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Abstract. By the end of 2023, renewable sources covered 63.4 % of the total electric-power demand of Chile,
and, in line with the global trend, photovoltaic (PV) power showed the most dynamic increase. Although Chile’s
Atacama Desert is considered to be the sunniest place on Earth, PV power production, even in this area, can be
highly volatile. Successful integration of PV energy into the country’s power grid requires accurate short-term
PV power forecasts, which can be obtained from predictions of solar irradiance and related weather quantities.
Nowadays, in weather forecasting, the state-of-the-art approach is the use of ensemble forecasts based on mul-
tiple runs of numerical weather prediction models. However, ensemble forecasts still tend to be uncalibrated or
biased, thus requiring some form of post-processing. The present work investigates probabilistic forecasts of
solar irradiance for regions III and IV in Chile. For this reason, eight-member short-term ensemble forecasts of
solar irradiance for the calendar year 2021 are generated using the Weather Research and Forecasting (WRF)
model; these are then calibrated using the benchmark ensemble model output statistics (EMOS) method based on
a censored Gaussian law and its machine-learning-based distributional regression network (DRN) counterpart.
Furthermore, we also propose a neural-network-based post-processing method, resulting in improved eight-
member ensemble predictions. All forecasts are evaluated against station observations for 30 locations in the
study area, and the skill of post-processed predictions is compared to the raw WRF ensemble. Our case study
confirms that all studied post-processing methods substantially improve both the calibration of probabilistic fore-
casts and the accuracy of point forecasts. Among the methods tested, the corrected ensemble exhibits the best
overall performance. Additionally, the DRN model generally outperforms the corresponding EMOS approach.

1 Introduction

According to the latest report of the International Renew-
able Energy Agency (IRENA, 2024), the largest ever increase
in renewable-power capacity was observed in 2023, nearly
75 % of which was newly installed solar energy. As a result,
by the end of 2023, the renewable-energy share had reached
43 % of the global installed power capacity, and this ratio was
even higher in South America (71.4 %). In particular, renew-
able sources covered 63.4 % of the total electric-power de-

mand of Chile, 39.7 % of which came from photovoltaic (PV)
energy. In line with the global trend, with the addition of
1949 MW, in 2023, PV power accounted for the most sub-
stantial increase of 30.4 %.

Although Chile’s Atacama Desert is considered to be the
sunniest place on Earth, with the highest long-term solar ir-
radiance (Rondanelli et al., 2015), PV power production can
be highly volatile, which raises a strong demand for accurate
PV power forecasts from power grid operators. A standard
approach to PV power forecasting is to consider global hor-
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izontal irradiance (GHI) forecasts (and possibly forecasts of
other weather variables) and to convert them into PV power
with the help of a model chain; see, for example, Mayer and
Yang (2022) or Horat et al. (2025). In the present study, we
concentrate on solar irradiance predictions as they are highly
correlated with the PV model chain outputs.

Traditionally, solar irradiance forecasts are obtained as
outputs of numerical weather prediction (NWP) models,
which describe the behaviour of the atmosphere with the
help of partial differential equations. The state-of-the-art ap-
proach is to run these models simultaneously with vari-
ous initial conditions and/or parameterizations, resulting in
a probabilistic prediction as part of an ensemble forecast
(Bauer et al., 2015; Buizza, 2018a). Nowadays, all major
weather centres operate their own ensemble prediction sys-
tems (EPSs); one of the most prominent is the Integrated
Forecast System (IFS) of the European Centre for Medium-
Range Weather Forecasts (ECMWF), providing 51-member
medium-range ensemble forecasts at 9 km resolution and
101-member extended-range forecasts at 32 km resolution
(ECMWF, 2024). Nevertheless, in the last few years, NWP
models gained strong competitors in the form of machine-
learning-based, fully data-driven forecasts such as Pangu-
Weather (Bi et al., 2023) or the more recent ECMWF Ar-
tificial Intelligence Forecasting System (AIFS; Lang et al.,
2024), which was the first to issue AI-based ensemble pre-
dictions, followed by GenCast of Google DeepMind (Price
et al., 2025).

Despite the efforts devoted to improving the EPSs, ensem-
ble forecasts might exhibit deficiencies such as bias or lack
of calibration, thus requiring some form of statistical post-
processing (Buizza, 2018b). In the last decades, many post-
processing methods have been suggested for a wide spec-
trum of weather variables; for an overview, see, for exam-
ple, Vannitsem et al. (2021) or Schulz and Lerch (2022).
Among these parametric approaches are the ensemble model
output statistics method (EMOS; Gneiting et al., 2005) and
the distributional regression network approach (DRN; Rasp
and Lerch, 2018), which provide full predictive distributions
in the form of a single parametric law. In the EMOS method,
the parameters of the predictive distribution depend on the
forecast ensemble via appropriate link functions, whereas, in
the DRN approach, one trains a neural network, which con-
nects the ensemble forecasts and possible other covariates
to the distributional parameters. EMOS and DRN models
for different weather quantities usually differ in terms of the
parametric family describing the predictive distribution, and
the EMOS link functions and the architectures of the DRN
networks might also vary. Nonparametric methods include
quantile regression, providing the predictive distribution in
terms of its quantiles using either statistical tools (Friederichs
and Hense, 2007; Bremnes, 2019) or machine learning tech-
niques (Taillardat et al., 2016; Bremnes, 2020), and methods
that directly improve the raw ensemble predictions, such as
quantile mapping (Hamill and Scheuerer, 2018) or member-

by-member post-processing (Van Schaeybroeck and Vannit-
sem, 2015).

To calibrate solar irradiance ensemble forecasts, Schulz et
al. (2021) suggest EMOS models based on censored logistic
and censored normal (CN0) distributions, while Baran and
Baran (2024) and Horat et al. (2025) propose DRN counter-
parts of the latter. Furthermore, La Salle et al. (2020) com-
pare linear quantile regression and the analogue ensemble
technique to EMOS models utilizing truncated normal and
truncated generalized extreme-value distributions. Bakker et
al. (2019) consider quantile regression, quantile regression
neural networks, random forests, and gradient-boosting de-
cision trees, while Song et al. (2024) propose a non-crossing
quantile regression neural network. According to the clas-
sification of Yang and van der Meer (2021), all the post-
processing methods mentioned above can be considered to
be probabilistic-to-probabilistic (P2P) approaches; see also
Yang and Kleissl (2024, Sect. 8.6).

The present work investigates probabilistic forecasts of so-
lar irradiance for regions III and IV in Chile, covering an
area with the second-largest PV power potential after the At-
acama Desert (Molina et al., 2017). For this reason, eight-
member ensemble forecasts of solar irradiance for the calen-
dar year 2021 are generated using the Weather Research and
Forecasting (WRF) model (Skamarock et al., 2019); these
are then calibrated using the benchmark CN0 EMOS model
and its DRN counterpart. Furthermore, we also propose a
neural-network-based post-processing method, resulting in
improved eight-member ensemble predictions. All forecasts
are evaluated against station observations for 30 locations in
the study area, and, in a detailed case study, the skill of post-
processed predictions is compared to the raw WRF ensem-
ble. To the best of the authors’ knowledge, no studies have
been published yet that address the post-processing of solar
irradiance ensemble forecasts for this part of the world. Thus,
the main contributions of this work can be summarized in the
following way.

