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Abstract. Several multi-site stochastic generators of zonal and meridional components of wind are proposed in

this paper. A regime-switching framework is introduced to account for the alternation of intensity and variability

that is observed in wind conditions due to the existence of different weather types. This modeling blocks time

series into periods in which the series is described by a single model. The regime-switching is modeled by a

discrete variable that can be introduced as a latent (or hidden) variable or as an observed variable. In the latter

case a clustering algorithm is used before fitting the model to extract the regime. Conditional on the regimes,

the observed wind conditions are assumed to evolve as a linear Gaussian vector autoregressive (VAR) model.

Various questions are explored, such as the modeling of the regime in a multi-site context, the extraction of

relevant clusterings from extra variables or from the local wind data, and the link between weather types extracted

from wind data and large-scale weather regimes derived from a descriptor of the atmospheric circulation. We

also discuss the relative advantages of hidden and observed regime-switching models. For artificial stochastic

generation of wind sequences, we show that the proposed models reproduce the average space–time motions of

wind conditions, and we highlight the advantage of regime-switching models in reproducing the alternation of

intensity and variability in wind conditions.

1 Introduction

In this section, we present the context of our work and then

the data used to compare the proposed Markov-switching au-

toregressive models.

Stochastic weather generators have been used to generate

artificial sequences of small-scale meteorological data with

statistical properties similar to the data set used for cali-

bration. Various wind condition generators at a single site

have been proposed in the literature; see Brown et al. (1984),

Flecher et al. (2010), and Ailliot and Monbet (2012). How-

ever, few models have been introduced in a multi-site con-

text (Haslett and Raftery, 1989; Bessac et al., 2015). Arti-

ficial sequences of wind conditions provided by stochastic

weather generators enable assessment risks in impact stud-

ies; see, for instance, Hofmann and Sperstad (2013). Here

we propose a multi-site generator for Cartesian components

of surface wind. As far as we know, only a few models have

been proposed to simulate time series of Cartesian coordi-

nates of wind {ut ,vt } (Hering et al., 2015; Hering and Gen-

ton, 2010; Ailliot et al., 2006; Wikle et al., 2001; Fuentes

et al., 2005). Except in Hering et al. (2015), these models

are designed for short-term wind prediction and not for the

generation of artificial conditions of {ut ,vt }. Consequently

they are not focused on reproducing the same statistics we

are interested in, namely, the marginal distribution of {ut ,vt }

and its spatiotemporal dynamics. In Hering et al. (2015), a

stochastic generator for multiple temporal and spatial scales

Published by Copernicus Publications.



2 J. Bessac et al.: Comparison of regime-switching autoregressive models for wind fields

is proposed. The proposed Markov-switching vector autore-

gressive model enables reproduction of many spatial and

temporal features; however, complex dependencies between

intensity and direction remain hard to model.

In the northeastern Atlantic, the spatiotemporal dynam-

ics of the wind field is complex. This area is under the in-

fluence of an unstable atmospheric jet stream whose large-

scale fluctuations induce local alternations between periods

with high wind intensity and strong temporal variability,

and less intense and variable periods. Scientists have pro-

posed describing the North Atlantic atmospheric dynamics

through a finite number of preferred states, namely, weather

regimes or weather types (Vautard, 1990). However, intro-

ducing regime-switching in the modeling of local wind, as

we propose in this paper, enables us to better reproduce the

spatiotemporal characteristics observed in the wind data. In

practice, describing a time series by regimes involves a par-

titioning into time periods in which the series is homoge-

neous and can be described by a single model. In this pa-

per, we propose various vector autoregressive (VAR) models

with regime-switching. One of the challenges is to achieve a

regime-switching that is physically consistent and that en-

ables appropriate describing of the local observation by a

VAR model. To this end, we introduce several frameworks

of regime-switching and compare them in terms of simula-

tion of wind data.

Depending on the availability of good descriptors of the

current weather state, regime-switching can be introduced

with either observed or latent regimes. Regimes are said to be

observed when they are identified a priori, before the model-

ing of the local dynamics. In this case, clustering methods are

run on adequate variables to obtain relevant regimes: either

the local variables or extra variables characterizing the large-

scale weather situation, such as descriptors of the large-scale

atmospheric circulation (Bardossy and Plate, 1992; Wilson

et al., 1992) or variables enabling the separation into dry

and wet states (Richardson, 1981; Flecher et al., 2010). For

wind models, the wind direction can be considered since it

is a good descriptor of synoptic conditions. In Gneiting et al.

(2006), the wind direction is used both to extract regimes and

to parameterize of the predictive distribution. In this paper,

we propose a priori clusterings based on both large-scale and

local variables.

When the regimes are said to be latent, they are intro-

duced as a hidden variable in the model. This framework is

more complex from a statistical point of view and the con-

ditional distribution of wind given that the regime has to be

simple and tractable. Hidden Markov models (HMMs) have

been widely used for meteorological data (Zucchini and Gut-

torp, 1991; Hughes et al., 1999; Thompson et al., 2007).

Hidden Markov-switching autoregressive (MS-AR) models

are a generalization of HMMs allowing temporal dynamics

within the regimes (Hamilton, 1989). Models with regime-

switching improve the modeling of wind intensity time se-

ries with classical autoregressive–moving-average (ARMA)

models; see Ailliot and Monbet (2012), where the wind speed

is modeled at one site. Here we propose a hidden MS-AR

model and compare it with several models with observed

regime-switching.

To the best of our knowledge, no comparison between ob-

served and latent regime-switching has been proposed in the

field of stochastic generators of wind conditions. In Pinson

et al. (2008), a comparison is presented in terms of wind

prediction between models with hidden regimes and models

driven by observed regimes. In this work, we compare both

kinds of models in a simulation framework.

In the multi-site context, the regime can either be common

to all sites (i.e., scalar; see Ailliot et al., 2009) or introduced

as a site-specific regime (Wilks, 1998; Kleiber et al., 2012;

Khalili et al., 2007; Thompson et al., 2007), which enables

one to account for a wide range of space–time dependencies.

However, a site-specific regime appears to be computation-

ally challenging (Wilks, 1998). We will show that the choice

of a regional regime is reasonable when a homogeneous area

is selected.

