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Abstract. An important topic for climate change investigation is the behavior of severe weather under future
scenarios. Given the fine-scale nature of the phenomena, such changes can only be analyzed indirectly, for ex-
ample, through large-scale indicators of environments conducive to severe weather. Climate models can account
for changing physics over time, but if they cannot capture the relevant distributional properties of the current
climate, then their use for inferring future regimes is limited. In this study, high-resolution climate models from
the North American Regional Climate Change Assessment Program (NARCCAP) are evaluated for the present
climate state using cutting-edge spatial verification techniques recently popularized in the meteorology litera-
ture. While climate models are not intended to predict variables on a day-by-day basis, like weather models, they
should be expected to mimic distributional properties of these processes, which is how they are increasingly used
and therefore this study assesses the degree to which the models are actually suitable for this purpose. Of partic-
ular value for social applications would be to better simulate extremes, rather than inferring means of variables,
which may only change by small increments thereby making it difficult to interpret in terms of the impact on
society. In this study, it is found that the relatively high-resolution NARCCAP climate model runs capture areas,
spatial patterns, and placement of the most common severe-storm environments reasonably well, but all of them
underpredict the spatial extent of these high-frequency zones. Some of the models generally perform better than
others, but some models capture spatial patterns of the highest frequency severe-storm environment areas better
than they do more moderate frequency regions.

1 Introduction

Predicting extreme weather events is a difficult challenge
even for relatively high-resolution weather models because
of the scale difference between the models and the very fine
scales attributed to some high-impact weather events, such
as tornadoes and hail storms. Coarse-scale climate models,
therefore, cannot directly provide information about the dis-
tribution, and other characteristics of interest (such as timing
and location), of such events. However, it is possible to sim-
ulate large-scale environments that are more favorable for
severe weather (cf. Brooks et al., 2003; Thompson et al.,
2007; Trapp et al., 2007, 2009; Diffenbaugh et al., 2013;
Gensini et al., 2014; Elsner et al., 2015; Tippett and Co-

hen, 2016; Tippett et al., 2014, 2015). Brooks et al. (2003)
found that concurrently high values of convective available
potential energy (CAPE; J kg−1) and 0–6 km vertical wind
shear (S; ms−1) are useful large-scale indicators for envi-
ronments conducive to severe weather. The conversion of
CAPE into the (theoretical) maximum updraft wind speed
(Wmax =

√
2×CAPE) has a clearer connection to severe

weather, and it has the same units as S (ms−1; cf. Trapp et al.,
2007, 2009). For example, using the same data analyzed
in Brooks et al. (2003), Gilleland et al. (2013) found that the
product of Wmax and S yields a clearer distinction in prob-
ability distributions stratified by increasingly severe storms,
and that a product,Wmax ·S,> 225 m2 s−2, in particular, was
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found to be associated with a fairly high likelihood for severe
storms, with higher values (i.e., products> 500 m2 s−2) indi-
cating higher likelihoods for severe or worse (e.g., significant
tornadic) weather.

Several studies have analyzed climate model output for
these variables. For example, Trapp et al. (2007) used ver-
sion 3 of the high-resolution regional climate model pro-
duced by the Abdus Salam International Centre for The-
oretical Physics (RegCM3) to investigate future changes
in CAPE and S under the Special Report on Emissions
Scenarios (SRES, Nakicenvoic and Swart, 2000) A2 emis-
sion scenario. They looked at various measures, such as
the number of days that the product of CAPE and S ex-
ceeded a high threshold locally. Van Klooster and Roeb-
ber (2009) also investigated changes under the A2 emission
scenario, but using the coarse-resolution global Parallel Cli-
mate Model, and Gensini et al. (2014) examined both fu-
ture and present convective environments using a dynami-
cally downscaled global climate model (GCM), namely the
Weather Research and Forecasting regional climate model
(WRF-G) from the North American Climate Change Assess-
ment Program (NARCCAP; Mearns et al., 2007,2014, 2009).

A few studies analyzed current reanalysis data using sta-
tistical extreme value techniques to project future scenar-
ios. For example, Mannshardt and Gilleland (2013) inves-
tigated changes in the very extreme values at each grid point
of Wmax · S separately using the National Center for At-
mospheric Research (NCAR)/National Centers for Environ-
mental Prediction (NCEP) reanalysis. Heaton et al. (2011)
(henceforth, NCEP reanalysis) applied a rigorous spatial ex-
treme value model using hierarchical Bayesian techniques to
the same reanalysis data over North America. Gilleland et al.
(2013) took a very different approach whereby they studied
patterns ofWmax·S conditional upon the existence of extreme
Wmax · S activity in the spatial field.

The aim of this study is to evaluate how well regional cli-
mate models from NARCCAP are able to capture frequen-
cies of high values of the product of Wmax and S (henceforth
WmSh); following Trapp et al. (2009), conditioning WmSh
to be zero unless CAPE≥ 100 J kg−1 and 5≤ S ≤ 50 ms−1

in order to ensure that there are sufficient amounts of both
CAPE and S, without having too much S (values of S larger
than 50 ms−1 greatly reduce any potential storm activity). In
particular, it is desired to investigate how well these relatively
high-resolution models capture spatial patterns of common
severe-storm environments defined herein to be when the
upper quartile (over space) of WmSh exceeds 225 m2 s−2.
Analogous to Gilleland et al. (2013), attention is restricted to
spatial patterns of frequency when conditioning on high field
energy, defined to be when the upper quartile over space is
large.

Often climate models are evaluated based on subjec-
tive human observation, which is limited because of hu-
man bias (cf. Ahijevych et al., 2009; Koch et al., 2015).
Therefore, one main objective of this paper is to demon-

strate how very recently proposed techniques from spatial
weather forecast verification can be employed in the climate
setting to describe how well the models are able to capture
the frequency of severe-storm environments. For a review
of these methods, see Gilleland et al. (2009, 2010a), Gille-
land (2013), and Brown et al. (2011). Many methods have
been proposed since these reviews, including Alemohammad
et al. (2015), AghaKouchak et al. (2010), AghaKouchak and
Mehran (2013), Carley et al. (2011), Arbogast et al. (2016),
Koch et al. (2016), Skok (2015, 2016), Skok and Roberts
(2016), Li et al. (2015, 2016), and Weniger et al. (2016);
see http://www.ral.ucar.edu/projects/icp/references.html for
a current list of spatial forecast verification references.

2 Reanalysis data and model output

2.1 NARR reanalysis data

CAPE and S have been calculated from the NCEP North
American Regional Reanalysis (NARR) product (http:
//www.emc.ncep.noaa.gov/mmb/rreanl/ Mesinger et al.,
2006). NARR provides the “best guess” of the state of the
atmosphere in the past on a reasonably high-resolution grid
(32 km) after assimilating various observational sources (sta-
tion data, rawinsondes, drop sondes, aircraft, geo-stationary
satellites, etc.) into a model. The data product provides val-
ues on a much higher resolution grid than the NCEP reanal-
ysis.

