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Abstract. To study climate change on multi-millennial timescales or to explore a model’s parameter space,

efficient models with simplified and parameterised processes are required. However, the reduction in explicitly

modelled processes can lead to underestimation of some atmospheric responses that are essential to the under-

standing of the climate system. While more complex general circulations are available and capable of simulating

a more realistic climate, they are too computationally intensive for these purposes. In this work, we propose a

multi-level Gaussian emulation technique to efficiently estimate the outputs of steady-state simulations of an

expensive atmospheric model in response to changes in boundary forcing. The link between a computationally

expensive atmospheric model, PLASIM (Planet Simulator), and a cheaper model, EMBM (energy–moisture bal-

ance model), is established through the common boundary condition specified by an ocean model, allowing for

information to be propagated from one to the other. This technique allows PLASIM emulators to be built at a

low cost. The method is first demonstrated by emulating a scalar summary quantity, the global mean surface air

temperature. It is then employed to emulate the dimensionally reduced 2-D surface air temperature field. Even

though the two atmospheric models chosen are structurally unrelated, Gaussian process emulators of PLASIM

atmospheric variables are successfully constructed using EMBM as a fast approximation. With the extra infor-

mation gained from the cheap model, the multi-level emulator of PLASIM’s 2-D surface air temperature field is

built using only one-third the amount of expensive data required by the normal single-level technique. The con-

structed emulator is shown to capture 93.2 % of the variance across the validation ensemble, with the averaged

RMSE of 1.33 ◦C. Using the method proposed, quantities from PLASIM can be constructed and used to study

the effects introduced by PLASIM’s atmosphere.

1 Introduction

Complex computer simulations are used in climate research

to improve our understanding of the climate system. They

are often used to project future changes in global tempera-

ture, corresponding to different emission scenarios. Our con-

fidence in these projections is highly dependent on how re-

liable the simulations are. For example, the study of palaeo-

climate offers an insight into the Earth’s past climate system

and also provides valuable out-of-sample data to validate our

simulations. However, this requires running complex simula-

tions on multi-millennial timescales, which is computation-

ally demanding. For most coupled atmosphere–ocean gen-

eral circulation models (AOGCMs), this is currently not fea-

sible. Other studies such as uncertainty and sensitivity anal-

ysis or history matching require a thorough exploration of

the input parameter space. The class of fast models, known

as Earth system models of intermediate complexity (EMICs)

is suitable for these types of studies. Their efficiency is
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achieved by a combination of lower spatial and/or temporal

resolution and the use of simplified parameterisations. How-

ever, depending on the nature of the questions asked, these

lower fidelity models might be insufficient.

To address this issue, an emulator is often employed to

provide a statistical estimation of the expensive model’s re-

sponse without the need to perform a new simulation. Even

then, this approach becomes impractical when the models of

interest are very computationally intensive. In order to build a

reliable emulator, a certain number of simulations is needed

to provide the basis upon which the emulator is built. This

number can be large, especially when multiple model pa-

rameters are varied or when the model’s climate response

exhibits non-linear behaviours. For a computationally expen-

sive GCM, a sufficient number of simulations are often not

affordable. This paper describes an efficient emulation pro-

cess that utilises the connection between models of different

complexities. The idea is to establish a traceable hierarchy,

using an emulator for the simple model to construct an emu-

lator of the more complex one (Kennedy and O’Hagan, 2000;

Cumming and Goldstein, 2008).

