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Abstract. Accurate modelling of extreme precipitation is vital for predicting future risks and informing adap-
tation strategies. Here, we compare and evaluate six different extreme value statistical models for hourly to 48 h
extreme precipitation in southern Germany, with a primary focus on duration-dependent Generalized Extreme
Value (dGEV) distributions. To assess model performance, particularly in capturing tail behavior, we utilize the
50-member single model initial-condition large ensemble of the Canadian Regional Climate Model version 5 for
the period 1980–2019. The large sample size of 2000 simulated years enables a robust sampling of extreme quan-
tiles. Using a sub-sampling strategy with 30 to 100 years, we compare the efficacy of Bayesian methodology, in
particular Bayesian hierarchical models, against frequentist models (L-moments and Maximum Likelihood Esti-
mation – MLE) in representing the tail risk of 100-year return levels based on limited sample sizes. Hierarchical
models allow us to give special emphasis on the dimensionality of the GEV shape parameter, a critical factor for
tail behavior. Our findings reveal that a shape parameter varying over durations but fixed across space is ben-
eficial for the prediction of the 100-year return level. The resulting Intensity-Duration-Frequency (IDF) curve
shows the highest accuracy and smallest confidence intervals proving its robustness. Compared to the standard
GEV estimated by L-moments, our proposed model can reduce the relative error of the 100-year return level
from 18.1 % to 8.8 % based on a 30-year sample size. Furthermore, our analysis reveals fundamental limita-
tions of the Anderson-Darling test for extreme value model selection, demonstrating its poor correlation with
predictive skill for upper quantiles – a critical finding for climate risk applications.

1 Introduction

Extreme precipitation can severely impact various sectors
such as infrastructure design, water resource management
and agriculture (Yang et al., 2020; Mattingly et al., 2017;
Schwarzak et al., 2015). Thus, different rainfall durations
can trigger a variety of impacts. Short intense duration pre-
cipitation is commonly associated with convection and can
lead to urban flooding, flash floods (often steep catchments),
Hortonian overland flow, and riverine floods in small catch-
ments (Haslinger et al., 2025; Fereshtehpour and Najafi,
2025; Ruiz-Villanueva et al., 2012; Fowler et al., 2021). Long
persistent precipitation is mainly associated with synoptic-

scale meteorological systems, such as frontal or orographic
systems, leading to riverine floods in larger catchments,
often caused by saturation overland flow (Tarasova et al.,
2019). This impact will increase in the future with increas-
ing frequency and intensity of extreme rainfall events in a
warmer climate (Fischer et al., 2021; Seneviratne et al., 2022;
Poschlod and Ludwig, 2021). Computing the magnitude and
probability of extreme events through statistical models, can
help us assess risks of extremes from climate-related disas-
ters (Ghil et al., 2011; Naveau et al., 2020).

Extreme rainfall is often modeled using the Extreme Value
Theory (EVT), which focuses on the tails of distributions
(Fisher and Tippett, 1928). Sampling maximum precipitation
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values per temporal block, these maxima are assumed to fol-
low the Generalized Extreme Value (GEV) distribution, a key
distribution of the EVT, which is widely applied in climatol-
ogy and hydrology (Hamdi et al., 2021). The GEV features
the location, scale and shape parameters (Coles et al., 2001).
For suitably chosen parameter sets, the occurrence probabil-
ity of a given extreme precipitation intensity can be assessed,
which is often expressed as return period of a corresponding
return level. The flexibility of the GEV, whose shape param-
eter captures diverse tail behaviors, is accompanied by a high
uncertainty for the shape parameter (Bücher et al., 2021),
where small errors may distort return level estimates at high
return periods (De Paola et al., 2018). This issue is further ex-
acerbated by small sample sizes, which is typically the case
for both sub-daily and daily rainfall durations (Lewis et al.,
2019). However, accurate evaluation of the shape parameter
is of high importance in extreme rainfall models (Papalex-
iou and Koutsoyiannis, 2013; Koutsoyiannis and Papalexiou,
2017). Hence, there is the need for methodologies providing
a robust GEV parameter estimation.

A significant practical application of extreme value the-
ory (EVT), and a crucial tool for engineering and flood risk
management, is the intensity-duration-frequency (IDF) curve
(Cannon and Innocenti, 2019). IDF curves graphically illus-
trate the frequency of rainfall intensities (return levels) at dif-
ferent durations. This information is very important in infras-
tructure design, as both short intense or long persistent types
of extreme rainfall require different types of engineering so-
lutions (Martel et al., 2021). For example, stormwater reten-
tion basins manage short intense rainfall (Pumo et al., 2023).
On the other hand, drainage systems, permeable pavements,
and retention ponds address long persistent rainfall (Vija-
yaraghavan et al., 2021). The main purpose of IDF curves
is for design of dual drainage systems: the minor system
(e.g. storm sewers) typically of a 10-year return return pe-
riod, and the major system manifesting return levels up to
100 years e.g. for roadways or detention ponds. In con-
trast, green infrastructure, such as permeable pavements or
green roof is designed for more frequent events, such as
a 2 year return period, which are often not based on IDF
curves. In order for IDF curves to be consistent over dura-
tions the physical constraints of the maxima between differ-
ent durations cannot be violated (Nadarajah et al., 1998). In
a traditional setup, modeling GEV separately across dura-
tions may violate this constraint. To meet this logical con-
sistency requirement, one could use the duration-dependent
Generalized Extreme Value (dGEV) distribution–a modified
GEV featuring duration-dependent parameters (Koutsoyian-
nis et al., 1998). These duration-dependent parameters incor-
porate curve-fitting parameters needed to fit IDF curves. The
dGEV is fit with extreme data, typically block maxima, at
different discrete durations.

In our study, we aim to develop a new methodology to ro-
bustly estimate occurrence probabilities for extreme events
consistently across different rainfall durations and to prove

its benefits over existing state-of-the-art methodologies. In
this regard, we compare four distinct parameter estimation
methods: the Maximum Likelihood Estimation (MLE), L-
moments, Bayesian, (including hierarchical) inference. The
MLE is a widely used method in a range of different sta-
tistical models (including EVT), which determines the pa-
rameter vector that maximizes the likelihood function of ob-
served data (Prescott and Walden, 1980). L-moments, a ro-
bust alternative to traditional moments, are less sensitive to
outliers and particularly useful for heavy-tailed distributions
(Hosking et al., 1985). Bayesian inference, integrates prior
knowledge and uncertainty into model estimation, which has
the potential for more informed predictions (van de Schoot
et al., 2021). With Bayesian hierarchical models (BHM)
we are able to model dependencies among different dimen-
sions, such as space or durations (Veenman et al., 2024).
Cooley et al. (2007) modeled extreme precipitation using a
BHM with a generalized Pareto distribution (GPD), charac-
terized by geographical and climatological covariates within
a spatial Gaussian process. In addition, Cooley and Sain
(2010), apply a BHM on regional climate model simulations.
The BHM sensibly pools information from neighboring grid
cells, which enabled Cooley and Sain (2010) to implement a
spatially varying shape parameter.

Jalbert et al. (2022) established Bayesian hierarchical
modeling of the dGEV for spatial interpolation of precipi-
tation extremes in Canada using station data and a regional
climate model driven by reanalysis. In our study, we put the
focus on the comparison of parameter estimation methods
and the different BHM setups addressing the dimensionality,
duration-dependent variability, and spatial variability of the
shape parameter (ξ ). BHM setups exist separately over du-
rations (Räty et al., 2022), whereas our emphasis is on the
dGEV and IDF curves.

