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Abstract. Sea surface temperature (SST) in the Pacific Ocean is a key component of many global climate mod-
els and the El Niño–Southern Oscillation (ENSO) phenomenon. We shall analyse SST for the period Novem-
ber 1981–December 2014. To study the temporal variability of the ENSO phenomenon, we have selected a
subregion of the tropical Pacific Ocean, namely the Niño 3.4 region, as it is thought to be the area where SST
anomalies indicate most clearly ENSO’s influence on the global atmosphere. SST anomalies, obtained by sub-
tracting the appropriate monthly averages from the data, are the focus of the majority of previous analyses of
the Pacific and other oceans’ SSTs. Preliminary data analysis showed that not only Niño 3.4 spatial means but
also Niño 3.4 spatial variances varied with month of the year. In this article, we conduct an analysis of the
raw SST data and introduce diagnostic plots (here, plots of variability vs. central tendency). These plots show
strong negative dependence between the spatial standard deviation and the spatial mean. Outliers are present, so
we consider robust regression to obtain intercept and slope estimates for the 12 individual months and for all-
months-combined. Based on this mean–standard deviation relationship, we define a variance-stabilizing trans-
formation. On the transformed scale, we describe the Niño 3.4 SST time series with a statistical model that is
linear, heteroskedastic, and dynamical.

1 Introduction

Sea surface temperature (SST) is an important component
of many global climate models. The thermal inertia of the
oceanic surface layer means the air–sea interaction that oc-
curs at the surface of the ocean is important to global tem-
perature models and prediction. Monthly SST datasets are a
combination of satellite, ship, and buoy observations. Typ-
ically, these are interpolated to produce a cohesive dataset,
such as can be found on the NOAA (National Oceanic and
Atmospheric Administration) website (NOAA, 2016). SST
anomalies rather than raw SST data are often analysed; SST
anomalies are determined by calculating the long-term (usu-
ally 30-year) temporal mean for each month and then sub-
tracting the appropriate monthly average from each data
point. For an illustration, the SST data (at a resolution of
1◦× 1◦) and the corresponding anomalies for January 1983
in the tropical Pacific Ocean are shown in Fig. 1, where the
climatology base period is 1971–2000. SST in the tropical

Pacific Ocean is a key component of the El Niño–Southern
Oscillation (ENSO) phenomenon (Alexander et al., 2002;
Bjerknes, 1969). Furthermore, tropical SST anomalies have
their greatest effect in the western Pacific Ocean, where SST
is normally higher than the global average SST (Holton,
2004).

The term El Niño was originally used to refer to the up-
welling of warm water in the Pacific Ocean off the South
American coast. However, the term is now used to describe
a broader range of interconnected oceanic and atmospheric
effects. ENSO describes the distribution of warmer-than-
average waters in the tropical Pacific Ocean, the associated
atmospheric variations, and the resulting weather conditions.
ENSO has two canonical states or regimes, an El Niño event
(warmer eastern tropical Pacific) and a La Niña event (cooler
eastern tropical Pacific). There are also periods where the
ocean is in a transition phase between these two states, which
is referred to as the neutral phase (Holton, 2004).
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Figure 1. Comparison of the SST data to the SST anomaly data
for January 1983. The climatology base period for the anomalies is
1971–2000. The Niño 3.4 region (5◦ S–5◦ N and 120–170◦W) is
inside the black rectangle. Units on the colour scale are ◦C.

During an El Niño event, the trade winds (the prevail-
ing pattern of easterly tropical surface winds) are weaker
and the warm water in the western tropical Pacific Ocean
spreads eastwards into the central and eastern Pacific Ocean
(Cai et al., 2014; McPhaden, 2004). There is an increase in
dry conditions (reduced precipitation) in Australia, particu-
larly in the east and across Indonesia, New Guinea, Microne-
sia, Fiji, New Caledonia, and Hawaii (Pui et al., 2012; Ro-
pelewski and Halpert, 1987). Concordantly, there is an in-
crease in precipitation in the central Pacific Ocean, the west-
ern and southern United States, Central America, and South
America (Rasmusson and Carpenter, 1982; Ropelewski and
Halpert, 1986, 1987). El Niño is also associated with anti-
cyclonic anomalous flow in the upper troposphere on either
side of the Equator (Arkin, 1982).

During a La Niña event, the trade winds are stronger,
the thermocline across the Pacific Ocean gets steeper, and
the western tropical Pacific Ocean has warmer-than-normal
SSTs (McPhaden, 2004). There is increased rainfall in Aus-
tralia, and La Niña events have been correlated with an in-
creased number of tropical cyclones during the cyclone sea-
son (Chand et al., 2013; Ropelewski and Halpert, 1989). In
the south-western United States, a La Niña event is typically
associated with unusually dry conditions (Cole et al., 2002).

In the neutral phase, there is low surface pressure in the
western tropical Pacific over the warm ocean around In-
donesia, high surface pressure in the eastern tropical Pacific,
and the trade winds blow across the tropical Pacific Ocean
(Holton, 2004).

Although ENSO events are characterized in the tropi-
cal Pacific Ocean, the global atmosphere and oceans are
highly interconnected and, thus, climatic effects in regions

of the world outside the Pacific can be correlated with
ENSO phases. For example, the ENSO phenomenon tele-
connects with precipitation during the monsoon season in
India, the rainy season in south-eastern Africa (Ropelewski
and Halpert, 1987, 1989), and global precipitation (Dai and
Wigley, 2000; Dai et al., 1998; Shi et al., 2002). Conse-
quently, El Niño and La Niña events have worldwide impli-
cations, and their accurate forecasting is an extremely impor-
tant problem that would benefit from further statistical anal-
ysis.