While the high-fidelity (complex) model is computation-

ally expensive, the low-fidelity (simple) model is cheaper

to evaluate and can be sampled more finely across the in-

put space, providing extra information where expensive data

are sparse. The models forming this hierarchy can be struc-

turally related or structurally unrelated. Models are referred

to as structurally related when they are from the same family

of code but have different resolutions. These models might

have other differences resulting from the change in mesh res-

olution. Examples of such models are the HadCM3 (Hadley

Centre Coupled Model version 3) (Pope et al., 2000) and FA-

MOUS (Fast Met Office/U.K. Universities Simulator) (Jones

et al., 2005) of the MET Office. Multi-level emulation has

been employed before to link such models (Forrester et al.,

2007; Cumming and Goldstein, 2008; Williamson et al.,

2012). Here, our focus is on structurally unrelated atmo-

spheric models, which solve different sets of equations. Since

both the cheap and expensive codes model the same physical

system, it is reasonable to expect qualitative similarities be-

tween the two. This argument is supported by studies show-

ing no systematic difference in model behaviour between

EMICs and AOGCMs (Stouffer et al., 2006; Plattner et al.,

2008; Zickfeld et al., 2013).

The following work illustrates the use of a method that

combines multi-level emulation with a dimensional reduc-

tion technique through an example study using GENIE-

1, from the Grid ENabled Integrated Earth system mod-

elling framework (GENIE), and PLASIM (Planet Simula-

tor). GENIE-1 and PLASIM are chosen in this case since

they are both suitable for Earth system modelling for long

timescales, but are structurally different. PLASIM’s atmo-

sphere is also substantially more complex and thus, compu-

tationally more expensive than GENIE-1’s energy–moisture

balance model, EMBM, of the atmosphere. EMBM incorpo-

rates the vertically integrated energy–moisture balance equa-

tions while PLASIM is based on the moist primitive equa-

tions representing the conservation of momentum, mass and

energy. EMBM, therefore, is not capable of producing air

temperature and pressure at different altitude or an interac-

tive cloud and wind field. The hierarchy formed by these two

models is exploited using the multi-level technique, allowing

us to construct an emulator of PLASIM atmospheric vari-

ables at a reduced cost. Specifically, Gaussian process emu-

lators are used to obtain the statistical relationship between

the response of the EMBM atmosphere and the PLASIM at-

mosphere to changes in their boundary conditions (sea sur-

face temperature, long-wave and shortwave radiative forc-

ing). This ability of this relationship to predict behaviour of

PLASIM atmosphere, in the absence of feedbacks on other

climate system components, is then assessed. The dimen-

sional reduction technique is employed to extend the emu-

lation method for prediction of high-dimensional outputs in

addition to scalar summary quantities.

Once constructed, the emulators provide estimates of sim-

ulation results, at untried combinations of the inputs, as finely

as needed, at a low cost. This enables statistical methods such

as history matching (Holden et al., 2010; Edwards et al.,

2011) and sensitivity/uncertainty analysis (Rougier et al.,

2009). Information from the cheap code can also be used

to inform future designs of experiments using the expensive

code. Apart from above, the emulators of 2-D surface fields

similar to the one constructed here can potentially be used

to provide the fields needed for coupling with other climate

models or components of climate models.

2 Model configurations

In this study, we utilise the atmospheric component of

GENIE-1 (version 2.7.8) (Lenton et al., 2006), an EMIC,

as the cheap model. GENIE-1 was originally known as C-

GOLDSTEIN in Edwards and Marsh (2005) and has since

been modified for incorporation into the GENIE framework

(Lenton et al., 2006). It is most recently described in Marsh

et al. (2011). GENIE-1 is designed with scalable spatial reso-

lution and high efficiency, suitable for long integrations (103

to 106 years) to study past climate and large ensembles to

explore the uncertain input parameter space (Holden et al.,

2010).

The configuration of GENIE-1 employed here couples

a single layer EMBM atmosphere to a 3-D frictional

geostrophic ocean model with linear drag (GOLDSTEIN)

and a thermodynamic, advection–diffusion sea-ice model

(GOLDSTEIN sea ice). The ocean component is run at 64×

32 horizontal resolution and 16 vertical layers. Also incorpo-

rated in this configuration is the efficient numerical terrestrial

scheme (ENTS) designed for long simulations (Williamson

et al., 2006). ENTS represents a hybrid of a simple bucket

model with an explicit but simplified carbon cycle. The ef-
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fect of orography is applied to surface processes in ENTS by

applying a constant lapse rate (Holden et al., 2010). Orogra-

phy, therefore has an effect on the land surface temperature

and so indirectly influences the atmosphere. The atmospheric

processes such as heat and moisture transport do not interact

with the orography.