A major disadvantage of many studies is the limitation due
to small sample sizes (Marra et al., 2018), especially for ob-
servations, but also in many high-resolution climate model
simulations, which typically provide only decadal to 30-
year simulations (Ban et al., 2020; Lucas-Picher et al., 2021;
Poschlod and Daloz, 2024). This makes it difficult to reli-
ably estimate changes in rare events like climate extremes.
Long model runs or large ensembles are a way to overcome
this limitation because they provide a “ground truth” for as-
sessing the appropriate size of smaller samples while also
offering extensive, gap-free time series (Stein, 2020). Us-
ing millenial-scale global climate model simulations, Huang
et al. (2016) investigate changes of temperature extremes be-
tween pre-industrial and future climates in the contiguous
United States, applying the GEV distribution. They show that
using 20- and 50-year subsets of the full 1000-year simula-
tion for GEV fitting can lead to poor estimates of rare re-
turn levels that might strongly distort climate change sig-
nals. Large ensembles of regional climate models can be em-
ployed to robustly assess extreme precipitation at finer spa-
tial scales (Aalbers et al., 2018; Brönnimann et al., 2018;
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Poschlod et al., 2021) or precipitation extremes occurring
jointly with extreme wind speed (Huang et al., 2021), storm
surge (van den Hurk et al., 2015) or snow melt (Poschlod
et al., 2020). In this study, we employ the Canadian Regional
Climate Model Large Ensemble (CRCM5-LE; (Leduc et al.,
2019)) for the period 1980 to 2019, offering 50 realizations
of the climate and therefore providing a homogeneous sam-
ple of 2000 years. These 50 realizations of the large ensemble
differ only due to minor perturbations in the initial conditions
– the subsequent variability can be interpreted as a model
representation of internal climate variability (Deser et al.,
2020). Large ensembles enable robust inferences about rare
events and allow for accurate estimation of extremes from
the full model output (Stein, 2020). Here, we mimic the typ-
ical situation of data availability of station observations and
artificially select individual grid cells as localities with sub-
sample sizes ranging from 30 to 100 years. With 2000 years
of data available, we can empirically obtain “effective return
levels” as our ground truth, assessing the ability of various
extreme value models to reproduce the true return levels from
the sub-samples. Martel et al. (2020) used three large ensem-
bles, including the CRCM5-LE, to analyze extreme precip-
itation events. They also utilizes bootstrapping to estimate
projected confidence intervals. Kharin et al. (2007) uses mul-
timodel ensembles to account for natural variability. Similar
to our approach, a GEV is utilized in 20-year effective return
levels are also used for validation. In a further paper, Kharin
et al. (2013) also used large ensembles and GEVs in analyz-
ing extremes. Similar our work, model performances were
also evaluated using large ensembles.

Another approach for data creation is a stochastic weather
generator (WGs), which a synthetic approach (Wilks and
Wilby, 1999). These models use statistical distributions
trained on observational or climate model data to create syn-
thetic precipitation time series (Semenov, 2008). This statis-
tical approach differs from a physically based model, such
as our CRCM5-LE, as it does not simulate the underly-
ing physical processes of the climate system. Moreover, the
CRCM5-LE does not assume any underlying statistical dis-
tribution. A key trade-off with WGs is that their reliability
is highly dependent on the length and quality of the precip-
itation data used for calibration, which can often be scarce
(Beneyto et al., 2020). Furthermore, models like the auto-
regressive WG can overestimate the spatial correlation of ex-
treme events, leading to unrealistic areal precipitation values
(Ullrich et al., 2021).

The primary aim of this study is to assess how a range of
different statistical models and estimation methods compare
in their ability to robustly and accurately reproduce effec-
tive return levels from the CRCM5-LE across various du-
rations and localities. We investigate how the performance
of these models varies with sample sizes ranging from 30 to
100 years, mirroring the typical data limitations that observa-
tional datasets and climate simulations have. Given the chal-
lenges of estimating tail behavior with limited data, we ex-

plore strategies to optimally model the spatial and temporal
dimensions of the dGEV shape parameter under data-scarce
conditions.

2 Data & Study Area

2.1 The study area in southern Germany

We focus on the region of southern Germany, which is char-
acterized by heterogeneous elevation, making it an ideal test-
ing ground for examining the robustness of statistical models
(see Fig. 1). Especially during summer, southern Germany
receives more heavy precipitation than other parts of Ger-
many, due to its elevation which promotes orographic lift-
ing and enhances convective processes (Jung and Schindler,
2019). We select 25 grid cells within our regional domain
representing the typical density of observational stations pro-
viding sub-daily precipitation measurements (see Fig. 1).
The localities cover an elevation range between 98 to 977 m
highlighting the complex topography of the area. We extract
a range of durations covering 1, 3, 6, 12, 24, and 48 h.

2.2 The high-resolution large ensemble CRCM5-LE

To generate a single-model initial condition large ensemble,
one single global climate model is run several times driven
by a particular radiative forcing scenario. Small perturbations
are applied to the initial conditions of each model run leading
to different weather and climate realizations. The resulting
ensemble spread can be interpreted as a model representa-
tion of internal climate variability (Deser et al., 2020). Large
ensembles typically feature global climate models with spa-
tial resolutions of several hundred kilometers, which is why
they cannot represent extreme precipitation on sub-daily time
scales. In our study, we employ the CRCM5-LE, a 50-
member large ensemble dynamically downscaled over a Eu-
ropean domain at a spatial resolution of 0.11° (approximately
12.5 km) from the global Canadian Earth System Model ver-
sion 2 (CanESM2; Leduc et al., 2019). The dynamical down-
scaling is carried out over a European domain at a spatial
resolution of 0.11° equaling 12.5 km.

The simulations of the CRCM5-LE extend from 1950 to
2099 and are driven by the high-emission scenario RCP8.5.
We extract a 40-year time period from the recent past in
1980 to 2019, where Schwalm et al. (2020) report that to-
tal cumulative CO2 emissions from 2005 to 2020 are in close
agreement (within 1 %) with the RCP8.5 scenario. We sim-
plifyingly assume stationarity for this 40-year period, which
is in accordance with most operational extreme value mod-
els (Van de Vyver, 2012). We employ a Mann-Kendall test
(Mann, 1945; Kendall, 1938) to evaluate the stationarity as-
sumption in the 50 members of the CRCM5-LE. On a signif-
icance level of 95%, only 6 % of the 50 CRCM5-LE mem-
bers and all six durations show a significant trend, where 5 %
show a positive trend. Hence, we follow that the assumption
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Figure 1. The study area of southern Germany with the topography of the CRCM5-LE grid, which has a resolution of 0.11°. The red gridcells
indicate the selected grid cells of the climate simulations, which are extracted as the localities for our experiment.

of stationarity is reasonable. Despite not explicitly simulating
convection, the CRCM5-LE effectively captures the intensity
of sub-daily rainfall extremes over Europe (Poschlod et al.,
2021), showing good agreement with observations in the
study area. In a brief evaluation, we test the CRCM5-LE data
against observations from weather stations (Deutscher Wet-
terdienst, 2022) located within the periphery of CRCM5-LE
grid points. The annual maxima of the CRCM5-LE data are
extracted and the Generalized Extreme Value (GEV) distri-
bution is fitted using L-moments, with 500 bootstrap samples
of 28 years (matching the modal sample size of the observa-
tional data). We apply the Anderson-Darling test at α = 0.05
on the GEV fits of the bootstrap parameters and the observa-
tions. For more on the Anderson-Darling test see Sect. 3.4.2
and the GEV see Sect. 3.1. Only 6 % of the fits are rejected
indicating that the CRCM5-LE captures the characteristics
of extreme precipitation across the durations well. Figure 2
displays the return levels of CRCM5-LE alongside observa-
tions from weather stations in Freudenstadt for all durations.
The comparison demonstrates the good agreement between
the two datasets (see Figs. S1–S25 in the Supplement for
the other localities). This demonstrates that the model suc-
cessfully captures the characteristics of extreme precipitation
across various durations as well as its spatial variability be-
tween grid cells and observational stations.