Characterizing the ENSO phenomenon’s temporal vari-
ability has, in the past, concentrated on SST anomalies. In
this article, we show that this strategy misses a fundamen-
tal spatial mean–variability relationship that can guide us to
modelling and forecasting SST on a different scale, where
the issues associated with forecasting El Niño and La Niña
events are more transparent. Section 2 presents the dataset
we analyse. In Sect. 3, we explore the mean–standard devia-
tion dependence of tropical Pacific SST data through simple
linear regression. This identifies a need for uncertainty quan-
tification of the regression slope estimates, which is intro-
duced in Sect. 4. In Sect. 5, a variance-stabilizing transform
is defined from the mean–standard deviation dependence,
for all-months-combined and for each month individually. In
Sect. 6, a statistical model is built on the transformed scale,
where an autoregressive process is fitted. Conclusions and a
discussion of implications from this study of SST variability
are given in Sect. 7, and an appendix summarizes a bootstrap
algorithm that we use for uncertainty quantification.

2 Dataset

The dataset we shall analyse is a subset of the global monthly
SST from the Climate Modelling Branch (CMB) of NOAA
using the Reynolds and Smith optimum interpolation ver-
sion 2 algorithm (Reynolds et al., 2002; NOAA, 2016). In
this article, we consider data from November 1981 to De-
cember 2014, inclusive. It is called “optimum interpolation
version 2” because in November 2001 the fields were recal-
culated from November 1981 onwards. Optimum interpola-
tion is the method by which irregularly spaced observations
in time and space are combined to form a cohesive dataset
(Reynolds, 1988; Reynolds and Marsico, 1993; Reynolds
et al., 2002).

The optimum interpolation analysis is produced weekly
using in situ (buoys and ships) and bias-corrected satellite
datasets, combined with SST estimations based on sea-ice
cover. The buoy observations are from both moored and
drifting buoys, and they are considered to be more accu-
rate than ship observations (Reynolds et al., 2002). Satel-
lite measurements of SST have been obtained from geo-
stationary and polar low-earth-orbiting platforms, using the
advanced very high-resolution radiometer (AVHRR) and
advanced microwave scanning radiometer (AMSR) instru-
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ments. The satellite observations measure approximately the
top millimetre of the ocean, while the ship and buoy measure-
ments measure the top few metres (Dash et al., 2012; Deser
et al., 2010; Reynolds, 1988; Reynolds and Marsico, 1993;
Reynolds et al., 2002).

To obtain monthly SST fields, the weekly fields are lin-
early downscaled to daily fields, and then the daily fields are
averaged for the month. The monthly SST data are defined on
a 1◦× 1◦ latitude–longitude grid and are in units of degrees
Celsius.

2.1 Spatial region

To study the temporal variability of the ENSO phenomenon,
we have selected a subregion of the tropical Pacific Ocean,
namely the Niño 3.4 region. The Niño 3.4 region combines
part of each of the Niño 3 region (5◦ S–5◦ N and 90–150◦W)
and the Niño 4 region (5◦ S–5◦ N and 160◦ E–150◦W). It is
defined as the region in the latitude range, 5◦ S to 5◦ N, and
the longitude range, 120 to 170◦W (Barnston et al., 1997);
see Fig. 1. We chose the Niño 3.4 region for our analysis
as it is widely used in tropical Pacific SST studies, and it is
thought to be the area where SST anomalies indicate most
clearly ENSO’s influence on the global atmosphere (Cane
et al., 1997).

In what follows, the ith grid cell in the Niño 3.4 region
is referenced by its centroid si . These latitude–longitude
co-ordinates are zonally and meridionally one degree apart
and take half-degree values. The spatial region of interest
(Niño 3.4 region) is made up of 10× 50= 500 ocean pixels,
namely Ds = {s1, . . ., s500}.

2.2 Temporal period

We analyse the SST dataset for the period November 1981–
December 2014. Thus, the temporal period of interest is
Dt = {1, . . .,398}, where each t corresponds to a time pe-
riod of 1 month. For some of our analyses, we subsetDt into
DJan
t ,DFeb

t , . . .,DDec
t , corresponding to the months January,

February, . . . , December, respectively; in this case, t = 1 cor-
responds to the first year (November 1981–October 1982),
t = 2 corresponds to the second year (November 1982–
October 1983), and so forth.

3 Mean–standard deviation dependence in the
Niño 3.4 region

The majority of previous analyses of Pacific SST focus on
the SST anomalies, obtained by subtracting the appropri-
ate monthly averages from the data. This removes seasonal
effects, but some of our preliminary data analysis showed
that not only spatial means but also spatial variances varied
with month of the year. We conjectured that the monthly spa-
tial variances might be related to the monthly spatial means,
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Figure 2. Spatial standard deviation, Sz(t), vs. spatial mean, z(t),
in the Niño 3.4 region, for all t ∈Dt , with the WTS-estimated line
superimposed. Units on both axes are ◦C.

which led to this study. In this article, we conduct a spatio-
temporal analysis of the raw SST data and introduce diagnos-
tic plots (here, plots of spatial variability vs. spatial central
tendency) for all-months-combined and for each of the 12
months separately. By going directly to anomalies, important
nonlinear behaviour in the raw data may be overlooked.

3.1 Spatial mean and spatial standard deviation

Define the spatial mean of a spatio-temporal dataset {z(s, t) :
s ∈Ds, t ∈Dt } for each time as

z(t)≡
1
|Ds|

∑
s∈Ds

z(s, t) ; t ∈Dt , (1)

where |Ds| denotes the number of pixels (here, 500) in Ds.
Define the (unbiased) spatial variance of the data {z(s, t) :

s ∈Ds, t ∈Dt } for each time as

S2
z (t)=

1
|Ds| − 1

∑
s∈Ds

(z(s, t)− z(t))2
; t ∈Dt . (2)

Define the spatial standard deviation as the square root of
the spatial variance and denote it as Sz(t).