The parameterisation of atmospheric transport of heat and

moisture in EMBM is done by diffusion. Moisture can also

be advected by a prescribed monthly climatological wind

field. This wind field is fixed and is the same for all simula-

tions in EMBM. The effect of cloud cover on incoming short-

wave radiation is captured through a prescribed albedo field,

diagnosed from reanalysis data (Lenton et al., 2006). The ef-

fect of cloud cover on outgoing long-wave radiation is pa-

rameterised as perturbations to the unmodified “clear-skies”

outgoing long-wave radiation. Precipitation is assumed to oc-

cur whenever the relative humidity is above a certain ad-

justable threshold.

The atmosphere of PLASIM–ENTS (Holden et al., 2014),

driven by boundary conditions specified by GOLDSTEIN

ocean and sea ice, is chosen as the expensive model.

PLASIM (Fraedrich et al., 2005) consists of an atmospheric

GCM of intermediate complexity, which can interact with

reduced sub-models of ocean, sea ice and land (Fraedrich

et al., 2005). Hereafter, we refer to the atmospheric com-

ponent of PLASIM–ENTS as simply PLASIM. PLASIM

solves the primitive equations for vorticity, divergence, tem-

perature and the logarithm of surface pressure. It includes

a hydrological cycle, interactive clouds, and a simple radi-

ation scheme. Coupling between the PLASIM atmosphere

and an ocean model other than its own has been used before

to study the effects of mountains and ice sheets on ocean cir-

culation (Schmittner et al., 2011). An emulator of PLASIM–

ENTS has been employed in a range of integrated assessment

modelling couplings with various technico-economic models

(Labriet et al., 2015; Mercure et al., 2014).

PLASIM is run at T21 resolution, which corresponds to a

triangular truncation applied at wave number 21. It is almost

an exact match of GENIE-1’s 64× 32 mesh except for neg-

ligible differences at the highest latitudes. While EMBM has

only one layer, the atmosphere of PLASIM is represented

by 10 vertical layers in terrain following σ -coordinates.

Most importantly, EMBM uses prescribed wind fields, which

means that feedbacks due to changing atmospheric circula-

tion patterns are not captured, while PLASIM’s interactive

wind field can change according to the different specified

boundary conditions, leading to more diverse climate states.

While the cloud albedo in EMBM is prescribed, the cloud

albedo in PLASIM is a function of height and area of cover-

age.

For our study, surface output fields of GENIE-1, namely,

sea surface temperature (SST), fractional sea-ice coverage

(SIC) and sea-ice thickness (SIH) are used to drive PLASIM.

This means that the atmospheric circulation can change ac-

cording to the underlying sea surface temperature and sea-ice

condition but cannot influence the ocean or sea-ice physi-

cal state. This constrains PLASIM responses to a certain ex-

tent. The atmospheric responses of EMBM and PLASIM to

the same set of physically plausible boundary conditions are

compared and emulated. The surface air temperature (SAT)

from EMBM atmosphere is treated as a fast approximation

of PLASIM SAT when multi-level emulation is applied.

3 Ensemble design

3.1 Model parameters

To explore emulator performance in situations where the cli-

mate states are very different from modern conditions, an en-

semble is designed to fill a large input space; 12 model pa-

rameters and one dummy variable are varied, either linearly

or logarithmically, over the ranges indicated in Table 1. In

this experiment, we are primarily interested in the effects in-

troduced by the dynamical atmosphere of PLASIM and so

the parameters were chosen according to their influence on

SAT. Parameters with important contributions to SST and the

strength of the AMOC, and hence indirectly influencing SAT,

are also included. This judgment is based on previous studies

using large GENIE-1 ensembles (Lenton et al., 2006; Holden

et al., 2010).

