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Abstract. Fine-scale oceanic fronts are ubiquitous and ephemeral physical features that separate contrasting
water masses, creating significant heterogeneity in the physical seascape and plankton distributions. Because
phytoplankton community composition (PCC) is a key driver of marine ecosystem functioning, understanding
the extent to which fine-scale fronts influence PCC is a critical challenge. However, studying PCC across and
within fronts is particularly difficult due to data scarcity and high biophysical variability. We developed a tailored
statistical model to characterize PCC within an oceanic front we studied in the Mediterranean Sea. We modeled
the frontal community as a finite mixture model with three components: two communities of adjacent water
masses and a potential front-adapted community. Each component was further considered as a discrete mixture
of an unknown number of multivariate Gaussian sub-components. First, we used an Expectation—-Maximization
algorithm to estimate the Gaussian parameters and determine the optimal number of sub-components based on
in situ datasets of the PCC within a frontal zone and its adjacent water masses. Second, a hierarchical Bayesian
approach was applied to estimate the weight of all components within the frontal dataset. Our analysis suggests
that within the front a new community component, distinct from those in adjacent water masses, accounts for
70 % of the frontal community, indicating that a specific phytoplankton community can emerge in fine-scale
oceanic fronts. Despite the limited number of frontal observations, our Bayesian modelling approach provides
statistical evidence of the front’s influence on phytoplankton community composition, effectively overcoming
data scarcity and high variability.

nutrients from deeper layers, supporting enhanced biodiver-

The oceanic seascape resembles a dynamic mosaic of con-
trasting water bodies, separated by boundaries known as
fronts (Acha et al., 2015). Fine-scale fronts (1-100 km, day—
weeks) arise from the interaction of water masses with dis-
tinct origins and characteristics (such as temperature and
salinity) and are ubiquitous in the ocean (McWilliams, 2021).
These fronts influence the environment from the surface to
deeper ocean layers, impacting biogeochemical processes by
modulating material transport; both by acting as horizontal
barriers and by generating vertical fluxes (Mahadevan and
Archer, 2000). In particular, upward currents can transport
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sity and biomass (Lévy et al., 2015; Clayton et al., 2017).
Among the biological communities affected by fine-scale
frontal dynamics, phytoplankton are especially affected due
to their limited motility. Phytoplankton communities (i.e.
specific assemblages of taxa) form the base of the trophic
chain , produce oxygen by photosynthesis and play a key role
in the biogeochemical cycling of carbon, nitrogen, and phos-
phorus, thereby regulating marine ecosystem functioning and
contributing to global climate processes (Litchman et al.,
2010; Eggers et al., 2014). Significant heterogeneity in phy-
toplankton communities is observed throughout the ocean,
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and key questions remain regarding the factors that shape
their composition and the underlying drivers of their remark-
able diversity (Sournia et al., 1991; Bianchi and Morri, 2000;
Coll et al., 2010). One plausible hypothesis is that fronts
delineate distinct habitats, thereby maintaining diversity by
structuring species distributions and interactions. Given their
potential impact on biological processes across the trophic
chain, fine-scale fronts are a critical area of study. Moreover,
fine-scale effects on biogeochemical cycles in the context of
global warming are of great concern (Yang et al., 2023; Lévy
et al., 2024).

The study of frontal phytoplankton communities needs
dedicated cruises (Lévy et al., 2024) with high-frequency
sampling to have enough data to perform robust statistical
analysis. A few in situ studies suggested that fronts are either
i) areas where environmental conditions allow the develop-
ment of an inherent phytoplankton community (Taylor et al.,
2012; Mangolte et al., 2023; Clifton Gray et al., 2024), or ii)
simple boundaries between two contrasting water masses and
their associated phytoplankton communities (Clayton et al.,
2014; Mousing et al., 2016; Marrec et al., 2018; Tzortzis
et al., 2021). However, these suggestions are hindered by sig-
nificant challenges of obtaining in situ measurements within
fine-scale fronts as they are small, short-lived, and difficult to
track, leading to a lack of observations (Lévy et al., 2012). In
addition, phytoplankton organisms respond rapidly to their
environment (Collins et al., 2014), with large variations in
abundance and biomass, which in turn result in highly vari-
able datasets (i.e. non-Gaussian, skewed or multimodal dis-
tributions).

Consequently, a first key step lies in applying statisti-
cal analyses to scarce variable observations. When priors
(i.e. assumed distribution before incorporating any data or
observations) are properly defined, Bayesian statistics are
known for their ability to capture signals even with scarce
and highly variable data, providing reliable statistical infer-
ence even with small sample sizes (McNeish, 2016). A sec-
ond key step in studying the phytoplankton community com-
position (hereafter “PCC”) in different areas, such as fronts
and their adjacent water masses, is to manage the complex-
ity of multidimensional datasets characterized here by differ-
ent phytoplankton types. Gaussian mixture modelling (here-
after “GMM?”) is used to model multiple signals that are as-
sumed to follow normal distributions (McLachlan and Peel,
2000). By modelling multiple Gaussian components, GMM
can model complex (i.e., non-Gaussian) distributions (Birgé,
1983). Originally introduced by Pearson (1894) to model het-
erogeneous biological data, GMM has since been widely ap-
plied in oceanography, for example to analyse krill cohort dy-
namics (Shaw et al., 2021) and phytoplankton classification
(Hyrkas et al., 2016). Phytoplankton communities consist of
different groups (e.g., cyanobacteria, picophytoplankton con-
stituted by cells between 0.2 and 2-3 um in size, nanophy-
toplankton constituted by cells between 2-3 and 20 um in
size, etc.). Applying GMM to a multivariate dataset would
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help quantify the ecological signals of different phytoplank-
ton communities (i.e., bloom of a specific group, a response
to a nutrient pulse), especially when dealing with complex,
overlapping distribution of groups. This is useful when the
assumptions of traditional statistical tests are not met in the
case of a mixture (e.g. normality and homoscedasticity).

Our study focuses on the Mediterranean Sea due to its
combination of moderately energetic physical processes and
oligotrophic conditions, which resemble those in the global
ocean (Bethoux et al., 1999). We build on the previous study
by Tzortzis et al. (2021) conducted south of Balearic islands
where a front separating Atlantic waters recently entering
the Mediterranean from saltier surface waters of the western
Mediterranean was observed. That study demonstrated that
this front plays a significant role in the structuring of PCC by
segregating different classes of phytoplankton sizes between
the two adjacent water masses, resulting in two distinct com-
munities. However, a potential front-adapted phytoplankton
community could not be identified due to in situ sampling
limitations leading to a small number of observations in the
front.