3.2 Diagnostic plot of mean–standard deviation
dependence

We plotted the spatial standard deviation vs. the spatial mean
in the Niño 3.4 region for all t ∈Dt ; see Fig. 2. There is an
apparent negative trend; that is, when the Niño 3.4 region has
a higher spatial mean, it has a lower spatial standard devia-
tion. This negative trend can also be seen in other regions of
the tropical Pacific Ocean, for example the Niño 1+2 region
off the coast of Peru.
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Figure 3. Spatial standard deviation, Sz(t), vs. spatial mean, z(t), in
the Niño 3.4 region, for all t ∈Dt , where each season has a different
colour. The WTS-estimated lines for each season are superimposed
(DJF line is red; MAM line is yellow; JJA line is blue; SON line is
green). Units on both axes are ◦C.

Recall from Sect. 2 the definitions of the monthly tempo-
ral indices,DJan

t ,DFeb
t , . . .,DDec

t . We repeated the plot of the
spatial standard deviation vs. the spatial mean in the Niño 3.4
region given in Fig. 2, but we used different colours to repre-
sent the different seasons; see Fig. 3. While there is a range
of points within each of the seasons, there does appear to
be substantial between-season variability. For example, the
small-spatial-mean and small-spatial-standard-deviation re-
gion of the figure is predominantly austral summer months
(i.e. December, January, and February) and, in general, the
austral spring months (i.e. September, October, and Novem-
ber) have higher spatial standard deviations. The straight
lines fitted for each season are obtained using the robust
methodology described in Sect. 3.4.

To understand this variability, we plotted the spatial stan-
dard deviation vs. the spatial mean in the Niño 3.4 region for
all t ∈DJan

t , t ∈DFeb
t , . . ., t ∈DDec

t ; see the 12 plots in Fig. 4.
Combining some of the months together would increase the
number of observations in each group, potentially improving
the power of hypothesis tests we intend to apply (Sect. 4).
However, care is needed not to introduce bias by combining
months that are dissimilar. Further, we would lose the oppor-
tunity to see monthly behaviours and their dependencies on
other environmental factors.

The negative slope identified in Fig. 2 also appears in
Fig. 4 where the data are separated into the 12 individual
months. The straight lines fitted for each month were ob-
tained using the robust methodology described in Sect. 3.4.
If the slope of any line is significantly different from zero,
this could indicate that tropical Pacific Ocean SSTs should be
transformed at certain times of the year to a different scale,

where there is no mean–standard deviation relationship. We
have not been able to find any mention in the literature of
the relationships apparent in Figs. 2–4. In particular, Fig. 4
shows a consistent negative slope throughout the months of
the year, albeit different in strength from month-to-month.
The cause could be coupled dynamics with other ocean and
atmospheric variables (e.g. ocean currents or surface winds),
which manifests as a mean–standard deviation relationship.

It is generally accepted that the ENSO phenomenon is
nonlinear (e.g. Hoerling et al., 1997; Berliner et al., 2000;
Kondrashov et al., 2005), and it would appear that the rela-
tionships shown in Fig. 4 represent another way to describe
this. Nevertheless, the goal of this paper is to describe rather
than to explain the dependence between the spatial mean and
the spatial standard deviation. Our description (Sect. 5) has
implications for subsequent statistical modelling and fore-
casting of Pacific SSTs (Sect. 6).

To obtain the slope of the linear relationships by month
(Fig. 4), we could have used an ordinary-least-squares (OLS)
estimator, but because of apparent outliers, we used a robust
estimator. In what follows, we motivate robust estimation for
simple linear regression, from an alternative expression for
OLS estimation of the straight line’s intercept and slope.

3.3 Ordinary least squares for simple linear regression

The simple-linear-regression equation based on n data,
(x1,y1), . . ., (xn,yn), is typically written as

yi = α+βxi + εi , (3)

where yi represents the dependent variable, xi is the explana-
tory variable, and εi is the error with mean 0 and variance σ 2,
for i = 1, . . .,n. Estimates for α and β, namely α̂ and β̂, can
be derived by minimizing the sum of squares of the residu-
als, and their formulas are well known. Cressie and Keight-
ley (1981) show that the same estimates can be obtained al-
ternatively, by calculating a weighted average of the slopes,
si,j =

yi−yj
xi−xj

, between all points (xi,yi) and (xj ,yj ), where

xi 6= xj . That is, the OLS estimate of the slope, β̂, can be
written alternatively as the weighted average,

β̂ =

∑
i,jwi,j si,j∑
i,jwi,j

, (4)

where the weights are wi,j = (xi − xj )2, as suggested by the
Gauss–Markov theorem. (For the case where xi = xj , then
wi,j = 0, and that term in the sum shown in the numerator of
Eq. (4) is interpreted as zero.)

The OLS estimate of the intercept, α̂, can also be written
as a trivial weighted average involving all pairs (xi,yi) and
(xj ,yj ). Define weights wi,j = 1; then the OLS estimate of
the intercept can be written alternatively as

α̂ =

∑
i,j

(
1
2 (yi + yj )− 1

2 β̂(xi + xj )
)
wi,j∑

i,jwi,j
. (5)
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Figure 4. Spatial standard deviation, Sz(t), vs. spatial mean, z(t), in the Niño 3.4 region, for all t ∈DJan
t , t ∈DFeb

t , . . ., t ∈DDec
t , with the

WTS-estimated lines superimposed. Units on both axes are ◦C.

3.4 Robust regression

Detecting and rejecting outliers can involve subjectivity or
difficult simultaneous inferences, but robust methods provide
an automatic way to deal with them. Most robust-regression
methods minimize some function of the residuals. However,
here we use the alternative expressions for the OLS estimates
of slope and intercept given by Eqs. (4) and (5), respectively,
to implement robust regression.