The paper is organized as follows. MS-AR models are in-

troduced in Sect. 3, and their inference is described in cases

of both observed and latent regime-switching. The question

of a regional regime is addressed in Sect. 4. In Sect. 5, we in-

troduce and discuss different sets of a priori regimes obtained

by clustering. In Sects. 7 and 8, respectively, we discuss the

advantages of the proposed models and highlight the differ-

ences between observed and latent regime-switching models.

2 Wind data

The data under study are zonal (west–east) and merid-

ional (north–south) surface wind components {ut ,vt } at

10 m a.s.l. (above sea level) extracted from the ERA-Interim

data set produced by the European Centre for Medium-

Range Weather Forecasts (ECMWF). It can be freely

downloaded from the url http://apps.ecmwf.int/datasets/data/

interim-full-daily/ and used for scientific purposes.

We focus on gridded locations between latitudes 46.5 and

48◦ N and longitudes 6.75 and 10.5◦W (15×7 grid points;

see Fig. 1). The data set we have extracted consists of

32 December–January blocks of wind data from Decem-

ber 1979 to January 2011 picked every 6 h. Furthermore,

the statistical inference is based on the assumption that the

32 December–January blocks of wind components are 32 in-

dependent realizations of the same stationary process, a rea-

sonable assumption given the strong interannual variability

of the wintertime atmospheric dynamics at such a local scale.

The training data set is then composed of 32 independent

blocks and each block has 4× 62 observations. In order to

study the relevance of using common regimes for all the

locations, a spatial hierarchical clustering has been used to

choose a homogeneous area (see Fig. 1). The clustering is run

on the process of moving standard deviation of wind speed,
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Figure 1. Left: spatial hierarchical clustering of the moving variance associated with wind speed with four clusters (symbols). Right: joint

and marginal distribution of {ut ,vt } at the central location 10; contour lines of the estimated joint density.

which is described more precisely in Sect. 7. This process

is a good descriptor of the temporal characteristics of wind

time series (see Fig. 4), and it is computed as the standard de-

viation of wind speed over nine consecutive time steps (i.e.,

2 days). The dendogram associated with the clustering sug-

gests the use of four clusters that are depicted in Fig. 1. These

four clusters are likely to be divided into an inland cluster

(+), an intermediate cluster between ocean and land (4), a

cluster corresponding to flows that propagate into the Bay

of Biscay (◦), and a cluster for flows that propagate toward

northern Europe (×).

Components {ut } and {vt } show a complex relationship, as

partially reflected by the joint distribution of {ut ,vt } (Fig. 1).

The margin of {ut } reveals two separate modes, whereas that

of {vt } does not exhibit a clear bimodality. The contour lines

show that the density is low around the point (0,0). It in-

dicates that the transitions between the two modes of each

component are not realized through a vanishing of the field,

but rather through a rotation of the field. The following trans-

formation is used on both components {ut } and {vt }. This

transformation with α > 1 facilitates the modeling of the bi-

modality:{
ũt = Uαt cos(8t ),

ṽt = Uαt sin(8t ),
(1)

where {Ut } and {8t }, respectively, denote wind speed and

wind direction. In practice, α is chosen empirically equal to

1.5. This transformation has proven helpful in modeling the

distribution of {ut ,vt } in Ailliot et al. (2015).

3 Markov-switching vector autoregressive models

In this section, we introduce the proposed models and discuss

their parameter estimation in cases of both observed and la-

tent regimes.

3.1 The models

In this paper, we consider the following class of models. Let

St be a discrete Markov chain with values in {1, . . .,M} de-

scribing the current weather type as a function of time t . Con-

ditional on the weather type, the observed wind conditions

are modeled as a vector autoregressive model. Given the cur-

rent value of St , the observation Y t is written as

Y t =A
(St )
0 +A

(St )
1 Y t−1+A

(St )
2 Y t−2+ . . . +A(St )

p Y t−p

+ (6(St ))−1/2εt . (2)

Y ∈ R2K represents the observed power-transformed wind

components {ut ,vt } at the K locations, given by the sys-

tem (Eq. 1). For i ∈ {1, . . .,M}, A
(i)
0 is a 2K-dimensional

vector, A
(i)
1 , . . .,A

(i)
p ,6

(i) are 2K × 2K matrices, and ε

is a Gaussian white noise of dimension 2K . Conditional

independencies between S and Y are displayed on the

following directed acyclic graph (DAG) for p = 1 (see

Durand, 2003, for additional information about DAGs).

mation is used on both components {ut} and {vt}. This transformation with α > 1 facilitates the

modeling of the bimodality:115




ũt = Uαt cos(Φt)

ṽt = Uαt sin(Φt),
(1)

where {Ut} and {Φt} respectively denote wind speed and wind direction. In practice, α is chosen

empirically equal to 1.5. This transformation has proven helpful in modeling the distribution of

{ut,vt} in (Ailliot, Bessac, Monbet, and Pene, 2015).

2 Markov-switching vector autoregressive models120

In this section, we introduce the proposed models and discuss their parameter estimation in cases of

both observed and latent regimes.

2.1 The models

In this paper, we consider the following class of models. Let St be a discrete Markov chain with

values in {1, ...,M} describing the current weather type as a function of time t. Conditionally to the125

weather type, the observed wind conditions are modeled as a vector autoregressive model. Given the

current value of St, the observation Yt is written as

Yt =A(St)
0 +A(St)

1 Yt−1 +A(St)
2 Yt−2 + ...+A(St)

p Yt−p + (Σ(St))−1/2εt. (2)

Y ∈ R2K represents the observed power-transformed wind components {ut,vt} at the K locations,

given by the system (1). For i ∈ {1, ...,M}, A(i)
0 is a 2K-dimensional vector, A(i)

1 , ...,A
(i)
p ,Σ(i)130

are 2K × 2K-matrices, and ε is a Gaussian white noise of dimension 2K. Conditional independen-

cies between S and Y are displayed on the following directed acyclic graph (DAG) for p= 1 (see

(Durand, 2003) for additional information about DAGs):

· · · //

��

St−1
//

��

St //

��

St+1
//

��

· · ·

��· · · // Yt−1
// Yt // Yt+1

// · · ·

In this model, the regime S can be latent or observed; both cases are discussed, respectively, in135

Sections 3 and 4. The parameter estimation of the model can be performed by maximum likelihood

but in a different way in each framework.