Of course, use of an analysis to evaluate a model has cer-
tain advantages and disadvantages. The main advantage is
the availability of gridded values to directly compare to the
model grid over any domain of interest. However, comparing
a model-based field to an analysis is not the same as compar-
ing the model directly to observations at points, because of
the smoothing associated with most analyses. When the anal-
ysis is derived using an initialization field from the model
being evaluated, the comparison results also can be highly
biased and give very different results then would be arrived
at using an analysis derived from a different model (e.g., Park
et al., 2008). However, of relevance for this study, the NARC-
CAP model runs are not directly based on the NARR. More-
over, because the primary purpose of this study is comparison
of the performance of the various models (rather than abso-
lute evaluation of each model), comparison of the models to
the NARR analysis is of less concern and allows derivation
of the fields of interest.

2.2 NARCCAP regional climate output

The primary focus of the present study concerns analyzing
high-resolution regional climate model (RCM) output pro-
duced as part of NARCCAP (Mearns et al., 2007,2014),
which consists of a matrix of combinations of RCMs driven
by a suite of GCMs (Mearns et al., 2009). The resolution of
the regional models is about 50 km on a grid covering most of
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Figure 1. Images of the ω frequencies (shown as percentages per a reviewer request) for NARR and each NARCCAP model configuration.

North America. The models were run under the SRES (Na-
kicenvoic and Swart, 2000) A2 scenario for the future pe-
riod 2041–2070, but also include runs for the present pe-
riod 1971–2000. For verification, the models are also driven
by the NCEP/Department of Energy Reanalysis II prod-
uct (Kanamitsu et al., 2002) for the period 1979–2004, here-
after dubbed the NCEP-driven simulations. In order to estab-
lish an understanding of model uncertainty, different combi-
nations of RCMs and AOGCMs are used.

Bukovsky (2012) analyzed the performance of the full set
of six RCMs of the NARCCAP project driven by the NCEP
reanalysis for 2 m temperature trends from 1980 to 2003. It
was found that the RCMs have some capability to simulate
such resolved-scale trends in the spring, and to some ex-
tent, the winter. However, results for other seasons may be
more dependent on the type and strength of the underlying
observed forcing. Precipitation over California was consid-
ered by Caldwell (2010) using all NARCCAP model outputs
that provided this variable. They found that RCMs forced by

the NCEP-reanalysis tend to overpredict precipitation over
California, and they concluded that this result was caused
by overprediction of extreme events where otherwise the fre-
quency of precipitation events was underpredicted. Interan-
nual variability in NARCCAP RCMs is analyzed by de Elía
et al. (2013), where it was found that important departures
between RCMs and observations exist, which is also the case
for some of the driving models. Nevertheless, they found that
the expected climate change signal remained consistent with
previous studies.

Table 1 summarizes the models and model combinations
used for CAPE, S, and WmSh analyzed in this study. As can
be seen, various combinations of RCMs driven by GCMs are
employed, and are designed to provide a subset of combi-
nations that constitute a minimal set that can still produce
statistically significant results in terms of model uncertainty.

To enable comparison between outputs from different
models, the final conditional frequency fields are re-gridded
from the native grids of the RCMs to a common half-
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Table 1. Current (1971–2000) and future (2041–2070) model combinations from NARCCAP (Mearns et al., 2007,2014) analyzed in this
study. NCEP-driven current-only runs.

NCEP Community climate Third generation coupled Hadley Centre
reanalysis system model global climate model coupled model, version 3

Abbreviation NCEP CCSM3 CGCM3 HadCM3

Canadian Regional Climate Model (CRCM) X X X
Hadley Regional Model 3 (HRM3) X
Pennsylvania State University/NCAR X X
mesoscale model (MM5I)
Weather Research and Forecasting X X X
Grell model (WRFG)

degree grid. Because these fields are relatively smooth, the
results will be relatively insensitive to the exact interpolation
method used. For this work, the polynomial patch interpola-
tion algorithm implemented by the Earth System Modeling
Framework, which takes the local derivatives of the field in a
neighborhood around the interpolation point into account, is
implemented (ESMF Joint Specification Team, et al., 2014).

3 Methods

For this paper, the focus is on evaluating patterns of the large-
scale indicators for severe weather conditional upon having
high field energy. Following Gilleland et al. (2013), high field
energy is taken to mean that the upper quartile (over space) of
the variable of interest is larger than its 90th percentile (over
time). For example, from the space–time process for WmSh,
a new univariate time series is calculated that represents the
upper quartile of WmSh over space; this univariate time se-
ries is called q75. Then, for time points when q75 is large
(defined to be when it is greater than its 90th percentile over
the entire time series) the frequencies of WmSh exceeding
225 m2 s−2 are found for each grid point, resulting in a single
spatial field that summarizes where the most intense severe-
storm environments are found. This resulting summary field
is denoted ω, and represents the frequency at each grid point
when severe-storm environments occur most often. Figure 1
shows ω for the NARR and each model configuration from
Table 1. Similarly, CAPE alone is also analyzed, and its
conditional frequency field (for CAPE≥ 1000 J kg−1) is de-
noted, κ (Fig. 2). For convenience, Table 2 displays some of
the notations used throughout the text.

A CAPE value of 1000 J kg−1 is an arbitrary choice, but
represents a value associated with severe weather environ-
ments as found in previous studies (e.g., Brooks et al., 2003;
Trapp et al., 2007; Gilleland et al., 2013; Heaton et al.,
2011). The value of 225 m2 s−2 is also an arbitrary choice,
but is around the value obtained when converting CAPE from
1000 J kg−1 to Wmax and then multiplying by S= 5 ms−1,
which again results in a strong severe-storm environment.
Of course, WmSh could have a value of 225 m2 s−2 with
far lower CAPE (i.e., with higher S), but because CAPE

is also conditioned to be at least 100 J kg−1 and S at least
5 m2 s−2, the environment is guaranteed to be conducive to
severe weather.

3.1 Spatial pattern and location displacement measures

Several methods are available to summarize the performance
of a model in terms of how well it captures the spatial pat-
terns, locations, and general shape of observed variables for
various thresholds of intensity, and we summarize the three
used in the present study, namely: (a) Baddeley’s1, (b) mean
error distance, and (c) the forecast quality index (FQI). Most
of these summary measures can be calculated from distance
maps (cf. Fig. 3, which shows an example). A distance map
is a graphic that shows, for each grid point, x, the shortest
distance from x to the nearest “event”, where an event is
defined by a grid cell that exceeds the given threshold. Of
particular interest is the image in the third row of the figure,
which shows the absolute difference in distance maps for bi-
nary fields A and B; several popular measures are derived
directly from this difference field. Also of interest is to mask
out the distance map A using the binary field B, and vice
versa (bottom row of the figure).