It is very important to note, that we do not aim to exten-
sively evaluate the performance of the CRCM5, for which
there is ample literature (Poschlod et al., 2021; Poschlod,
2021). Instead, we use the CRCM5 as a “perfect model ex-
periment” (Lenderink et al., 2023), assuming it as a perfect
representation of the real climate system, where we know
the “true” return level of the large ensemble. In this type of
experiment, a climate model’s large ensemble simulations,

which sample a wide range of internal climate variability, are
used as a proxy for a complete observational record. Thus,
this experiment allows us to compare the performance of
the different extreme value statistical models under idealized
conditions. Hence, this experiment is referred to as “perfect
model experiment” (Bevacqua et al., 2023).

3 Methods

3.1 The Generalized Extreme Value distribution and its
duration-dependent version

According to the Fisher-Tippett-Gnedenko theorem (Fisher
and Tippett, 1928; Gnedenko, 1943), for sufficiently large
blocks, the distribution of block maxima asymptotically fol-
lows the Generalized Extreme Value (GEV) distribution. The
cumulative distribution function (CDF) of the GEV distribu-
tion is:

F (x;µj,d ,σj,d ,ξj,d )=

exp

{
−

[
1+ ξj,d

(
x−µj,d

σj,d

)]−1/ξj,d

+

}
(1)

where µj,d is location parameter, σj,d is the strictly positive
(σj,d > 0) scale parameter and ξj,d is shape parameter for
durations d and localities j . The shape parameter ξ governs
the tail behavior and assigns the distribution to the reversed
Weibull (ξj,d < 0), Gumbel (ξj,d = 0), or Fréchet (ξj,d > 0)
type. The duration-dependent GEV (dGEV) combines data
from all durations into one model as it assumes that µj,d
and σj,d follow a certain duration dependence (Koutsoyian-
nis et al., 1998; Fauer et al., 2021):
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Figure 2. Return-level curves for the locality of Freudenstadt for durations (a) 1 h, (b) 3 h, (c) 6 h, (d) 12 h, (e) 24 h, (f) 48 h. Return level
curves of CRCM5-LE are marked in the black line and 95 % confidence intervals in blue dashed line. The confidence intervals are obtained
via bootstrap resampling. The annual maxima of the observational data (German weather service – Climate Portal) are plotted via Weibull
plotting positions as the orange circles.

σj (d)= σ0,j (d + θj )−ηj (2)
µj (d)= µ̃jσj,d (3)

with σj (d)> 0, σj,0 > 0, θj > 0, 0> ηj > 0. Instead of
modeling the durations separately, the duration dependency
reduces to 4 parameters.

There are other versions of the dGEV, such as models that
feature “multiscaling” (Gupta and Waymire, 1990). There,
η is decomposed into two components η1+ η2 rendering to
σ (d)= σ0 · (d+θ )−(η1+η2). Fauer et al. (2021) found that the
“multiscaling” dGEV is beneficial to cover a wide range of
durations, i.e. 1 min to 5 d. However, in our study, we cover
a range from 1 to 48 h, where the simple scaling approach is
sufficient (see Fig. S51 in the Supplement).

3.2 Estimation methods

To cover the state-of-the-art procedures, we utilize four dif-
ferent estimation methods for fitting the statistical models.
One of the estimation methods is L-moments estimation
method, which are expectations of linear combinations of or-
der statistics. They are analogous to conventional moments

but can be estimated by linear combinations of order statis-
tics, i.e. by L-statistics (Hosking, 1990). L-moments, being
less sensitive to outliers, provide more robust and reliable es-
timates of the distribution’s parameters, especially in small
samples (Stedinger, 1993).

The Maximum Likelihood Estimation (MLE) method
finds the values of the model parameters that maximize the
likelihood function, which is a measure of how well the
model explains the observed data. For a more comprehen-
sive insight into the MLE see Coles et al. (2001), Martins
and Stedinger (2000).

The Bayesian estimation method is a statistical method
that uses prior knowledge with current data, which then up-
dates in a posterior distribution of parameters (Zyphur and
Oswald, 2015). From the posterior distribution we can obtain
a measure of uncertainty. In Bayes’ theorem, prior distribu-
tion is combined with the likelihood to produce the posterior
distribution (see Eq. 4).

P (θ |X)=
P (X|θ )P (θ )
P (X)

(4)

where P (θ |X) is the posterior distribution, P (X|θ ) is the
likelihood function, P (θ ) is the distribution of the parame-
ters called the “prior” and P (X) is the marginal likelihood,
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which normalizes the posterior distribution. We start with a
prior distribution that reflects our initial knowledge about the
parameter. Prior knowledge and observed data are synthe-
sized when the prior is updated with the data through the
likelihood function resulting in the desired posterior distri-
bution. For a more in-depth analysis of Bayes’ theorem we
refer to Sivia and Skilling (2006) and Gelman et al. (2013).
Choosing a prior is normally subjective and can be diffi-
cult without sufficient prior knowledge about the parameters
(Berger, 1985). For estimation of the posterior parameters we
use the No-U-turn sampler (NUTS), NUTS is an algorith-
mic enhancement of the Hamiltonian Monte Carlo (HMC)
which uses the gradient information to sample from the tar-
get probability distribution (Hoffman and Gelman, 2014). In
contrast, the commonly used the Metropolis-Hastings algo-
rithm utilizes gradient-free random walk which is effectively
“blind” to the distribution’s geometry (Chib and Greenberg,
1995). For simplicity, we will refer to the samples generated
by NUTS as “MCMC” samples.

When prior information is insufficient, Bayesian hierar-
chical models (BHMs) may be an alternative, as they can
share a common hyperprior across a dimension (or many di-
mensions). In this way information is borrowed and learned
from the data across the sites. The shared hyperprior centers
a group of parameters, such as the means of normal distri-
butions, around a common value (Gelman et al., 2013; Con-
gdon, 2019). The central tendency of the hyperprior allows
the model to shrink estimates toward a shared mean, there-
fore improving accuracy and robustness, particularly when
data is sparse or noisy (Congdon, 2019). During inference,
as data integrates into the model, individual group means
tend to cluster around an empirically identified central value
due to the hierarchical structure’s information sharing across
groups (Gelman, 2007; McElreath, 2015). Even when the hy-
perprior is uninformative or improper, shrinkage and balance
toward a common mean can occur. In this process the BHM
balances information from individual groups with the overall
population. This mechanism enables the formulation of in-
formed prior estimates for each site, using population-level
data (Gelman et al., 2013; Congdon, 2019; Gelman, 2007).
In the following example the Bayesian hierarchical model is
set in three different tiers, which is typical for Bayesian hier-
archical models (Gelman et al., 2013). A simple depiction of
the BHM is as follows:

Data-Level: yj | θj ,φ ∼ P (yj | θj ,φ)
Parameter Level: θj | φ ∼ P (θj | φ)
Hyperparameter Level: φ ∼ P (φ)

where P (yj | θj ,φ) is the likelihood, P (θj | φ) is the prior
distribution and P (φ) is the hyperprior distribution. See Con-
gdon (2019) for a more comprehensive overview of Bayesian
hierarchical models.