For both kind of models, covariates can be included. The easiest way is to include them in the

intercept parameter A0 or in transitions between regimes. Transitions between regimes can be

parametrized with a covariate (when regimes are latent, a parameterization with an extra covari-140

ate is given in (Hughes and Guttorp, 1994) and with the studied variable in (Ailliot, Bessac, Monbet,

5

In this model, the regime S can be latent or observed; both

cases are discussed, respectively, in Sects. 4 and 5. The pa-

rameter estimation of the model can be performed by maxi-

mum likelihood but in a different way in each framework.

For both kinds of models, covariates can be included. The

easiest way is to include them in the intercept parameter

A0 or in transitions between regimes. Transitions between

regimes can be parameterized with a covariate (when regimes

are latent, a parameterization with an extra covariate is given

in Hughes and Guttorp (1994) and with the studied variable

in Ailliot et al. (2015) and in Vrac et al. (2007) when regimes

www.adv-stat-clim-meteorol-oceanogr.net/2/1/2016/ Adv. Stat. Clim. Meteorol. Oceanogr., 2, 1–16, 2016
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are defined a priori). In the context of multi-site models, the

choice of the covariate of non-homogeneous transitions is

delicate. We do not discuss this topic here and consider only

homogeneous transition models.

To avoid over-parameterization of the conditional models,

we first work with a reduced data set. In the following, all the

proposed models will be fitted on the subset of sites (1, 6, 10,

13, 18), the extension to a wider region being left for future

studies.

3.2 Estimation by maximum likelihood

First, let us suppose that the complete set of observa-

tions (y1, . . .yT , s1, . . . sT ) is available, which is the case in

Sect. 5. Assume that s0, y−1, and y0 are observed. Then the

complete log-likelihood, associated with an autoregressive

order p = 2 (we choose p = 2 according to a previous work

– Ailliot et al., 2015), is written as

log(L(θ;y1, . . .yT , s1, . . . sT |y−1,y0, s0))

= log(L(θ (Y )
;yT1 |y−1,y0, s

T
0 ))

+ log(L(θ (S)
;sT1 |y−1,y0, s0)), (3)

where θ = (θ (S),θ (Y )). θ (Y ) corresponds to the parameters of

the VAR models, θ (S)
=5= (π i,j )i,j=1,···,M the transition

matrix 5 of the Markov chain S, and yT1 = (y1, . . . ,yT ).

Let us denote ni,j the number of occurrences of the event

{(St ,St+1)= (i,j )} for t ∈ {1, . . . ,T − 1}, ni,. =
∑M
j=1ni,j

and ni = ni,.+ δ{sT=i}, where δ is the Kronecker symbol, the

total number of occurrences of the regime i:

log(L(θ (Y )
;y1, . . .,yT |y−1,y0, s

T
0 ))

=

T∑
t=1

log(p(yt |yt−1,yt−2, st ))

=

M∑
i=1

∑
t∈{t |st=i}

log(p(yt |yt−1,yt−2, st ))

=

M∑
i=1

ni(−
d

2
log(2π )−

1

2
log(det(6(i)))

−

∑
t∈{t |st=i}

1

2
e′t (6

(i))−1et ,

where et = (yt −A
(i)
0 −A

(i)
1 yt−1−A

(i)
2 yt−2).

For each i ∈ {1, . . . ,M}, each function

θ (Y ,i)
→ ni(−

d

2
log(2π )−

1

2
log(det(6(i)))

−

∑
t∈{t |st=i}

1

2
e′t (6

(i))−1et

can be maximized separately, where θ (Y ,i)
=

(A
(i)
0 ,A

(i)
1 ,A

(i)
2 ,6

(i)). The optimal estimates of A
(i)
1 and A

(i)
2

are computed by writing the VAR(2) model as VAR(1): for

all t ∈ {t |st = i},(
Y t
Y t−1

)
=

(
A

(i)
1 A

(i)
2

IdK 0

)(
Y t−1

Y t−2

)
+

(
εt
0

)
,

where IdK is the K ×K-identity matrix. Let us write

A(i)
=

(
A

(i)
1 A

(i)
2

IdK 0

)
and

Zt =

(
Y t
Y t−1

)
;

expressions of Â
(i)
1 and Â

(i)
2 are extracted from the estimate

Â(i)
=

( ∑
t∈{t |st=i}

ZtZ
′

t−1

)( ∑
t∈{t |st=i}

Zt−1Z
′

t−1

)−1

. (4)

The other optimal estimates are

Â
(i)
0 = (IdK− Â

(i)
1 − Â

(i)
2 )µ̂(i), (5)

where µ̂(i)
=

1

ni

∑
t∈{t |st=i}

yt is the empirical mean of Y in

regime i and

6̂(i)
=

1

ni

∑
t∈{t |st=i}

êt ê
′
t . (6)

6̂(i) is the empirical variance of the empirical residuals de-

fined as êt = (yt − Â
(i)
0 − Â

(i)
1 yt−1− Â

(i)
2 yt−2).

Concerning the Markov chain S,

log(L(θ (S)
;s1, . . . , sT |y−1,y0, s0))=

M∑
i,j=1

ni,j log(π i,j ),

the associated maximum likelihood estimator is

π̂ i,j =
ni,j

ni,.
.

When observations only of process Y are available and the

realizations of S are not given a priori, as in Sect. 4, one in-

ference method is to use the expectation–maximization (EM)

algorithm, which is commonly run to estimate the parame-

ters of models with latent variables by maximum likelihood.

Since S is not observed, the EM algorithm aims at maximiz-

ing the incomplete log-likelihood function based on the ob-

servations Y :

θ→ Eθ (log(L(θ;Y 1, . . . ,Y T ,S1, . . . ,ST ))|Y T
−1

= yT
−1,S0 = s0).

It is proven that through the iterations of the algorithm, a

convergent sequence of approximation of the maximum like-

lihood estimator of θ is computed.