The Hausdorff distance is a widely known location mea-
sure that simply takes the maximum value of the absolute
differences between distance maps for two fields (e.g., the
maximum value from the image in the third row of Fig. 3).
The metric has often been modified in order to have mea-
sures that are not as sensitive to small changes in the two
fields resulting from taking the maximum value. The Badde-
ley 1 image metric (Baddeley, 1992a, b), for example, is a
modification of the Hausdorff metric that replaces the maxi-
mum with an Lp norm, and, in general, further modifies the
shortest distances between each grid point and the event usu-
ally by setting any distances greater than a certain amount to
a constant. That is,

1
p
f (A,B)=

[
1
N

∑
|f (d(si,A))− f (d(si,B))|p

]1/p

, (1)

where N is the total number of grid points, the summation is
over all points, s, in the grid, and f is any continuous func-
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Figure 2. Images of the κ frequencies for NARR and each NARCCAP model configuration.

tion on [0,∞) such that f (x+y)≤ f (x)+f (y) and is strictly
increasing at zero with f (t)= 0 if and only if t = 0. For ex-
ample, a common choice is to take f (x)=min{x,constant}.
The function’s purpose is to eliminate edge effects, but the
metric is highly sensitive to the choice of constant. The pa-
rameter p is chosen by the user. If p = 1 a straight average of
values is achieved. The Hausdorff metric can be regained by
letting p tend to infinity. In the limit as p approaches zero,
one obtains the minimum of the portion within the absolute
values of Eq. (1).

In terms of Fig. 3, Baddeley’s 1 metric applies a func-
tion f to each of the two fields in the second row, then takes
the absolute difference between these fields, and finally takes
the Lp norm over the resulting image. Following Gilleland
(2011), here, f (x)=min{x,constant}, but the constant is set
to infinity and p to two, so 1 is simply the L2 norm of the
image in the third row of the figure.

The mean error distance (MED) is the mean of the dis-
tance map for one field taken over only the events in the

other field. In other words, again using Fig. 3 as an ex-
ample, MED(A, B) averages the image in the second row
and first column over the event space defined by the binary
field for B (top row second column). Note that the MED is
not symmetric because, in general, MED(A, B) 6=MED(B,
A). In fact, the lack of symmetry provides a useful measure
for diagnosing how close (or far away), in terms of aver-
age distance, forecast events are from those observed when
calculating MED(Observation, Forecast), and vice versa
for MED(Forecast, Observation). See Gilleland (2016b) for
more information about this approach. If the two values are
close together, then it suggests better agreement between the
two fields in terms of both placement and numbers of events.
For example, in the figure, MED(A, B) would be rather small
(average of the non-white areas in the bottom left panel) be-
cause B does not have any events far away from A, which
is generally indicative of good agreement between the two
fields. However, MED(B, A) would be comparatively large
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Table 2. Some notations and abbreviations used in this manuscript.

Convective available potential energy CAPE (J kg−1)

Maximum updraft velocity (
√

2 ·CAPE) Wmax (ms−1)

0–6 km vertical wind shear S (ms−1)

Product of Wmax and S conditional upon WmSh (m2 s−2)∗

CAPE≥ 100 J kg−1 and
5≤ S ≤ 50 ms−1

Time series of the upper quartile of a random q75
variable, x, taken over space

High field energy q75 larger than its 90th percentile
(taken over time)

Frequency of CAPE≥ 1000 J kg−1 κ

conditional upon high field energy

Frequency of WmSh≥ 225 m2 s−2 ω

conditional upon high field energy

∗ Previous studies (namely, Gilleland et al., 2013; Mannshardt and Gilleland, 2013) use the abbreviation
WmSh to refer to the straight product of Wmax · S, whereas here it has the further constraint that CAPE must
be at least 100 J kg−1 and 5 ms−1

≤ S ≤ 50 ms−1.

(average of the non-white areas in the bottom right panel)
because field A has a large event that B lacks.

A further modification of the Hausdorff distance, proposed
by Venugopal et al. (2005) specifically for verifying high-
resolution forecasts, normalizes the measure through an av-
erage of partial Hausdorff distances (PHD) obtained for sur-
rogate fields, which results in a measure that, like 1, has
desirable mathematical properties. It is one of the rare lo-
cation metrics that also incorporates intensity information in
addition to just spatial pattern information. First, stochastic
realizations of the observed process that are forced to have
the same Fourier spectra, probability density function, and
spatial correlation structure as the observed field, called sur-
rogate fields, are drawn to be used as a normalizing factor.
Then, the FQI between two fields A and B, where A is the
observed field, and Ci is the ith of n surrogate realizations of
A, is given by

FQI(A,B)= (2)

PHDk(A,B)
1
n

∑n
i=1PHD(A,Ci)

/
2µAµB

µ2
A+µ

2
B
·

2σAσB

σ 2
A+ σ

2
B
.

Here, PHDk is the partial Hausdorff distance using the kth
largest shortest distance value, µ and σ denote the mean and
standard deviation, respectively, over the field. The denom-
inator on the right is derived from another image summary
index called the universal image quality index (UIQI; Wang
and Bovik, 2002), which is the denominator on the right mul-
tiplied by the correlation between the two fields. Venugopal
et al. (2005) refer to the denominator as the modified UIQI;
the first component of which is a measure of the model field’s

bias, and the second of the variability. The UIQI ranges be-
tween−1 and 1, with a value equal to one indicative of a per-
fect match between the two fields. A smaller value of UIQI
indicates a lot of variability.

3.2 Feature-based analysis

Numerous methods are used in meteorology that fall under
the category of feature based. The idea is to identify in-
dividual features within a field, and analyze those features
for various characteristics, for example, those discussed in
Sect. 3.1 above. In this study, the method proposed by Davis
et al. (2006a) is loosely followed. In meteorological appli-
cations, fields often have multiple features of interest, which
would also be the case in the present context if a much larger
domain were employed. However, even with a larger do-
main, the relative smoothness of these climate fields results
in few distinct objects. Subsequently, it is very straightfor-
ward to match features between fields (e.g., as was proposed
by Davis et al., 2006a, b, 2009, with the Method for Object-
based Diagnostic Evaluation, or MODE), as well as to merge
features within a field. The fields of κ and ω demonstrate
only one or two features in each model field, all of which are
clearly matched with the one NARR feature that shows up.
Therefore, the task is fairly simple.

Here, features are defined by simply identifying contigu-
ous grid points that exceed a threshold of 75 % frequency; in-
dicating areas where storm favoring environments are found
to occur very often. Various summary properties are evalu-
ated and compared in the present study. Focus is centered on
the distances between the centers of mass of the features be-
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Figure 3. Top row: two binary images with dark blue showing event areas in A and B, respectively. Second row: distance maps for the
images in the top row (shortest distances, in numbers of grid squares, from each pixel/grid point to an event in A or B). Third row: absolute
values of the differences between the distance maps in the middle row. Bottom left: image from the second row left masked by the image
from the top row right, and bottom right is the image from the second row (right) masked by the image in top row (left).

tween each field (centroid distance), the area ratio (defined to
be the area of the smaller feature divided by the area of the
larger one; though here the model feature areas are always
smaller), the common intersection area (given as a percent),
and Baddeley’s 1 described in section 3.1. Other properties
are shown for information, but are not highly useful as com-
parative measures.