3.3 The applied EVT models

We apply six different models in order to evaluate their per-
formance. Two frequentist and four Bayesian models make
up our repertoire. As a summary, we provide an overview of
the six different EVT models in Table 1.

3.3.1 The frequentist models

In our first frequentist model we use a standard GEV, where
the equation is expressed in Eq. (1). As this model is not
duration-dependent, we model each duration separately. Ad-
ditionally, since this model is not hierarchical, we also model
the locations separately. This results in six GEV models for
each duration and for 25 separate locations, totaling 150
GEV models. We use the R package extRemes (Gilleland and
Katz, 2016) to apply the L-moments estimation method for
this as described in Sect. 3.2. As a second frequentist model
we apply the dGEV, which incorporates duration dependence
as outlined in Eqs. (2) and (3). This combines all the du-
rations into one dGEV model for each locality equaling 25
dGEV models in total. As implemented in the R package
IDF (Fauer et al., 2022), we use the MLE to estimate this
model and refer to it as dGEV-MLE. We generate confidence
intervals for both frequentist models using a nonparametric
bootstrap with a sample size of 500 (Efron and Tibshirani,
1994), resampling the annual maxima with replacement.

3.3.2 The duration-dependent Bayesian GEV

In the Bayesian duration-dependent generalized extreme
value distribution (dGEV-Bayesian) model, we employ dis-
tinct priors for the parameters of each location. These priors
do not share a hyperprior, thus the model is not hierarchi-
cal. Each parameter has a prior normal distribution, with the
mean of these priors based on estimates for the correspond-
ing dGEV-MLE parameters.

µ̃∼N (µ̃(MLE),10) (5)
σ0 ∼N (σ0,(MLE),10) T [0, ] (6)
ξ ∼N (ξ(MLE),5) T [−0.5,0.5] (7)
θ ∼N (θ(MLE),10) T [0, ] (8)
η ∼N (η(MLE),5) T [0,1] (9)

As σ0, θ and η are limited parameters, we devise truncated
normal distributions. These are normal distributions where
either the upper end or lower end is truncated, denoted as
T [lower end,upper end]. We limit normal distribution for ξ
between −0.5 and 0.5, which is common practice and rec-
ommended for the shape parameter (Martins and Stedinger,
2001; Papalexiou and Koutsoyiannis, 2013). Given that ξ and
η are restricted to a narrow range, we devise smaller vari-
ances in the normal priors. We derive confidence intervals
from the posterior parameter distributions with 500 MCMC
iterations.
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Figure 3. Diagram of the dGEV-BHM. We devise three differ-
ent variations of the dGEV-BHM, where the shape parameter ξ∗ ∈

{ξd ,ξ j,d ,ξ j }.

3.3.3 Bayesian hierarchical duration-dependent
generalized extreme value distribution

Here we introduce the Bayesian hierarchical duration-
dependent GEV (in short: dGEV-BHM). In the dGEV-BHM,
all stations and durations are incorporated into a single com-
prehensive model. This model is different from the previ-
ously mentioned models, as its parameters share hyperpa-
rameters over space and/or durations, making it hierarchical.
The base of our model is that of the dGEV (see Eqs. 2 and
3) with different variations in the dimensions of the shape
parameter ξ . We have three different versions of this model:
dGEV-BHM-ξd , dGEV-BHM-ξj and dGEV-BHM-ξj,d .

In all models, the rescaled location parameter and scale
offset share a hyperparameter over space α and β. µ̃ has nor-
mal prior, with a standard deviation of 10 and the mean is the
hyperprior α.

µ̃j ∼N (α,10)

where α is an uninformative hyperprior. For the scale offset
σ0,j we use a Gamma distribution, with its shape parameter
equal β · 10 and the inverse scale (or “rate”) parameter equal
to 10. In that way, we ensure that the mean of the distribution
is equal to β.

σ0,j ∼ Gamma(β · 10,10)

For the spread of the priors we performed a prior selec-
tion process to find a well-performing and stable model. We
found that narrow spreads led to convergence issues, as this
constrained the model too much. On the other hand, wide
spreads yielded performance that was similar to to the cho-
sen parameters. A standard deviation of 10 was selected
for the Normal distribution, as this value proved stable in
preliminary tests. The Gamma prior was parameterized as
Gamma(Kβ,K) to ensure its mean remained fixed at the hy-
perprior value β. The concentration parameter K was set to
10, as this value was stable in our tests. We chose a prelimi-
nary prior selection process rather than a full prior sensitivity
analysis due to the large computational demand with many
sub-samples.

Uninformative (improper) hyperpriors allow the data to
drive inferences, especially when there is little prior infor-
mation available (Banerjee and Fuentes, 2012; Cooley et al.,
2007). It can still facilitate information sharing across groups
through partial pooling and shrinkage effects (Röver and
Friede, 2020). Partial pooling allows information to be par-
tially shared between groups, resulting in parameter esti-
mates that are a weighted average of the group-level data and
the overall population estimate. Shrinkage effects pull the es-
timates of group-level parameters towards the overall popu-
lation mean. This combination allows for data-driven infer-
ence while still benefiting from the hierarchical structure of
the model, which is particularly useful when prior knowledge
is limited.

The innovative aspect of this distribution is that we model
the shape parameter of the dGEV distribution, used to model
the block maxima of rainfall durations, in three distinct ways:

1. Hierarchical over duration (ξd ): The shape parameter
varies systematically with the duration under consider-
ation.

2. Hierarchical over space (ξ j ): The shape parameter
changes based on the geographical locality.

3. Hierarchical over both space and duration (ξ j,d ): The
shape parameter depends on both the duration and the
locality.

For all these variations of the shape parameter, we assume a
normal distribution with a narrower standard deviation of 5
and a hyperparameter denoted as δ.

ξ∗ ∼N (δ,5)

The hyperparameter δ itself follows a weakly informative
uniform distribution constrained between −0.5 and 0.5:

δ ∼ Uniform(−0.5,0.5)

This setup facilitates partial pooling of information, either
through duration, location, or both. Partial pooling allows in-
formation to be shared between groups or durations, result-
ing in more robust estimates of the shape parameter, particu-
larly in cases with limited data. The weakly informative prior
on δ ensures that the model remains data-driven while still
benefiting from the hierarchical framework. We derive con-
fidence intervals from the posterior parameter distributions
of the three versions of the dGEV-BHM, with 500 MCMC
iterations each.

3.4 Goodness of fit and evaluation

3.4.1 Sub-sampling strategy

Our aim is to use the large sample size of the CRCM5-LE to
evaluate the ability of the six different EVT models to repro-
duce rare rainfall return levels. Therefore, we randomly sam-
ple smaller sub-samples of {30,40, . . .,90,100} years from
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Table 1. Table of all six EVT models and their estimation method, generation of the confidence intervals and shape parameter dimension
(space and/or duration). Shape parameter dimensions: Global= one shape parameter spanning across the dimension indices. Local= several
shape parameters across dimension indices.