3.4.1 Theil–Sen method

Recall from Sect. 3.3 the definition of the pairwise slopes,
{si,j }. It can be seen that E(si,j )= β for all i,j . Hence, a
natural estimator of the slope β in Eq. (3) is

β̂AVE ≡ s = average
{(

yi − yj

xi − xj

)
: xi 6= xj , i < j

}
. (6)

One way to robustify this estimate of the slope would be
to replace the average with the median. Hence consider

β̂UTS ≡median
{(

yi − yj

xi − xj

)
: xi 6= xj , i < j

}
, (7)

which is known as the unweighted Theil–Sen estimator (Sen,
1968; Theil, 1992). The estimate, β̂UTS, is an unbiased esti-
mator of the true slope, β, of the simple linear regression of
y on x given by Eq. (3) (Cressie and Keightley, 1981; Wang
and Yu, 2005).

3.4.2 Weighted Theil–Sen method

The estimate β̂UTS can be made more efficient by using
weights in the median in Eq. (7). The weighted median as an
estimate of a location parameter was first proposed by Edge-
worth (1888). Given observations a1, . . .,an, attach weights
w1, . . .,wn, where wk ≥ 0 and

∑
kwk > 0 (Scholz, 1978).

Then a distribution function G(b) can be defined as follows:

G(b)=
∑
i

wi∑
jwj

1[ai≤b] , (8)

where 1[ai≤b] is the indicator function such that 1[ai≤b] = 1 if
ai ≤ b and is zero otherwise. Now find m1 = inf {b :G(b)≥
0.5} and m2 = sup {b :G(b)≤ 0.5}; then the weighted me-
dian mw is defined as

mw ≡
m1+m2

2
. (9)
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Consider β̂WTS = weighted median{sij : xi < xj ; w} for
given weights w = {wi,j }. This estimator is called the
weighted Theil–Sen estimator. Sievers (1978), Scholz
(1978), and Cressie and Keightley (1981) suggest weight-
ing by wij = |xi − xj |. Cressie (1980) showed this to be an
asymptotically optimal choice, giving more weight to the
slopes between points that are further apart in the explanatory
variable. Note that if wi,j = 1, then the unweighted Theil–
Sen estimator is obtained.

Henceforth, we shall use

β̂WTS = weighted median
{(

yi − yj

xi − xj

)
: xi < xj ; w

}
, (10)

where w = {|xi − xj | : i < j}. The formula for the WTS es-
timator given by Eq. (10) should be compared to that of the
OLS estimator given by Eq. (4), to see how the robustifica-
tion takes place. The corresponding robust intercept estima-
tor using the weighted Theil–Sen method is an unweighted
median, namely (Cressie and Keightley, 1981):

α̂WTS =median
{

1
2

(yi + yj )−
1
2
β̂WTS(xi + xj ) : i ≤ j

}
. (11)

The formula for the WTS intercept estimator given by
Eq. (11) should be compared to that of the OLS estimator
given by Eq. (5), to see how the robustification takes place.

3.4.3 Statistical properties of weighted Theil–Sen
(WTS) estimates

In the rest of this subsection, we summarize the statistical
theory associated with WTS estimation.

3.4.4 Expectation

From Sievers (1978), n1/2(β̂WTS−β) has a limiting (as n→
∞) normal distribution with mean zero. That is, asymptoti-
cally, β̂WTS is unbiased. Adichie (1967) gives the conditions
under which E(α̂WTS)= α.

3.4.5 Variance

From Cressie and Keightley (1981),

var(β̂WTS)∼
{

12ξ (x)I (g)2
}−1

, (12)

and

var(α̂WTS)∼ var(β̂WTS)
{

1
n
ξ (x)+ x2

}
, (13)

where g is the probability density function of the errors {εi};
I (g)2

=
(∫
g2(y) dy

)2
= 1/(12σ 2), for g a normal density

with mean µ and variance σ 2; ξ (x) is defined as the sum of
squared deviations of x ≡ {xi : i = 1, . . .,n} about its mean:

ξ (x)≡
∑
i

(xi − x)2 , (14)

and LHSn ∼ RHSn means

LHSn
RHSn

−−−→
n→∞

1 . (15)

Note that the formula given by Cressie and Keightley (1981)
for the asymptotic variance of β̂WTS contains a typographic
error, which is corrected in Eq. (12).

3.4.6 Hypothesis testing

In the regression setting, it is common to test for the depen-
dence of y on x through the slope β being non-zero, so the
null hypothesis is that of no dependence. That is, the null
hypothesis is H0 : β = 0, vs. the alternative hypothesis, H1 :

β 6= 0.
A commonly used test statistic for this hypothesis test is

T =

(
β̂

σ̂

)√∑
i

(xi − x)2 , (16)

where β̂ and σ̂ are the usual estimators obtained from OLS. If
the errors are assumed to have a Gaussian distribution (i.e. εi
has probability density, g(ε)= (2πσ 2)−1/2 exp(−ε2/2σ 2),
for all i), then the test statistic T follows a t-distribution.
Since β̂WTS has a limiting normal distribution, we shall use
the normal distribution based on Eq. (12) for WTS estima-
tion. A robust estimate, σ̃ , of σ is used (Sect. 3.5).

For a chosen significance level of 5 % (say), we reject the
null hypothesis if T > z97.5 or if T <−z97.5. The value z97.5
can be obtained by looking up the normal-distribution ta-
ble, which can be found in many statistical software pack-
ages and books. These tables solve for zγ in the equation,
Pr(z ≤ zγ )= γ /100, where z is a standard normal random
variable, and 0≤ γ ≤ 100.