3.3 Field deformation

Field deformation methods deform the spatial locations of
the forecast field so that the values of the forecast variable
better align with those of the observations. Numerous dif-
ferent methods for deforming the field are available, and
many have been proposed in the atmospheric science liter-

ature for forecast verification (e.g., Keil and Craig, 2007,
2009; Gilleland et al., 2010b, c; Gilleland, 2013; Marzban
and Sandgathe, 2010), forecast calibration (e.g., Hoffman
et al., 1995; Alexander et al., 1998; Nehrkorn et al., 2003;
Levy et al., 2013; Kleiber et al., 2014), and data assimi-
lation (e.g., Hoffman and Grassotti, 1996; Nehrkorn et al.,
2015) as well as short-term forecasting (e.g., Aberg et al.,
2005). In this study, we follow the image warping approach
of Aberg et al. (2005), which utilizes a pair of thin-plate
spline transformations (cf. Dryden and Mardia, 1998, chapter
10) to make the deformation mapping, which maps a subset
of k control locations from the observed field, or 0-energy
field, to k locations in the forecast field, dubbed the 1-energy
field.
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In many image warping applications, the set of 0- and 1-
energy control locations are easily found by hand. For ex-
ample, if comparing the images of one person’s face to an-
other, it is easy to choose corresponding features, such as
the point of the nose or the top of the head. While it is also
possible to choose the control locations by hand, an alterna-
tive approach is preferred here, whereby the 1-energy con-
trol locations are found through a numerical optimization
procedure. The objective function to be optimized follows
the approach of Aberg et al. (2005), Gilleland et al. (2010b,
c), Gilleland (2013), and originally introduced by Glasbey
and Mardia (2001), which is effectively the root mean square
error (RMSE) between the observed and deformed forecast
field plus an additional penalty term for mappings that cover
too much distance or are too nonlinear. The latter term helps
to prevent obtaining deformations that yield non-physical de-
formations, such as folding. The penalty term includes a pre-
cision matrix, or the inverse of a covariance matrix for the
mappings. Aberg et al. (2005) employ a precision matrix that
is zero for locations separated by a certain distance, and pos-
itive otherwise, which helps to obtain deformations where
nearby locations move in similar directions. In this study, the
bending energy matrix, described below, is used for the de-
formation, which penalizes nonlinear deformations.

The pair of thin-plate spline transformations is the bivari-
ate function, 8(s)= (81(s),82(s))T = a+Gs+WTψ(s),
where the set of all locations, s, in the domain is d×1 (here,
the dimension d = 2), and ψ(s)= (ψ(s−p0,1), . . .,ψ(s−
p0,k))

T , where p0,i, i = 1,2, . . .,k are the 0-energy control
locations, and

ψ(h)= (3)
‖h‖d log(‖h‖), if ‖h‖> 0 and d mod 2= 0
‖h‖d , if ‖h‖> 0 and d mod 2 6= 0
0, else.

The mapping has dk+d2
+d parameters: (a) the d×1 vec-

tor, a, (b) d×d matrix G, and (c) the k×d matrix W, which
for d = 2 results in 2k+6 parameters. The natural thin-plate
splines used herein are subject to the further constraints that
the columns of coefficients in W sum to zero (i.e., 1TW= 0)
and that the sum of the products of these coefficients times
the 0-energy control locations is also zero (i.e., pT0 W= 0).
The set of equations can be written succinctly in matrix form
as

LA=

 9 1k p0
1Tk 0 0
pT0 0 0

 W
aT
GT

=
 p1

0
0

 . (4)

The inverse matrix, L−1, is of particular importance be-
cause when performing the numerical optimization, this ma-
trix needs only to be calculated one time at the beginning,
and it defines the resulting warp function, which is a linear
function of the 1-energy control locations and the upper left

k× k partition of L−1, denoted by L11. That is, W= L11p1.
The matrix L11 is also known as the bending energy matrix
because it determines the amount of the nonlinear deforma-
tion; the matrices a and G give the linear, or affine, part of
the deformation.

Note that because of the constraints on W, there are also
three constraints on L11. Namely, 1Tk L11

= 0 and pT0 L11
= 0

(recalling that p0 is k× 2). The transformations imposed
by Eqs. (3) and (4) minimize the total bending energy of
all other possible interpolating functions from the 0-energy
control locations p0 to the 1-energy control locations p1,
and the total minimized bending energy (referred to hence-
forth as simply the bending energy) is easily found from
trace(pT1 L11p1).

In order to find the optimal mapping of p0 to p1, the 0-
energy control locations are chosen and fixed, and then the
p1 locations are moved until an objective function is min-
imized. Denoting the 1-energy field by Ẑ and the 0-energy
field by Z, the objective function used here is the same as
that of Gilleland et al. (2010c), and is given by

Q(p1)=
1

2σ 2
ε

N∑
i=1

(
Ẑ(8(si))−Z(si)

)2
+ (5)

β
[
(p1−p0)Tx L11(p1−p0)x + (p1−p0)Ty L11(p1−p0)y

]
,

where the x and y subscripts denote the two component coor-
dinates of the control locations, β is a penalty term chosen a
priori to determine how much or little nonlinear warps should
be penalized, and σε is a nuisance parameter giving the error
variance between the 0-energy and deformed 1-energy fields.
The objective function (Eq. 5) results from the penalized like-
lihood under an assumption of Gaussian errors between the
0-energy and deformed 1-energy fields, and potentially pro-
vides a means for obtaining confidence intervals on the de-
formations, but this potential will be left for future work.

Gilleland et al. (2010c) began with two identical and regu-
lar sets of control locations, and used a multi-step procedure
that begins with four control locations and a highly smoothed
set of fields, ratchets the number of control points up iter-
atively with decreasingly smoothed sets of fields to mini-
mize the objective function Q from Eq. (5), which enables
a completely automated method for finding the optimal de-
formation. Because there are only 9× 2= 18 warped fields
to find here, the domain is relatively small, and only a very
small number of control locations are required (four to eight,
whereas 200 were used in Gilleland et al., 2010c), a less au-
tomated procedure is employed in this work. First, about four
control locations are selected by hand in the 0-energy field,
and an attempt is made, again by hand, to identify where
those locations map to those in the 1-energy field. These 1-
energy control locations are then used as initial values in the
numerical optimization routine used to minimize Q.
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3.4 Spatial prediction comparison test

The spatial prediction comparison test (SPCT) is a test intro-
duced by Hering and Genton (2011) that is a spatial modi-
fication of a similar time series test introduced by Diebold
and Mariano (1995), and it provides a statistical hypothesis
test for two competing forecast models, m1 and m2, com-
pared against the same observation, a that accounts for spa-
tial correlation. Hering and Genton (2011) found the test to
be both powerful and of the right size provided the range of
dependence is not too long, even in the face of contempora-
neous correlation (i.e., whenm1 is correlated withm2). First,
a loss function, g, must be chosen and applied to each model
against a, giving g1 = g(m1,a) and g2 = g(m2,a). For ex-
ample, absolute error (AE) loss yields g(x,y)= |x−y|. Then
the loss differential field, d , is calculated by taking the differ-
ence at each spatial location between g1 and g2 (i.e., g1−g2).