Adv. Stat. Clim. Meteorol. Oceanogr., 2, 1–16, 2016 www.adv-stat-clim-meteorol-oceanogr.net/2/1/2016/
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Figure 2. Time series of wind speed in January 2012 and a posteriori regimes from the fitting of a H-MS-VAR. The lighter is the grey; the

smaller is the determinant of 6(i). From top to bottom: sites 1, 10, and 18 when the model is fitted at a single location; fourth panel from the

top: extracted regimes when the model is fitted at the five locations (1, 6, 10, 13, 18). Bottom panel: wind direction and regimes at site 10.
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The EM algorithm cycles through two steps: the expec-

tation step and the maximization step (Wu, 1983; Demp-

ster et al., 1977). The E step is performed through forward–

backward recursions (see Hamilton, 1990 for hidden MS-AR

models) that enable one to compute the smoothing probabil-

ities P (St |Y
T
−1 = y

T
−1,S0 = s0). At the M step, optimal ex-

pressions of parameters of θ (Y ), given in Eqs. (4), (5), and (6),

are used. In each regime i, however, each observation yt is

weighted by the probability P (St = i|Y
T
−1 = y

T
−1,S0 = s0),

for instance,

µ̂(i)
=

1∑T
t=1P (St = i|Y

T
−1 = y

T
−1,S0 = s0)

T∑
t=1

P (St = i|Y
T
−1 = y

T
−1,S0 = s0)yt . (7)

The transition matrix is estimated from quantities P ({St =

i,St+1 = j}|Y
T
−1 = y

T
−1,S0 = s0) that are derived at the E

step.

In this paper, we use AP-MS-VARC to denote the a pri-

ori regime-switching model associated with the clustering

C, and we use H-MS-VAR to denote the hidden regime-

switching model.

4 Regime definition in a multi-site context

When the current weather state is not estimated a priori, it

is introduced as a latent variable. Hidden regime-switching

models have been used in various fields; see Zucchini and

MacDonald (2009) for a wide range of applications of hid-

den Markov models. In a previous work (Ailliot et al., 2015)

a single-site model for {ut ,vt } was proposed; the proposed

hidden Markov-switching autoregressive model reveals good

qualities to describe both marginal and joint distributions of

{ut ,vt } as well as the temporal dynamics of the wind at one

location. In this paper we propose an extension of this model,

when the process {ut ,vt } is multi-site. In a multi-site context,

the regime can be site-specific or common to all stations.

Here, the assumption of a common regional regime is

investigated, and we show that this assumption is accept-

able when the considered area is homogeneous. The ho-

mogeneous single-site MS-AR model introduced in Ailliot

et al. (2015) for {ut ,vt } with M = 3 regimes and an autore-

gressive order p = 2 has been fitted at each site. The most

likely regimes associated with the data are extracted from

the estimation procedure of H-MS-VAR models described in

the previous section. At each time, the regime corresponds

to argmaxj∈{1,···,M}P (St = j |Y
T
−1 = y

T
−1,S0 = s0); see Zuc-

chini and MacDonald (2009). In order to properly compare

the regimes, they are ordered according to the increasing

value of the determinant of the matrix 6(i). The intuition

for sorting regimes according the determinant of 6(i) is that

we expect the innovations to be more volatile, and conse-

quently 6(i) to have greater eigenvalues, in cyclonic weather

regimes. Conversely, we expect to observe innovations more

persistent in time in calm weather regimes; this is associated

with smaller eigenvalues of 6(i). The spatiotemporal coher-

ence of the regimes of each of the 18 sites is checked and

reveals a strong homogeneity that motivates the use of a re-

gional regime in this area.

The sequences of regimes are compared in Fig. 2; time se-

ries of a posteriori regimes and wind speed are depicted. The

last two regimes are less coherent from one site to another.

This effect is partly explained by the fact that these regimes

are less persistent in time, especially the third one (see Ta-

ble 1).

Moreover, we can notice an eastward propagation in wind

events, the darkest regimes often being observed at western

stations (station 1) prior to eastern sites (10 and 18). The bot-

tom panel of Fig. 2, which depicts the sequences of regimes

associated with the model fitted on the set of all locations

with a regime common to all locations, reveals that this re-

gional regime is coherent with the local ones, although it is

less persistent. Indeed, when fitting the model to several sta-

tions, the regime has to embed some spatial heterogeneity

that is likely to decrease the temporal persistence.

In Fig. 3, probabilities of occurrence of a given regime

conditional on the simultaneous occurrence of the same

regime at site 10 are depicted for all sites. In each picture,

conditional probabilities should be compared with the refer-

ence value given at location 10, which is 1 by construction.

The first regime has the best spatial coherence, and the third

regime, which is the least persistent regime, is less coherent

spatially. The ranges of values of these probabilities indicate

a satisfying consistency between the regimes across sites.

At each site, the physical interpretation of each regime is

similar. Indeed, the first regime corresponds mainly to anti-

cyclonic conditions with easterly winds and a slowly varying

intensity (the variance of the innovation of the AR model is

lower than in the two other regimes, and the first AR coeffi-

cient is larger; see Table 1).

The two other regimes correspond to cyclonic conditions

with westerly winds and a higher temporal variability in

the intensity (see Fig. 4). These two regimes are discrim-

inated mainly by the temporal variability, which is higher

in the third regime. Moreover, the wind direction, not de-

picted here, slightly differs: from southwesterlies in the sec-

ond regime to northwesterlies in the third regime.

In Fig. 4, we can notice that wind conditions with weak

temporal variability observed in the first regime are asso-

ciated with weak values of the moving mean and variance

processes, whereas more volatile periods in the second and

third regimes are characterized by higher values of moving

mean and variance. To the best of our knowledge, few statis-

tics enable us to characterize the alternation associated with

regime-switching. These two processes of moving mean and

standard deviation enable us to characterize the alternation

of variability associated with the observed regime-switching,

and will be used in the following sections.

Adv. Stat. Clim. Meteorol. Oceanogr., 2, 1–16, 2016 www.adv-stat-clim-meteorol-oceanogr.net/2/1/2016/
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Figure 3. Leftmost panel: matrix with the number of the station is printed; then, from left to right, conditional probabilities of occurrence

of regime i = 1,2,3 at all sites conditional on the simultaneous occurrence of the same regime at site 10; in each pixel, the value of the

conditional probability is plotted.