3.4.7 Confidence intervals

A 95 % two-sided confidence interval for β can be calculated
asβ̂WTS− z97.5

σ̃√∑
i (xi − x)2

, β̂WTS+ z97.5
σ̃√∑

i (xi − x)2

 , (17)

where σ̃ is defined below in Sect. 3.5. Notice that the null
hypothesis,H0, is rejected if zero is not contained in the con-
fidence interval.

3.5 Weighted Theil–Sen (WTS) estimation in the
diagnostic plots

In Fig. 4, we plotted the spatial standard deviation vs. the
spatial mean in the Niño 3.4 region for all t ∈DJan

t , t ∈

DFeb
t , . . ., t ∈DDec

t , and superimposed the individual WTS-
estimated lines. Also, in Fig. 2, we plotted the spatial stan-
dard deviation vs. the spatial mean in the Niño 3.4 region for
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Table 1. Results from a linear regression of the spatial standard deviation, Sz(t), on the spatial mean, z(t), in the Niño 3.4 region, for
all t ∈DJan

t , t ∈DFeb
t , . . ., t ∈DDec

t , and t ∈Dt . Shown are the WTS-estimated intercept and slope coefficients for each month and for all-
months-combined, and the associated model-based asymptotic 95 % confidence intervals and p values for the slope estimate from a two-sided
normal test.

Month WTS intercept WTS slope 95 % confidence interval p value
estimate estimate for slope for slope

January 2.117 –0.04215 (−0.1077, 0.02341) 0.21
February 1.937 –0.04385 (−0.08695, −0.0007475) 0.046
March 2.252 –0.05894 (−0.09394, −0.02395) < 0.01
April 3.622 –0.1086 (−0.1789, −0.03825) < 0.01
May 5.497 –0.1726 (−0.2437, −0.1014) < 0.01
June 7.319 –0.2343 (−0.3395, −0.1292) < 0.01
July 7.094 –0.2201 (−0.3355, −0.1048) < 0.01
August 5.687 –0.1653 (−0.2390, −0.09162) < 0.01
September 4.174 –0.1094 (−0.1506, −0.06820) < 0.01
October 3.487 −0.08275 (−0.1223, −0.04321) < 0.01
November 3.640 −0.08901 (−0.1254, −0.05261) < 0.01
December 3.230 –0.07786 (−0.1262, −0.02953) < 0.01

All months 5.559 –0.1692 (−0.1983, −0.1401) < 0.01

all t ∈Dt and superimposed the WTS-estimated line. Each
of the estimated lines in the 12 individual plots and the all-
months-combined plot clearly have a negative slope. The
WTS-estimated slopes and the associated 95 % confidence
intervals, given by Eq. (17), for each month and all-months-
combined are listed in Table 1. The successive time points in
each of our plots are 1 year apart and the autocorrelation val-
ues within each plot are small, so we are not concerned about
temporal statistical dependence upsetting our inferences on
the slopes of the straight lines.

The presence of outliers (e.g. May 1988, which was the
start of a La Niña event, and November–December 1982,
which were months in the middle of an El Niño event) moti-
vated our use of the WTS robust-regression method. It should
be noted that the outliers do not contradict the observed linear
relationship; rather, they appear to be extreme observations
caused by unusual SST conditions. Implementing robust re-
gression provides us with some assurance that our analysis
of variability will not be dominated by the outliers.

The asymptotic variance of the WTS slope estimate was
given in Sect. 3.4, which depends on σ 2; see Eq. (12). To
maintain robustness, we use the median absolute deviation
(MAD) to estimate σ (Hampel, 1974):

σ̃ =
1

0.6745
mediani{∣∣∣(yi − α̂− β̂xi)− (medianj (yj − α̂− β̂xj )

)∣∣∣} . (18)

The square of the MAD, σ̃ 2, is a robust estimate of σ 2

(Rousseeuw and Croux, 1993). This estimate of σ was also
used to calculate the asymptotic 95 % confidence intervals
and p values from a two-sided normal test, given in Table 1.
The p values show that January is the only month without

significant linear dependence between the spatial standard
deviation and the spatial mean.

4 Uncertainty quantification of slope estimates

The results given in Sect. 3.5 make distributional assump-
tions to obtain the p values and confidence intervals. A re-
sampling approach that is distribution free, called the boot-
strap, was first developed by Efron (1979). In bootstrapping,
the observed data are treated as a population from which
samples are randomly drawn with replacement. The param-
eter or statistic of interest is then calculated from these re-
sampled data, and the process is repeated a large number of
times. Because of its nonparametric nature, it does not rely
on Gaussian errors. We find this an attractive feature, and
hence it is used for all subsequent uncertainty quantification.

Bootstrapping in regression can be carried out in at least
two ways. Draw randomly with replacement from the (x,y)
pairs, where x is the spatial mean and y is the spatial stan-
dard deviation, and then estimate the variance of the slope
estimator from a large number of such resamples. Another
bootstrap procedure, and the one we shall use, is to resample
the residuals from the fitted model, which treats the x val-
ues as fixed and assumes that the errors are homoskedastic.
In our case, the spatial mean, z(t), has much less variability
than the spatial standard deviation, Sz(t), and the number of
pixels contributing to the spatial moments are the same for
each t ∈Dt . Hence, the bootstrap assumptions for regression
are not unreasonable in our case. The bootstrap algorithm we
use is given in Appendix A.

