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1 Supplementary Methods
1.1 Linear interpolation dGEV-BHM-ξd
For the dGEV-BHM-ξd, linear interpolation is required to approximate the IDF curve.

1. For the y-values of the IDF plot, we compute a longer vector of durations by linearly interpolating
between the discrete durations. Let the original set of durations from the resolution of the model be
d = (d1, d2, . . . , dn). In our case, d = (1, 3, 6, 12, 24, 48) and, therefore, n = 6. The objective is to
generate a new vector D by linear interpolation between each consecutive pair of elements in d. Let
m be the number of points between each pair (in our case m = 99). For each interval [di,di+1], where
i = 1, 2, ..., n − 1, we generate m new points. Let these interpolated points be denoted by di,k, where
k = 1, 2, ...,m. These points can be defined as:

di,k = di + k × di+1 − di
m

(S1)

In our case, the total amount of elements in D will be 501.

2. As there are estimates of the shape parameter for each discrete durations we have to apply linear interpo-
lation methods to estimate the IDF curve. In the first interpolation stage, we linearly interpolate between
the mean shape parameter estimates ξ̄d =

(
ξ̄1, ξ̄2, . . . , ξ̄n

)
of the dGEV-BHM-ξd in the same way as we

did with with duration vector described in Equation S1.

ξ̄i,k = ξ̄i + k × ξ̄i+1 + ξ̄i
m

for k = 1, 2, . . . ,m (S2)

Similar to the duration vector described earlier, with m = 99, the new vector denoted Ξ will also consist
of 501 points.

3. Now we can utilize both D and Ξ to compute a preliminary IDF curve with confidence intervals using
MCMC posterior parameter estimates for the other spatial parameters µ̃j , σ0,j , θj , and ηj specific to the
locality in question.

IΞ(D,T ) =

{
σ0(D + θ)−η

(
µ̃+ 1

Ξ

[(
− log

(
1− 1

T

))−Ξ − 1
])

, Ξ 6= 0,

σ0(D + θ)−η
(
µ̃− log

(
− log

(
1− 1

T

)))
, Ξ = 0.

(S3)

From this, we obtain a two-dimensional array of different IDF curves corresponding to each parameter
estimate, from which we can derive the mean values and the corresponding confidence intervals.

4. Finally, the values of the preliminary IDF curve IΞ(D,T ) will not match the actual return levels at the
discrete durations d, as they are computed with model shape parameter ξd. Hence, we will need to
interpolate IΞ(D,T ) using the real return level estimates. First, we compute the return levels at discrete
durations d using ξd.

I(d, T ) =

{
σ0(d+ θ)−η

(
µt +

1
ξd

[(
− log

(
1− 1

T

))−ξd − 1
])

, ξd 6= 0,

σ0(d+ θ)−η
(
µt − log

(
− log

(
1− 1

T

)))
, ξd = 0.

(S4)

After that, we find the the values IΞ(D,T ) at the discrete durations d denoted IΞ(D,T )d. We obtain the
differences in values of I(d, T ) and IΞ(D,T )d.

∆d = I(d, T )− IΞ(D,T )d (S5)

We also obtain the differences in confidence intervals by applying Equation S5 to the quantiles of I(d, T )
and IΞ(D,T )d. Then we linearly interpolate ∆d using the same procedure as outlined in Equation S1 and
S2.

∆d,i,k = ∆d,i + k × ∆d,i+1 +∆d,i

m
for k = 1, 2, . . . ,m (S6)

Finally, the adjusted IDF curve Îi,k and confidence intervals can be obtained by adding ∆d,i,k to IΞ(D,T ):

Îi,k = IΞ(D,T ) + ∆d,i,k (S7)

This approach ensures that the final IDF curve accurately reflects the actual return levels at the specified
discrete durations.
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1.2 Widely applicable information criterion
The Widely Applicable Information Criterion (WAIC) is a statistical measure used for model comparison and
selection. It is aimed to achieve parsimony by balancing model fit and complexity, which provides a measure
of a model’s predictive validity. The WAIC is similar to the Akaike information criterion (AIC) and Bayesian
information criterion (BIC), which helps choose the best statistical model for the data. However, these methods
only rely on point estimates, whereas the WAIC uses the entire posterior distribution of parameters providing
a more extensive picture of the model. This is particularly useful for Bayesian models. The formula for the
WAIC is:

WAIC = −2 (LPPD(y|θ)− de (S8)

LPPD is the log posterior predictive density of each data point y. Estimating LPPD for data point y, the
likelihood of each data point is obtained for the entire posterior parameter sample. The model complexity, de,
is defined as the sum of the variances of the log-likelihood, calculated for each individual data point, where
these variances are evaluated over the posterior distribution of the model parameters. A higher de indicates a
more complex model. We calculate the WAIC for the four Bayesian EVT models only.
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2 Supplementary Figures
2.1 Return level plots

Figure S1: Return level for the locality of Würzburg

Figure S2: Return level for the locality of Weiden
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Figure S3: Return level for the locality of Konstanz

Figure S4: Return level for the locality of Freudenstadt
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Figure S5: Return level for the locality of Hohenpeißenberg

Figure S6: Return level for the locality of Nürnberg
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Figure S7: Return level for the locality of Stötten

Figure S8: Return level for the locality of Mühldorf
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Figure S9: Return level for the locality of Freiburg

Figure S10: Return level for the locality of Weißenburg-Emetzheim
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Figure S11: Return level for the locality of München-Flughafen

Figure S12: Return level for the locality of Bad Kissingen
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Figure S13: Return level for the locality of Mannheim

Figure S14: Return level for the locality of Regensburg
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Figure S15: Return level for the locality of Stuttgart-Echterdingen

Figure S16: Return level for the locality of Kempten
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Figure S17: Return level for the locality of Lahr

Figure S18: Return level for the locality of Bamberg
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Figure S19: Return level for the locality of Öhringen

Figure S20: Return level for the locality of Lautertal-Oberlauter
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Figure S21: Return level for the locality of Mühlacker

Figure S22: Return level for the locality of Augsburg

13



Figure S23: Return level for the locality of Fürstenzell

Figure S24: Return level for the locality of Klippeneck
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Figure S25: Return level for the locality of Straubing
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2.2 IDF curve plots

Figure S26: IDF curve for the locality of Würzburg

Figure S27: IDF curve for the locality of Weiden

16



Figure S28: IDF curve for the locality of Konstanz

Figure S29: IDF curve for the locality of Freudenstadt
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Figure S30: IDF curve for the locality of Hohenpeißenberg

Figure S31: IDF curve for the locality of Nürnberg

18



Figure S32: IDF curve for the locality of Stötten

Figure S33: IDF curve for the locality of Mühldorf
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Figure S34: IDF curve for the locality of Freiburg

Figure S35: IDF curve for the locality of Weißenburg-Emetzheim
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Figure S36: IDF curve for the locality of München-Flughafen

Figure S37: IDF curve for the locality of Bad Kissingen
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Figure S38: IDF curve for the locality of Mannheim

Figure S39: IDF curve for the locality of Regensburg
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Figure S40: IDF curve for the locality of Stuttgart-Echterdingen

Figure S41: IDF curve for the locality of Kempten
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Figure S42: IDF curve for the locality of Lahr

Figure S43: IDF curve for the locality of Bamberg
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Figure S44: IDF curve for the locality of Öhringen

Figure S45: IDF curve for the locality of Lautertal-Oberlauter
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Figure S46: IDF curve for the locality of Mühlacker

Figure S47: IDF curve for the locality of Augsburg
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Figure S48: IDF curve for the locality of Fürstenzell

Figure S49: IDF curve for the locality of Klippeneck
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Figure S50: IDF curve for the locality of Straubing
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2.3 Simple scaling approach
In this figure we illustrate the ratio between µ and σ. We fit the full 2000-year CRCM5-LE to showing a clear
linear relationship between the fitted parameters, see Figure S51 below. This justifies the use of our dGEV
formulation.

Figure S51: GEV µ/σ ratio

2.4 Widely applicable information criterion

Figure S52: WAIC for all Bayesian models
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