After checking for the existence of spatial drift in the spa-
tial loss differential field, and removing any spatial trend be-
fore proceeding, the empirical variogram for d is found, say
γ̂ , using all lags up to half of the maximum possible lag for
the study region. Next, a parametric variogram model is fit
to γ̂ ; following Hering and Genton (2011), the exponential
variogram is used here. The test statistic is the usual Stu-
dent’s t or normal approximation for the paired sample test
of the mean of the loss differential field, but where the stan-
dard error is estimated by averaging the values from the spa-
tial correlation function, by way of a linear combination of
the parametric variogram fit to γ̂ over all lags of the domain.
In other words, the test statistic, Sv , to test whether or not the
mean loss differential, d , is significantly different from zero
is

Sv =
d

ŝe(d)
, (6)

where

ŝe(d)=
√∑

i

∑
j

[γ̂ (∞; θ̂ )− γ̂ (hij ; θ̂ )], (7)

with θ̂ estimated parameters of the parametric variogram
model evaluated at each lag hij . Because the spatial fields
presently studied all have a reasonably large number of grid
points, the normal approximation of the test is used through-
out.

Here, the test is conducted under AE loss first, and then
with AE+ deformation loss for comparison. The latter was
proposed by Gilleland (2013), and allows for both spatial
displacement/pattern error and intensity errors to be simulta-
neously incorporated into the test, while also accounting for
spatial correlation. The loss is achieved by finding the AE be-
tween the observed field and the deformed forecast field (cf.
Sect. 3.3) and adding these errors to the (Euclidean) distance
each point “traveled” in order to achieve the re-aligned field.
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Figure 4. Baddeley’s 1 (p = 2, c =∞; top left), mean error dis-
tance conditioning on observed events (top right) and mean er-
ror distance conditioning on “forecast” events (bottom left) for κ .
Shapes indicate the regional model: CRCM (circles), HRM3 (dia-
monds), MM5I (squares), and WRFG (triangles). Colors indicate
the driving models: CCSM3 (black), CGCM3 (gray), HadCM3
(blue), NCEP (orange).

4 Results

Figure 4 shows the results for the location measures for ω,
the frequency of WmSh greater than 225 m2 s−2 conditional
on high field energy (see Table 2 for notation). It can be ar-
gued from visual inspection of the graphic that the models
driven by the HadCM3 global model are closest to reproduc-
ing the patterns of ω associated with the NARR reanalysis.
This result is consistent across the thresholds for mean error
distance, but the HRM3–HadCM3 has higher (worse) Bad-
deley 1 metric values for the highest thresholds. In terms of
capturing the spatial structure of the most frequent events for
WmSh, the CCSM3-driven runs are the least similar to those
found in the NARR, and the WRFG–CGCM3 performs the
worst in terms of capturing the spatial patterns ofω according
to the Baddeley 1 metric; the results for κ (not shown) are
similar. Of course, these results do not account for sampling
uncertainty, so no conclusions can be made with statistical
significance based on these measures.

A feature-based analysis is also conducted (Tables 3
and 4), which provides similar, but more detailed information
about how the fields compare to one another. Tables 3 and 4
show summary statistics for identified ω features (Table 3)
and feature comparisons for matched (possibly first merged)
ω features (Table 4) after having set a threshold of having at
least 75 % frequency of occurrence.1 In each case, it is clear

1The values in the table are calculated using the R(R Core Team,
2015) package SpatialVx, which employs several functions from
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Table 3. Feature identification and properties for frequency of ω. Features identified using a threshold of 75 % frequency.

Feature Centroid Feature Orientation Aspect Intensity Intensity
number area (grid squares) angle (◦) ratio (lower quartile) (90th percentile)

NARR 1 (−106.51,37.97) 1825 111.62 0.55 0.82 0.92
CRCM–CCSM3 1 (−121.11,37.84) 97 70.88 0.61 0.78 0.88

2 (−97.87,38.07) 1317 112.97 0.57 0.78 0.88
CRCM–CGCM3 1 (−105.99,38.10) 1502 111.67 0.66 0.79 0.91
HRM3–HadCM3 1 (−104.08,38.01) 2030 112.98 0.54 0.81 0.90
MM5I–CCSM3 1 (−120.65,37.56) 104 64.51 0.89 0.77 0.86

2 (−99.30,37.98) 718 114.73 0.57 0.77 0.82
MM5I–HadCM3 1 (−117.76,37.98) 377 110.29 0.58 0.79 0.93

2 (−116.14,37.81) 296 117.18 0.77 0.79 0.88
WRFG–CCSM3 1 (−108.76,37.96) 613 56.60 0.62 0.77 0.91

2 (−107.30,37.80) 346 43.07 0.65 0.78 0.88
WRFG–CGCM3 1 (−107.28,38.00) 849 7.39 0.60 0.76 0.82
CRCM–NCEP 1 (−105.04,37.91) 1736 113.21 0.63 0.79 0.90
WRFG–NCEP 1 (−109.13,37.99) 1515 67.09 0.71 0.83 0.99

Table 4. Merged and matched feature comparisons for ω. Features identified using a threshold of 75 % frequency. Minimum boundary
separation is zero for all comparisons. Total interest is given in parentheses below model name.

Features compared Centroid distance Angle Area Intersection Bearing Baddeley 1
(NARR vs. model) (grid squares) difference (◦) ratio area (◦ from north) (p = 2, c =∞)

CRCM–CCSM3 1 vs. (1 and 2) 7.05 46.99 0.77 0.69 88.74 2.98
CRCM–CGCM3 1 vs. 1 0.53 0.05 0.82 0.85 107.77 2.39
HRM3–HadCM3 1 vs. 1 2.42 1.36 0.90 0.90 90.42 3.43
MM5I–CCSM3 1 vs. (1 and 2) 4.50 4.37 0.45 0.59 87.99 7.82
MM5I–HadCM3 1 vs. (1 and 2) 10.54 33.58 0.37 0.54 −86.34 13.128
WRFG–CCSM3 1 vs. (1 and 2) 1.73 44.21 0.53 0.63 −86.73 10.74
WRFG–CGCM3 1 vs. 1 0.77 44.23 0.47 0.62 −93.00 12.14
CRCM–NCEP 1 vs. 1 1.47 1.60 0.95 0.91 86.80 1.52
WRFG–NCEP 1 vs. 1 2.62 44.52 0.83 0.90 −89.77 7.88

that the HRM3–HadCM3 does the best job of all of the mod-
els at achieving a roughly correct spatial pattern for the most
frequent ω areas. It has a relatively low centroid distance, an-
gle difference, and Baddeley 1 value, as well as one of the
highest area ratios (0.90) and intersection areas (also 0.90;
tied for highest with WRFG–NCEP). Moreover, it has the
same number of identified features above the 75 % threshold
as the NARR. For all of the fields, the largest feature is in the
southeast corner of the domain over the ocean, and in most
cases hugs the border, suggesting that high CAPE would be
modeled beyond the edge of the domain. Results for κ (not
shown) are similar. The bearing is calculated from the model
feature centroid to the NARR feature centroid with north as
the reference, which simply gives a sense of the direction in
which the features of one field are situated with respect to
the other. For a model whose output variable has small sepa-
ration distance and good area overlap with the observed fea-

the package spatstat (Baddeley and Turner, 2005). Orientation angle
and aspect ratio are found with help from package smatr (Warton
et al., 2012).