We have calculated the standard deviation and the 95 %
bootstrap percentile confidence intervals of the bootstrap
replicates of the regression slope, β, using B = 1000 boot-
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Figure 5. Time sequences from December, January, February, . . . ,
November, December, January, showing WTS-estimated slope co-
efficients with upper and lower limits from point-wise 95 % boot-
strap percentile confidence intervals, for the spatial standard devi-
ation vs. spatial mean of the original data {z(s, t)}. The horizon-
tal solid blue line is the WTS-estimated slope coefficient for all-
months-combined, and the horizontal dotted black line is the zero
line.

strap replicates for WTS regression. The bootstrap per-
centile confidence intervals are obtained as follows. Sort
the bootstrap replicates {β̂∗1 , . . ., β̂

∗

1000} so that β̂∗(1) ≤ β̂
∗

(2) ≤

. . .≤ β̂∗(1000). A 95 % bootstrap percentile confidence inter-
val with 1000 replicates uses as the lower and upper limits
the 25th and 975th bootstrap values, which in this case are(
β̂∗(25), β̂

∗

(975)

)
.

The resampling distributions of {β̂∗b : b = 1, . . .,1000}
were clearly unimodal for each month and for all-months-
combined (not shown). According to the 95 % bootstrap per-
centile confidence intervals for WTS estimation, most of the
months individually (Fig. 5) and combined have non-zero
slopes at the (point-wise) 5 % level of significance. That is,
there is a significant mean–standard deviation dependence in
the Niño 3.4 SST data. This is also apparent from Fig. 5,
where the upper confidence envelope misses the zero line
for most of the months and barely crosses it for January and
February. The estimated slopes for each month are all nega-
tive, and the austral autumn and winter months (May, June,
July, and August) have the steepest slopes.

5 Variance-stabilizing transformation

Consider a random variable X such that E(X2)<∞; then a
variance-stabilizing transformation, f , satisfies

var (f (X))' c , (19)

for a constant c that does not depend on E (f (X)). The ap-
proximation in Eq. (19) relies on σ 2

x ≡ var(X) being small
relative to µx ≡ E(X).

The delta method can be used to identify a variance-
stabilizing transformation as follows. Assuming that f is
twice differentiable, we can write a first-order Taylor-series
expansion of f (x) about a real value ν as

f (x)= f (ν)+ f ′(ν)(x− ν)+O((x− ν)2) ; (20)

see, for example, Harding and Quinney (1986). Then put ν =
µx , and hence an approximation to the variance of f (X) is
given by

var(f (X))'
(
f ′(µx)

)2var(X) . (21)

Let var(X)= σ 2
x be some function of the mean µx , which

we write as h(µx). To find a function f that satisfies Eq. (19),
we rewrite Eq. (21) as follows:

f ′(µx)'
√

c

h(µx)
. (22)

This implies that for any function h(µx), where 1/
√
h(µx) is

integrable with respect to µx , the relationship

f (x)∝

x∫
1

√
h(µx)

dµx (23)

produces an f that satisfies (Eq. 19); that is, f given by
Eq. (23) is a variance-stabilizing transformation (Bartlett,
1947). In what follows, we are particularly interested in the
case h(µx)= (α+βµx)2.

In the Niño 3.4 region, the spatial standard deviation of
SST has an approximately linear relationship with the spatial
mean of SST. That is,

Sz(t)' α+βz(t) . (24)

If we now replace the empirical (i.e. spatial) moments of z
with theoretical moments in Eq. (24), we obtain

f (x)∝

x∫
1√

(α+βµ)2
dµ= log(α+βx) , (25)

modulo an additive and multiplicative constant, and provided
α+βx > 0. That is, in the domain α+βx > 0, Eq. (25)
says that f (x)= log(α+βx) is approximately a variance-
stabilizing transformation. For the SST data, we write

u(s, t)≡ log(α+βz(s, t)) (26)

for constants α and β such that α+βz(s, t)> 0 for all
{z(s, t)}.

The analysis we propose in this article is to obtain the
slope β and the intercept α in Eq. (26) by WTS estimation;
see Table 1 where, for all-months-combined, α̂WTS = 5.5559
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Figure 6. Spatial standard deviation, Su(t), vs. the spatial mean,
u(t), of the transformed data {u(s, t)}, in the Niño 3.4 region, for
all t ∈Dt , with the WTS-estimated line superimposed. Each season
has a different colour (DJF points are red; MAM points are yellow;
JJA points are blue; SON points are green).

and β̂WTS =−0.1692. For this choice, α+βz(s, t)> 0 for
all {z(s, t)}. Then for all-months-combined we plotted the
monthly spatial standard deviation vs. the monthly spatial
mean of the transformed data {u(s, t) : s ∈Ds, t ∈Dt }; see
Fig. 6 where a WTS-fitted line is also superimposed. The
negative dependence seen previously in the raw data (Fig. 2)
is no longer present in the all-months-combined plot, but the
colours for each season suggest that there are still different
behaviours between the seasons.

Because of the seasonal differences seen in Fig. 6, we
should not be surprised that a single intercept and slope es-
timate in Eq. (26) does not remove the mean–standard devi-
ation dependence in the individual months, January, Febru-
ary, . . . , December. In plots analogous to Figs. 4 and 5 for
the transformed data, {u(s, t)}, the slopes still show a strong
pattern, although they now oscillate around zero. The goal
is to transform the data so that there is no mean–standard
deviation dependence; that is, for each month (and for all-
months-combined), the confidence interval for the slope β
should contain 0. An attempt was made to use what is known
about the ENSO spring barrier to forecasting SSTs and El
Niño/La Niña events (e.g. Lopez and Kirtman, 2014): the
data from contiguous months either side of this barrier were
combined, but a pattern of estimated slopes remained. Based
on this data analysis (not shown), we concluded that each
month has its own individual mean–standard deviation de-
pendence that should be respected.