– This paper provides a detailed analysis of the forecast
skill of WRF probabilistic predictions of solar irradi-
ance for two Chilean regions that are particularly im-
portant from the point of view of PV power production.

– This paper investigates the skill of state-of-the-art para-
metric post-processing methods.

– We also develop a machine-learning-based method for
generating improved irradiance ensemble forecasts and
assess its predictive performance.

The paper is organized as follows. The description of the
WRF model configurations and the observed data and a pre-
liminary assessment of the performance of WRF forecasts
are given in Sect. 2. Section 3 introduces the applied post-
processing methods, the approaches to training-data selec-
tion for modelling, and the considered forecast evaluation
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tools. The results of our case study are reported in Sect. 4,
and the paper concludes with a summary and discussion in
Sect. 5.

2 Data

2.1 WRF model configuration and ensemble members

The Advanced Research module of the Weather Research
and Forecasting (WRF) model, version 4.4.2 (Skamarock
et al., 2019), was used in this study. We consider eight-
member ensemble forecasts for solar irradiance (downward
shortwave flux given in W m−2) for the calendar year 2021
as generated by the model. All forecasts are initialized at
00:00 UTC with a 1 h temporal resolution and a forecast hori-
zon of 48 h. The eight simulations were configured with two
nested domains, as depicted in Fig. 1a, with 9 km (d01) and
3 km (d02) horizontal resolutions, 36 vertical levels at vari-
able resolutions, and enhanced density near the surface and
the tropopause. We will show only the results for the small-
est domain (d02) with the highest resolution (3 km), pro-
vided separately in Fig. 1b. This domain includes regions III
and IV of Chile, covering several coastal and interior towns
and cities to the west and part of the Andes Cordillera to
the east. Forecasts from the Global Forecast System (GFS)
model at 0.25°×0.25° horizontal resolution provided the ini-
tial and boundary conditions for the WRF model regional
forecasts every 3 h. The WRF simulations employed land
use data based on the Moderate Resolution Imaging Spec-
troradiometer (MODIS) at 15 arcsec (approximately 0.4 km
in horizontal resolution). We also set a two-way interaction,
which allows the inner domain to provide feedback to its par-
ent domain.

The eight simulations used the Noah-MP land surface
model (Niu et al., 2011; Yang et al., 2011) to parameter-
ize the surface–atmosphere interaction in all domains. The
Noah-MP scheme forecasts the soil temperature and mois-
ture and provides fractional snow cover and frozen-soil
physics. Convective processes in all domains were calcu-
lated with the Kain–Fritsch scheme (Kain–F; Kain, 2004),
while the Thompson double-moment scheme (Thompson et
al., 2008) was used for microphysics. The eight-member
simulations differ in terms of the employed radiation and
planetary boundary layer (PBL) scheme. Four radiation and
five PBL schemes were combined to form the eight-member
simulations, whose descriptions are displayed in Table 1.
The Yonsei University model (YSU; Hong et al., 2006),
the Mellor–Yamada–Janjić model (MYJ; Janjić, 1994), the
quasi-normal-scale elimination model (QNSE; Sukoriansky
et al., 2005), the University of Washington model (UW;
Bretherton and Park, 2009), and the asymmetric convec-
tive model (ACM2; Pleim, 2007) were used to calculate the
PBL processes, whereas the rapid radiative transfer model
(RRTMG; Iacono et al., 2005), the Dudhia model (Dudhia,
1989), the Fu–Liou–Gu model (FLG; Gu et al., 2011), and

Table 1. Description of radiation (RAD), planetary boundary
layer (PBL), land surface model (LSM), cumulus, and micro-
physics (MP) parameterizations used for each of the eight WRF
ensemble members.

Memb. PBL RAD LSM Cumulus MP

1 YSU RRTMG Noah-MP Kain–F Thompson
2 YSU Dudhia Noah-MP Kain–F Thompson
3 YSU FLG Noah-MP Kain–F Thompson
4 YSU Goddard Noah-MP Kain–F Thompson
5 MYJ RRTMG Noah-MP Kain–F Thompson
6 QNSE RRTMG Noah-MP Kain–F Thompson
7 UW RRTMG Noah-MP Kain–F Thompson
8 ACM2 RRTMG Noah-MP Kain–F Thompson

the new Goddard scheme (Chou et al., 1999, 2001) were
used to parameterize the longwave and shortwave radiation
processes. Note that one could have considered more com-
binations of PBL and radiation schemes, resulting in more
ensemble members. However, on the one hand, we had lim-
ited computational resources, which posed constraints on
both the ensemble size and the horizontal resolution. On the
other hand, the current study is part of a broader research
project dealing with the calibration of renewable-energy-
related quantities (solar irradiance, wind speed, precipita-
tion accumulation) in Chile, and we wanted to ensure com-
parability with our earlier results on post-processing eight-
member WRF temperature (Díaz et al., 2020) and wind speed
(Díaz et al., 2021) predictions. The relatively small ensemble
size might affect the variability of the raw WRF forecasts;
nonetheless, it does not affect the choice of the possible post-
processing methods.

2.2 Solar irradiance observations

Solar irradiance observations (given in W m−2) are provided
by the Chilean national weather service (DMC, an abbrevia-
tion for the Spanish name). We consider data from 30 stations
in the Atacama and Coquimbo regions, between the coast and
the Andes Cordillera. Table 2 describes each station’s name
and location (latitude, longitude, altitude), and Fig. 1b shows
their spatial distribution over the study region. The observa-
tions with hourly temporal resolution were downloaded from
the website: https://climatologia.meteochile.gob.cl/ (last ac-
cess: 1 March 2025).

2.3 Forecast skill of the WRF ensemble

The matching of the WRF ensemble predictions with obser-
vations at the monitoring stations listed in Table 2 is per-
formed by extracting forecasts for the nearest grid points
from the WRF domain d02. As depicted in Fig. 1b, the to-
pography of this region is rather complex; the station alti-
tudes range from 80 to 2154 m, and the differences in terms
of station elevation have an impact on the forecast perfor-
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Figure 1. (a) The two WRF nested-domain configurations (d01 and d02) used for each simulation and the region’s topography (shaded
colours). (b) Zoomed-in image of domain d02, showing the location of the 30 observation stations (red circles).

Table 2. The name, longitude, latitude, altitude, and region of 30 irradiance observation stations used in this study.