The first parameter (ICF) represents the boundary con-

dition of the glacier coverage as well as the corresponding

orography at different a snapshot in time extending from the

present (0 kyr before present) to the Last Glacial Maximum

(LGM) (21 kyr before present) with steps of 1 kyr. Each value

of ICF corresponds to a spatial distribution of land ice at a

certain period according to the Peltier reconstruction ICE-5G

(Peltier, 2004). Both ice area and ice volume are non-linear

functions of ICF. Together with ICF, the atmospheric CO2

concentration (RFC) is varied from 150 ppm to 1400 ppm to

include the glacial–interglacial variations, pre-industrial and

modern climate as well as future responses to rising green-

house gas emissions. The upper limit is chosen to include

the CO2-equivalent concentration for all greenhouse gases by

2100 according to the high emission pathway RCP8.5 (Riahi

et al., 2011; Meinshausen et al., 2011). The equivalents of

these two parameters are also varied accordingly in PLASIM.

Other PLASIM parameters are kept at default values, which

are listed in Haberkorn et al. (2009).

Mixing and transport in the ocean are controlled by the

isopycnal and diapycnal diffusivity parameters (OHD and

OVD, respectively), a momentum drag coefficient (ODC)

and a wind scaling factor (WSF) (Edwards and Marsh,

2005). These parameters affect the ocean boundary condi-

tions, which are seen by both EMBM and PLASIM directly.

APM is a flux correction responsible for transporting

freshwater from the Atlantic to Pacific, affecting deep wa-

ter sinking in the North Atlantic and hence the strength of the

AMOC (Edwards and Marsh, 2005). The uncertain impact of

atmospheric transport is captured through atmospheric heat
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Table 1. Ten of the chosen parameters, with the exception of ICF and RFC, are taken from an ensemble design used in Holden et al. (2010).

The ranges were initially based on those used in the same study. However, adjustments are needed since the model is run at 64×32 horizontal

resolution here compared to the previously used 36× 36 mesh. The ranges shown below are obtained after an initial exploratory ensemble.

The distribution specifies whether their values (Lin) or the log of their values to base 10 (Log) are used to generate the sampling plan in

Sect. 3.2.

Code Parameter Min Max Dist.

1 ICF Ice sheet and orography configuration 0 21 Lin

2 OHD Ocean isopycnal diffusivity (m2s−1) 300 4000 Log

3 OVD Ocean diapycnal diffusivity (m2s−1) 5× 10−6 2× 10−4 Log

4 ODC Ocean friction coefficient (days−1) 0.5 3 Lin

5 WSF Wind scale coefficient 1 3 Lin

6 AHD Atmospheric heat diffusivity (m2s−1) 4× 106 7.0× 106 Log

7 AMD Atmospheric moisture diffusivity (m2s−1) 5× 104 6× 106 Log

8 APM Atlantic–Pacific freshwater flux (Sv) 0.032 0.640 Lin

9 RMX Relative humidity threshold for precipitation 0.6 0.9 Lin

10 OL0 Clear-sky OLR reduction (Wm−2) 0 10 Lin

11 OL1 OLR feedback (Wm−2K−1) −0.5 0.5 Lin

12 RFC CO2 forcing (ppm) 150 1400 Lin

13 FFX Dummy variable 0 1 Lin

and moisture diffusivity parameters (AHD and AMD, re-

spectively) (Edwards and Marsh, 2005). OL0 and OL1 mod-

ify the outgoing long-wave radiation and are included to al-

low for uncertainty due to cloud coverage and its dependence

on a change in the global average SAT (Thompson and War-

ren, 1982; Matthews and Caldeira, 2007). RMX is the thresh-

old value of relative humidity for precipitation, capturing the

uncertainty in water vapour feedbacks (Lenton et al., 2006).