In this article we developed a statistical approach com-
bining GMM and Bayesian methods that allowed us to es-
timate the presence of communities using the phytoplankton
biomass data within the well-defined physical frontal region
previously studied by Tzortzis et al. (2021). This provides a
novel methodological framework for investigating the com-
plex interactions between fine-scale physical and biological
seascapes, while accounting for the challenges of obtaining
data at such scales. We ask the following questions: What is
the structure of the community that might be formed at the
front? Is there a frontal community as a mixture, where the
expected community results from the combination of the ad-
Jacent water communities, or is there another community re-
sulting from the intrinsic frontal characteristics? Answering
these questions would provide valuable insights into the role
of fine-scale oceanic fronts in the distribution of marine bio-
diversity. This is particularly important in frontal areas where
observations are rare.

This article is structured as follows: In Sect. 2, we describe
the data, followed by the modelling approach in Sect. 3. In
Sect. 4, we present the results, which are discussed in Sect. 5.
Finally, we conclude the study in Sect. 6.

2 Study area and data collection

2.1 Cruise strategy and hydrology

During the PROTEVSMED-SWOT campaign (May 2018,
south of the Balearic Islands, Dumas, 2018), we imple-
mented a sampling strategy to cross a frontal zone separating
two distinct water masses several times, with a North-South,
“hippodrome” shaped route (hereinafter NS-Hippodrome,
Fig. 1) (Tzortzis et al., 2021). High-resolution physical and
biological surface measurements were collected using a CTD
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Figure 1. Study area and sampling strategy. (a) Map of the north-western Mediterranean Sea; the red rectangle corresponds to the
PROTEVSMED-SWOT study area. (b) Map of the sampling area; the black dots correspond to cytometric samples collected throughout
the entire cruise (outside dataset) and the red dots to samples from the NS-Hippodrome. (¢) Absolute salinity distribution (g kg_l) along the
NS-Hippodrome. The shape of the dots depends on the water masses they belong to. The dashed red lines correspond to the latitudinal limits
of the front. Note that to highlight the sampling points, no geographic projection is used in this panel. Maps were produced using Natural

Earth open access data.

sensor mounted on a towed vehicle, a thermosalinograph
(TSG) and an automated flow cytometer installed on the
surface water intake of the TSG circuit. By employing an
adaptive Lagrangian sampling strategy, we tracked physi-
cal and biological structures in both space and time, iden-
tifying a fine-scale frontal zone separating the two water
masses A and B, each characterized by contrasting abun-
dances of nine phytoplankton groups defined by flow cytom-
etry (Tzortzis et al., 2021). To capture the phytoplankton diel
cycle, both water masses were continuously sampled along
the NS-Hippodrome from 11 to 13 May, 2018. This approach
allowed us to capture the diel cycle in both A and B simi-
larly, reducing biases from cell size and division. As a result,
any differences in cell abundance between the A and B wa-
ter masses are not related to diel cycle variations, making the
observations independent and identically distributed (here-
after i.i.d.).

Based on extensive analysis of temperature and salinity
in the water column and across the zone, Tzortzis et al.
(2021) characterized the frontal area around 38.32° N. They
stated that surface salinity was a good marker for the wa-
ter masses in the visited area (Fig. 1c). The salinity gradient
during the cruise (see Fig. A1) indicates that water mass A is
characterized by a salinity > 37.6 gkg™!, and water mass B
by a salinity <37.3 gkg™!. The front F lies between these
two isohalines. The frontal zone definition also followed
a geographic criteria, 38.36° N > Latitude > 38.30° N, cor-
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responding to the measurement locations (Tzortzis et al.,
2021). To focus on the frontal zone, measurement points that
lay within the salinity range of the front but outside of its
geographical boundaries were considered as part of a transi-
tional zone (7)) and were not used for the data analysis. In
total, 30 samples were collected in A, 44 in B, 11 in F and
17in T.

2.2 Flow cytometry

Automated flow cytometry enables high-frequency seawa-
ter sampling and analysis to identify phytoplankton groups
based on their optical scattering and fluorescence properties
(Dubelaar et al., 1989; Thyssen et al., 2009, 2015). The Cy-
toSense flow cytometer (Cytobuoy b.v., Netherlands) uses a
sheath fluid of 0.1 um filtered seawater to align and guide
individual particles (cells) through a 488 nm laser beam. As
cells interact with the laser beam, multiple optical signals are
simultaneously recorded for each particle (cell).

First, forward scatter (FWS) and sideward scatter (SWS)
are measured, providing insights into particle size, shape,
and granularity. Second, fluorescence signals from photosyn-
thetic pigments are also detected using photomultiplier tubes:
red fluorescence (FLR) from chlorophyll and orange (FLO)
fluorescence from phycoerythrin. Sequential protocols are
run sequentially every 30 min, to analyse samples by phy-
toplankton size class. The first protocol (FLR6) had a FLR
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trigger threshold fixed at 6mV and could analyze a volume
of 1.5cm?3. It was dedicated to the analysis of the picophy-
toplankton (< 2 um). The second protocol (FLR25) targeted
nanophytoplankton and microphytoplankton (> 2 um) with
a FLR trigger level set at 25 mV and an analysed volume
of 4cm’.

Data acquisition was performed using CytoUSB software
(Cytobuoy) and analyzed with CytoClus (Cytobuoy). The cy-
tometer produces 2D cytograms, graphical representations
that plot individual particles according to their optical sig-
nals, highlighting distinct populations based on scattering
and fluorescence properties. Within these dot clouds, we
manually identified clusters that serve as proxies for func-
tional phytoplankton group (Peeters et al., 1989; Thyssen
etal., 2008). CytoClus provides cell abundances (cells cm™3)
and mean optical signal intensities for each phytoplankton
group.

Nine phytoplankton groups were identified (Tzortzis et al.,
2021): one cyanobacterial group, Synechococcus (Syne,
I,um); four picoeukaryote groups (Picol, Pico2, Pico3,
PicoHFLR, 0.2-2 um); two nanoplankton groups (SNano,
RNano, 2-20um), cryptophytes (Crypto, 10-50 um); and
one microphytoplankton group (Micro, 20-200 um). Abun-
dances (number of cells) are converted into carbon biomass
(mmolCm™?) using allometric relationships described in
Tzortzis et al. (2023) and Oms et al. (2024). Importantly,
there are huge size, biomass and abundance contrasts be-
tween the nine phytoplankton groups (Figs. A2 and A3).

3 Methods

3.1 Model formulation

We denote by Com the random vector characterizing a com-
munity. It is composed of the biomass of the 9 phytoplank-
ton groups described previously. We assume that the biomass
distribution of the community in the front, denoted by Com?,
is mathematically described as a finite discrete mixture of
three random components corresponding, respectively, to the
communities of water masses A (Com?) and B (Com®) and
an unknown community (Com®), as follows:

Com’ = ]IUZAComA + ]IUZBComB + ]IUZCComC, €))]

where, for any generic condition 7T, the indicator function is
defined as:

1 if condition 7 is satisfied,
Iy = _ @)
0 otherwise

Here, U is an unobserved categorical random variable tak-
ing values in the set {A, B, C}, with the following probabili-
ties:

P(U=A)=x4,P(U=B)=ip, P(U=C)=Ac,
withAga +Ap+Ac=1. 3)
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Each observation is thus assumed to originate from one
of the three communities A, B, or C, with respective
weights A4, Ap, and Ac. The case where A¢ is significantly
different from O indicates the presence of the new commu-
nity C, while A¢c — 0 corresponds to a mixture involving
only communities A and B.