ture (e.g., CRCM–CGCM3), the bearing is perhaps not very
meaningful. However, for those with larger separation dis-
tances and less area overlap (e.g., the models here have fairly
good spatial pattern matches, but MM5I–HadCM3 is a can-
didate for checking the bearing to see if the problem exists
for other variables), then the bearing could prove useful to a
modeler hoping to diagnose how the model failed.

At lower thresholds than 75 % frequency (not shown), an
additional area of high frequency is generally observed in the
southwest near or over Baja California. Careful inspection of
models using the CCSM3 as the driving model reveals that
there is a tendency for more numerous, but smaller, features
than produced by the NARR or other driving models (cf. Ta-
ble 3). In each case, these disjoint features are merged (using
centroid distance as the primary criterion) before comparing
with the NARR as they are primarily located in the southeast
region.

The values in Table 4 can be combined into a single sum-
mary very effectively using the fuzzy logic algorithm de-
scribed in (Davis et al., 2006a, b), which yields a measure
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Table 5. Results from deforming climate models to better spa-
tially align with NARR reanalysis for κ . RMSE0 is the original
RMSE, RMSE1 the resulting RMSE between the deformed model
and NARR, and the bending energy is a summary measure of the
amount of nonlinear deformations applied to deform the field.

RMSE0 RMSE1 % RMSE Bending
reduction energy

CRCM–CCSM3 0.214 0.1393 35 0.9555
CRCM–CGCM3 0.1467 0.1028 30 1.0739
HRM3–HadCM3 0.1569 0.11 30 0.2531
MM5I–CCSM3 0.2665 0.1605 40 2.0042
MM5I–HadCM3 0.1477 0.084 43 0.6933
WRFG–CCSM3 0.2493 0.0961 61 3.2692
WRFG–CGCM3 0.2406 0.0918 62 3.3178
CRCM–NCEP 0.214 0.1727 19 0.2545
WRFG–NCEP 0.1711 0.0923 46 0.4304

called total interest that incorporates user-specified weights
in order to obtain a measure based on the attributes of a fea-
ture that are most important. It ranges between zero and 1
where a value of 1 indicates a perfect match and the worst
value is zero. The technique is performed for these fea-
tures using the same interest maps and weights as proposed
in Davis et al. (2006a). All of the total interest values are very
high, ranging from 0.91 to 0.94, indicating good agreement
between the models and the NARR.

It is also of interest to determine if one model stands out
above others. To do so, we use the SPCT with AE loss,
which is a very conservative test because small-scale errors
and spatial displacements are not taken into account, and
none of the results is statistically significant at any reason-
able level suggesting that the null hypothesis of equal perfor-
mance (as measured by the mean AE loss differential) can-
not be rejected. In order to factor in spatial alignment and
small-scale errors to the test, the SPCT is also applied with
AE+ deformation loss following Gilleland (2013).

Indeed, inspection of the graphs of κ (Fig. 2) clearly re-
veals that some models capture the spatial patterns of the
high-event frequency CAPE areas better than others. Field
deformation techniques are well-established methods for
verifying forecasts spatially where small mis-alignments in
space obfuscate model performance. Table 5 displays the re-
sults of having found the optimal deformation for each model
deformed to better align spatially with the NARR reanalysis.
Shown are the original RMSE, denoted RMSE0, the RMSE
after having applied the optimal deformation, RMSE1, the
percent reduction in RMSE, and the minimum bending en-
ergy required to arrive at the optimal re-alignment. The mini-
mum bending energy is not a summary of the entire deforma-
tion, only the non-affine ones. Thus, a small bending energy
does not imply that the deformation is necessarily small, but
rather that nonlinear distortions are not abundant. However,
the bending energy is useful as a comparison because a field,

A, with higher bending energy than a field, B, implies that A
matches less well than B with the 0-energy field in terms of
overall shapes of patterns. A perfect model would have zero
RMSE0 and thus no reduction in error or bending energy. A
good model will have a low RMSE0 paired with low bend-
ing energy and often a relatively high reduction in error. A
bad model will have relatively high RMSE0 and either high
reduction in error paired with high bending energy, or low
reduction in error paired with low bending energy.

Figures 5–7 display examples of the resulting field de-
formations for κ , for typical deformations for these cases
(Fig. 5), the HRM3–HadCM3 (Fig. 6), which requires very
little deformation because the original field is already closely
aligned with the NARR, and a case where the spatial align-
ment (and intensities) are fairly poor; resulting in a more tor-
tured deformation (Fig. 7). In most cases, a small amount
of affine and nonlinear deformation results in considerable
error reduction. The cases that require more nonlinear de-
formations (MM5I–CCSM3, WRFG–CCSM3, and WRFG–
CGCM3; latter two not shown) stand out in both the “dis-
tance traveled” and “deformed 1-energy” panels for requiring
a relatively large amount of deformation in order to match
well with the NARR data product.

Severe thunderstorms require high CAPE, which is basi-
cally a measure of the amount of energy available to cre-
ate very strong updrafts in thunderstorms. High CAPE en-
vironments have a warm, moist boundary layer, with colder
air aloft, the latter of which increases conditional instability.
Proximity to warm, large bodies of water in the domain (i.e.,
the Gulf of Mexico, Caribbean, and Gulf of California) plays
a large role in dictating the spatial distribution of high CAPE
in the domain as they are the primary sources of moisture.
Moisture transport mechanisms also play a role. High CAPE
does not often occur at high elevation or near the west coast
because near-surface moisture is too low and/or near-surface
temperature is too cold. In the CCSM3-driven simulations,
the RCMs inherit an atmosphere that is too dry from the
CCSM3 in the warm season (Bukovsky and Karoly, 2010;
Bukovsky et al., 2013). This dryness would strongly effect
the frequency of high CAPE values in the central part of the
country during the dominant season for severe weather in the
region. In the MM5I vs. the CRCM–CCSM3-driven simula-
tions, it is likely that moisture transport mechanisms simu-
lated by the regional models are playing a strong role in dic-
tating the distribution of moisture, thus resulting in the spa-
tial distribution of high CAPE frequencies east of the Missis-
sippi River. In the HRM3–HadCM3, it is likely that warm-
season low level winds are a bit too southeasterly through
the Plains, carrying more moisture into the High Plains and
Rocky mountain region than is observed, leading to the high
CAPE frequencies seen from central Mexico north through
Wyoming and eastern Montana.