Except for APM, these atmospheric parameters directly con-

trol the behaviour of EMBM, but only affect PLASIM indi-

rectly through their influence on the ocean boundary condi-

tions.

In addition to these 12 model parameters, a dummy pa-

rameter is included for statistical validation purposes, which

will be discussed in more detail in Sect. 4.1.

3.2 Statistical design

First, all input parameters are normalised to [0,1] from their

original ranges in Table 1. An approximate maximin Latin

hypercube (MLH) (Morris and Mitchell, 1995) sampling

plan is then generated, producing 660 combinations of the

13 chosen parameters to form a GENIE-1 perturbed physics

ensemble. The maximin criterion, also known as the Morris–

Mitchell criterion, is applied since a randomly generated

Latin hypercube does not ensure good space-filling proper-

ties, which are desirable to evenly explore the input space.

A MLH sample is a Latin hypercube sample that maximises

the minimal separation, mini 6=j = d(xi,xj ), between pairs of

design points, xi and xj . Here, the separation is simply the

Euclidean distance between the points.

Each member simulation of this ensemble is run for

5000 years to reach a steady state; 600 simulations were

completed successfully, producing a large range of climate

responses, which are summarised in Table 2. The 60 failures

are located at the end of one or more parameter ranges, where

numerical instability occurs. Failure is most commonly due

to low values of AHD and AMD. Although the design space

can be narrowed down to reduce the failure rate, this would

also restrict the range of the resulting climate states. Since we

wish to build emulators, which can predict a broad range of

climate responses without having to extrapolate beyond the

designed range, this ensemble design is appropriate.

A second MLH design is generated in the same parameter

space, producing 214 successful simulations, for validation

purposes. The emulator predictions at these points are com-

pared against the simulated values to assess the performance

of the emulators.

For each successful GENIE-1 simulation, surface output

fields are extracted and used to force PLASIM for another

35 years. Each sampling plan, therefore, produces two equiv-

alent ensembles of EMBM and PLASIM outputs. The fields

used to initiate PLASIM simulations are SST, SIC and SIH

as mentioned in Sect. 2. The 600-member ensemble mean

and standard deviation of GOLDSTEIN SST and ice area are

shown in Fig. 1. The ice coverage plotted is a combination of

the fractional sea-ice cover from GOLDSTEIN sea ice (SIC)

and the glacier mask described by ICF. The change in eleva-

tion corresponding to each glacier mask is applied for both

GENIE-1 and PLASIM.

Both ensemble designs are larger than needed in this case.

On average, 10 simulations are needed for each parame-

ter being varied. Since 13 parameters are perturbed, a 130-

member ensemble would be sufficient. There are several rea-

sons why a 600-member ensemble was used. First, the num-

ber of simulations required ultimately depends on the varia-
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Table 2. A summary of the simulated climate states from the 600-member ensembles of GENIE-1 with EMBM and PLASIM.

Min Max Mean SD

PLASIM global mean SAT (◦C) −6.05 23.33 11.25 4.63

EMBM global mean SAT (◦C) −2.62 24.43 12.56 4.25

GENIE-1 global mean SST (◦C) 7.77 27.10 17.01 3.24

GENIE-1 maximum strength of the AMOC (Sv) 0.82 36.59 15.31 5.94

GENIE-1 Antarctic sea-ice area (×106km2) 0.00 23.09 1.73 2.60

Figure 1. The mean and standard deviation of SST and fractional ice coverage across the 600-member ensemble. The SST and sea-ice

coverage are prognostic output of GENIE-1 while the land ice coverage is regridded from Peltier ICE-5G. These fields, among others, are

applied as surface boundary conditions to drive PLASIM atmosphere.

tions of the variable of interest within the specified parame-

ter space. If this variable behaves non-linearly and exhibits

a bifurcation, more simulations would be required to cap-

ture such behaviour accurately. Second, the required number

of simulations of cheap and expensive models are unknown.