No. Name Longitude Latitude Altitude Region
(m)

1 Desierto de Atacama, Caldera Ad. −70.781 −27.254 197 III
2 Universidad de Atacama −70.353 −27.359 362 III
3 Amolana −70.010 −27.960 1090 III
4 Copiapó −70.408 −27.35 574 III
5 Tierra Amarilla, T. Lautaro −70.000 −28.976 1173 III
6 Tierra Amarilla, Jotabeche −70.245 −27.589 601 III
7 La Copa −70.622 −27.346 188 III
8 Freirina, Nicolasa −71.01 −28.517 156 III
9 CE Huasco −70.798 −28.581 470 III
10 Freirina, Vallenar −70.943 −28.526 230 III
11 Alto del Carmen −70.449 −28.768 822 III
12 Freirina −71.104 −28.507 100 III
13 La Florida, La Serena Ad. −71.207 −29.914 137 IV
14 La Higuera, El Trapiche −71.116 −29.372 281 IV
15 Ovalle Escuela Agrícola −71.187 −30.580 310 IV
16 Punitaqui (FDF) −71.256 −30.780 216 IV
17 El Tololo −70.804 −30.168 2154 IV
18 Algarrobo Bajo −71.451 −30.633 80 IV
19 Camarico −71.322 −30.699 290 IV
20 El Palqui −70.927 −30.774 504 IV
21 Vicuña, Los Pimientos −70.697 −30.034 642 IV
22 Monte Patria, Municipalidad −70.958 −30.698 406 IV
23 Paiguano −70.511 −30.047 1222 IV
24 Ovalle Recoleta −71.166 −30.491 403 IV
25 Monte Patria −70.939 −30.682 563 IV
26 Chaguaral −70.731 −30.857 1194 IV
27 La Polvareda −71.240 −30.883 265 IV
28 Ajial de Quiles −71.384 −30.920 464 IV
29 Canela Baja (Liceo P. José Herde) −71.413 −31.390 343 IV
30 Liceo Samuel Román Rojas −70.999 −31.188 936 IV

mance. Figure 2 shows the boxplots of the median forecast
error of the WRF ensemble (median deviation of the eight in-
dividual ensemble members from the verifying observation,
that is, the median bias of the WRF members) at the vari-
ous observation stations for the whole calendar year 2021 for

lead times corresponding to the period between 12:00 and
00:00 UTC, when positive irradiance is likely to be observed.
Raw WRF forecasts systematically overestimate the actual
irradiance, and both the magnitude of the bias and the spread
of the median forecast error strongly depend on the loca-
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Figure 2. Median forecast error (W m−2) of the WRF ensemble at the observation stations listed in Table 2 for all dates and lead times of
12–24 h and 36–48 h.

Figure 3. Forecast error (W m−2) of the individual ensemble members for all dates and locations for lead times of (a) 12–24 h and (b) 36–
48 h.

Figure 4. Forecast error (W m−2) of the ensemble median for all dates and locations as functions of the lead time.

tion. However, in contrast to Díaz et al. (2020), where the
station altitude played a key role in the capability of WRF
temperature forecasts, here, despite the WRF irradiance en-
semble performing the best at the highest station (no. 17;
El Tololo), one cannot find a clear connection between the
elevation and the forecast skill. The same positive bias can
be observed in Fig. 3, displaying the boxplots of the fore-

cast error of the individual ensemble members for all dates
and locations, treating shorter (12–24 h) and longer (36–48 h)
lead times separately. Although longer forecast horizons re-
sult in slightly larger forecast errors, Fig. 3a and b convey
the same message. Ensemble member 2 substantially outper-
forms the other seven members by exhibiting the smallest
bias; the largest error corresponds to member 3, followed by
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member 4, whereas the performance of members 1 and 5–
6 is fairly similar. Finally, the boxplots of the diurnal evolu-
tion of the forecast error of the ensemble median depicted in
Fig. 4 indicate that the positive bias is also systematic along
the forecast horizons of 12–24 h and 36–48 h, when positive
irradiance is likely to be observed, and the largest errors cor-
respond to 15:00 and 16:00 UTC, when the solar irradiance
reaches its peak.

3 Post-processing and forecast evaluation methods

As mentioned in the Introduction, we consider two differ-
ent parametric methods for post-processing WRF solar irra-
diance ensemble forecasts. The key step in parametric mod-
elling is the choice of the predictive distribution. Addressing
non-negativity of solar irradiance, several parametric models
utilize distributions left truncated from below at zero; see,
for example, La Salle et al. (2020) or Yang (2020). However,
such models require the specification of times of day with
positive irradiance, whose periods depend strongly on the lo-
cation and season. This deficiency can be solved by consider-
ing laws that assign a positive mass to the event of zero irra-
diance as such a distribution can handle even the night hours,
when both predicted and observed irradiance are zero. A pop-
ular choice is to left censor a suitable distribution at zero,
which proved to be successful a successful approach, e.g.
in modelling precipitation accumulation (Scheuerer, 2014;
Baran and Nemoda, 2016). Here, we utilize the censored nor-
mal EMOS approach of Schulz et al. (2021), considered to be
a benchmark method, and the corresponding DRN model in-
vestigated by Baran and Baran (2024) and Horat et al. (2025).
Parametric models based on this particular predictive dis-
tribution demonstrated excellent skill for various ensemble
forecasts covering different geographical areas.

Beyond parametric modelling, we also suggest a neural-
network-based distribution-free ensemble correction tech-
nique, where the output is a calibrated forecast ensemble.
Although, in this post-processing approach, there is no re-
striction on the number of generated corrected forecasts, for
the sake of fair comparability, we consider the ensemble size
of eight of the raw WRF ensembles.

Compared to the EMOS and DRN models, the aforemen-
tioned method lacks the advantage of providing a full pre-
dictive distribution; however, similarly to the nonparamet-
ric post-processing techniques, it allows more flexible mod-
elling, and the output can be interpreted in the same way as
the raw ensemble forecast.

In what follows, let f1, f2, . . . , f8 denote the eight-
member WRF irradiance forecast of a given forecast horizon
for a given location and time, and let f and S2 denote the
corresponding ensemble mean and variance, respectively.

3.1 EMOS model for solar irradiance

Let G(x|µ,σ ) denote the cumulative distribution func-
tion (CDF) of a Gaussian distribution with mean µ and stan-
dard deviation σ > 0:

G(x|µ,σ ) :=8
(
x−µ

σ

)
, x ∈ R,

with8 denoting the CDF of a standard normal law. Then the
CDF of a normal distribution with location µ and scale σ left
censored at zero (CN0) equals

Gc0(x|µ,σ ) :=
{
G(x|µ,σ ), x ≥ 0,
0, x < 0 . (1)

This distribution assigns mass Gc0(0|µ,σ ) to the origin and
has a mean of

κ = µ8(µ/σ )+ σϕ(µ/σ ),

where ϕ denotes the standard normal probability density
function (PDF). Following Schulz et al. (2021) and Baran
and Baran (2024), the ensemble members are connected to
the parameters of the CN0 distribution via equations (link
functions):

µ= γ0+ γ1f + γ2p0 and σ = exp(δ0+ δ1 logS) ,

where p0 is the proportion of WRF ensemble members pre-
dicting zero irradiance; that is,

p0 :=
1
8

8∑
k=1

I{fk=0},

with IH denoting the indicator function of a set H . Model
parameters γ0, γ1, γ2, δ0, and δ1 ∈ R are estimated following
the optimum score principle of Gneiting and Raftery (2007)
that is obtained by minimizing the mean value of a proper
scoring rule (in our case, the continuous ranked probabil-
ity score (CRPS) defined by Eq. (2) in Sect. 3.5) over ap-
propriate training data comprising past forecast–observation
pairs. This general approach is the most standard in para-
metric ensemble post-processing, where replacing the CRPS
with the ignorance score, defined as the negative logarithm
of the predictive PDF evaluated for the corresponding obser-
vation (see, for example, Wilks, 2019, Sect. 9.5.3), results in
the conventional maximum-likelihood estimates.