The reductions in error range from only about 19 % to
almost 62 % (WRFG–CCSM3 and WRFG–CGCM3); the
WRFG–NCEP case had the third highest reduction in er-
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Figure 5. Deformation results for κ . Top left is NARR reanalysis (0-energy field), top middle is CRCM–CCSM3 (1-energy field), top right
is the error between NARR and CRCM–CCSM3. Bottom left shows the distance that the intensity “traveled” to arrive at each grid point,
bottom middle is the deformed CRCM–CCSM3 field, and bottom right is the error field between NARR and the deformed CRCM–CCSM3.

Figure 6. Same as Fig. 5, but for HRM3–HadCM3.

ror. Indeed, the WRFG model combinations had some of
the worst spatial alignment with the NARR, so the im-
provement induced by re-alignment is the most drastic. It
should be noted, however, that the deformations for the two
WRFG cases, WRFG–CCSM3 and WRFG–CGCM3, also
have the largest amount of nonlinear deformation with min-
imum bending energies much greater than any other model
combinations. Inspection of the graphs of the deformations
(not shown) suggests that the linear deformations are also
large for these cases. HRM3–HadCM3 has the least amount
of bending energy, and only a small amount of affine dis-
placements from the NARR. Nevertheless, with only a small

amount of deformation, this model still achieves a reduction
in RMSE, which is small to begin with, by almost 30 %.

Field deformation results for ω (Table 6) are, not surpris-
ingly, similar to those for κ , with percent reduction in RMSE
ranging from about 16 % to about 50 %. Bending energies are
similar, where the MM5I–CCSM3 again requires the most
bending energy, but this time at a much higher value of al-
most six. Results for the CRCM–CGCM3 configuration are
arguably the worst with a relatively large RMSE0 of about
0.11, and a very small reduction in error of only about 11 %
that is achieved only after requiring a relatively high amount
of bending energy (≈ 1.15).
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Figure 7. Same as Fig. 5, but for MM5I–CCSM3.

Table 6. Same as Table 5, but for ω.

RMSE0 RMSE1 % RMSE Bending
reduction energy

CRCM–CCSM3 0.1313 0.1006 23 0.0228
CRCM–CGCM3 0.1081 0.0966 11 1.1484
HRM3–HadCM3 0.0977 0.0673 31 0.265
MM5I–CCSM3 0.1802 0.1101 39 5.988
MM5I–HadCM3 0.1308 0.091 30 1.132
WRFG–CCSM3 0.1849 0.0914 51 0.9347
WRFG–CGCM3 0.1948 0.1087 44 0.8507
CRCM–NCEP 0.0939 0.0781 17 0.2466
WRFG–NCEP 0.1242 0.0704 43 0.5423

Following Gilleland (2013), the SPCT is applied with AE
plus deformation loss induced by the above deformations.
Some relatively significant results are now found; including
one case with better than 1 % significance, one with better
than 5 % significance, two cases with better than 10 % sig-
nificance, and three with about 15 % significance. Table 7
displays the test results for the cases where the p value is less
than 0.50. As mentioned above, the HRM3–HadCM3 model
appears to be the closest to the NARR in terms of spatial pat-
tern and location, as well as having about the right frequen-
cies in these areas; only a relatively small amount of defor-
mation is needed to optimize the alignment. Subsequently,
it is no surprise that this model is shown to be better than
all the other models; three of which are significantly bet-
ter at the 10 % level or better according to the SPCT with
AE+ deformation loss. Models with the HadCM3 compo-
nent generally fared very well under this test, and the MM5I
combinations also fared well. In general, the worse models
failed to capture the spatial extent of areas with frequently

Table 7. SPCT results when AE+ deformation loss is applied to
κ . Results shown are only for those cases with p values ≤ 50%.
Values shown are the mean loss differential statistic and associated
p value in parentheses. Bold face emphasizes the “better” model
according to the test; where negative (positive) values mean model
1 (model 2) is better. (∗∗∗) indicates significance at the ≈ 0 % level,
(∗∗) at the 5 % level, (∗) at the 10 % level, (†) at the 20 % level.
Note, the CRCM–NCEP case is not included because a good-fitting
variogram could not be found for any of the loss differential fields
associated with this model.

Model 1 Model 2 SPCT p value
statistic

CRCM–CCSM3 CRCM–CGCM3 −1.24 0.21
CRCM–CCSM3 HRM3–HadCM3 1.15 0.25
CRCM–CCSM3 WRFG–CGCM3 −0.94 0.35
CRCM–CGCM3 MM5I–CCSM3 1.02 0.31
CRCM–CGCM3 HRM3–HadCM3 1.66 0.10 ∗

CRCM–CGCM3 MM5I–HadCM3 1.24 0.22
CRCM–CGCM3 WRFG–NCEP 0.85 0.40
HRM3–HadCM3 MM5I–CCSM3 −1.71 0.09 ∗

HRM3–HadCM3 MM5I–HadCM3 −0.75 0.46
HRM3–HadCM3 WRFG–CCSM3 −1.45 0.15 †

HRM3–HadCM3 WRFG–CGCM3 −3.06 0.002 ∗∗∗
HRM3–HadCM3 WRFG–NCEP −0.89 0.37
MM5I–CCSM3 WRFG–CCSM3 −0.88 0.38
MM5I–CCSM3 WRFG–CGCM3 −2.12 0.03 ∗∗
MM5I–HadCM3 WRFG–CCSM3 −0.96 0.33
MM5I–HadCM3 WRFG–CGCM3 −1.45 0.15 †

WRFG–CCSM3 WRFG–CGCM3 −0.91 0.36
WRFG–CCSM3 WRFG–NCEP 0.79 0.43
WRFG–CGCM3 WRFG–NCEP 1.42 0.16 †
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Table 8. Same as Fig. 7, but for ω.