The collected observations (i.i.d., cf. Sect. 2.1) of Com? is
a table of dimension n x m, where n = 11 biomass measure-
ments and m = 9 phytoplankton groups.

Multivariate normal distribution of A, B, F and T were as-
sessed with the Henze—Zirkler’s test (Korkmaz et al., 2014).
Except for A, the empirical biomass distribution in B, F
and T revealed non-Gaussian shapes associated with high
variability for each phytoplankton group (see Fig. A2), sug-
gesting underlying mixture structures of Gaussian distribu-
tions. Given this, we proposed that Com*, Com? and Com€,
are themselves issued from a mixture of, respectively, j, k
and [ multivariate Gaussian components, which model po-
tential sub-communities within A, B and C as follows:

J
Com™* ~ > “aar - N(par Zar), “
r=I1
k
Com® ~ ZOZBS -N(mps, Tps), )
s=1
1
Com® ~ > "aes - Nper- Zen), (6)

t=1

where « denote the mixture weights (summing to 1 in each
case), and u € R", ¥ € R™*™ are the mean vectors and
covariance matrices of the respective multivariate Gaussian
components.

To estimate parameters u, %, o and A, and the number
of components j, k and / in Com?, Com® and Com€, re-
spectively, we combined two estimation strategies: (i) an
Expectation—-Maximization (EM) algorithm ; and (ii) a two
step Bayesian approach.

3.2 Estimation of Gaussian parameters using the
Expectation—Maximization algorithm

Communities A and B were, respectively estimated using
in situ samples using large dataset from water mass A and
water mass B (step 1 in Table 1). We considered varying
numbers of components j, k € {1,...,10}.

The potential community C cannot be directly observed in
the front (due to the limited number of observations). Thus,
we estimated the Gaussian parameters of likely communities
to be in C from the larger dataset of the rest of the cruise,
hereafter the outside dataset, which consists of 461 observa-
tions (black dots on Fig. 1b). The limitations of this approach
are discussed in more detail in the Discussion section. We
assumed that the community in the outside dataset denoted
by Com€’ is a mixture of sub-communities, large enough to
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Table 1. Summary of data analysis workflow. Note that Com€ refers to the community inferred from the outside dataset, while Com€
’
denotes the latent community in the frontal zone. By construction, Com¢ C Com¢ .

Step  Purpose Data

Parameters estimated Method

1 Define communities A and B
from water mass observations

Water mass A (n =30)  paq,. AjQ):Al ..... Aj EM
Water mass B (n = 44) QAL,....Ajs IB1,... Bk

XB1,...Bk; ¥B1,...Bk

2 Find I’ candidate communities Outside dataset ren,.crs Xcn,..cr EM
from the outside dataset (n =461)

3 Exploratory model: Front data (n = 11) Aa;AgiAciacy,.cr  Bayesian
Select the / communities
that characterize community C

4 Final model: Front data (n = 11) AasApiAciact,.. cl Bayesian

Estimate the weight of communities
A, B, and C, with only
the most important / components in C

represent the latent community Com. In other terms, we
considered Com€ to be a subset of Com€ . Here, we con-
sidered varying numbers of components [/’ € {1,...,20} to be
able to propose several candidates for C (step 2 in Table 1).

For all combinations j, k € {1,...,10} and I’ € {1,...,20},
the EM algorithm explored 14 models, each corresponding
to a different structure of the covariance matrix X, ranging
from diagonal to fully parameterized. Diagonal matrices im-
ply no interaction between phytoplankton groups, while off-
diagonal terms capture inter-group correlations.

Model selection was guided by the Integrated Completed
Likelihood (ICL) criterion (McLachlan and Rathnayake,
2014), which penalizes model complexity and cluster over-
lap. First, optimal values of j, k and I’ were chosen by av-
eraging ICL values across covariance structures. Then, the
best covariance model was selected for parameter estimation.
In addition to u and X values, the EM algorithm estimated
the o weights for Com? and Com?. Note that for Com®,
only the pu¢r and X values were used. The weights of the
candidates for ComC, ac, will be further estimated by the
Bayesian model (see step 3 and 4 in Table 1). The R pack-
age mclust (Scrucca et al., 2023) was used to estimate the
Gaussian parameters.

3.3 Estimation of components weights with Hierarchical
Bayesian sampling based on scarce frontal dataset

Since very few observations were collected in the frontal re-
gion (n = 11), a Bayesian approach was used to estimate the
weights of components A4, Ap, Ac, see Eq. (3), and the sub
components weights acy,. .., ccy, see Eq. (6). Dirichlet dis-
tributions, which represent a distribution over probability dis-
tributions often used to model multivariate proportions, were
used here to represent the component weights. These distri-
butions were parameterized by a vector of positive real num-
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bers and we proposed a non-informative prior, as follow:

Aa,Ag, hc ~ Dirichlet(1,1,1) 7
act, ..., ac; ~ Dirichlet(1, ..., 1), ()

assigning the same weight to all coefficients. The Hierarchi-
cal Bayesian Model is decomposed in two steps. In the ex-
ploratory model (Step 3, Table 1), the I’ candidate compo-
nents identified in Com€ via EM were used to estimate their
associated weights a1y, ..., ¢cp in Eq. (6). This step allowed
to select only the most significant components among them,
i.e. the / components with the highest posterior c¢ values,
to define Com€. In the final model (Step 4, Table 1), we esti-
mated the weights of the components 1 4, Ap, ¢, see Eq. (3),
and the sub-components weights a1, ..., @c;, see Eq. (6),
with the selected / components in C.