3.2 DRN model for solar irradiance

Distributional regression networks (DRNs), first employed
by Rasp and Lerch (2018) for calibrating temperature en-
semble forecasts, represent an advanced class of machine-
learning-based post-processing models. Similarly to the
EMOS approach, they extend traditional regression tech-
niques by predicting parameters of the forecast distribution
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belonging to a given family, in our case, the location µ

and scale σ of the CN0 distribution specified by the CDF
(Eq. 1). The DRN approach enhances the statistical calibra-
tion of ensemble forecasts, providing a more comprehen-
sive understanding of prediction uncertainty. DRNs typically
leverage predictor variables, such as NWP quantities and sta-
tion characteristics, to inform their predictions. Additionally,
station embeddings enable the network to recognize location-
specific information, capturing unique features and patterns
relevant to individual stations.

DRNs are often implemented using a multilayer percep-
tron (MLP; Goodfellow et al., 2016) architecture, which im-
proves their ability to capture complex relationships between
the NWP forecasts and other covariates and the distributional
parameters to be predicted. The feed-forward structure of the
network allows input features to pass through multiple hid-
den layers, where neurons apply weighted transformations
and activation functions to the input signals. Activation func-
tions such as ReLU (rectified linear unit), sigmoid, or tanh
introduce non-linearity, enabling the model to learn intricate
patterns and relationships in the data. Similarly to EMOS
modelling, the weights of the MLP neural networks connect-
ing the input covariates with the distributional parameters µ
and σ are estimated by minimizing the mean CRPS of the
CN0 predictive distributions over the training data, optimiz-
ing probabilistic forecasts to align with observed outcomes.
Note that, building upon the work of Rasp and Lerch (2018),
which focused on fully connected networks such as MLP,
recently, convolutional layers have also gained popularity
within DRNs (Veldkamp et al., 2021; Li et al., 2022). These
layers leverage local patterns and spatial hierarchies in the
data, further enhancing the model’s ability to capture com-
plex relationships. However, in this study, we keep the tradi-
tional MLP architecture, consisting of an input layer with as
many neurons as the number of input covariates, a few hid-
den layers (shallow network), and an output layer with two
neurons corresponding to the distributional parameters. Fur-
ther details regarding the applied MLP network can be found
in Sect. 3.6.

To further enhance model performance and to prevent
overfitting, early stopping is often employed as a regulariza-
tion technique during training. By monitoring performance
based on a validation dataset, training halts when improve-
ments cease, ensuring the model retains its generalization
capabilities. This approach not only optimizes the training
process but also contributes to more robust predictions.

3.3 Machine-learning-based forecast improvement

In addition to constructing predictive distributions, another
possible alternative is statistical post-processing using ma-
chine learning models that generate improved ensemble fore-
casts. For this purpose, similarly to the DRN model described
in Sect. 3.2, we use a neural network based on the MLP archi-
tecture; however, here, the number of neurons in the output

layer equals the number of ensemble members to be gener-
ated. The other principal difference is the implementation of
the loss function. Due to the nature of the output, here, we
apply the ensemble CRPS given by Eq. (3) (see Sect. 3.5),
with the constraint that the predicted solar irradiance fore-
casts can only be non-negative. This post-processing method
is flexible as it is distribution-free, and the number of en-
semble members to be generated is up to the user, provided
enough training data are available. However, to ensure direct
comparability with the WRF forecasts, we create an eight-
member prediction, referred to as the corrected ensemble, for
each verification day, location, and forecast horizon.

3.4 Training-data selection

The efficiency of all post-processing methods, including the
ones described in Sect. 3.1–3.3, strongly depends on the spa-
tial and temporal decomposition of the training data.

From the point of view of temporal selection, a popular ap-
proach is using a sliding window, where the model for a given
date is trained using forecast–observation pairs from the pre-
ceding n calendar days. This simple method, also utilized in
our study, allows for a quick adaptation to seasonal varia-
tions or model changes; nevertheless, larger time shifts, such
as monthly, seasonal, or yearly windows, might also be bene-
ficial (see, for example, Jobst et al., 2023). Alternatively, one
can consider a fixed, very long training period, a popular ap-
proach in machine-learning-based post-processing methods
requiring a large amount of training data (see, for example,
Schulz and Lerch, 2022; Horat et al., 2025). For a systematic
comparison of time-adaptive model training schemes, we re-
fer the reader to Lang et al. (2020).

Regarding the spatial composition of training data, the
traditional approaches are local and regional (global) mod-
elling (Thorarinsdottir and Gneiting, 2010). Local models
are based on past forecast–observation pairs for the actual
location under consideration, whereas the regional approach
utilizes historical data of all studied stations. In general, lo-
cal models outperform their regional counterparts, provided
one has enough location-specific training data to avoid nu-
merical issues during the calibration process. The regional
approach, resulting in a single set of EMOS parameters or
neural network weights for the whole ensemble domain, is
more suitable if only short training periods are allowed; how-
ever, it might hardly handle large and heterogeneous areas.
To combine the advantageous properties of the above two
approaches to spatial selection, Lerch and Baran (2017) sug-
gested a novel clustering-based semi-local method which ap-
peared to be successful for several different weather variables
and ensemble domains; see, for example, Baran et al. (2020),
Szabó et al. (2023), or Baran and Lakatos (2024). For a given
date of the verification period, a feature vector is assigned to
each observation station, representing the station climatology
and the forecast error of the ensemble mean during the train-
ing period. Based on these feature vectors, the stations are
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then grouped into clusters using k-means clustering (see, for
example, Wilks, 2019, Sect. 16.3.1), and, within each clus-
ter, regional modelling is performed. In the case of rolling
training windows, the stations are regrouped dynamically for
each particular training set.

3.5 Forecast verification

As mentioned, the parameters of the CN0 EMOS model de-
scribed in Sect. 3.1 are estimated by minimizing the mean of
a proper scoring rule over the training data. In particular, we
consider the continuously ranked probability score (CRPS;
Wilks, 2019, Sect. 9.5.1), which is probably the most popu-
lar proper verification score in atmospheric sciences. Given
a probabilistic forecast expressed as a predictive CDF F and
an observation x ∈ R, the CRPS is defined as

CRPS(F,x) :=

∞∫
−∞

[
F (y)− I{y≥x}

]2dy

= E|X− x| −
1
2
E|X−X′|, (2)

where X and X′ are independent random variables dis-
tributed according to F and with a finite first moment. The
CRPS is a negatively oriented score (smaller values indicate
better performance), and it simultaneously assesses both the
calibration and the sharpness of a probabilistic forecast. Cali-
bration means a statistical consistency between forecasts and
observations, while sharpness refers to the concentration of
the probabilistic forecasts. Furthermore, the expression of the
CRPS on the right-hand side of Eq. (2) indicates that it can
be expressed in the same unit as the observation. For the cen-
sored normal distribution considered in Sect. 3.1 and 3.2, the
CRPS has a closed form (see, for example, Jordan et al.,
2019), which allows for a computationally efficient numer-
ical optimization, hence making it eligible to serve as a loss
function in both EMOS and DRN modelling. For a forecast
ensemble f1, f2, . . . , fK , one should consider the empirical
CDF F̂K , resulting in the expression

CRPS(F̂K ,x)=
1
K

K∑
k=1

∣∣fk−x∣∣− 1
2K2

K∑
k=1

K∑
`=1

∣∣fk−f`∣∣. (3)

See, for example, Krüger et al. (2021). The same definition
applies to the corrected ensemble forecast produced by the
approach described in Sect. 3.3 and to the calibrated samples
generated from the EMOS or DRN predictive distributions.
Note that the above formula differs slightly from the ensem-
ble CRPS given in Wilks (2019, Sect. 9.7.3); however, in the
R package scoringRules (Jordan et al., 2019), the expression
of Eq. (3) is implemented.