Shape parameter dimension

Model name Estimator Confidence intervals Duration Space

GEV L-moments L-moments Bootstrap Local Local
dGEV-MLE MLE Bootstrap Global Local
dGEV-Bayesian Bayesian (MCMC) Posterior distributions Global Local
dGEV-BHM-ξd Bayesian (MCMC) Posterior distributions Local Global
dGEV-BHM-ξj,d Bayesian (MCMC) Posterior distributions Local Local
dGEV-BHM-ξj Bayesian (MCMC) Posterior distributions Global Local

the 2000-year CRCM5-LE population. Each sub-sample is
randomly drawn 100 times. We then fit the six EVT models
to the sub-samples and compare the resulting EVT model
outputs to the effective return level of the full 2000-year
CRCM5-LE.

3.4.2 Anderson Darling

The Anderson Darling (AD) test is a method which analyzes
how well empirical data fits a theoretical distribution. It is a
modification of the Kolmogorov-Smirnov (K-S) test and is
more sensitive to discrepancies in the tails (Stephens, 1974),
making it suitable to assess extreme value distributions. The
mathematical formulation for the AD test is:

A2
=−n− S (10)

S =
∑
i

[
(2i− 1)/n

]
·
[
lnF (Xi)+ ln(1−F (Xn−i+1))

]
(11)

where n is the sample size, i is the sample index (ordered
lowest to highest) and F (X) is the cumulative distribution.
Thus, S is the discrepancy between the empirical cumula-
tive distribution and the theoretical cumulative distribution,
whereby more weight is applied to the differences at the
tails of the distribution. The p-value quantifies the evidence
against the hypothesis that the data follows the specified dis-
tribution and is commonly obtained from tabulated critical
values. However, in this study, we compute the p-value from
the Anderson-Darling test statistic itself using piecewise ex-
ponential approximations as implemented in the R package
gnFit (Saeb, 2018).

We apply the AD test at the significance α = 0.05. The
Anderson-Darling (AD) test is a method commonly applied
to evaluate the goodness of fit for the GEV distribution, es-
pecially when fitted to annual maxima of precipitation. How-
ever, the AD test can only evaluate the quality of the fit be-
tween the theoretical GEV distribution and the empirical dis-
tribution of the block maxima samples. Although the test’s
p-value may indicate a good fit for a given dataset, it does
not guarantee that the model will produce accurate extreme,

unseen quantiles. The test also cannot assess how well a lim-
ited empirical sample represents the full population of possi-
ble extreme rainfall events governed by internal climate vari-
ability (Poschlod, 2021). The true performance of an extreme
value model lies in its ability to accurately estimate rare re-
turn levels that are critical for risk assessment.

For this reason, while distributional tests like the AD test
are useful for initially checking the fit, we also evaluate if
they are sufficient as the sole metric for validating extreme
value models, particularly when the goal is to evaluate tail
risk. Our aim is therefore not to validate the models with
the AD test, but to investigate if it is reliable in estimat-
ing extreme quantiles, which we will assess using our tail
risk metrics, introduced in Sect. 3.4.5. To do this, we ap-
ply the AD test on the 100 sub-samples of 30 to 100 years
generated from the CRCM5-LE population (mentioned in
Sect. 3.4.1) and assess the respective GEV and dGEV param-
eter estimates of each duration and location. In total 720 000
hypothesis tests (8 sub-sample ranges× 100 sub-samples×
25 localities× 6 durations) are performed, and from this, the
proportion of tests fulfilling p > 0.05 is determined.

3.4.3 Akaike information criterion

The Akaike information criterion (AIC) is a statistical mea-
sure for model selection that balances goodness-of-fit with its
complexity (Sakamoto et al., 1988). It aims to achieve “parsi-
mony” in a model by selecting the model that balances com-
plexity and likelihood. To effectively use the AIC, it must be
applied to a set of candidate models that have been fitted to
the same data. The model with the lowest AIC is then chosen
as the preferred model (Anderson et al., 1998). The formula
for the AIC is:

AIC= 2k− 2log(L̂) (12)

where k represents the number of estimated parameters, serv-
ing as a measure of the model’s complexity. This term acts a
penalty to help prevent overfitting, which is a common issue
where a model fits the training data too closely but fails to
generalize to new data. L̂ is the maximum value of the like-
lihood function for the model, which quantifies how well the
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model fits the data. Hence, the AIC thereby relies on a sin-
gle maximum likelihood estimate, whereas the four Bayesian
models in our study provide a full posterior distribution of
parameters via MCMC instead of a single point estimate.
Therefore, as a workaround, we use the posterior means of
the Bayesian models for the AIC calculation. In turn, the
widely applicable information criterion (WAIC) utilizes the
entire posterior distribution of Bayesian models. However, it
is only applicable to Bayesian models. As our model setup
features four Bayesian models and two frequentist models,
we provide the AIC as a consistant measure across all six
models and include the WAIC in the supplement.

3.4.4 Effective return levels

An important foundation of this study is the use of effec-
tive return levels, which we directly infer from the 2000-year
large ensemble. We derive effective return levels, such as the
100-year return level represented by the 20th highest index
(n(20)) and the 10-year return level represented by the 200th
highest index (n(200)). To obtain a robust estimate of the ef-
fective return level with a measure of uncertainty, we em-
ploy a bootstrapping procedure, resampling the entire dataset
500 times with replacement. By computing the return levels
from the sub-samples via the six EVT models (see Table 1)
and comparing them to the effective return levels from the
full CRCM5-LE sample, we can determine how accurately
each statistical model replicates the ensemble data. This pro-
cedure is paramount for validating the models’ reliability and
robustness.

3.4.5 Error metrics: relative error and return level
concordance

We assess the accuracy of an EVT model, by calculating the
relative error (RE) between the modeled return level and the
effective return level. Therefore, for a given return period, we
determine the percentage difference between the model re-
turn level and the effective return level. For each EVT model,
we compute the RE for 10- and 100-year return levels for
sub-samples sizes ranging between 30 and 100 years. Fur-
thermore, we assess the 80 % confidence intervals derived via
bootstrapping for the frequentist models and the posterior pa-
rameter distribution for the Bayesian models on each of the
100 sub-samples. Thereby, we assess the uncertainty ranges
indicating the robustness of the EVT models. The choice of
80 % confidence intervals helps visualize the RE better in the
figures.

The return level concordance (RLC) describes the agree-
ment between the EVT model’s computed return levels from
the 100 sub-samples and the confidence intervals derived
from the large ensemble climate data. The RLC quantifies
the fraction of the EVT model 100-year return levels that are
within the 95 % confidence interval of the effective 100-year
return level (see Fig. 4).

3.5 Intensity-duration-frequency (IDF) curves

Lastly, we construct IDF curves from the parameter estimates
of dGEV models. The rainfall return level at a given duration
d and return period T is:

x(T )= µ(d)+
σ (d)
ξ
×

{[
− log(1− 1/T )

]−ξ
− 1

}
(13)

where ξ is the shape parameter, and σ (d) and µ(d) are the
scale and location parameters respectively given at specific
durations. The scale offset σ0 and rescaled location parame-
ter µ̃ are both incorporated into the duration-dependent pa-
rameters (Koutsoyiannis et al., 1998; Fauer et al., 2021):

σ (d)= σ0× (d + θ )−η (14)
µ(d)= µ̃× σ (d) (15)

In the Bayesian hierarchical models both the scale offset
σ0 and rescaled location parameter µ̃ share hyperparameters
across space. In the two models dGEV-BHM-ξd and dGEV-
BHM-ξj,d the shape parameter ξd is modeled along the du-
ration d , and therefore requires interpolation to construct the
resultant IDF curve between the discrete durations. To con-
struct a continuous IDF curve between the durations, an ini-
tial approximation is generated by linearly interpolating the
mean of the shape parameter ξ between the discrete dura-
tions. This preliminary curve is then modified using an ad-
justment step. The required adjustment – defined as the dif-
ference between the approximate curve and the actual quan-
tiles calculated using the full posterior distribution of ξ at the
discrete durations – is then interpolated and applied to the
initial curve.