A sensitivity analysis was performed to test the robust-
ness of the Bayesian inference. In particular, the sensitivity
analysis aimed at assessing the robustness of the model ac-
cording to the number of observations in the front, and the
robustness of the model to false positive detection (i.e. de-
tecting a new community when no communities are present
in the data). For this, numerical sampling of “known” frontal
community were done in two cases. First, we considered the
case where front observations are only a mixture of Com*
and Com? (i.e. simulations do not include the component
Com€, Ac = 0). Five scenarios were assessed : (1) Agq =
Ap=052)A4 =04and rp =0.6; 3)Ag =0.6and Ap =
04; 4 A4 =07and Ap =0.3; (5) L4 =0.3 and Ap =0.7.
Second, we considered the case where a new community ex-
ists, i.e. simulations include the component Com€, A¢ # 0.
Here the A values used are the same as observed in the
in situ dataset (see the results Sect. 4.2), and with proportion
Aa=045,Ap=0.2 and Ac = 0.35. In all cases, 5, 10, 20,
30 and 50 frontal observations were simulated 10 times. Then
the Bayesian model was computed to estimate the A values of
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Figure 2. Values of the mean Integrated Complete-data Likelihood (ICL) in function of the number of multivariate Gaussian components.
(a) Water mass A (to model ComA). (b) Water mass B (to model Com?B ). (¢) Outside dataset (to propose likely parameters to model ComC).
The vertical orange lines correspond to the number of multivariate Gaussian components that reach the highest ICL values.

the known communities from the simulated datasets. In ad-
dition a comparison test for equal distribution between tran-
sitional waters 7 and front F' was performed (Székely and
Rizzo, 2004).

The posterior probability distribution sampling was com-
puted with STAN’s (Carpenter et al., 2017) Hamiltonian
Monte Carlo (HMC) algorithm. For all the models (i.e. ex-
ploratory and final models and sensitivity analysis) we per-
formed four chains of 11000 iterations to study the conver-
gence. The first 10000 draws of each chain were discarded
(i.e. burn-in) to avoid initial sample bias. Thus, the last 1000
iterations of the four chains were used for analysis of the
posterior probability distribution. Convergence was assessed
with R statistic and effective sample size. The models were
computed in R (R Core Team, 2021) by means of the rstan
package as interface with STAN (Stan Development Team,
2020).

4 Results
4.1 Selection of the number of components to describe
phytoplankton communities

According to the mean ICL criterion, one component, Al,
is enough to model Com? (Fig. 2a), while two compo-
nents (hereafter B1 and B2) are necessary to model Com?
(Fig. 2b). The weights of B1 and B2 are, respectively ap; =
0.47 and apgy = 0.53. In the outside dataset, 12 candidates
components were selected (Fig. 2¢).

Figure 3 shows that the estimated parameters of the mul-
tivariate Gaussian fitted well to the observed phytoplank-
ton biomass in water mass A (Fig. 3a) and water mass B
(Fig. 3b). The mixture of two components in Com? allows
to model complex biomass distributions, for e.g. skewed dis-
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tribution for Crypto, Picol, Pico3, SNano, RNano or Pico-
HFLR, compared with Com*.

4.2 Modelling of the frontal phytoplankton community

The exploratory model was performed with 12 candidates
components, denoted C’ as they were estimated from the
outside dataset community, to describe Com® (see step 2
in Table 1). Using the proposed candidates, the exploratory
model (whose trajectories and values of R and effective sam-
ple size are consistent with those of a converged chain, see
Fig. A4 and Table Al) was used to estimate the weights
ac and A4, Ap and Ac in the mixture (Fig. 4a and b).
Among the three communities, Com® has a higher weight
(A) in the mixture (0.787, quantile 2.5 % =0.123, quan-
tile 97.5 % =0.902), followed by Com* (0.203, quantile
2.5%=0.051, quantile 975 % = 0.459) and Com? (0.065,
quantile 2.5 % =0.002, quantile 97.5 % =0.127) (Fig. 4a
and Table Al). Among the 12 candidates components in
Com© (Fig. 4b), components C'8 and C’10 present the high-
est weight, o, approx. 0.2, and to a lesser extent C’5 and C'6
with weights reaching 0.1. The weights of the other 8 com-
ponents are below 0.05 (see Table A1 for quantiles values of
the posterior distribution for each components). For the final
model, performed with the most significant components, only
C’8 and C’'10 were used in Com as they display the high-
est weight. We considered C’8 and C’10, the most significant
components in the exploratory model, as the two components
of the community C, Comc, which we call hereafter C1 and
C2, respectively. The number of components in Com® was
chosen to be the most parsimonious possible. For the sake of
simplicity, the components C’5 and C’6 were not used in the
final model as they did not show strong differences relative
to using only C’8 and C’10 in Com®.
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In the final model (that converged, see Fig. A5 for the tra-
jectories, and Table A2 for convergence metrics), the estima-
tions of A4, Ap and A¢ did not vary drastically — 0.203 (quan-
tile 2.5 % = 0.057, quantile 97.5 % = 0.467) for ComA, 0.06
(quantile 2.5 % = 0.003, quantile 97.5 % = 0.281) for Com”
and 0.714 (quantile 2.5 % = 0.439, quantile 97.5 % = 0.901)
for Comc, Fig. 4c — relative to those observed before
in the model with 12 components. In this second model,
the weights of C1 (xci; =0.55, quantile 2.5 % =0.258,
quantile 97.5% =0.823) and C2 (ccz =0.45, quantile
2.5% =0.177, quantile 97.5 % = 0.742) were almost equiv-
alent in the mixture (Fig. 4d and Table A2).

Figure 5 shows how the final model fits the observed data
in the front. As expected when looking at the weight Ap
(0.06, see in Fig. 4c), components B1 (dark blue curve)
and B2 (light blue curve) contribute little to the global mix-
ture (black lines), which is mostly driven by components A1l
(light green curve), C1 (dark orange curve), and C2 (orange
curve). Overall, the mixture of these five components cap-
tures the phytoplankton groups biomass distribution well. In
some cases, the biomass distribution is bimodal (for Syne,
Pico2, RNano) or skewed (for Picol, Micro). For Pico3 and
RNano a difference remained between the estimated density
and the observed biomass in the front (Fig. 5). For Pico3, the
u values for C1 and C2 are the lowest (see Table 2). How-
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Table 2. Rounded p (mmol Cm_3) values estimated by
Expectation—Maximization algorithm for the components in Com4
(A1), Com?B (B1and B2) and Com€ (C1 and C2). The rows in bold
correspond to the three phytoplankton groups presenting the highest
w values (i.e. biomass) within a component. For a better comparison
between components for the same phytoplankton groups see Fig. 6.

kAl Kp1r MB2  HRc1 HC2

Syne 0.07 0.1 0.1 0.06 0.12
Crypto 0.02 0.02 0.03 003 0.02
Picol 0.06 0.1 0.1 0.07 0.1
Pico2 005 0.19 023 0.08 0.13
Pico3 021 022 0.37 0.2 0.13
SNano 044 031 038 046 032
RNano 0.27 038 0.53 05 0.51
Micro 0.02 0.01 0.01 002 0.01

PicoHFLR 0.01 0.01 0.01 0.01 0.01

ever due to high variance in ¥ matrices the mode around
0.14-0.16 is not captured by the model.