In the case study of Sect. 4, the predictive performance of
the competing probabilistic forecasts with a given forecast
horizon is compared with the help of the mean CRPS over

all forecast cases in the verification period. Furthermore, we
also quantify the improvement in the mean CRPS of a proba-
bilistic forecast F for a reference forecast Fref using the con-
tinuous ranked probability skill score (CRPSS; see, for ex-
ample, Gneiting and Raftery, 2007). This positively oriented
quantity (the larger, the better) is defined as

CRPSS := 1−
CRPSF

CRPSFref

,

where CRPSF and CRPSFref denote the mean CRPS corre-
sponding to forecasts F and Fref, respectively. In particular,
in Sect. 4, for the reference prediction Fref, we consider the
raw WRF ensemble, while forecast F can be any of the post-
processed predictions described in Sect. 3.1–3.3.

A separate assessment of the calibration and sharpness of
predictive distributions can be obtained with the help of the
coverage and average width of (1−α)100 %, α ∈ (0,1), cen-
tral prediction intervals, respectively. By coverage, we mean
the proportion of observations located between the α/2 and
1−α/2 quantiles of the predictive CDF, where properly cali-
brated forecasts result in values of around (1−α)100 % (see,
for example, Gneiting and Raftery, 2007). For a k-member
forecast ensemble, one usually considers the nominal cover-
age (K − 1)/(K + 1)100 % of the ensemble range (77.78 %
for the eight-member WRF ensemble at hand), which is the
probability of the rank of the observation for a calibrated pre-
diction being greater than 1 and less than K + 1. Choosing
α to match this nominal coverage allows for a fair compari-
son of ensemble forecasts with forecasts provided as full pre-
dictive distributions.

A further plausible tool for evaluating the calibration of
ensemble forecasts is the verification rank histogram (or Ta-
lagrand diagram). The Talagrand diagram displays the ranks
of the verifying observation with respect to the correspond-
ing ensemble prediction (Wilks, 2019, Sect. 9.7.1), which,
for a calibrated k-member ensemble, should follow a discrete
uniform law on the set {1, 2, . . . ,K+1}. The shape of a rank
histogram reflects the source of the lack of calibration:∪- and
∩-shaped histograms refer to underdispersion and overdis-
persion, respectively, whereas biased forecasts result in trian-
gular shapes. Furthermore, the deviation of the distribution of
the verification ranks from the uniform law can be quantified
with the help of the reliability index:

RI :=
K+1∑
r=1

∣∣∣ρr − 1
K + 1

∣∣∣,
where ρr denotes the relative frequency of rank r over all
forecast cases in the verification period (Delle Monache et
al., 2006). The continuous counterpart of the Talagrand dia-
gram is the probability integral transform (PIT; Wilks, 2019,
Sect. 9.7.1) histogram. The PIT is defined as the value of
predictive CDF for the verifying observation, with possible
randomization at the points of discontinuity. For a calibrated
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predictive distribution, PIT is standardly uniform, and the in-
terpretation of the various deviations of the shapes of the PIT
histograms from uniformity is similar to that for the Tala-
grand diagrams.

Furthermore, the accuracy of point forecasts such as the
forecast median is evaluated with the mean absolute er-
ror (MAE) as the median minimizes this score (Gneiting,
2011).

Finally, the statistical significance in score differences is
assessed by accompanying some skill scores and score dif-
ferences by 95 % block bootstrap confidence intervals. We
consider 2000 samples calculated using the stationary boot-
strap scheme with block lengths following a geometric distri-
bution with a mean proportional to the cube root of the length
of the investigated time interval (Politis and Romano, 1994).

3.6 Modelling and implementation details

In the case of the EMOS modelling, all 48 forecast horizons
are treated separately, and model parameters are estimated
using a clustering-based semi-local approach. Similarly to
Lerch and Baran (2017), we consider 24-D vectors, where
half of the features comprise equidistant quantiles of the cli-
matological CDF over the training period and the other half
consist of equidistant quantiles of the empirical CDF of the
forecast error of the ensemble mean. After testing several
combinations of training-period length and number of clus-
ters, an 85 d rolling window is chosen, and, in general, six
clusters are formed (an average of 425 forecast–observation
pairs for each estimation task), provided each cluster con-
tains at least three observation stations. Otherwise, the num-
ber of clusters is reduced, which might result in regional
modelling.

Machine-learning-based forecasts are estimated region-
ally, and a single MLP neural network is trained for all lead
times. CN0 DRN models use 20 d rolling training windows,
while corrected forecasts depend on forecast–observation
pairs of the preceding 25 d. These training-period lengths are
the results of detailed data analysis.

Through testing various hidden-layer configurations for
the CN0 DRN approach, we identified an optimal MLP
model with two hidden layers, each containing 255 neurons,
and considered a batch size of 1200. To enhance numeri-
cal stability, we standardize input features and remove miss-
ing data. The model is trained with the “Adam” optimizer, a
learning rate of 0.01, and the ReLU activation function. In-
put features include the ensemble mean f and variance S2,
the proportion p0 of zero-irradiance forecasts, station coor-
dinates (latitude, longitude, altitude), and lead times. Feature
importance was also assessed to evaluate each input’s impact
on model performance. The model output directly represents
the parameters µ and σ of the CN0 predictive distribution,
with only a squaring being applied to the scale parameter to
ensure non-negativity.

The training is capped at 500 epochs, but an early stop-
ping callback – using 20 % of the training data as a validation
set – often enabled convergence at approximately 50 epochs
for the first verification day, with fewer epochs being re-
quired on subsequent days. To address the randomness inher-
ent in training, for each forecast case, we train the network 10
times, deriving final predictions by averaging the distribution
parameters across these sessions.

Our detailed tests suggest that, when DRN input features
are restricted to ensemble statistics used in EMOS model-
ing (i.e. the same set of explanatory variables), the DRN’s
performance generally aligns with that of EMOS. This indi-
cates that, without additional input information beyond the
functionals of the ensemble forecasts, DRNs may have lim-
ited capacity for performance gains over EMOS in terms
of accuracy and calibration. Notably, including station loca-
tion information contributed significantly to enhanced model
performance, which aligns with the findings of Horat et al.
(2025).