Different combinations of subsets with varying sizes are used

and compared in the following section. It is ideal to generate

a new design separately for each case but this is highly ineffi-

cient and will result in an large incoherent ensemble with low

reusability. Therefore, it is preferable to start with a large de-

sign from which different subsets can be chosen. These sub-

sets are all subjected to the same maximin criteria mentioned

above. The algorithm used is covered in Sect. 4.2. While this

ensemble will be more reusable, a subset from it will most

likely have a worse space-filling property than an indepen-

dent MLH design of the same size. This is minimised by

starting from a very large ensemble like the one employed

here.

4 Statistical emulation

4.1 Gaussian process emulator

In a computer experiment, the model outputs at some com-

binations of input parameters are considered as observations.

An emulator is a statistical surrogate of a model, which is
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generally much cheaper to evaluate and, once validated, can

be used in place of the full model to predict the observa-

tion at untried choices of inputs. Our interest focuses on

the Gaussian process (GP) emulator, also known as krig-

ing (Rasmussen and Williams, 2006; Forrester et al., 2007),

and a multi-level extension to this method, referred to as co-

kriging (Kennedy and O’Hagan, 2000; Forrester et al., 2007;

Cumming and Goldstein, 2008). The advantage of using the

GP emulator is that the curve fits through the known points

(training points from model runs at predefined sets of pa-

rameters) and an estimated uncertainty is obtained for each

emulated point.

To emulate a single summary quantity of the simulation

outputs, for example, the global mean SAT, the assumptions

made are as follows:

– The model output is a smooth function of its inputs.

– The model can be represented as a GP.

– Each emulator is concerned with a single deterministic

scalar output.

The climate model, f (·), is a function of a set of param-

eters, x = (x1, · · ·,xk), where k is the number of perturbed

model parameters, which is 13 in this case. This number is

commonly referred to as the number of dimensions of the

emulator. The function f (·) is distributed as a GP with a

mean function m(·) and a covariance function V (·, ·). The

mean function is given by

m(x)= hT (x)β, (1)

where h(x) is a vector of known regression functions. In

the case of traditional kriging, hT (x)= 1, making β the un-

known overall mean. A variation of kriging, called universal

kriging, uses a linear mean function:

hT (x)= (1,x), (2)

where hT (x) is a (q × 1) vector with q = k+ 1. Then

m(x)= β1+β2x1+ ·· ·+βk+1xk. (3)

The coefficients [β2,βk+1] now describe the expected trend

of the simulator in response to each input.

The covariance function is given by

V (x,x′)= σ 29(x,x′), (4)

where σ 2 is the variance of the GP and 9(., .) is the assumed

correlation function:

9(x,x′)= exp

[
−

k∑
j=1

10θj
∣∣∣xj − x′

j

∣∣∣pj] . (5)

The function 9 describes the correlation between pairs of

points, which is assumed to be stationary and continuous,

that is, it only depends on the distance between the pair of

inputs, (x− x′). This exponential power form of covariance

structure is a popular choice due to its flexibility. Its assump-

tion of stationarity might fail, for example, when there is a

bifurcation in the system.

The value of 9 depends on the correlation parameters p

and θ , referred to as hyperparameters. θ is the correlation

length parameter, defining how quickly the correlation be-

tween the simulator outputs at two input points declines as

the distance between them increases. θ indicates the activ-

ity of the function in the corresponding dimension. p is a

“smoothness” parameter of the correlation function. For sim-

plicity and to reduce computational cost, p is assumed to be

the same for all dimensions.