4.3 Characteristics of the phytoplankton communities

The parameters of the multivariate Gaussian estimated by the
EM algorithm are referenced in Table 2 for u parameters and

Adv. Stat. Clim. Meteorol. Oceanogr., 12, 21-41, 2026




28

—
L)
=
>
T
=

02 03 04 05 —~
1

Oc

Weight

00 02 04 06 08
Weight

0.0 0.1

(c) A (d) Oc

1.0
1.0

Weight

00 02 04 06 08
Weight
00 02 04 06 08

Figure 4. Boxplots of the estimated values of o¢ and X values by
the Bayesian models. In total 100 values were used to construct the
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to avoid autocorrelation within the chains. (a) and (b) represent,
respectively A4, Ap and Ac and acy, . c12 of exploratory model.
(c) and (d) represent, respectively A4, Ap and Ac and acy, c2 of
the final model.

in Tables A3—-A7 for ¥ covariance matrices. The n values
and the variances in the diagonal of the X matrices of SNano,
RNano and Pico3 are the highest. These results highlight the
dominance and a large variability in biomass of these phyto-
plankton groups during the cruise.

In Com?, the covariance matrices X ; and ¥ g, are di-
agonal. This suggests that the addition of interactions be-
tween phytoplankton groups would not have improved the
modeling of Com?. By contrast, for Com# and Comc, the
covariance matrices is not diagonal which allow to model
positive or negative interactions between each phytoplankton
group. The covariances matrices X1 and X > present sim-
ilar patterns and highlight mostly the positive interactions of
SNano and RNano with most of the phytoplankton groups,
except for Pico3. In these two communities Pico3 and Pico2
have a negative interaction. X 41 presents similar pattern than
in X¢1 and X3, but the main differences are negative in-
teractions of Syne and Crypto with SNano, RNano, Micro
and PicoHFLR, and strong interactions between Pico3 and
Crypto (positive) and PicoHFLR (negative).

Overall, the relative biomass (i.e. calculated from p and
o values) of the phytoplankton groups of Com® is interme-
diate between Com” and Com®. However, RNano and Pico3
in Com¢ show a relative biomass that is higher and lower, re-
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spectively than in Com# and Com® (Fig. 6a). This pattern is
clearly observed when looking at the relative biomass at the
sub-component scale (Fig. 6b). Where the relative biomass
in C1 and C2 for RNano and Pico3 are, respectively higher
and lower than in the other three components.Nevertheless,
Fig. 6b, shows that two sub-components of the same com-
munity show different patterns for the same phytoplankton
group. This is the case of C'1 and C2 for Syne, which reach
their lowest and highest relative biomass, respectively for
these components.

4.4 Sensitivity analysis of the Bayesian inference

Figure 7 shows the results of the sensitivity analysis per-
formed on simulated data. The posterior distribution obtained
from the Bayesian inference showed satisfactory mean es-
timation of the unknown parameters, leading to close esti-
mates compared to the true values independently of the num-
ber of simulated observations. Note that while the average
values of the posterior distributions of estimated parameters
are reliable even for the lowest number of observations, in-
creasing the number of simulated data lead to a decrease in
the standard deviation of the posterior distribution (see in
Fig. A6). In the case that the simulated data is only coming
from a mixture of components Com* and Com? (Ac =0),
the sensitivity test shows that the estimated values of A¢ are
very close to 0, meaning that this component is not impor-
tant in the mixture (comparing to the cases where A # 0)
(Fig. 7). In addition, the model can detect slight changes in
the proportions of components even in the case that the sim-
ulated data is coming from a mixture of the three compo-
nents ComA, Com? and Com€. Overall, the sensitivity anal-
ysis highlighted the robustness of the approach, even with
fewer observations than the actual number of observations
in the in situ data. Finally, the comparison test for equal
distribution (Székely and Rizzo, 2004) between transitional

waters and front rejected the HO hypothesis (HO: T iF ,
p value < 0.05), which suggests that frontal and transitional
water communities are different.

5 Discussion

5.1 A new approach to identify the frontal community

We developed a statistical approach to address key chal-
lenges in detecting and confirming fine-scale frontal-adapted
phytoplankton communities, despite the limited and highly
variable data from an oceanographic campaign. We repre-
sented the phytoplankton biomass distribution across and
within a frontal region — reflecting the phytoplankton com-
munity composition — using a multivariate Gaussian mix-
ture of distinct sub-communities. The critical objective was
to determine which community and sub-community has the
highest weight within the front. Here, we combined two
approaches, Expectation—-Maximization (EM) algorithm and
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hypothesis and a same number of observations.

Bayesian modelling, to characterize the nature of frontal phy-
toplankton communities from sparse in situ data. The EM al-
gorithm allowed us to estimate parameters (4 and X) of
Gaussian distributions and identify the number of commu-
nities and sub-communities (from relatively large datasets),
while the Bayesian approach, known to be robust even
with few observations, enabled us to determine their relative
weights (A and «) within the frontal community. Sensitivity
analysis (Fig. 7) confirmed that the Bayesian inference was
robust even for fewer observation (here down to 5) than the
actual in situ frontal dataset (i.e. 11 observations).

The parameters g (average biomass) and X (variance
and covariance) provided a realistic overview of the phy-
toplankton community composition (PCC), highlighting the
global dominance of two nanophytoplankton groups (SNano,
RNano) and the largest picoeukaryote (Pico3), as well as the
interactions between these groups that shape specific PCC
(Tables 2, A3, A6, and A7). In the Mediterranean Sea, Syne-
chococcus species (Syne) are the most dominant group of
phytoplankton in abundance (Moutin et al., 2002). How-
ever, certain physical forcings, such as frontal structuring,
may alter their presence by locally modifying environmen-
tal conditions (e.g., nutrient inputs), which can favor larger
cells (Siokou-Frangou et al., 2010). In frontal zones, different
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types of interactions between plankton organisms, such as
shading or shared predation, can lead to distinct community
structures (Mangolte et al., 2022). Notably, the differences
observed between the covariance matrices (i.e. X A1, X1,
and X ) suggest that interactions between phytoplankton
are different within distinct communities (Tables A3, A6,
and A7). Estimated values of parameters A corresponding to
the weight of communities within the front and its adjacent
water masses provided information to answer our questions:
“What is the structure of the community that might be formed
at the front? Is the frontal community a mixture, where the
expected community results from the combination of the ad-
Jacent water communities, or is there another community re-
sulting from intrinsic frontal characteristics?”. In particular,
Ac (0.714 in the final model, Fig. 4c) represents the pro-
portion of the frontal community attributed to Com®. Since
Ac > 0, our results suggest that the phytoplankton frontal
community is not a mixture of adjacent communities, but
instead is a specific frontal-adapted community. More pre-
cisely, A¢ indicates that ComC represents more than 70 % of
the frontal community Com’ (Fig. 4c).

