the Bayesian estimation are as follows: k¥ =0.001, po=
0,0,0)7, vo =3, Wo=I3x3,a=0.3,b=0.4,c=138, and
d=2.0.

Table 4 summarizes the results from both the ML and
Bayesian estimations.

5.1.2 Density estimators

In this section, we explore three methods for estimating
predictive densities: posterior predictive density, the ML
method, and the Bayesian plugin method. These methods
provide different approaches to predicting future monthly av-
erage temperatures in the United States.

The ML and Bayesian plugin density estimators, using the
ML and Bayesian estimators for g, %, and A from Table 4,
can be obtained easily and are denoted by p(Q* | ft, =0
and p(Q* | fLBayeS, )A:Bayes, igayes), respectively. On the other
hand, the posterior predictive density for a new random vari-
able Q* given the observations Qy,...,Q, when A is un-
known is a mixture of multivariate Student’s ¢ distributions,
as given in Eq. (26). If A has already been estimated using
ML or Bayesian methods, the posterior predictive density
simplifies to a Student’s ¢ distribution as shown in Eq. (25).

5.2 Analysis of summer average temperatures in
European countries

In this subsection, we extend our analysis to examine sum-
mer average temperatures across various European coun-
tries, utilizing historical climate data that provide compre-
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Table 4. Comparison of ML and Bayesian estimates for monthly average temperatures in the United States.

Parameter ML estimate Bayesian estimate
7 (14.61265, 15.10984, 15.62950) T (14.61256,15.10975,15.62941) T
57.99463 57.24220 55.76430 58.00203 57.24355 55.76570
z 57.24220 56.55180 55.12211 57.24355 56.55929 55.12355
55.76430 55.12211 53.77253 55.76570 55.12355 53.78012
Runin 0.3483502 0.3741751
Rmax 1.849506 1.824753
A 0.47 0.53
Albania Armenia Austria Azerbaijan Belarus Belgium Bulgaria
. 250 . 3 . .
28 225 20 25.0 24
24 +$ 200 [ +$ 16 +$ 225 | +% + +% 20 +$
fz Lors + 12 20.0 + 15 '
“ 1e0 8 175 1z 2 .
Croatia Cyprus Czech Republic Denmark Estonia Finland France
e 30 . . 225 22 ) .
o * 28 +e__r| 21 + 200 70 * 200 + 18 %
5 v 175 75 2
16 o o 3 125 | 125 10 o
Georgia Garmany Gresce Hungary \ce\and Ireland Italy
250 * 24 30 4 4 . *
5225 20 o7 ‘ - 25
iiznn i +$ 16 +%|24 +%I 21 +% 4+e__rl 15.0 +%| 20 +
%1?5 + 12 21 H 18 12.5 15 Month
5 180 8 15 RC Bl Jun
g Kazakhstan o Latvia Lithuania N Moldova Montenegro Netherlands Morway - Jul
E: i 200 + 20 + %I ;;? 25 + ‘%l 20 4%' 15 + =Tt
° F“ 175 16 2 | 20.0 16
2 ;U 1;3 + % 12 + 1SEI + 175 + Lo + " +
a .
F‘oland Paortugal Romania Russia Serbia Slovakia Slovenia
25 27 30 . 250 HEES
5 24 24 ~ 24 295 22
4n++% o ++$20 ++%I =D++% 21 ++%mu++$fg ++%
15 18 5 10 1?.5 i
- 1 =, 18 . 15.0 1:
Spain Sweden Swnzerland Tiirkiye Ukraine United Kingdom \ \?‘
30 28
25 20 32 24
20 15 :; 2 f
15 15 18 s
10
N & \9 Ny w \9 5\3 ¥ &b Ny o Ny w \9 & = &
Month

Figure 3. Boxplots of summer average temperatures in European countries.

hensive temperature records dating back to the 18th century.
The dataset includes average monthly temperature data mea-
sured from numerous weather stations situated in major cities
across Europe, allowing for an in-depth analysis of long-term
climate trends and variations.

The analysis focuses on temperature records from 41 Eu-
ropean countries, covering the three summer months June,
July, and August. This extensive temporal and spatial cover-
age enables us to explore regional differences and similarities
in temperature trends, contributing to a broader understand-
ing of global climatic patterns.
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The dataset was filtered to include only European coun-
tries, with the average temperatures for the summer months
extracted for further analysis. Boxplots were then generated
to visualize the distribution of average temperatures across
countries during the summer season. Each boxplot represents
the distribution of average temperatures for a specific country
across the three summer months.

Figure 3 presents these boxplots, providing a clear illustra-
tion of the temperature variations and trends across Europe.
This comparative study highlights the regional climatic pat-
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Table 5. ML and Bayesian estimates for summer average temperatures in European countries.

Parameters ML estimates Bayesian estimates
wi(Jun) (15.9954, 17.0785, 18.2147) T (15.995, 17.0781, 18.2142) T
wor(Jul) (18.1736, 19.2431, 20.3959) T (18.1732, 19.2426, 20.3954) T
w3(Aug) (17.5342, 18.6084, 19.7467) T (17.5337, 18.6079, 19.7462) T
10.9042 7.5238 7.3382 | 8.5485 8.5060 8.5735 ]

%1,1(Jun/Jun) 7.5238  8.0299  8.1470 8.506 8.6527 8.8184
73382 8.1470 12.3818 | 8.5735 8.8184 9.2067 |
[10.2312  8.3206  7.3775 | [7.7133 9.8158 9.2316 |