For the MLP network providing corrected forecasts, we
also comprehensively tested different input features and hy-
perparameters, though optimal results were achieved with the
same settings as for the CN0 DRN approach. Due to the in-
crease in the neurons in the output layer from two to eight,
the number of weights to be estimated increased from 67 832
to 69 368, which explains the 5 d increase in the training-
period length. Furthermore, to ensure the non-negativity of
the generated forecasts, we take the maximum of zero and
the predicted value, which is consistent with the handling
of negative predictions in the loss function. Finally, as be-
fore, to account for the stochastic nature of the model, 10
independent runs are performed for each forecast case. The
generated forecasts are then sorted in ascending order, and
the average is computed over the sorted values. Note that,
without sorting, the averaging would decrease the spread of
the obtained eight-member forecast, which would no longer
bear the same distributional characteristics as the originally
generated eight-member corrected ensembles.

From the point of view of computational costs, which
are negligible compared with the cost of generating the raw
ensemble forecasts, there are no substantial differences be-
tween the three investigated post-processing approaches. The
two machine-learning-based methods have similar architec-
tures and rely on the same type of training data to estimate
the weights of a single neural network for all locations and
lead times. In general, the optimization step in EMOS mod-
elling is much faster than in network training; however, sep-
arate semi-local modelling for all lead times usually requires
6× 48 individual EMOS models.

4 Results

In the following case study, the predictive performances of
the CN0 EMOS and CN0 DRN approaches described in
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Figure 5. (a) Mean CRPS of raw and post-processed irradiance forecasts and (b) CRPSS of post-processed forecasts with respect to the raw
WRF ensemble as functions of the lead time.

Sect. 3.1 and 3.2, respectively, are evaluated together with the
machine-learning-based forecast improvement method pre-
sented in Sect. 3.3. To ensure a fair comparison of the lat-
ter with the EMOS and DRN models resulting in full pre-
dictive distributions, we also investigate the forecast skill
of eight-member samples generated from the correspond-
ing CN0 distributions, where one can consider their 1/9,
2/9, . . . , 8/9 quantiles, simple random sampling, or stratified
samples (Hu et al., 2016). As preliminary analysis reveals
only minor differences in the skill of equidistant quantiles
and stratified samples, both outperforming random sampling,
here, we work with equidistant quantiles of CN0 EMOS and
CN0 DRN predictive distributions. The corresponding fore-
casts are referred to as CN0 EMOS-Q and CN0 DRN-Q, re-
spectively.

In the following analysis, the predictive performance of
the competing post-processing methods is tested on forecast–
observation pairs for the 9 months of 1 April–31 Decem-
ber 2021 (275 calendar days, right after the first 85 d train-
ing window used in EMOS modelling), and the raw WRF
irradiance forecasts are used as a reference.

Figure 5a displays the mean CRPS of raw and post-
processed WRF irradiance forecasts over all 30 locations
and all 275 d in the verification period. Between 12:00 and
00:00 UTC (lead times of 12–24 h and 36–48 h), when posi-
tive irradiance is likely to be observed, all calibration meth-
ods outperform the raw ensemble by a wide margin. Accord-
ing to the CRPSS values of Fig. 5b, at this time of the day,
the improvement with respect to the raw ensemble is around
50 % for all competing forecasts, and the ranking of the vari-
ous methods is consistent for all forecast horizons. There are
only minor differences in terms of skill between forecasts
resulting in full predictive distributions (CN0 EMOS and
CN0 DRN) and their sample counterparts (CN0 EMOS-Q
and CN0 DRN-Q, respectively). The corrected ensemble re-
sults in the highest CRPSS, followed by the DRN and EMOS
predictions. Note that, for 1–11 h and 25–35 h forecasts, the

Table 3. Overall mean CRPS of post-processed irradiance forecasts
as a proportion of the mean CRPS of the raw WRF ensemble for
observed irradiance of no less than 7.5 W m−2.

CN0 CN0 CN0 CN0 Corr.
EMOS EMOS-Q DRN DRN-Q ensemble

52.58 % 53.69 % 47.90 % 49.04 % 44.57 %

skill score values are irrelevant; they are just results of nu-
merical issues.

The clear ranking of the various calibrated forecasts is
also confirmed by Table 3, summarizing their mean CRPS
as a proportion of the mean CRPS of the WRF ensemble
for forecast cases where the observed irradiance is at least
7.5 W m−2. Note that, from the point of view of PV en-
ergy production, only these cases are of any interest, and
the threshold coincides with the one considered in Baran and
Baran (2024) and suggested by the forecasters of the Hungar-
ian Meteorological Service (HMS). One should also remark
that the improvements in mean CRPS over the raw WRF en-
semble provided in Table 3 are much higher than the gains
due to CN0 EMOS and CN0 DRN post-processing of 11-
member AROME-EPS forecasts (Jávorné Radnóczi et al.,
2020) of the HMS, as reported by Baran and Baran (2024, Ta-
ble 3). An even smaller advantage of the post-processed fore-
casts over the raw 40-member ICON-EPS predictions (Zängl
et al., 2015) of the German Meteorological Service (DWD,
Deutsche Wetterdienst) was observed by Schulz et al. (2021).

To investigate the statistical significance of the differences
in terms of the mean CRPS, in Fig. 6, the corresponding 95 %
confidence intervals are added to the CRPSS values of the
CN0 EMOS and CN0 DRN approaches. For lead times cor-
responding to the 12:00–00:00 UTC interval, neither the dif-
ference between the corrected ensemble and the CN0 DRN
nor the deviation of the CN0 EMOS and the CN0 DRN is
significant; however, between 13–20 h and 37–44 h, the best-
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Figure 6. CRPSS with respect to the raw WRF ensemble of the CN0 EMOS and CN0 DRN models (together with 95 % confidence intervals)
and the corrected ensemble as functions of the lead time.

Figure 7. (a) Coverage and (b) average width of the nominal 77.78 % central prediction intervals of post-processed and raw irradiance
forecasts as functions of the lead time. In (a), the ideal coverage is indicated by the horizontal dotted line.

performing corrected ensemble significantly outperforms the
worst-performing CN0 EMOS.

The improved calibration of post-processed forecasts can
also be observed in Fig. 7a, displaying the coverage of
the nominal 77.78 % central prediction intervals. To ensure
comparability with the raw ensemble, for calibrated eight-
member forecasts, we consider the coverage of the whole en-
semble range. In the case of CN0 EMOS-Q and CN0 DRN-
Q predictions based on equidistant quantiles of the corre-
sponding predictive distributions, the ensemble ranges coin-
cide with the 77.78 % central prediction intervals of the CN0
EMOS and CN0 DRN models, respectively, and so they are
excluded from the analysis. At the hours of the highest so-
lar irradiance (13:00–22:00 UTC), the coverage of the raw
WRF forecasts is below 40 %, where post-processed fore-
casts result in coverage values much closer to the targeted
77.78 %. A possible ranking of the three investigated meth-
ods can be formed with the help of Table 4, providing the
mean absolute deviation in coverage from the nominal level
for 13:00–22:00 UTC observations. According to Fig. 7b, the

Table 4. Mean absolute deviation in coverage from the nominal
77.78 % level over lead times corresponding to 13:00–22:00 UTC
observations.