Figure 8 shows the spatial projection of each sample
point, with shapes and colors representing their community
and sub-community classification, identified as the domi-
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Figure 8. Spatial distribution of dominant components within the
NS-Hippodrome. Dots are colored according to the multivariate
Gaussian component, i.e. sub-communities (A1, B1, B2, C1 and
C2) that reach the highest density (in nine dimension) for the
sample phytoplankton groups observed biomass. The horizontal
black lines correspond to the frontal area (latitude between 38.5
and 38.6°N, as in Fig. lc, Component Al (A community) was
mostly dominant in the North of the Hippodrome. Components B1
and B2 (B sub-communities) were mostly dominant in the south
of the Hippodrome. Components C1 and C2 (unknown C sub-
communities) are mostly dominant in the front. Note that diamond
shaped points correspond to samples transitional waters, 7, that
were not taken into account during the characterisation of the phy-
toplankton nine communities.

nant component and sub-component of the Gaussian mix-
tures (highest A and o). We reach two key conclusions. First,
our approach successfully reconstructed the initial pattern
observed by Tzortzis et al. (2021), characterized by a distri-
bution of two communities on either side of the frontal region
(here identified as Com? and Com®). A notable refinement
was the identification of two sub-communities within Com®
(B1 and B2), which could be attributed to significant fine-
scale meandering activity in the southern part of the front
(i.e., within the Algerian Basin) (Millot, 1999). We hypothe-
size that such dynamics could lead to a closer cohabitation of
different sub-communities. Second, our approach appeared
to successfully detect the presence of the unknown Com®
located within the frontal community (Com™).

5.2 Phytoplankton communities across frontal areas

Our findings suggest that the frontal region acted as a selec-
tive environment, structuring phytoplankton communities by
promoting certain phytoplankton groups while disadvantag-
ing others (Fig. 6). According to our results, the frontal zone
during PROTEVSMED-SWOT represented a narrow habitat
for communities C'1 and C2.
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Mangolte et al. (2022) described the impact of frontal re-
sponses of plankton groups using the terms “winners” and
“losers”. In the Californian Current Ecosystem, larger phy-
toplankton (e.g., microphytoplankton, diatoms) were classi-
fied as “winners” (increased abundance within fronts) and
smaller picophytoplankton as “losers” (decreased abundance
within fronts). Taking into account the whole Comc, our re-
sult showed that RNano was clearly a “winner” and Pico3
was a “loser” within the front (Fig. 6). However, at a smaller
scale, we showed that even within a same community, phy-
toplankton assemblage were different. For example, this was
the case of Synechococcus (Syne) that, respectively showed
the lowest and highest u values with C1 and C2 (Fig. 6b).
This suggests that Syne can simultaneously be both “win-
ner” and “loser”, depending on local conditions. This pattern
may result from differences in the origins of C1 and C2 com-
munities, driven by advection or stirring of distinct water
masses, or from biological interactions that either favored
or hindered Syne (Lévy et al., 2018; Hernandez-Herndndez
et al., 2020, 2021). Mangolte et al. (2023) highlighted that
different plankton communities can be observed at a smaller
scale (1-5 km) than the width of the front scale (10-30 km).

5.3 Limitations

The strong assumption that the potential front-adapted com-
munity existed within the outside dataset implies two lim-
itations. On the one hand, the outside dataset is not an ex-
haustive dataset of the region. Actually, phytoplankton com-
munities of the southern water masses may not be efficiently
represented in the outside dataset, since the water masses off
the Algerian coast (south of the sampling area) were not sam-
pled. In addition, the inclusion of the stations close to the
Balearic coasts might have led to an over-representation of
coastal phytoplankton communities (different than the one
observed in the open sea). But excluding coastal stations and
selecting only data near the NS-Hippodrome transect (e.g.,
between 38-39° N and 3-5°E) did not drastically affect our
results. On the other hand, frontal conditions could be unique
in both space and time and might have not been sampled
elsewhere than in the NS-Hippodrome transect. Actually, the
communities identified in ComC, C1 and C2, were mostly
observed in stations in the same range of temperature and
salinity that were close to the studied front, to the east, and
were sampled a few days before the NS-Hippodrome tran-
sect sampling (Fig. A7). Hydrodynamic circulation across
the frontal area was eastward (Tzortzis et al., 2021). This
suggests that the communities observed at these sites in the
outside dataset may have been advected from the front.

As Fig. 5 shows, our approach may not precisely cap-
ture the biomass distribution of certain phytoplankton groups
(e.g. Pico3 and RNano). This is certainly because no biomass
distributions that better fit the frontal data were observed in
the “outside” dataset for these two groups. A more flexi-
ble option would be to estimate all parameters using a full
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Bayesian approach (i.e. the number of Gaussian components,
u, o, X and X). However, as the number of parameters to
be estimated far exceeded the actual number of observations
at the front (number of observations =11; number of pa-
rameters = 458), we opted to “fix” certain parameters (i.e.
and ¥) using existing data (adjacent water masses and out-
side dataset). Nevertheless, the sensitivity analysis demon-
strated the robustness of our approach, showing that the new
components C1 and C2 in Com® helped to model the com-
munity in the front more accurately, revealing the existence
of a new frontal community.

6 Conclusions and perspectives

The re-analysis of the phytoplankton dataset from
PROTEVSMED-SWOT using a novel statistical methodol-
ogy allowed us to reveal a biological signal that remained
undetected with classical statistical approaches due to the
critical lack of data. This method effectively addresses one of
the main challenges in in situ biological oceanography: the
difficulty of collecting comprehensive datasets that integrate
biological, physical, and biogeochemical measurements
while maintaining high temporal and spatial resolution.
Notably, without incorporating explicit spatial information
or environmental variables into our analysis, our approach
successfully captured the structuring effect of the front and
detected the presence of a frontal-adapted phytoplankton
community.

Importantly, our method reshaped our understanding
of this moderately energetic front, previously considered
merely a hydrodynamic barrier between two communities
(Tzortzis et al., 2021). Instead, our results suggest that this
front acted as a unique ecological environment where a dis-
tinct community seemed to have emerged. This study can
be seen as a first attempt to assess this hypothesis, but due
to the dataset scarcity, our results needs further application
on other in situ datasets to be generalizable. Thus, given the
broad applicability of our methodology to plankton datasets,
we plan to use it to further investigate whether fronts gen-
erally function as simple boundaries or as areas fostering the
development of frontal-adapted communities. In addition, re-
cent work has shown that frontal conditions appear to favor
the presence of non-dominant phytoplankton groups relative
to dominant ones (Oms et al., submitted). Such a “refuge ef-
fect” will be evaluated in further research that will analyse
satellite-based data sets (e.g., ocean color and altimetry) to
provide a global perspective on phytoplankton distribution
in frontal regions. Additionally, the future research will in-
clude analyses of other in situ larger plankton datasets, such
as those from BioSWOT-Med (Doglioli et al., 2024), which
provide a more comprehensive environmental context. In-
cluding the complete dataset from BioSWOT-Med, integrat-
ing nutrient concentrations and fluxes, as well as zooplank-
ton concentrations and grazing rates, will help disentangle
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the key processes driving the observed phytoplankton com-
munity composition.
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Appendix A