To illustrate the next stage of our analysis, we consider the
month of January. The top left-hand panel of Fig. 4 shows a
plot of y = Sz(t) vs. x = z(t), for all t ∈DJan

t . We used ro-
bust regression to obtain a WTS-fitted line, y = α̂Jan

+ β̂Janx,

where from Table 1, α̂Jan
= 2.117 and β̂Jan

=−0.04215. Fol-
lowing the transformation given by Eq. (26), but now just for
the data in the month of January, we define for t ∈DJan

t ,

uJan(s, t)≡ log
(
α̂Jan
+ β̂Janz(s, t)

)
. (27)

Similarly, we define uFeb(s, t) for t ∈DFeb
t , . . . , and

uDec(s, t) for t ∈DDec
t . Note that all arguments of the log

transformation in Eq. (27) were positive for January and all
other months. Finally, we combine these individual-month
definitions to define a transformation of all the data, {z(s, t)},
as

v(s, t)≡ uM (s, t) , for t ∈M and M ∈ {Jan,Feb, . . .,Dec} . (28)

The analogous plot to Fig. 5, for the transformed data
{v(s, t)}, is given in Fig. 7 which, using obvious notation,
is based on v(t) and Sv(t). Clearly, the transformation given
in Eq. (28) has successfully removed the strong pattern in
the estimated slopes, leaving a zero slope inside all 12 confi-
dence intervals; see Table 2. With the mean–standard devia-
tion dependence removed, it is now meaningful to look at the
intercept estimates in Table 2. These show how the spatial
standard deviations change from month-to-month, but they
are now unconfounded with the level of warming or cooling
in the Niño 3.4 region. In other words, on the transformed
scale, the data {v(s, t)} show us the pure spatial variability
of tropical Pacific SSTs by month. Like Fig. 7, which was
for the estimated slope estimates based on the transformed
data, Fig. 8 shows the estimated intercept estimates based on
the transformed data with the associated point-wise bootstrap
percentile confidence intervals. The ENSO spring barrier be-
tween April and May stands out. Here we recognize it as the
month-to-month transition where the standard deviation in-
creases the most.

6 Predicting future SSTs

In this section we fit time series models to {z(t)} and {v(t)}
for the whole time period from November 1981 to Decem-
ber 2014. We then use hindcasting to compare the models’
respective predictions to the observed in-sample SSTs. Be-
cause we hindcast in the same way for both models, the re-
spective skills can be compared. First define the anomalies

za(t)≡ z(t)− zM ; t ∈M , (29)

where zM ≡
∑
t∈Mz(t)/

∑
t∈M1. A small number of outliers

were identified and removed. An autoregressive process of
order 2, or AR(2), was identified using the partial autocorre-
lation function (PACF), and a fit was obtained using the ar
function (yule-walker method) in the R stats
package. At time t , za(t) and za(t − 1) were used to fore-
cast za(t+ τ ), for τ = 1. . .,7. We denote these predictions as
p̂z(t;τ ) ; τ = 1. . .,7.
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Table 2. Results from a linear regression of the spatial standard deviation, Sv(t), on the spatial mean, v(t), in the Niño 3.4 region, for
all t ∈DJan

t , t ∈DFeb
t , . . ., t ∈DDec

t , and t ∈Dt . Shown are the WTS-estimated intercept and slope coefficients for each month and for all
months combined. Also shown are bootstrap (using 1000 replicates) standard deviations (SD) and 95 % confidence intervals.

Month WTS intercept WTS slope Bootstrap SD 95 % Bootstrap percentile
estimate estimate for slope confidence interval

for slope

January 0.04229 −0.002578 0.025 (0.039, 0.045)
February 0.04630 0.008358 0.023 (0.033, 0.058)
March 0.05855 −0.001844 0.018 (0.041, 0.074)
April 0.1010 −0.01833 0.033 (0.065, 0.14)
May 0.1607 −0.03241 0.042 (0.12, 0.20)
June 0.2202 −0.03957 0.046 (0.19, 0.25)
July 0.2186 −0.03018 0.053 (0.20, 0.24)
August 0.1631 0.002775 0.034 (0.15, 0.18)
September 0.1083 0.0006636 0.031 (0.096, 0.13)
October 0.08288 −0.001820 0.019 (0.072, 0.092)
November 0.08971 −0.004768 0.017 (0.081, 0.098)
December 0.07923 −0.008524 0.019 (0.072, 0.085)

All months 0.1693 0.007827 0.014 (−0.019, 0.036)
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Figure 7. Time sequences from December, January, February, . . . ,
November, December, January, showing WTS-estimated slope co-
efficients with upper and lower limits from point-wise 95 % boot-
strap percentile confidence intervals, for the spatial standard devia-
tion vs. spatial mean of the transformed data {v(s, t)}. The horizon-
tal dotted black line is the zero line.

On the transformed scale, as defined by Eq. (28), we stan-
dardize v(t) by calculating its anomalies and then dividing by
the intercepts (IMv ) in Fig. 8 and Table 2. That is, we define

vs(t)≡
v(t)− vM

IMv
; t ∈M . (30)

Again the PACF suggested an AR(2) process, and the fitted
model was used in a similar way to forecast up to 7 months
into the future on the transformed scale. Unbiased predic-
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Figure 8. Time sequences from December, January, February, . . . ,
November, December, January, showing WTS estimates of the in-
tercept with upper and lower limits from point-wise 95 % bootstrap
percentile confidence intervals, for the spatial standard deviation vs.
spatial mean of the transformed data {v(s, t)}. The intercept esti-
mates are a measure of the monthly spatial variability on the trans-
formed scale.

tions on the original degrees-Celsius scale were obtained us-
ing the back-transforms described by Cressie (1993, pp. 135–
136). We denote these predictions as p̂v(t;τ ).