CN0 EMOS CN0 DRN Corr. ensemble Ensemble

3.49 % 13.84 % 5.18 % 53.22 %

improved coverage of calibrated forecasts is accompanied
by wider prediction intervals; however, the CN0 EMOS pre-
diction resulting in the best coverage values is considerably
sharper than the second-best corrected ensemble.

The verification rank and PIT histograms of Fig. 8, where
we, again, consider only lead times corresponding to 12:00–
00:00 UTC observations, also confirm the positive effect of
statistical post-processing. First, note that the PIT histograms
of the CN0 predictive distributions and the rank histograms
of the corresponding samples are almost identical, which
agrees with the matching CRPS and CRPSS values of Fig. 5.
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Figure 8. PIT histograms of CN0 EMOS and CN0 DRN predictive distributions and rank histograms of raw and post-processed eight-
member irradiance forecasts, together with the corresponding reliability indices for lead times of 12–24 h and 36–48 h.

The highly ∪-shaped and asymmetric rank histograms of
the raw WRF forecasts indicate strong underdispersion (the
spread of the forecast is too low to represent the forecast er-
ror correctly) and a pronounced positive bias, respectively,
resulting in reliability indices of 1.0210 (12–24 h forecasts)
and 0.9779 (36–48 h forecasts). These deficiencies are sub-
stantially reduced after calibration, implying a strong im-
provement in reliability indices. CN0 EMOS-Q and CN0
DRN-Q forecasts are still slightly underdispersive and bi-
ased, showing reliability indices of 0.1718 and 0.1770 (CN0
EMOS-Q) and 0.3357 and 0.3543 (CN0 DRN-Q), whereas
the corrected ensemble, as the slightly hump-shaped his-
tograms indicate, is a bit overdispersive (under-confident),
especially for short lead times. However, this forecast results
in the lowest reliability indices of 0.1380 and 0.0609. Note
that the shapes of the histograms of Fig. 8 are completely in
line with the characteristics of the corresponding central pre-
diction intervals displayed in Fig. 7. The lower coverage and
narrower prediction intervals of the parametric CN0 EMOS
and CN0 DRN approaches stem from their underdispersive
character, while the mild overdispersion of the corrected en-

semble results in wider central prediction intervals and cov-
erage values slightly above the nominal 77.78 % level.

Finally, the MAE of the median of all five investigated
predictions (Fig. 9a) and the difference in the MAE of the
median from the raw WRF ensemble (Fig. 9b) convey the
same message as Fig. 5. Compared to the raw ensemble,
post-processing substantially improves the accuracy of the
forecast median, and the corrected ensemble results in the
lowest MAE values, followed by the DRN and EMOS ap-
proaches. Note that the medians of forecasts provided as full
predictive distributions (CN0 EMOS and CN0 DRN) differ
from the medians of their sample counterparts (CN0 EMOS-
Q and CN0 DRN-Q); nevertheless, these differences are tiny
as there are hardly any visible dissimilarities in the MAE val-
ues of the matching predictions.

The above results indicate that all investigated post-
processing approaches improve the calibration of probabilis-
tic forecasts and the accuracy of point forecasts, and the cor-
rected ensemble exhibits the best overall performance. The
CN0 DRN model outperforms its EMOS counterpart in terms
of both the mean CRPS and the MAE of the forecast median,
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Figure 9. (a) MAE of the median of raw and post-processed irradiance forecasts and (b) difference in the MAE of the median forecasts from
the raw WRF ensemble as functions of the lead time.

but it is slightly more underdispersive, implying lower cov-
erage and higher reliability indices.

Finally, note that we have found no evidence of a clear
dependence of the predictive performance of post-processed
forecasts on the location or altitude. Nevertheless, the small-
est improvement, for instance, in the mean CRPS com-
pared to the raw ensemble, can be observed at station nos.
17 (El Tololo) and 30 (Liceo Samuel Román Rojas), where
the median error of the WRF forecasts is the smallest (see
Fig. 2). The former is the only location where the CRPSS of
the worst-performing CN0 EMOS appears to be negative.

5 Conclusions

We investigate the skill of probabilistic solar irradiance fore-
casts for the Atacama and Coquimbo regions in Chile. These
areas play a crucial role in photovoltaic power production in
the country, and our results can help obtain accurate proba-
bilistic power forecasts. For the sake of this study, the Ad-
vanced Research module of the Weather Research and Fore-
casting (WRF) model was utilized to generate short-term en-
semble forecasts of solar irradiance for 30 locations, with
forecast horizons ranging up to 48 h and with a temporal res-
olution of 1 h. The forecasts comprise eight members differ-
ing in terms of the planetary boundary layer and radiation
parameterization. When verified against station observations,
the raw ensemble forecasts exhibit a systematic positive bias
for all forecast horizons and are underdispersive; however,
the magnitude of the forecast error varies substantially for
the different locations.

For post-processing, we consider the parametric EMOS
and DRN approaches based on a normal distribution left
censored at zero and a distribution-free ensemble correc-
tion technique, where a neural network is trained to pro-
duce improved ensemble predictions. While all investigated
post-processing methods substantially improve the calibra-
tion of probabilistic forecasts and reduce the MAE of the
forecast median, the latter approach shows the best overall

performance. From the competing parametric methods, the
machine-learning-based DRN outperforms the correspond-
ing EMOS model, which aligns with the findings of Baran
and Baran (2024) and Horat et al. (2025).

As demonstrated by Horat et al. (2025), the calibration
of solar irradiance ensemble predictions directly results in
enhancements in the calibration of the corresponding prob-
abilistic PV forecasts obtained by applying the PV model
chains to each ensemble member separately. They also
showed that even better results can be obtained by direct cal-
ibration of the PV power ensemble predictions; however, this
latter approach requires the availability of the corresponding
PV power production data as well, which are rather hard to
obtain.

Note that all of the investigated post-processing methods
provide a rather general framework and, with slight modi-
fications, adapting them to the specialties of the input data
and optimizing the training method, can be applied to any
EPS and any geographical region. CN0 EMOS has already
proved to be successful in calibrating 40-member ICON-EPS
direct and diffuse irradiance forecasts of the DWD for three
major cities in Germany (Schulz et al., 2021); 50-member
GHI forecasts of the ECMWF IFS for the Jacumba So-
lar Project in southern California, US (Horat et al., 2025);
and 11-member AROME-EPS GHI forecasts for seven so-
lar farms in Hungary (Baran and Baran, 2024), where this
post-processing approach is also in its pre-operational test-
ing phase at the HMS. The latter two datasets have also been
applied to investigate the skills of various CN0 DRN mod-
els, which, as mentioned, consistently outperformed their
EMOS counterparts. The only limitation is the availability of
training data; one should have enough forecast–observation
pairs for reliable model training, especially for the machine-
learning-based methods.