4 Results

4.1 Anderson-Darling test

First, we present the results of the AD test, as the goodness-
of-fit evaluation would be the typical next step after the
fitting of EVT models. Figure 5 illustrates the fraction of
passed AD tests for all 25 localities, 6 durations, and 100
sub-samples across the 8 sub-sample sizes between 30 and
100 years. Given the significance level of α = 0.05, a 95 %
fraction of passed AD tests would be expected if all data
samples came from the tested theoretical distribution spec-
ified by the EVT model fits. We see that the overall test re-
sults decrease with increasing sample sizes, as the AD test
gains more power to reject the null hypothesis detecting de-
viations between the sample and the theoretical distribution
(Shin et al., 2012). The AD test diagnoses the highest re-
jection rates for the dGEV-BHM-ξd . The dGEV-BHM-ξj ,
dGEV-Bayesian, and dGEV-MLE reach 95 % acceptance for
30-year samples dropping to 93 % for 100-year samples. The
dGEV-BHM-ξj,d and GEV-Lmoments show the lowest re-
jection rates. We note that this performance can be linked to
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10 A. L. Rischmüller et al.: Duration-dependent modeling of extreme precipitation

Figure 4. Conceptual representation of the 100-year return level concordance (RLC) for one locality (Augsburg) and duration (6 h) and sub-
sample of 40 years. (a) The return levels based on a EVT model (black lines) are compared to the confidence interval (red bar) of the effective
100-year return level, which is derived from the full 2000-year CRCM5-LE (light blue dots). (b) Zoom-in to the RLC at the 100-year return
level. In this example the RLC would amount to 55 %. (c) Histogram of the RLC, the red dashed lines are the confidence intervals of the
effective 100-year return level.

the flexibility of the EVT models. The GEV-Lmoments es-
timates location, scale, and shape parameters separately for
each locality and duration providing the highest flexibility to
fit the GEV to the samples. With the duration dependence,
the dGEV limits the flexibility. The dGEV-BHM-ξj,d is the
most flexible version allowing the shape parameter to vary
over space and duration (see Table 1). In turn, the dGEV-
BHM-ξd fixes the shape parameter over space resulting in
the highest rejection rate of the AD test.

4.2 Akaike information criterion

The average ranks according to the AIC values are illustrated
in Fig. 6. The dGEV-BHM-ξd model consistently ranks first
(the lowest average rank) across all sub-sample sizes, indi-
cating it is the best model choice according to the Akaike
Information Criterion (AIC).

The second best model is dGEV-BHM-ξj , which has
the second-lowest average rank across all sub-sample sizes.
Following that, dGEV-Bayesian and dGEV-MLE are the
third and fourth best, respectively. The dGEV-BHM-ξj,d and

Figure 5. Fraction of passed Anderson-Darling tests for the six
EVT models and 100 sub-samples at sizes reaching from 30 to
100 years. The fractions are averaged over the 25 localities and 6
durations.
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Figure 6. Average ranks according to the AIC values for all models
and all their sub-sample sizes.

GEV-Lmoments models consistently rank as fifth and sixth,
respectively.

4.3 Relative error

The relative error is presented in Fig. 7 for 10-year and 100-
year return levels. The performance of EVT models reveals
distinct patterns across varying sub-sample sizes. For the
10-year RE (Fig. 7a)], dGEV-BHM-ξd consistently demon-
strates superior performance across sub-sample sizes up to
70 years, with GEV-Lmoments showing the lowest RE for
sample sizes of 80 to 100 years. The dGEV-BHM-ξj , dGEV-
Bayesian, and dGEV-MLE score very similarly and show
low sensitivity to the sample size. Conversely, the dGEV-
BHM-ξj,d model exhibits the poorest performance for low
sample sizes up to 50 years, but improves for larger sam-
ples. In contrast, for the 100-year RE (Fig. 7b), dGEV-
BHM-ξd consistently emerges as the most accurate model
across all sub-sample sizes. The dGEV-BHM-ξj,d and GEV-
Lmoments are identified as the least accurate. Again, dGEV-
BHM-ξj , dGEV-Bayesian, and dGEV-MLE show an equiva-
lent accuracy. The robustness of the six EVT models behaves
similar for the 10-year and 100-year return levels. The error
ranges of the dGEV-BHM-ξj,d are by far the largest showing
high sensitivity to the sample size. In turn, the dGEV-BHM-
ξd is diagnosed the most robust model consistently across the
sub-sample sizes.

In Fig. 8 we present the location average 100-year RE for
sub-sample size n= 30 at different durations. We normal-
ize the RE for each model across five models for each du-
ration. We intentionally leave the dGEV-BHM-ξj,d out, as
the results of RE are so high that they distort the standard-
ized results. Across all durations, the dGEV-BHM-ξd con-
sistently shows the lowest RE. GEV-Lmoments shows high
errors for the short durations of 6 h and below, but compa-
rably low REs for 24 and 48 h. In contrast, dGEV-BHM-ξj ,

Figure 7. The relative error (RE) of the (a) 10-year return levels
and (b) 100-year return levels averaged across all localities and du-
rations. The bars indicate the range of the inner 80 % of the 100 sub-
samples and 500 bootstrap or MCMC iterations, where the white
marker represents the median.

Figure 8. Average 100-year relative error (RE) across durations for
sub-sample size of 30 years. Note that the the dGEV-BHM-ξj,d is
not shown as the high REs distort the standardized results.
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Figure 9. Return level concordance (RLC) for 100-year return lev-
els, for the six EVT models and sub-sample sizes ranging from 30
to 100 years. The RLC is averaged over the localities and durations.

dGEV-Bayesian, and dGEV-MLE show the tendency to per-
form better for shorter than for longer durations.

4.4 Return level concordance

Figure 9 features the RLC for the 100-year return level. For
all six EVT models, the RLC increases with increasing sam-
ple size. The dGEV-BHM-ξd can achieve the highest RLC
between 27 % and 35 % outperforming the other five EVT
models by around 10 %, proving its robustness. The dGEV-
BHM-ξj , dGEV-Bayesian, and dGEV-MLE perform simi-
larly in a range from 17 % to 24 %. In contrast, both the
dGEV-BHM-ξj,d and GEV-Lmoments consistently exhibit
the lowest RLC between 10 % and 22 %.

4.5 Intensity-duration-frequency (IDF) curves

Figure 10 illustrates IDF curves for the best performing
model dGEV-BHM-ξd and the state-of-the-art dGEV-MLE
for one example locality in Würzburg (see Figs. S26–S50 in
the Supplement for the IDF curves of the other localities).
The IDF curves are constructed on the sub-sample size of
n= 30 reflecting typical data availability for sub-daily rain-
fall durations in Germany. In this case, the dGEV-BHM-
ξd can reproduce the 100-year return levels across all dura-
tions, while the dGEV-MLE overestimates for the durations
of 6 h and above. The 95 % confidence intervals of the dGEV-
BHM-ξd are narrower than for the dGEV-MLE indicating its
robustness even under data scarce conditions.