Coefficients of the autoregressive process Y in each

regime and the transition matrix at each site are compara-

ble and spatially coherent (see Table 1). Other criteria such

as the average field of {ut ,vt } in each regime and the distri-

bution of {8t } in each regime were also explored and suggest

similarities between regimes at all locations.

The assumption of a regional regime seems appropriate in

the considered area and is thus kept for the modeling of the

multi-site wind in the following.

5 Observed regime-switching autoregressive

models

Conversely to the previous section, one may derive the

regimes separately from the fitting of the conditional model.

For such a priori regime-switching models, the derivation

of observed regimes can be done with appropriate cluster-

ing methods. We seek weather states that are distinct from

one other and in which the data are homogeneous. Cluster-

ing can be run either on the local variables under study or

on extra variables: the former leads to weather states that are

more appropriate to the local data, while the latter can pro-

vide more meteorologically consistent regimes, for example,

with more information about the large-scale situation. In this

subsection, we propose three clusterings, which differ by the

clustering method and/or by the variables used to derive the

a priori regimes.

5.1 Derivation of observed regimes from extra variables:

CZ500

As a first clustering, we use a classification into four large-

scale weather regimes that is commonly used in climate

studies to characterize the wintertime atmospheric dynamics

over the North Atlantic/European sector (Michelangeli et al.,

1995; Cassou, 2008; Najac, 2008). These regimes can be de-

scribed as follows.

– The positive phase of the North Atlantic Oscillation

(hereafter NAO+), characterized by a strengthening of

both the Azores High and the Islandic Low, which rein-

forces the westerlies.

– The negative phase of the NAO (NAO−), its symmetri-

cal counterpart

– The Scandinavian blocking (BL), characterized by a

strong anticyclone over northern Europe able to totally

block the westerly flow over western Europe

– The Atlantic Ridge (AR), characterized by a strong

west–east pressure dipole bringing polar air masses over

western Europe

At the local scale of our area of study, these regimes

are, respectively, associated with strong southwesterly flows

(NAO+), weak westerly flows (NAO−), stable southerly or

easterly flows (BL), and northerly flows (AR).

To derive these regimes, we use the same methodology

as in Cattiaux et al. (2013). We perform a k-means cluster-

ing on the 3607 daily mean maps of 500 mb geopotential

height (Z500) anomalies (i.e., mean-corrected fields) over

the North Atlantic/European sector (90◦W–30◦ E, 20–80◦ N)

corresponding to days of December, January, and February

1981–2010. Daily Z500 data are downloaded from the ERA-

Interim archive. In order to reduce the computational time,

the k-means algorithm is performed on the first 10 princi-

pal components (PCs) of the Z500 anomalies time series.

These PCs are time series corresponding to the projections

of the Z500 anomalies onto the empirical orthogonal func-

tions (EOFs), which are eigenvectors of the spatial covari-

ance matrix of the Z500 field. Such a decomposition enables

extraction of the main modes of variability of the spatiotem-

poral process; here, the first 10 EOFs explain 90 % of the

total variance. Eventually, the obtained daily classification is

converted to a four-times-daily classification by repeating the

same regime for the four time steps of each day, a reasonable

approach given the smoothness of the Z500 both in time and

space. In the following, we denote this clustering as CZ500.

www.adv-stat-clim-meteorol-oceanogr.net/2/1/2016/ Adv. Stat. Clim. Meteorol. Oceanogr., 2, 1–16, 2016
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Table 1. Parameter values obtained when fitting a H-MS-VAR at the different sites: diagonal of the transition matrix 5, coefficients of the

autoregressive model in each regime, and logarithm of the determinant of 6(i).

Diagonal of 5 AR coefficients (A
(i)
1

(1,1),A
(i)
1

(2,2)) log(det(6(i)))

Site/regime R1 R2 R3 R1 R2 R3 R1 R2 R3

Site 1 0.93 0.83 0.64 (1.27, 1.16) (1.15, 1.3) (0.62, 0.63) 5.62 8.87 11.96

Site 6 0.92 0.83 0.71 (1.27, 1.02) (1.2, 1.28) (0.61, 0.72) 5.55 8.59 11.79

Site 10 0.93 0.84 0.74 (1.25, 1.19) (1.17, 1.27) (0.74, 0.71) 5.55 8.67 11.79

Site 13 0.93 0.81 0.64 (1.22, 1.24) (1.17, 1.25) (0.65, 0.65) 5.77 9 11.96

Site 18 0.93 0.83 0.73 (1.26, 1.12) (1.17, 1.25) (0.67, 0.68) 5.72 8.73 11.83
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Figure 4. Top panel: moving mean of wind speed computed on 2-day intervals (nine time steps) for each regime of the H-MS-VAR model

fitted at site 10. Bottom panel: same for moving standard deviation.
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5.2 Derivation of observed regimes from the local

variables: CEOF(u,v) and CDiff(u,v)

To derive observed regimes from local wind variables, one

can first use a k-means clustering procedure similar to the

one used for CZ500. However, while CZ500 provides persis-

tent regimes in which the conditional model satisfyingly de-

scribes {ut ,vt }, local regimes resulting from such a k-means

clustering are not persistent enough to reliably estimate the

conditional VAR model. Consequently, in this subsection, we

perform the local clustering via a hidden Markov model with

Gaussian probability of emission.

The hidden structure of the Markov chain provides more

stable regimes than with a k-means clustering. It corresponds

to an H-MS-VAR model with VAR models of order p = 0.

The EM algorithm is used to process the clustering, and the

number of regimes is chosen to be 3. This number provides

the most physically relevant local regimes; a greater num-

ber of regimes indeed leads to less discriminative regimes in

terms of local wind conditions (not shown).

Then two sets of descriptors of the data (i.e., local vari-

ables) are proposed. The first partition, denoted CEOF(u,v),

is obtained by clustering the time series associated with the

first two EOFs of the anomalies of {ut ,vt }, which explain

94% of the total variance. The second partition involves de-

scriptors of the conditional distribution of p(Y t |Y t−1), in or-

der to find a clustering that may be better adapted to the de-

scription of the conditional distribution by an autoregressive

model. A simplified way to describe the dynamics is to con-

sider the bivariate process {ut − ut−1,vt − vt−1}. This set of

variables enables construction of regimes that discriminate

well the temporal variability of the process {ut ,vt }. Let us

denote this second local clustering as CDiff(u,v).