The square root absolute difference (RAD) for each pre-
dicted value was used as a measure of the predictive skill:

RADMz (t;τ )≡
√
|p̂z(t;τ )− z(t + τ )|; t ∈ M, τ = 1. . .,7 , (31)
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Figure 9. Box plots of relative skill (RS), as defined by Eq. (32), for January, and τ = 1, . . .,7. The vertical axis is truncated at 3.5, leaving
14 RS values not shown. Values above 1 indicate that p̂v gives better forecasts than p̂z.

0

1

2

3

1 2 3 4 5 6 7
Tau

R
el

at
iv

e 
sk

ill

Oct

Figure 10. Box plots of relative skill, as defined by Eq. (32), for October, and τ = 1, . . .,7. The vertical axis is truncated at 3.5, leaving
two RS values not shown. Values above 1 indicate that p̂v gives better forecasts than p̂z.

where z(t + τ ) was extracted from the complete Niño 3.4
dataset. A similar definition of RADMv (t;τ ) for p̂v(t;τ ) al-
lows us to calculate a relative skill between the two types of
forecast:

RS(t;τ )≡
RADMz (t;τ )

RADMv (t;τ )
; t ∈M. (32)

If the relative skill is greater than 1, then p̂v is a better pre-
dictor than the standard predictor, p̂z, and if the relative skill
is less than 1, p̂v does not perform as well as p̂z.

For some months, specifically the austral summer months
(December, January, and February), p̂v was much better than
p̂z; see the box plots of relative skill for January in Fig. 9.
For the months March–September, p̂v shows almost no im-
provement on p̂z, while for October and November p̂v did
not perform as well as p̂z; see the box plots of relative skill
for October in Fig. 10.

Our study involved fitting an autoregressive model directly
to the data {za(t)} or {vs(t)}. No measurement error was ac-
counted for, and hence any forecast at time t + τ relied only
on the current and the immediate-past datum at time t and at
time t−1, respectively. A more thorough analysis would fit a
hierarchical statistical model, for which a Kalman filter could
be developed. Then a forecast at time t+ τ would depend on

all data up to and including time t . It would be interesting to
see whether the same seasonal pattern of relative predictive
skill emerged.

7 Discussion and conclusions

The first part of this article gives an exploratory data analysis
of tropical Pacific SSTs during the period November 1981–
December 2014. Most analyses and models found in the lit-
erature work directly with the SST anomalies. We make a
strong case here that there is structure in the raw data that
these analyses miss, namely a spatial mean–variability rela-
tionship that suggests a nonlinear transformation of the data.
This structure is also consistent with the generally accepted
nonlinearity of the ENSO phenomenon.

Working with anomalies implies that large-scale seasonal
processes and smaller-scale processes are additive. The ap-
proach based on anomalies subtracts the seasonal compo-
nent, leaving behind a residual component (made up of the
anomalies) that is modelled. We believe that this strategy
can cause difficulties with modelling and forecasting. This is
because there is a mean–standard deviation relationship that
needs to be respected first, before anomalies are considered
and dynamical models are built.
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In this article, we give a statistical methodology that re-
moves the mean–standard deviation relationship by trans-
forming the data. The transformation is empirically driven,
but it is based on 33 years of data for which a consistent
pattern is seen; outliers are apparent for less than 3 % of the
398 months that we considered. In order that the outliers did
not overly affect the patterns we inferred, we used robust
methods in our exploratory data analysis.

The transformation we derived is logarithmic, monotone,
and nonlinear, and it respects the variability seen in SSTs
from month-to-month during the year. At the very least,
the estimated parameters of the transformation offer another
characterization of the enigmatic patterns of SSTs that lead
to El Niño and La Niña events.

In the latter part of this article, we fitted an autoregressive
process to the standardized anomalies on the transformed
scale. Forecasting based on autoregressive processes is quite
straightforward, as is the back-transform that yields forecasts
on the original scale, in degrees Celsius. The model we pro-
pose is fundamentally statistical, and its skill relative to a
standard forecast on the original scale is seen to be seasonal
(Sect. 6). It could clearly be enhanced by embedding it in a
hierarchical model. There is also the potential in this work to
understand more clearly various geophysical phenomena in-
volving tropical Pacific SSTs, such as the ENSO spring bar-
rier and interconnected oceanic and atmospheric effects, by
transforming the SSTs to a different scale.

8 Data availability

Sea surface temperature datasets are available from: http:
//iridl.ldeo.columbia.edu/SOURCES/.NOAA/.NCEP/.EMC/
.CMB/.GLOBAL/.Reyn_SmithOIv2/.monthly/sst/dods
(NOAA, 2016).
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Appendix A: Bootstrap algorithm

For further details on this algorithm, see for example Fox
(2015).

Algorithm 1 Bootstrapping regression residuals

1. Given observed data, (x1,y1), . . ., (xn,yn), and fitted line, y =
α̂+ β̂x, calculate e1, . . .,en as follows:

ei = yi − α̂− β̂xi ; i = 1, . . .,n .

2. Sample, with replacement, n indices I = (i1, . . ., in) from
{1, . . .,n}, where each index has equal probability of being
sampled, namely 1/n.

3. Use the bootstrap sample, {(xi ,ei∗ ) : i ∈ {1, . . .,n}, i∗ ∈ I }, to
calculate y∗

i
:

y∗i = α̂+ β̂xi + ei∗ .

Fit a linear regression to the n pairs, {(xi ,y∗i ) : i = 1, . . .,n},
to obtain α̂∗ and β̂∗.

4. Repeat Steps 2 and 3, B times, resulting in bootstrap repli-
cates of the slope coefficient, β̂∗1 , . . ., β̂

∗
B

.

5. Calculate the desired measures of uncertainty of β̂ from
β̂∗1 , . . ., β̂

∗
B

, for example the bias, the variance, the mean-
squared prediction error, or a confidence interval.
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