5 Discussion

5.1 Goodness-of-fit and information criteria

Our experiment reveals that the rejection rates of the
Anderson-Darling test align with the flexibility of the EVT

Figure 10. IDF curves of the dGEV-BHM-ξd and dGEV-MLE for
the locality Würzburg and the 100-year return period. IDF curves
are constructed based on a sub-sample size of 30 years. The dashed
lines depict the 95 % confidence intervals for all 100 sub-samples
and combined MCMC/Bootstrap iterations, whilst the polygons
represent the 95 % confidence intervals for the 100 sub-sample
means. The boxplots represent the ranges of the 100-year return
level derived from resampling the 2000-year CRCM5-LE with re-
placement.

models, where more flexible models are rewarded by lower
rejection rates. Conversely, the dGEV-BHM-ξd showing the
highest rejection rates performs better than the other models
in terms of the RE and RLC. Hence, we argue that the AD
test on small samples of 30 to 100 years is not well-suited to
assess the quality of how well an EVT model fits the full sam-
ple of 2000 years. We attribute this observed pattern to a lack
of robustness to internal climate variability. Specifically, if a
small sample, due to random sampling, does not accurately
represent the full 2000-year sample, flexible EVT models
are prone to overfitting it. This is rewarded by a successful
AD test on the small sample, but diagnosed by a potential
higher RE and lower RLC when considering the full 2000-
year sample. This is a clear manifestation of the bias-variance
trade-off: more flexible models have lower bias but higher
variance, leading to poor generalization. While a practitioner
with a limited observational sample may only see a good AD
test result and interpret it as model success, our study demon-
strates the inherent limitation of this goodness-of-fit testing
when evaluating the true performance of extreme quantiles.
Hence, this is driven by the variability of the annual maxima
of precipitation within the 2000-year sample. The source of
this variability is the chaotic nature of the climate system, or
in other words, internal climate variability, which is a huge
source of uncertainty in assessments of extreme precipita-
tion (Aalbers et al., 2018; Bhatia and Ganguly, 2019; Mar-
tel et al., 2018; Poschlod et al., 2021; Poschlod and Ludwig,
2021). We emphasize that one of the 100 sub-samples could
be a time series of observations, while the EVT models are
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supposed to estimate the occurrence probabilities of extreme
precipitation within the boundaries of internal climate vari-
ability. Our findings do not question the usefulness of the AD
test, but show that GEV models that pass the AD test are not
necessarily suitable for predicting very rare probabilities of
occurrence.

The assessment of the Bayesian EVT models via AIC re-
veals results contrast with the evaluation of the AD test. In
the AD test, the dGEV-BHM-ξd has the highest rejection
rates, whereas AIC ranks are consistently highest across all
sub-sample sizes. The AIC aligns well with return level met-
rics (RE and RLC), yet it penalizes the frequentist models
more, especially those with more parameters k. The models
dGEV-BHM-ξj , dGEV-Bayesian and dGEV-MLE all have
the same number of parameters. Therefore, the observed dif-
ferences in their averaged AIC ranks are due to the differ-
ences in the models’ likelihood. We see that the Bayesian
models, especially the hierarchical ones, increase the likeli-
hood. However, the models’ performances in terms of Rel-
ative Error (RE) and Return Level Curve (RLC) are similar.
This suggests that a model’s likelihood itself is not a good
indicator of its predictive skill for tail risk.

5.2 Accuracy and robustness of the six EVT models

Based on the evaluation of the RE and RLC, the dGEV-
BHM-ξd is the most accurate and robust model. We can at-
tribute this to its efficient and robust representation of the
shape parameter ξ , which is kept constant across all local-
ities. The model therefore reduces complexity by minimiz-
ing overfitting, and improves generalization. By assuming a
constant shape parameter over space, the dGEV-BHM-ξd ef-
fectively addresses the estimation uncertainty of the shape
parameter to potential outlier sub-samples, which is a similar
finding to that of Poschlod (2021), Poschlod and Koh (2024),
Shehu et al. (2023) over the study area. This also confirms
Ragulina and Reitan (2017), showing that small regions often
exhibit similar shape parameters. Further, the choice of the
dGEV-BHM-ξd as best model indicates that a shape param-
eter flexible over durations from 1 to 48 h is beneficial in our
experiment. There, heavier tails are diagnosed for short dura-
tions (ξ1 h = 0.15 and ξ3 h = 0.2) as suggested by Papalexiou
et al. (2018), while the shape parameter for longer durations
decreases to 0.0973 for ξ24 h and 0.0644 for ξ48 h. However, in
different study areas or climate models, the shape parameter
might not significantly differ across durations (Alaya et al.,
2020; Overeem et al., 2008). In contrast, the dGEV-BHM-
ξj,d model, which allows the shape parameter to vary across
localities and durations, shows the highest RE and lowest
RLC. Our experiment with 25 localities and sample sizes of
100 years or less are not sufficient to robustly fit the most
complex model dGEV-BHM-ξj,d . This might however be
different for a larger amount of data, i.e. larger sample sizes
and more localities. The dGEV-BHM-ξj , dGEV-Bayesian,
and dGEV-MLE achieve a comparable performance in RE

and RLC. The additional complexity of the Bayesian estima-
tion or Bayesian hierarchical framework does not add value
over the dGEV-MLE. The GEV-Lmoments is the simplest
approach and shows a high sensitivity to low sample sizes.
While it is well suited to assess moderate extremes with suf-
ficient sample sizes (see Fig. 7a; Poschlod, 2021), we do not
recommend the application for the assessment of rare ex-
tremes.

The study finds that while more complex models such as
our dGEV-BHMs show superior accuracy and robustness in
estimating rare precipitation events, their practical applica-
tion involves a trade-off with usability. Many practitioners in
the field, particularly those dealing with limited data, cur-
rently rely on simpler models such as the standard GEV-
Lmoments or Gumbel distributions. Our proposed dGEV-
BHMs offers a robust alternative for developing IDF curves
under small sample sizes. However, its implementation re-
quires a more computationally intensive Bayesian framework
compared to traditional methods like Maximum Likelihood
Estimation (MLE) or L-moments. A key benefit of our ap-
proach is its ability to reduce the amount of parameters,
which improves generalization and minimizes overfitting, es-
pecially with small sample sizes. This makes the model a
more reliable tool for risk assessment, even if it requires a
higher initial investment in computational resources.