Table A1. Summary of the statistics (mean, standard deviations, quantiles 2.5, 25, 50, 75 and 97.5 % of the posterior distributions) and
convergence metrics (effective sample size ESS, and R) of the estimated parameters of the explanatory model.

mean sd 25% 25% 50% T5% 91.5% ESS R
acy 0.048 0.045 0.001 0.015 0.035 0.067 0.167 5513.46 1
acy  0.048 0.046 0.001 0.015 0.035 0.067 0.172  5391.567 1
acz3  0.049 0.047 0.001 0.014 0.034 0.069 0.177  6298.038 1
acg  0.048 0.046 0.002 0.014 0.034 0.069 0.171  5107.524  0.999
acs  0.097 0.063 0.013 0.049 0.085 0.131 0.255 4676.972 1
ace  0.099 0.062 0.014 0.052 0.086 0.133 0.256  5474.442 1
ac7 0048 0.046 0.001 0.014 0.035 0.069 0.167  5548.687 1

acg  0.192 0.085 0.055 0.13  0.183 0.244 0385 5195.142 0.999
acog  0.047 0.045 0.001 0.014 0.034 0.065 0.167 4808.668 0.999
acyo 0226 0.09 0.075 0.159 0.218 0.288 0419 5193.024 1
acy; 0.048 0.046 0.001 0.014 0.034 0.069 0.17 4375.181 1
acip 0.049 0.047 0.001 0.015 0.035 0.069 0.176  4054.995 1.001
AA 0216  0.107 0.051 0.136  0.203 0.28 0.459  6066.953 0.999
AB 0.088 0.077 0.002 0.029 0.065 0.127 0.28  4854.213  0.999
AC 0.697 0.123 0.428 0.614 0.709 0.787 0902 5406.117 0.999

Table A2. Summary of the statistics (mean, standard deviations, quantiles 2.5, 25, 50, 75 and 97.5 % of the posterior distributions) and
convergence metrics (effective sample size ESS, and R) of the estimated parameters of the final model.

mean sd 25% 25% 50% 5% 97.5% ESS R
act 0.55 0.149 0.258 0443 0.554 0.659 0.823  3200.431 1
aca 045 0.149 0.177 0341 0446 0.557 0.742  3200.431 1
AA 0.217 0.106 0.057 0.138 0.203 0.28 0.467 3620.614 1

AB 0.083 0.075 0.003 0.025 0.06 0.119 0.281 3660.203 1.001
AC 0.701 0.121 0439 0.622 0.714 0.791 0.901 3630.034 1.001

Table A3. X covariance matrix estimated by Expectation—Maximization algorithm for the component A1 in ComA.

Syne Crypto Picol Pico2 Pico3 SNano RNano Micro PicoHFLR
Syne 6.98e-05 1.69¢-05 3.25e-05 1.73e-05 7.51e-05 —1.24e-04 —7.26e-05 —1.45e-05 —5.83e-06
Crypto 1.69¢e-05 2.84e-05 2.88e-06 7.46e-06 6.88e-05 —3.45e-05 —1.72e-05 —1.14e-05 —1.58e-06
Picol 3.25e-05 2.88e-06 8.57e-05 2.89e-05 5.71e-05 7.38e-05 9.78e-05 9.50e-06 —4.26e-06
Pico2 1.73e-05 7.46e-06 2.89¢e-05 4.02e-05 1.32e-05 —1.83e-05 1.27e-05 —3.10e-06  1.43e-06
Pico3 7.51e-05 6.88e-05 5.71e-05 1.32e-05 9.37e-04 1.67e-04 2.66e-04 —1.42e-05 —2.37e-05
SNano —1.24e-04 —3.45¢-05 7.38e-05 —1.83e-05 1.67e-04 1.30e-03 9.54e-04 9.76e-05 —3.88e-06
RNano —7.26e-05 —1.72e-05 9.78e-05 1.27e-05 2.66e-04 9.54e-04 1.12e-03 8.06e-05 —1.45e-05
Micro —1.45e-05 —1.14e-05 9.50e-06 —3.10e-06 —1.42e-05 9.76e-05 8.06e-05 2.26e-05 1.06e-06
PicoHFLR —5.83e-06 —1.58e-06 —4.26e-06 1.43e-06 —2.37e-05 —3.88¢-06 —1.45¢-05 1.06e-06 2.71e-06
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Table A4. X covariance matrix estimated by Expectation—-Maximization algorithm for the component B1 in Com?.
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Syne Crypto Picol Pico2 Pico3 SNano RNano Micro PicoHFLR
Syne 5.99-04  0.00e+00 0.00e+00 0.00e+00 0.00e+00 0.00e+00  0.00e+00  0.00e+00  0.00e+00
Crypto 0.00e+00  3.49¢-05  0.00e+00 0.00e+00 0.00e+00 0.00e+00  0.00e+00  0.00e+00  0.00e+00
Picol 0.00e+00  0.00e+00 2.72e-04  0.00e+00 0.00e+00  0.00e+00  0.00e+00  0.00e+00  0.00e+00
Pico2 0.00e+00  0.00e+00 0.00e+00 9.98e-04  0.00e+00 0.00e+00  0.00e+00  0.00e+00  0.00e+00
Pico3 0.00e+00  0.00e+00 0.00e+00 0.00e+00 3.79e-03  0.00e+00  0.00e+00  0.00e+00  0.00e+00
SNano 0.00e+00  0.00e+00  0.00e+00  0.00e+00 0.00e+00 6.72e-03  0.00e+00  0.00e+00  0.00e+00
RNano 0.00e+00  0.00e+00 0.00e+00  0.00e+00 0.00e+00 0.00e+00 1.64e-03  0.00e+00  0.00e+00
Micro 0.00e+00  0.00e+00 0.00e+00 0.00e+00 0.00e+00 0.00e+00  0.00e+00  6.30e-06  0.00e+00
PicoHFLR  0.00e+00 0.00e+00 0.00e+00 0.00e+00  0.00e+00  0.00e+00  0.00e+00  0.00e+00 1.57e-06
Table A5. X covariance matrix estimated by Expectation—Maximization algorithm for the component B2 in Com?.
Syne Crypto Picol Pico2 Pico3 SNano RNano Micro PicoHFLR
Syne 2.17e-04  0.00e+00 0.00e+00 0.00e+00 0.00e+00  0.00e+00  0.00e+00  0.00e+00  0.00e+00
Crypto 0.00e+00 1.57e-04  0.00e+00 0.00e+00 0.00e+00  0.00e+00  0.00e+00  0.00e+00  0.00e+00
Picol 0.00e+00  0.00e+00 8.36e-05  0.00e+00 0.00e+00 0.00e+00  0.00e+00  0.00e+00  0.00e+00
Pico2 0.00e+00  0.00e+00 0.00e+00 1.09¢-03  0.00e+00  0.00e+00  0.00e+00  0.00e+00  0.00e+00
Pico3 0.00e+00  0.00e+00 0.00e+00 0.00e+00 3.31e-02  0.00e+00  0.00e+00  0.00e+00  0.00e+00
SNano 0.00e+00  0.00e+00 0.00e+00 0.00e+00 0.00e+00 2.14e-03  0.00e+00  0.00e+00  0.00e+00
RNano 0.00e+00  0.00e+00 0.00e+00 0.00e+00 0.00e+00 0.00e+00 2.26e-02  0.00e+00  0.00e+00
Micro 0.00e+00  0.00e+00 0.00e+00 0.00e+00 0.00e+00 0.00e+00 0.00e+00 7.57e-06  0.00e+00
PicoHFLR  0.00e+00 0.00e+00 0.00e+00 0.00e+00 0.00e+00  0.00e+00  0.00e+00  0.00e+00 9.23e-06
Table A6. X covariance matrix estimated by Expectation—Maximization algorithm for the component C1 in Com€.
Syne Crypto Picol Pico2 Pico3 SNano RNano Micro PicoHFLR
Syne 2.04e-04 2.29e-05 2.12e-05 —1.30e-05 1.18e-04 1.18e-05 5.82e-04  1.84e-05 1.36e-06
Crypto 2.29e-05 1.37e-04 1.30e-05 —6.25e-06  8.33e-05 1.17e-04 3.35e-04  1.74e-05 4.82e-06
Picol 2.12e-05 1.30e-05 1.65e-04  7.66e-07 5.03e-05 4.20e-05 3.02e-04  1.46e-05 2.57e-06
Pico2 —1.30e-05 —6.25¢-06 7.66e-07 3.53e-04 —6.69¢-04 1.61e-04 2.70e-04 —2.38e-05 —7.82e-07
Pico3 1.18e-04 8.33e-05 5.03e-05 —6.69¢-04 6.77¢-03 —2.26e-04 1.42e-04 5.24e-05 —1.43e-08
SNano 1.18e-05 1.17e-04 4.20e-05 1.61e-04 —2.26e-04 2.31e-03 2.47e-03  1.85e-04 2.02e-05
RNano 5.82e-04 3.35e-04 3.02e-04  2.70e-04 1.42e-04 2.47e-03 1.01e-02  3.72e-04 4.06e-05
Micro 1.84e-05 1.74e-05 1.46e-05 —2.38e-05 5.24e-05 1.85e-04 3.72e-04  5.66e-05 3.64¢-06
PicoHFLR  1.36e-06 4.82¢-06 2.57e-06 —7.82e-07 —1.43e-08 2.02e-05 4.06e-05  3.64e-06 4.18e-06
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Table A7. X covariance matrix estimated by Expectation—-Maximization algorithm for the component C2 in Com€ .