6 Analysis of the proposed clusterings

The proposed clusterings are compared through various anal-

yses. We seek a clustering that is physically meaningful and

appropriate in terms of conditional autoregressive models.

For a proper comparison, for all clusterings, we decide to

order regimes from the more persistent to the less persistent.

This is done according to the determinant of the matrix 6(i).

6.1 First visual comparison

Sequences of regimes from the proposed clusterings are

shown in Fig. 5. The top panel shows that CZ500 has very

persistent regimes. This result is expected because it de-

scribes the alternation between the preferred states of the

large-scale atmospheric dynamics, whose typical timescale

is a few days. One can see that the less volatile wind con-

ditions are associated with the BL and AR phases, whereas

the most variable wind conditions occur during the two NAO

phases; see Fig. 10. The three bottom panels correspond to

local clusterings. For all of them, the first regime is associ-

ated with the less volatile conditions with weakest intensity,

whereas the second and third regimes are generally associ-

ated with moderate and high intensities of wind. However,

the behavior of the regime-switching differs from one clus-

tering to another, probably because of the different choice of

descriptors ({ut ,vt } vs. {ut−ut−1,vt−vt−1}) and/or methods

(observed vs. latent) used in the clustering. The bottom panel

of Fig. 2 shows that the second regime is a precursor to the

third one (which is confirmed by the transition probabilities

between regimes), and that this second regime is associated

most of the time with rises in wind speed intensity.

In Fig. 6, the average fields corresponding to each regime

of the four clusterings are plotted. The top row highlights

the difficulty of discriminating local wind features when us-

ing regimes defined from a large-scale circulation variable.

While the AR and NAO+ regimes of CZ500 are associated

with strong local wind signatures (as described in Sect. 5.1),

the BL and NAO− regimes have a weaker discriminatory

power in the local wind data. This issue was also observed

in Najac (2008).

Since different descriptors are used, CDiff(u,v) and

CEOF(u,v) lead to very different results. CEOF(u,v) leads to the

most physically consistent regimes: a northeasterly regime, a

northwesterly one, and a southwesterly one, which are flows

corresponding to several of the large-scale weather regimes.

The last two regimes are associated with stronger intensities.

From the derivation of this clustering, one naturally finds

regimes that correspond to the main mean patterns of vari-

ability of the fields.

The regimes of CDiff(u,v) have less persistence, which com-

plicates their meteorological interpretation. The first regime

corresponds to periods of weak wind intensities. The last

two regimes are southwesterly regimes with a different in-

tensity from one to the other. The averaged fields of the

regimes extracted from H-MS-VAR are similar to the ones of

CDiff(u,v) despite some punctual discrepancies in their time

series (Fig. 5). The first regime of these two clusterings

seems associated with blocking situations.

To compare the associations between the different classifi-

cations, a multiple correspondence analysis is made between

the four categorical variables that represent each classifica-

tion. This analysis can be viewed as an analog of a principal

component analysis for categorical variables where the as-

sociations between the variables are measured with the Chi-

squared distance. The regimes of each classification are pro-

jected on the first two components and displayed in Fig. 7.

These two axes enable one to account for 44 % of the vari-

ance, which is not low for such an analysis. The other axes

are not considered because they do not bring enough use-

ful information. Note that this analysis does not account for

the temporal dependence in each classification. The overall

structure tends to associate the three classifications CEOF(u,v),

CDiff(u,v), and H-MS-VAR, except for the third regime of

CEOF(u,v). The classifications CDiff(u,v) and H-MS-VAR are

very close in this projection, which means that their regimes

www.adv-stat-clim-meteorol-oceanogr.net/2/1/2016/ Adv. Stat. Clim. Meteorol. Oceanogr., 2, 1–16, 2016
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Figure 5. Time series of wind speed in January 2012 and a priori regimes extracted from the proposed methods above. The darker is the grey;

the smaller is the determinant of 6(i). From top to bottom: CZ500, CEOF(u,v), CDiff(u,v), and regimes from the fitting of the H-MS-VAR

model.

mainly occur at the same time, and this coincides with Fig. 5.

The first axis contrasts time-persistent regimes with less per-

sistent ones. Regime BL is close to regimes R1 of CEOF(u,v),

CDiff(u,v), and H-MS-VAR; this is also seen in Table 3 and

is in agreement with the average fields of these regimes dis-

played in Fig. 6. The second axis contrasts regimes R2 of

H-MS-VAR and CDiff(u,v) with regimes R3, which is also a

contrast between persistent and less persistent regimes. Most

of these similarities between the regimes are also seen in

Table 2 through the logarithm of the covariance of the in-

novations and the percentage of time spent in each regime.

Regime AR from CZ500 seems more difficult to associate

with other regimes. Regime R3 from CEOF(u,v) is associated

Adv. Stat. Clim. Meteorol. Oceanogr., 2, 1–16, 2016 www.adv-stat-clim-meteorol-oceanogr.net/2/1/2016/
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Figure 6. Average fields of {ut ,vt } in each regime of the clusterings, from top to bottom: CZ500, CEOF(u,v), CDiff(u,v), and from the fitting

of H-MS-VAR on the set of five locations.

with weather regime NAO+, which coincides with Table 3

and Fig. 6.

6.2 Quantitative analyzing

Quantitative criteria are considered in order to complete this

analysis. The optimal value of the complete log-likelihood

of the model is generally a good measure of the statistical

relevance of a model. The complete log-likelihood, given in

Eq. (3), evaluated at the maximum likelihood estimator of

θ̂ , is written in the case of observed regime-switching as the

www.adv-stat-clim-meteorol-oceanogr.net/2/1/2016/ Adv. Stat. Clim. Meteorol. Oceanogr., 2, 1–16, 2016
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Table 2. Np is the number of parameters. Values are computed from models fitted on {ut ,vt } at the five locations (1, 6, 10, 13, 18).