Although this first study demonstrates the weaknesses of
WRF irradiance ensemble forecasts and the potential in their
statistical post-processing, there is still space for further im-
provements in calibration. On the one hand, one might try
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to augment the input features of the machine-learning-based
forecasts with predictions of related quantities. We have per-
formed tests where WRF ensemble forecasts of temperature
and wind speed were also included; however, the gain in
forecast skill was minor, if any. On the other hand, one can
test advanced neural-network-based distribution-free meth-
ods such as the Bernstein quantile network (Bremnes, 2020),
where the forecast distribution is modelled with a linear com-
bination of Bernstein polynomials or with the histogram esti-
mation network investigated, for instance, in Scheuerer et al.
(2020).

Another interesting direction would be the investigation
of various multivariate post-processing methods to produce
temporary consistent forecast trajectories. Here, one can
think of both the state-of-the-art two-step approaches, such
as the ensemble copula coupling (Schefzik et al., 2013) or the
Schaake shuffle (Clark et al., 2004), where the CN0 EMOS-
Q, the CN0 DRN-Q, or the corrected ensemble can serve as
initial independent forecasts, and the recent data-driven con-
ditional generative model of Chen et al. (2024).
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Schmeits, M., Taillardat, M., Van den Bergh, J., Van Schaey-

Adv. Stat. Clim. Meteorol. Oceanogr., 11, 89–105, 2025 https://doi.org/10.5194/ascmo-11-89-2025

https://doi.org/10.1175/1520-0450(2004)043<0170:TKCPAU>2.0.CO;2
https://doi.org/10.1175/1520-0450(2004)043<0170:TKCPAU>2.0.CO;2
https://doi.org/10.1111/insr.12405
https://doi.org/10.5194/npg-27-23-2020
https://doi.org/10.5194/npg-27-23-2020
https://www.ecmwf.int/en/newsletter/178
https://www.ecmwf.int/en/newsletter/178
https://doi.org/10.1016/j.renene.2020.07.042
https://doi.org/10.1111/rssc.12153
https://doi.org/10.1016/j.jhydrol.2021.127301
https://doi.org/10.1016/j.rser.2022.112821
https://doi.org/10.1038/s41598-017-13761-x
https://doi.org/10.5281/zenodo.15612831
https://doi.org/10.1029/2010JD015139
https://doi.org/10.1175/JAM2539.1
https://doi.org/10.2307/2290993
https://doi.org/10.1038/s41586-024-08252-9
https://doi.org/10.1175/MWR-D-18-0187.1
https://doi.org/10.1175/BAMS-D-13-00175.1
https://doi.org/10.1214/13-STS443
https://doi.org/10.1002/qj.2183
https://doi.org/10.1175/MWR-D-20-0096.s1
https://doi.org/10.1175/MWR-D-20-0096.s1
https://doi.org/10.1175/MWR-D-21-0150.1
https://doi.org/10.1016/j.solener.2021.03.023
https://doi.org/10.5065/1DFH-6P97
https://doi.org/10.1007/s00376-023-3184-5
https://doi.org/10.1007/s10546-004-6848-4
https://doi.org/10.1175/WAF-D-23-0003.1
https://doi.org/10.1175/MWR-D-15-0260.1
https://doi.org/10.1175/2008MWR2387.1
https://doi.org/10.1111/j.1467-985X.2009.00616.x
https://doi.org/10.1111/j.1467-985X.2009.00616.x


S. Baran et al.: Machine-learning-based probabilistic forecasting of solar irradiance in Chile 105

broeck, B., Whan, K., and Ylhaisi, J.: Statistical postprocess-
ing for weather forecasts – review, challenges and avenues in
a big data world, B. Am. Meteorol. Soc., 102, E681–E699,
https://doi.org/10.1175/BAMS-D-19-0308.1, 2021.

Van Schaeybroeck, B. and Vannitsem, S.: Ensemble post-
processing using member-by-member approaches: Theoret-
ical aspects, Q. J. Roy. Meteorol. Soc., 141, 807–818,
https://doi.org/10.1002/qj.2397, 2015.

Veldkamp, S., Whan, K., Dirksen, S., and Schmeits, M.: Sta-
tistical postprocessing of wind speed forecasts using convolu-
tional neural networks, Mon. Weather Rev., 149, 1141–1152,
https://doi.org/10.1175/MWR-D-20-0219.1, 2021.

Wilks, D. S.: Statistical Methods in the Atmospheric Sciences,
in: 4th Edn., Elsevier, Amsterdam, ISBN 978-0-12-815823-4,
https://doi.org/10.1016/C2017-0-03921-6, 2019.

Yang, D.: Ensemble model output statistics as a probabilistic site-
adaptation tool for solar irradiance: A revisit, J. Renew. Sustain.
Energ., 12, 036101, https://doi.org/10.1063/5.0010003, 2020.

Yang, D. and Kleissl, J.: Solar Irradiance and Photo-
voltaic Power Forecasting, CRC Press, Boca Raton,
https://doi.org/10.1201/9781003203971, 2024.

Yang, D. and van der Meer, D.: Post-processing in solar forecast-
ing: Ten overarching thinking tools, Renew. Sustain. Energ. Rev.,
140, 110735, https://doi.org/10.1016/j.rser.2021.110735, 2021.

Yang, Z.-L., Niu, G.-Y., Mitchell, K. E., Chen, F., Ek, M.
B., Barlage, M., Longuevergne, L., Manning, K., Niyogi, D.,
Tewari, M., and Xia, Y.: The community Noah land surface
model with multiparameterization options (Noah-MP): 2. Eval-
uation over global river basins, J. Geophys. Res., 116, D12110,
https://doi.org/10.1029/2010JD015140, 2011.

Zängl, G., Reinert, D., Rípodas, P., and Baldauf, M.: The
ICON (ICOsahedral Non-hydrostatic) modelling framework of
DWD and MPI-M: Description of the non-hydrostatic dy-
namical core, Q. J. Roy. Meteorol. Soc., 141, 563–579,
https://doi.org/10.1002/qj.2378, 2015.

https://doi.org/10.5194/ascmo-11-89-2025 Adv. Stat. Clim. Meteorol. Oceanogr., 11, 89–105, 2025

https://doi.org/10.1175/BAMS-D-19-0308.1
https://doi.org/10.1002/qj.2397
https://doi.org/10.1175/MWR-D-20-0219.1
https://doi.org/10.1016/C2017-0-03921-6
https://doi.org/10.1063/5.0010003
https://doi.org/10.1201/9781003203971
https://doi.org/10.1016/j.rser.2021.110735
https://doi.org/10.1029/2010JD015140
https://doi.org/10.1002/qj.2378

	Abstract
	Introduction
	Data
	WRF model configuration and ensemble members
	Solar irradiance observations
	Forecast skill of the WRF ensemble

	Post-processing and forecast evaluation methods
	EMOS model for solar irradiance
	DRN model for solar irradiance
	Machine-learning-based forecast improvement
	Training-data selection
	Forecast verification
	Modelling and implementation details

	Results
	Conclusions
	Code availability
	Data availability
	Author contributions
	Competing interests
	Disclaimer
	Special issue statement
	Acknowledgements
	Financial support
	Review statement
	References