5.3 Limitations and possible improvements

To compute all Bayesian models (including hierarchical) we
use the “No-U-turn-sampler” (NUTS) provided by Stan and
R package rstan (Stan Development Team, 2025), which
is a form of Hamiltonian Monte Carlo simulation. This is
computationally more demanding than many other methods,
such as maximum likelihood estimation or L-moments. The
EVT models in this study are stationary and did not account
for non-stationary, which is very important for incorporating
climate change effects on extreme rainfall. For the chosen
40-year time period of 1980–2019 signals of intensifying ex-
treme rainfall can already be diagnosed in the large ensemble
(Lang and Poschlod, 2024; Poschlod, 2022). However, most
operational EVT models based on observational data are sta-
tionary (Van de Vyver, 2012; Shehu et al., 2023). Hence,
with our focus on the consistency across durations and the
Bayesian hierarchical setup of the dGEV, we simplifyingly
assume stationarity. For longer time periods with stronger
climate change signals or for climate projections, an imple-
mentation of non-stationarity is beneficial using temperature-
related co-variates (Agilan and Umamahesh, 2017). Other
temporal co-variates relating to large-scale atmospheric pat-
terns such as the North Atlantic Oscillation (NAO) may fur-
ther add value as the NAO influences extreme precipitation in
Europe (Fauer and Rust, 2023; Steirou et al., 2019; Yiou and
Nogaj, 2004). Shehu et al. (2023) propose to estimate dGEV
parameters locally for rain gauges in Germany and then apply
kriging with external drift in a next step for regionalization.
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Our proposed framework can potentially assist as a robust
alternative in the estimation of the dGEV parameters. Fauer
et al. (2021) add additional parameters to the dGEV frame-
work, in the form of “flattening”, which acts to flatten the
IDF curve and “multiscaling”, which adds another parame-
ter to the duration exponents. This increases the flexibility of
the dGEV to extend from even sub-hourly to multi-day dura-
tions. As the CRCM5 output is stored at hourly duration, our
study is restricted to durations above one hour. Hence, this
modification of the dGEV is not considered here. Further-
more, Ulrich et al. (2021) maximize data utilization by using
monthly, rather than annual maxima. While this approach in-
creases the amount of data used, it may include values that
are not truly extreme. Another approach for spatial modeling
is Regional Frequency Analysis (RFA) (Hosking and Wallis,
1997). RFA involves grouping sites within a region based on
hydrological, meteorological, and geographical characteris-
tics, and then analyzing extreme precipitation statistics col-
lectively rather than individually. While we did not include a
formal RFA model in this study due to the already compre-
hensive and complex set of models, we acknowledge that it
represents a valuable alternative for spatial modeling of ex-
treme events. The implementation of a dGEV-RFA could be
valuable, especially given its focus on robust estimation for
data-scarce regions (Kim et al., 2020).

The assumption of similar extreme value characteristics
across localities in the dGEV-BHM-ξd model restricts its
use to smaller regions, rendering it less effective for large-
scale applications. However, different dGEV-BHM-ξd mod-
els could be set up for clusters with similar characteristics
of extreme precipitation. Furthermore, one could allow ξ to
vary over space following a co-variate (Dyrrdal et al., 2015;
Lehmann et al., 2016). In a study similar to ours, Jalbert et al.
(2022) also employed a Bayesian hierarchical dGEV model
with a spatially constant shape parameter for each duration.
While there are many commonalities between our study and
theirs, key distinctions must also be highlighted. Both studies
utilize the CRCM5 climate model. The most immediate dif-
ference is the geographical focus: Jalbert et al. (2022) is cen-
tered on Canada, whereas our study is conducted over South-
ern Germany. Their approach leverages the spatial coverage
of the CRCM5 to interpolate extremes across grid cells, ef-
fectively pooling information from observational stations to
improve estimates at ungauged sites. Conversely, our study
uses the sample size of the CRCM5’s large ensemble, which
provides a framework for evaluating the tail risk prediction
skill of different models. The leave-one-out cross-validation
(LOOCV) employed by Jalbert et al. (2022) is a suitable val-
idation strategy, given the spatial nature of their study. Using
Cramér–von Mises test used in the LOOCV is appropriate for
assessing the overall goodness-of-fit of a distribution. On the
other hand, as our study is more concerned with the accuracy
of high quantile estimates, the AD test is more applicable due
to its heightened sensitivity to discrepancies in the tails of a
distribution.

The findings by Jalbert et al. (2022) and recent work by
Poschlod and Koh (2024) show that the combination of high-
resolution climate models and observations is beneficial for
the representation of extreme rainfall at high spatial detail.
Both studies demonstrate that adding spatial covariates from
climate models improves the performance of spatial GEV
models over models that use only topographical information,
suggesting that this approach could be beneficial in other
frameworks like dGEV as well. Lehmann et al. (2016) set up
a Bayesian hierarchical dGEV model based on rain gauges
adding information from a regional climate model as clima-
tological co-variate over Australia. This allows for a robust
regionalization and an investigation of climate change im-
pacts on extreme rainfall levels by calculating IDF curves
under future climate. Dyrrdal et al. (2015) use a Bayesian hi-
erarchical model which was not duration-dependent for ob-
servations in Norway. Both Dyrrdal et al. (2015) and Jalbert
et al. (2022) incorporated Gaussian processes (GPs) in their
model design. This assumes the parameter values at differ-
ent locations are jointly Gaussian, and the correlation be-
tween them decreases as the distance increases. Whilst this
kind of spatial modeling is a powerful tool, we chose to
focus on point scale analysis to directly compare and thor-
oughly investigate different estimation methods, particularly
for small samples. In this context, we also explored incorpo-
rating physical co-variates (altitude and mean annual precip-
itation) into our BHMs. However, these did not improve the
model performance and, in some CRCM5-LE sub-samples,
lead to convergence issues. Given these challenges and the
specific focus on the research question, we decided not to
proceed with a full spatial model. Nevertheless, we agree that
GPs represent a promising avenue for future work on the re-
gionalization of our BHM, especially for larger datasets with
more spatial information.

Even though both our CRCM5 evaluation (Fig. 2) and
Poschlod et al. (2021) have shown that the CRCM5 per-
forms well for sub-daily and daily extreme precipitation de-
spite the parameterization of convection, Poschlod (2021)
has shown in a direct comparison of a convection-permitting
model (CPM) with the CRCM5 that the higher resolution and
explicit simulation of convective processes add value to the
representation of extreme precipitation, especially over com-
plex topography. Generally, CPMs are a promising tool in
climate modeling, offering improved, high-resolution simu-
lations of deep convective processes, which are parameter-
ized in lower-resolution models (Fosser et al., 2020; Lucas-
Picher et al., 2021; Meredith et al., 2015). This increased de-
tail requires a higher computational cost, making large en-
sembles of CPMs currently unaffordable for decadal to cen-
tennial simulation periods (Prein et al., 2015), while Bassett
et al. (2020) pioneered a CPM large ensemble over London
for a 4-month period. Consequently, there is a fundamental
trade-off between the high resolution and accuracy of CPMs
and the long time scales and large sample sizes that are nec-
essary for robust climate projections and uncertainty analy-
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sis, which are typically addressed by large ensembles of less
detailed models.

6 Conclusions

With the large ensemble as perfect model experiment fea-
turing the sub-sampling strategy, we are able to assess the
predictive power of EVT models. The 30 to 100-year sam-
ple sizes and the 25 localities thereby mimic the typical
data availability conditions for sub-daily rainfall. Within
these boundaries, the dGEV-BHM-ξd , a Bayesian hierarchi-
cal model of the duration-dependent dGEV with a shape
parameter flexible over durations, but fixed over space out-
performs existing state-of-the-art GEV and dGEV models.
With the focus of the analysis on rare events (100-year re-
turn periods), we can recommend this approach as accurate
and robust methodology to derive IDF curves under data-
scarce conditions. This can be beneficial for the generation of
observation-based rainfall return levels (Shehu et al., 2023)
or the analysis of extreme precipitation in high-resolution cli-
mate simulations, which also typically cover limited time
periods (Poschlod, 2021). Furthermore, with the help of
the large ensemble and the sub-sampling strategy, we show
that traditional goodness-of-fit measures, such as Anderson-
Darling test, are not well suited to choose EVT models on
small sample sizes with regard to rare event probabilities.
Here, the AIC proves as a useful tool in assessing the perfor-
mance of EVT models. In the current state, the dGEV-BHM-
ξd model is characterized by its simplicity, as only sub-daily
precipitation data from several stations with similar charac-
teristics are required. Next steps may involve the implemen-
tation of non-stationarity and regionalization with the help of
co-variates, where the CRCM5-LE can also act as a testbed
providing future climate projections and full spatial cover-
age.
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