Model 1 Model 2 SPCT p value
statistic

CRCM–CCSM3 CRCM–CGCM3 −1.09 0.27
CRCM–CCSM3 MM5I–CCSM3 −1.31 0.19 ∗

CRCM–CCSM3 MM5I–HadCM3 −0.84 0.40
CRCM–CCSM3 WRFG–CCSM3 −1.03 0.30
CRCM–CCSM3 WRFG–CGCM3 −0.82 0.41
CRCM–CGCM3 CRCM–NCEP 0.76 0.45
HRM3–HadCM3 MM5I–CCSM3 −1.64 0.10 ∗

HRM3–HadCM3 MM5I–HadCM3 −0.82 0.41
HRM3–HadCM3 WRFG–CCSM3 −1.26 0.21
HRM3–HadCM3 WRFG–CGCM3 −0.8 0.43
MM5I–CCSM3 WRFG–CCSM3 0.9 0.37
MM5I–CCSM3 WRFG–CGCM3 0.85 0.40
MM5I–CCSM3 CRCM–NCEP 1.63 0.10 ∗

MM5I–CCSM3 WRFG–NCEP 1.38 0.17 ∗

MM5I–HadCM3 CRCM–NCEP 0.82 0.41
WRFG–CCSM3 CRCM–NCEP 1.76 0.08 ∗

WRFG–CCSM3 WRFG–NCEP 1.36 0.17 ∗

WRFG–CGCM3 CRCM–NCEP 1.33 0.18∗

WRFG–CGCM3 WRFG–NCEP 1.36 0.17 ∗

CRCM–NCEP WRFG–NCEP −0.76 0.45

high values of CAPE and WmSh. They tend to miss, or un-
derpredict, the high-frequencies in the northwest extending
to eastern Colorado and Wyoming compared with NARR.
They also tend to project considerably less frequency in the
southwestern part of the domain.

Despite the fact that the ω deformation results are similar
to those for κ , the SPCT with AE+ deformation loss results
are less similar. However, the HRM3 configurations do still
tend to outperform other models, in one case with statistical
significance at almost the 10 % level (Table 8).

5 Conclusions

In this study, several advanced weather forecast verification
techniques for high-resolution gridded verification sets are
applied in a novel way to severe-storm indicators from sev-
eral of the North American Climate Change Assessment Pro-
gram (NARCCAP) climate models. In particular, focus is
placed on the distributional property of how well the models
capture the frequencies of severe-storm environments when
the field energy is high, where field energy is defined by the
upper quartile over space and this field energy is considered
to be high when it is in the upper 90th percentile over time.
For ease of discussion, we denote κ to be the frequency of
CAPEs exceeding 1000 J kg−1 conditional upon high field
energy for CAPE, and similarly, ω to be the frequency of
WmSh’s exceeding 225 m2 s−2 conditional upon high field
energy for WmSh, where WmSh is equal to

√
2 ·CAPE · S,

and S denotes 0–6 km vertical wind shear (ms−1), provided

that CAPE≥ 100 J kg−1 and 5≤ S ≤ 50 (zero otherwise).
Previous studies found concurrently high values of CAPE
and S to be important indicators of severe-storm activity, and
the derived WmSh indicator from these coarse-scale vari-
ables discriminates severe-storm activity well as a univariate
variable.

In general, the NARCCAP runs under estimate the spatial
extent of high frequency κ and ω where the HRM3–HadCM3
model run performs the best; having an area ratio near unity
at ≈ 90 % and an intersection area of about 89 % for κ and
about 90 % in both categories for ω. The CRCM–NCEP run
is the next best in this regard with only slightly lower ratios.
For ω the numbers are similar for these models, although
the CRCM–NCEP has slightly better overlap (intersection
area about 0.91 vs. 0.84) and the CRCM–CGCM3 also has a
high area ratio (0.82 vs. 0.60) and intersection area (0.85 vs.
0.66). Otherwise, the area ratios for high frequencies for most
models range between about 20 and 60 % (0.91 for HRM3–
HadCM3) for κ and between about 35 and 95 % for ω; results
are similar for intersection area for both frequencies.

The application of binary image metrics suggests that
overall the models do reasonably well at capturing high-
frequencies of κ and ω, but for the very high-frequency ar-
eas, some models perform less well. In particular, mean error
distance and Baddeley’s 1 are applied, and for thresholds
above 80 %, it is found that the best models at capturing κ
are those that drive the regional models HRM3 and WRFG.
The worst at capturing the spatial patterns for κ are those
with CRCM and MM5I regional models, as well as those
driven by CCSM3 and CGCM3. For ω, the runs with NCEP
as the driving model perform worse at capturing frequency
area patterns for frequencies above about 80%, as well as
those utilizing CCSM3 and CGCM3.

The above results consider only spatial areas of high-
frequency severe-storm environments. Two methods are uti-
lized in this study to address both the spatial alignment and
intensity (i.e., frequencies) simultaneously: the forecast qual-
ity index (FQI; not shown) and the spatial prediction com-
parison test (SPCT) with absolute error (AE)+field defor-
mation loss. For both κ and ω, FQI results suggest that all
of the models perform best at capturing severe-storm envi-
ronment frequencies and spatial patterns of those frequen-
cies for thresholds between about 30 and 75 %. At the low-
est thresholds, CRCM–CCSM3 and CRCM–NCEP stand out
as being exceptionally good for both κ and ω meaning that
they may underpredict the frequency of severe-storm envi-
ronments, but they otherwise capture these areas but with
too few occurrences. The SPCT with AE+field deformation
loss is an overall estimation of how well the models perform
directly (without relying on setting thresholds). For κ , the
HRM3–HadCM3 model is clearly the best model, but mod-
els driven by CCSM3 fare well generally, as do those with
the CRCM regional model. For ω, the CRCM–CCSM3 is the
clear winner over all other models, but the HRM3–HadCM3
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also performs well. The MM5I regional model is generally
outperformed by other models.

The utility of applying spatial forecast verification tech-
niques for climate model evaluation studies is presented, and
the results of this study for severe-storm environments pro-
vide important insight into how to interpret future model runs
for these NARCCAP models. In particular, caution is re-
quired when considering very high frequencies for ω, and fo-
cus should be restricted to more moderate thresholds. More-
over, the spatial extent of future storm environments may be
an underestimation from nearly all of the model runs, and
more weight should be put on the HRM3–HadCM3 run than
other models, with considerably less weighting on model
combinations involving CGCM3.

Some methods provide analogous information, which pro-
vides consistency in ascertaining model performance, but
each can provide its own unique perspective depending on
the fields in question. For example, image warping is a highly
complicated approach, which could be considered unneces-
sary for simply inferring about how far off each model is
from the NARR. On the other hand, it provides the only
method known to the current authors that provides a statisti-
cal hypothesis test (or confidence intervals) that accounts for
both spatial correlation and displacement errors. The binary
image metrics such as the Hausdorff, partial Hausdorff, and
Baddeley1 all provide distributional summaries of the abso-
lute difference in distance maps between two binary “event”
fields, with 1 providing arguably the most useful informa-
tion. A summary of these measures can be found in Badde-
ley (1992a, b) and Schwedler and Baldwin (2011). The FQI
incorporates such displacement information, but also inten-
sity information so that it may provide redundant information
as these other distance map-based measures, but depending
on the intensities, it could also yield different results. The
feature-based approaches utilize many of these same types
of information, but inform about specific features within a
field, which in the present case is less important, but does de-
scribe how some models have two smaller features instead of
one large feature (i.e., area of higher frequency κ/ω).

6 Data availability

For NARR, the data can be accessed from EMC (http://www.
emc.ncep.noaa.gov/mmb/rreanl/) (EMC, 2007). The North
American Regional Climate Change Assessment Program
data set is available at doi:10.5065/D6RN35ST (Mearns et
al., 2007, 2014).
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