BIC log-L log-L Np log(det(6(i))) % of time spent

Model of S of Y R1 R2 R3 R4 R1 R2 R3 R4

Unconditional VAR 542 640 – −269 825 265 36.4 – – – – – – –

AP-MS-VARCZ500
542 730 −1510 −263 808 1072 29.8 30.3 39 38.1 0.27 0.18 0.2 0.34

AP-MS-VARCEOF(u,v)
545 730 −2331 −266 015 801 28.9 33.3 38.9 – 0.31 0.42 0.27 –

AP-MS-VARCDiff(u,v)
520 759 −4762 −251 099 801 20.2 34.1 48.1 – 0.44 0.41 0.15 –

H-MS-VAR 459 458 – −229 616 801 18.4 32.1 48.4 – 0.43 0.41 0.16 –
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sum of the following two terms:

log(L(θ̂ (Y )
;yT1 |s

T
1 ))=−

T d log(2π )

2
−
T d

2

−

M∑
i=1

ni log(det(6̂(i)))

and

log(L(θ̂ (S)
;s1, . . . , sT ))=

M∑
i,j=1

ni,j log
(ni,j
ni,.

)
.

Note that the first term is a function of the total time spent

in each regime and the associated determinant of covariance

matrix of innovation (note that the one-step-ahead error of

the forecast is linked to this quantity). The longer the time

spent in a regime with a weak determinant of covariance of

innovation, the greater the log-likelihood (see Table 2). The

maximal log-likelihood of θ (S) is equal to the opposite of

the conditional entropy of St given St−1. The conditional

entropy is classically used as a quality measure of cluster-

ing. In prediction, the weaker the entropy, the stronger the

predictability of St given St−1. More generally one tends to

minimize this measure. Because of the range of values of

the log-likelihood of θ (Y ), the value of that of θ (S) has a low

contribution to the complete log-likelihood. If the complete

log-likelihood is used to select models, the persistence of the

Markov chain has a low impact. BIC indexes are also given

in Table 2, where BIC=−2logL+Np log(Nobs), with L the

likelihood of the model, Np the number of parameters and

Nobs the number of observations. The BIC index enables one

to consider a compromise between a model with a high like-

lihood and its parsimony. Note that one should not compare

BIC indexes of a priori and latent regime-switching models.

However, the BIC indexes of these two classes of models

can be compared with that of the unconditional VAR model,

since it is a particular case.

The clustering CDiff(u,v) provides the greatest value of

complete log-likelihood. The lower value of log-likelihood

of S, with shorter persistence in the different regimes com-

pared with the other models, is compensated for by a larger

value of log-likelihood of Y and thus a longer time spent

in regimes with low variances of innovation. The three pro-

posed AP-MS-VAR models lead to a satisfying description of

the marginal and joint distributions and space–time covari-

ances (not shown). The model AP-MS-VARCDiff(u,v)
, which

exhibits the best likelihood, performs the most accurately

among the AP-MS-VAR models to reproduce the moving av-

erage and moving variance processes; see Sect. 7. Besides, in

terms of BIC indexes, the smallest value among the AP-MS-

VAR models is that of AP-MS-VARCDiff(u,v)
, and it is also

greater than that of the VAR model. In the following, the

VAR model with shifts defined by CDiff(u,v) is kept for fur-

ther comparisons with the H-MS-VAR model in simulation;

see Sect. 7. We choose this model although it is not the most

physically meaningful because it leads to better results ac-

cording to our criterion.

6.3 Link between large-scale weather regimes and local

ones

In this section we quantitatively compare the large-scale

regimes described by CZ500 with the local ones derived from

Adv. Stat. Clim. Meteorol. Oceanogr., 2, 1–16, 2016 www.adv-stat-clim-meteorol-oceanogr.net/2/1/2016/
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Table 3. Joint probability of occurrence of the three local regimes identified by the proposed models in rows and the four large-scale regimes

in columns.

CEOF(u,v) CDiff(u,v) H-MS-VAR

BL AR NAO− NAO+ Total BL AR NAO− NAO+ Total BL AR NAO− NAO+ Total

R1 0.17 0.06 0.08 0.01 0.32 0.15 0.10 0.07 0.13 0.45 0.13 0.09 0.07 0.14 0.43

R2 0.04 0.10 0.05 0.08 0.27 0.09 0.06 0.09 0.16 0.40 0.10 0.06 0.09 0.15 0.41

R3 0.07 0.02 0.07 0.26 0.42 0.03 0.02 0.04 0.06 0.15 0.04 0.02 0.05 0.06 0.16

Total 0.28 0.18 0.20 0.35 1 0.27 0.18 0.20 0.35 1 0.27 0.17 0.21 0.35 1
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Figure 8. Left: joint and marginal distributions of simulated data at site 10 from the model H-MS-VAR. Central and right panels: autocorre-

lation functions of {ut } and {vt } at site 10 for the reference data, and simulated data from the VAR(2), AP-MS-VARCDiff(u,v)
, and H-MS-VAR

models.

the hidden MS-VAR. To this end, we compute the joint prob-

ability of occurrence of large-scale regimes (CZ500) and local

regimes (successively CEOF(u,v), CDiff(u,v), and H-MS-VAR;

Table 3).

For the three clusterings, the local regimes seem to appear

in preferential large-scale weather regimes. The strongest

link with CZ500 is found for CEOF(u,v): the first regime coin-

cides mainly with BL, the second one with AR, and the third

one with NAO+. These results are not surprising because

regimes of CEOF(u,v) are also easier to interpret physically.

However, the association is not systematic: for instance, the

second regime is observed not only during AR conditions,

but also during NAO+ conditions. Note that NAO− condi-

tions split rather equiprobably among the three local regimes.

The regimes of H-MS-VAR and CDiff(u,v) are more dif-

ficult to link with large-scale regimes. The fact that they

are less persistent than the CEOF(u,v) ones may explain why

their joint occurrences with CZ500 are weaker. As previ-

ously said, H-MS-VAR regimes are driven mainly by the

conditional autoregressive model in the sense of the likeli-

hood, which results in a more difficult physical interpreta-

tion. Some links can nevertheless be made: for both H-MS-

VAR and CDiff(u,v), the second regime coincides mainly with

NAO+, and to a lesser extent the first regime is connected to

BL.