Syne Crypto Picol Pico2 Pico3 SNano RNano Micro PicoHFLR
Syne 6.07e-04 1.10e-04 1.26e-04 —3.41e-05 9.93e-05 1.18e-04 1.28e-03  5.43e-05 5.69e-06
Crypto 1.10e-04 8.94¢-05 5.94e-05 —3.95e-05 7.81e-05 2.73e-04 7.65e-04  4.42¢-05 5.78e-06
Picol 1.26e-04 5.94e-05 3.65e-04  1.20e-05 4.66e-05 1.24e-04 6.73e-04  3.67e-05 6.57e-06
Pico2 —3.41e-05 —3.95e-05 1.20e-05 1.16e-03 —5.00e-04 2.72e-04 6.15e-04 —1.20e-04 —7.26e-06
Pico3 9.93e-05 7.81e-05 4.66e-05 —5.00e-04  6.05e-03 —5.93e-05 3.37e-04 4.75e-05 5.02e-07
SNano 1.18e-04 2.73e-04 1.24e-04  2.72e-04 —5.93e-05 4.56e-03 5.80e-03  3.96e-04 4.30e-05
RNano 1.28e-03 7.65e-04 6.73e-04  6.15e-04 3.37e-04 5.80e-03 2.29e-02  8.55e-04 9.31e-05
Micro 5.43e-05 4.42e-05 3.67e-05 —1.20e-04 4.75e-05 3.96e-04 8.55e-04 7.71e-05 6.62e-06

PicoHFLR  5.69e-06 5.78e-06 6.57e-06 —7.26e-06 5.02e-07 4.30e-05 9.31e-05  6.62e-06 4.41e-06
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Figure A1. Variation of the salinity measurements during the cruise between 11 and 13 May. The horizontal lines correspond to the isohalines
that were chosen to characterize the frontal area. Green dots correspond to the water mass A, blue dots to the water mass B. Within the frontal
area, latitudinal limits were chosen according to Tzortzis et al. (2021). In this zone, orange dots correspond to the front, and grey crosses to
the transitional waters, 7', that are not taken for the data analyses.
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Figure A2. Violin plot of the phytoplankton groups biomass in the three water masses A, F' and B. Biomasses are expressed in mmolC m~3.
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Figure A3. Violin plot of the phytoplankton groups abundances in the three water masses A, F and B. Abundances are expressed
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Figure A5. Trace of the posteriors distributions of the parameters estimated by the second Bayesian model, final model.
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Figure A6. Boxplots of the standard deviation of the posterior distributions of the sensitivity analysis. Each column correspond to the
Aa i Ap:Ac estimation of a same condition: In the case frontal community is composed only by a mixture of adjacent water masses (i.e.
Ac = 0) with varying proportion of simulated A4 : Ag : Ac (i.e. 0.3:0.7:0; 0.4:0.6:0; 0.5:0.5:0; 0.6:0.4:0; 0.7:0.3:0). The two
last columns correspond to simulations where frontal community includes a new community Com® (Ac #0), here the proportion used
for simulations are the same as observed in the in situ dataset (i.e. L4 =0.22, A\g =0.08, Ac =0.7) and 0.45: 0.2 : 0.35. The dashed red
horizontal lines correspond to the true A values used to simulate the data in the mixtures. In each conditions the number of observations in
the simulated data in the front varies from 5 to 50. Each boxplot is based on the 10 values of the mean calculated on the 10 simulated datasets
for a same hypothesis and a same number of observations.
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Figure A7. (a) Spatial Distribution of stations belonging to cluster C1 (in dark orange), cluster C2 (in orange) and the NS-Hippodrome
transect stations (in black). The grey dots are the others stations of the cruise. (b) Temperature/Salinity diagram of the stations of the cruise.
The dots in dark orange correspond to cluster C1, in orange to cluster C2, in black to the NS-Hippodrome transect stations, and in grey are
the others stations of the cruise.
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