21 »(Jun/Jul) 8.3901 10.2309  9.4302 7.0172  9.0069  8.7039
| 7.6828  9.6218  13.0352 | [9.7522 8.1082 10.2076 |
[10.6484 8.8207  8.0046 | [9.7982  7.9931 7.4551 ]

21 3(Jun/Aug) 9.0129 10.9896 10.3168 8.8901 9.4564 10.2118
| 8.2967 10.3747 13.8746 | [8.1022  9.0435 11.2543 |
10.9766  9.0864  8.2593 | [9.8133 9.7178 9.7322 ]

%, 2(Jul/Jul) 9.0864 10.9044 10.2101 9.7178 9.8069  9.9089
| 8.2593  10.2101 13.7735 | [9.7322 9.9089 10.2876 |
[12.0938 10.5636  9.8549 | 11.6531 10.1128 9.7282 ]

%, 3(Jul/Aug) 10.5636 12.844 12.2766 9.7776  10.8769 11.0019
| 9.8549  12.276  12.8815 | 9.4322  10.9889 11.7871 |
[ 11.324 11.4021 11.881 | 11.2529 11.3064 11.3472 |

23 3(Aug/Aug) 11.5691 11.9810 11.5987 11.3064 11.5691 11.7098
| 11,543 11.9021 12.1243 | 11.3472  11.7098 12.1139 |
Runin» Rmax (Jun) 1.5865,8.883 1.047, 8.545
Rmin> Rmax (Jul) 1.4015, 9.380 1.035, 9.682
Runins Rmax (Aug) 1.4015, 9.380 1.411, 8.998
A(Jun, Jul, Aug) 0.47, 0.48, 0.49 0.5, 0.5, 0.49

terns, offering valuable insights into the broader context of
global climate change.

To further understand the differences between the ML and
Bayesian approaches in estimating summer average temper-
atures in European countries, we present a comparative anal-
ysis of the estimators for the mean vectors and covariance
matrices across the three summer months: June, July, and
August. Table 5 summarizes the results.

The table above presents a side-by-side comparison of the
ML and Bayesian estimators for the mean vectors and co-
variance matrices of summer average temperatures in Euro-
pean countries. The results show a close alignment between
the ML and Bayesian estimates for the mean vectors across
the three summer months. However, the covariance matri-
ces exhibit some differences, particularly in the off-diagonal
elements, which suggest variations in how each method cap-
tures the relationships between temperature readings across
different months.

For instance, the Bayesian estimators tend to produce
more consistent estimates across the covariance matrices, po-
tentially reflecting the smoothing effect of prior information.
The parameters Rpin and Rpyax for each month also indicate
that the range of temperature variations is slightly narrower
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in the Bayesian framework, further highlighting the influence
of the priors.

6 Discussion

In this article, we have introduced a novel method for esti-
mating the parameters of boxplot-valued random variables
from both Bayesian and frequentist perspectives. Working
with boxplot-valued random variables enables us to effi-
ciently summarize large datasets, as boxplots concisely rep-
resent extensive amounts of information. Our method offers
a significant computational advantage, as we derived closed-
form solutions for both ML and Bayesian estimators. These
closed-form expressions allow for direct computation of pa-
rameter estimates without the need for iterative optimiza-
tion procedures or Markov chain Monte Carlo (MCMC)-
type methods, which are commonly required in traditional
Bayesian approaches. By avoiding these computationally in-
tensive steps, our method reduces the overall complexity and
computational load, making it particularly suitable for large
datasets.

Additionally, we have explored the density estimation of
future random boxplots, providing a comprehensive tool for
investigating and forecasting these distributions. Our ap-
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proach was evaluated through simulations and demonstrated
its accuracy and computational efficiency when compared
with existing methods. Furthermore, we applied the proposed
techniques to real environmental data to illustrate their prac-
tical utility and effectiveness in real-world scenarios.

Boxplot-valued data analysis is particularly useful in con-
texts where data are collected in large volumes and need to
be summarized effectively without losing significant infor-
mation. By adopting both Bayesian and frequentist meth-
ods, we provide a comprehensive framework that leverages
the strengths of each approach. The Bayesian methods offer
a probabilistic interpretation and incorporate prior informa-
tion, which is valuable when data are scarce or expensive to
obtain. On the other hand, the frequentist methods provide
consistency and robustness when large amounts of data are
available.

Furthermore, our study on the density estimation of future
random boxplots enhances predictive modeling capabilities,
which is crucial for applications such as environmental mon-
itoring and climate forecasting. By accurately estimating the
distribution of future data, decision-makers can make more
informed predictions and plans.

Through extensive simulations, we validated the perfor-
mance of our proposed methods, showcasing their accuracy
and reliability. The application to real environmental data
further underscores the practical relevance and adaptability
of our techniques. Moreover, although the multivariate nor-
mal model theoretically allows for the possibility of overlap-
ping quartiles, our empirical studies — including both sim-
ulations and real-world applications — consistently resulted
in ordered quartiles (g1; < m; < g3;). This empirical con-
sistency indicates that, within the context of our data and
analysis, the model effectively preserves the natural order-
ing of quartiles, thereby mitigating the theoretical limitation
in practical scenarios. Overall, this work contributes to the
growing field of symbolic data analysis by offering efficient
and effective tools for handling boxplot-valued data, thereby
broadening the scope and applicability of statistical method-
ologies in various domains.

Code availability. The R code used for the analysis in this study
is not publicly available but can be shared upon reasonable request.
Due to institutional policies and ongoing related research, we have
opted not to deposit the code in a public repository at this time.
However, researchers interested in accessing the code may contact
the corresponding author at asadeghkhani@ncat.edu.

Data availability. The data used in this study are publicly
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