7 Comparison in simulation of the multi-site wind

models

In this section, we compare models VAR(2),

AP-MS-VARCDiff(u,v)
, and H-MS-VAR in terms of re-

producing the various scales of the spatiotemporal wind

variability. We focus on the alternation between periods with

different temporal variability of wind conditions, and we

highlight the benefit of using appropriate regime-switching

in reproducing such an alternation. N = 100 sequences of

the length of the data are generated with the fitted models,

and several statistics are computed on these data.

First, marginal statistics at the central site 10 are investi-

gated (see Fig. 8). Comparing Fig. 1 and Fig. 8, one can no-

tice that the distribution of {ut } is well reproduced by model

H-MS-VAR, while the {vt } one is less accurately described.

Results in Ailliot et al. (2015) are slightly more satisfying

because of non-homogeneous transitions between regimes.

The description of this distribution by AP-MS-VARCDiff(u,v)
is

also satisfying and is not shown here. Concerning the tempo-

ral dependence, the regime-switching models are most able

to accurately reproduce the autocorrelation functions of both

{ut } and {vt }. All the models tend to behave similarly in re-

producing the correlation of {ut }. However, the VAR model

tends to underestimate the dependence of {vt } between 2 and

www.adv-stat-clim-meteorol-oceanogr.net/2/1/2016/ Adv. Stat. Clim. Meteorol. Oceanogr., 2, 1–16, 2016
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Figure 9. Top: correlation of between {ut } at site 1 and {ut } at the other locations (sorted according to increasing distance) at various time

lags. Bottom: similar quantities for {vt }. From the top panel to the bottom one: data and simulation from VAR(2), from AP-MS-VARCDiff(u,v)
,

and from H-MS-VAR.
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the VAR(2), AP-MS-VARCDiff(u,v)
, and H-MS-VAR.

5 days, and the regime-switching models improve the de-

scription of this dependence.

The space–time correlation function of the multivariate

process {ut ,vt } and its simulated replicates reveals that both

models reproduce satisfyingly the general shape of this func-

tion and especially the non-separable and anisotropic pat-

terns; see Fig. 9. The non-separability reflected in the asym-

metry around the vertical axis at lag 0 is captured by the pro-

posed models.

To study patterns at an instantaneous timescale, we fo-

cus on the ability of the models to reproduce the alternation

of temporal variability. Indeed, the alternation of different

weather states induces an alternation in the intensity and tem-

poral variability of wind. In Fig. 10, the moving standard de-

viation of wind speed around its moving mean at the central

site 10 is depicted as a function of its moving mean. Observa-

tions reveal a higher variability when the intensity is high, al-

though a high variability may also be associated with weaker

values when the moving window overlaps the transition time.

Models with regime-switching enable the reproduction of

more temporal variability associated with moderate and high

intensity of wind, which is not captured by an unconditional

VAR model. For instance, the regime-switching models re-

produce high variability around 5 and 10 m s−1, which corre-

sponds to transitions between weather states. This is ensured

by the alternation, driven by a Markov chain, of periods as-

sociated with different parameters of the conditional model.

Similar diagnostics to Fig. 4 indicate that the distribu-

tions of the moving standard deviation and the moving mean

within each simulated regime of the CDiff(u,v) and of H-MS-

VAR are clearly distinct from one regime to the other, which

indicates characteristic behaviors of these two simulated pro-

cesses within each regime (not shown). Moreover, the behav-

ior in each simulated regime is close to the observed one.
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8 Discussions and perspectives

In Sect. 4, we compare site-specific regimes to common re-

gional regimes. We conclude according to mainly qualitative

criteria that for this data set the use of a regime common to

all locations is reasonable. To go one step further, one would

settle some likelihood-ratio test, to quantify more precisely

to what extent the assumption of a regional regime against a

site-specific regime is acceptable.

In this paper we have introduced an observed and latent

regime-switching framework, and we have shown that both

types of regime-switching models have various advantages.

Models with observed switchings may account for relevant

regimes that correspond to characteristic meteorological con-

ditions in Europe. The choice of the clustering method and of

the descriptors of the data is crucial, as discussed in Sect. 5.2,

where a k-means clustering led to irrelevant regimes in terms

of estimation of the associated conditional model.

The hidden regime-switching framework seems to over-

come this insufficiency by providing regimes that are driven

by the conditional distribution and therefore adapted to

the estimation. When considering hidden regime-switching

models, however, the estimation procedure may become

challenging when sophisticated marginal models are consid-

ered. The extracted regimes are driven mainly by the local

data and the proposed conditional distribution, and conse-

quently they might have less physical interpretation than do

regimes derived from other clusterings. Nevertheless, in this

study we saw that for the proposed model and studied data

set, the associated regimes were not physically inconsistent.

Moreover, the use of hidden regime-switching models saves

effort in choosing an appropriate observed a priori clustering.

Concerning the proposed observed regime-switching

models, there seems to be a compromise between physically

interpretable regimes and a good description of the condi-

tional model by a VAR, as highlighted in Sect. 5 when com-

paring the AP-MS-VARCDiff(u,v)
and AP-MS-VARCEOF(u,v)

models. Indeed, we have chosen AP-MS-VARCDiff(u,v)
be-

cause it provides the best BIC index despite the fact that

CDiff(u,v) has less physical interpretation. This highlights the

difficulty in finding relevant regimes that are adapted to

the description of the data by conditional vector autoregres-

sive models. The proposed hidden regime-switching model

seems to respond to this compromise by providing more in-

terpretable regimes than the ones of CDiff(u,v) and a similar

description of temporal patterns. The improvement of BIC

from the AP-MS-VARCDiff(u,v)
with respect to the uncondi-

tional VAR is 4 %, whereas the improvement from the H-

MS-VAR is 15.3 %.

Future work may involve investigating reduced parameter-

izations of the autoregressive coefficients and of the matrices

of covariance of innovations, thus helping to adapt the model

to a larger data set. Indeed, the number of parameters is al-

ready high with the small data set under consideration, and

attempts to use parametric shapes for parameters reveal that

a huge effort will be needed to extract consistent results. Fur-

thermore, when looking at the autoregressive matrices, one

sees generally privileged predictors according to the regimes,

a situation that motivates the use of constraint matrices in

each regime.
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