The specified GP is used as a prior for Bayesian infer-

ence and is parameterised in terms of the hyperparameters

β, σ 2, θ and p. By analytically marginalising β and σ 2,

the marginal likelihood of the observed outputs at n training

points, y = [y1 = f (x1), · · ·,yn = f (xn)], given θ and p can

then be computed. A more detailed description of the deriva-

tions and formulations can be found in Mardia and Marshall

(1984). The estimated θj in kriging and βj+1 in universal

kriging indicate the relative activity in the j th corresponding

dimension. Very low values of these hyperparameters imply

inactive inputs. The dummy parameter, FFX, is included to

verify that the emulator is doing a good job at identifying

inactive inputs.

Prior beliefs about the model behaviour are combined with

observations from training points to produce a posterior dis-

tribution for the model. Having obtained estimates for θ and

p, the posterior distribution found can be used to make pre-

dictions about the model’s outputs at unsampled inputs. Full

description of the derivation of the posterior distribution as

well as distributional assumptions made for f (·), β and σ 2

are available in Kennedy and O’Hagan (2001).

The exponential power form of covariance structure used

here is a common choice due to its flexibility. Its assumption

on stationary might fail, for example, when there is a bifur-

cation in the system. The covariance specified, however, pro-

vides a weak prior and as more training points are used, it

contributes less to the final emulator.

4.2 Multi-level emulator

Co-kriging is an extension to the previously described tech-

nique, which is applicable when a fast approximation of the

primary simulator is available. In order for this method to

work, the primary simulator and its approximation need to

fulfil an additional assumption:

– The different levels of code are correlated and contain

information about one another.

When only a small number of expensive runs is available,

it has been shown that by combining these with cheaper

runs from a simplified code, an emulator of the expensive
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model can be built at a lower cost (Forrester et al., 2007).

Potentially, this method can be extended to more code lev-

els (Kennedy and O’Hagan, 2000), including the conceptual

“reified” model (Goldstein and Rougier, 2009).

We make a simplification that the expensive and cheap

models, fe and fc, respectively, can be represented by GP

emulators of the same smoothness p. The cheap model is

first emulated and then linked to the expensive one using the

single multiplier approach:

fe(x)= ρfc(x)+ fd(x). (6)

The expensive function is modelled as the cheap GP multi-

plied by a scaling factor ρ, plus a separate GP, fd, modelling

the stochastic residual of the expensive model (Kennedy and

O’Hagan, 2000; Forrester et al., 2007). This approximation

is chosen for its simplicity as well as the assumption that the

main difference between the two models is a matter of scale,

rather than changes in the shape or the location of the output.

This assumption is made based on the fact that both models

share the same ocean component and have the same inputs.

Two sets of training points are required for the construc-

tion of a co-kriging emulator, a cheap set yc = fc(xc), which

finely samples the input space, and a small sparse set ye =

fe(xe) of expensive points. Let the number of cheap and ex-

pensive points be nc and ne, respectively.

When the number of PLASIM training points is small,

such that a kriging emulator cannot be built with high ac-

curacy, co-kriging employing an additional large number of

training points from GENIE-1’s EMBM can be used instead.

The number of points required depends on the size of the

problem as well as the smoothness of the function being em-

ulated. The inputs at which the expensive training set is ob-

tained, xe, form a subset of the cheap set, xc. These expen-

sive points are chosen using an exchange algorithm described

by Cook and Nachtsheim (1980). A random subset xe is se-

lected and the Morris–Mitchell criterion is calculated. The

first point x
(1)
e is then exchanged with each of the remain-

ing points in xc. The exchange that gives the best Morris–

Mitchell criterion is chosen. By repeating the same proce-

dure for the remaining points x
(2)
e , · · ·,x

(ne)
e , the “best” subset

is obtained.

The covariance matrix for co-kriging, 9ck, can be written

in block form as

9ck =

(
σ 2

c Ac(xc) ρσ 2
c Ac(xc,xe)

ρσ 2
c Ac(xe,xc) ρσ 2

c Ac(xe)+ σ 2
e Ae(xe)

)
, (7)

with Ac =9(x,x′
;θc) and Ae =9(x,x′

;θe). This covari-

ance matrix encompasses the correlation between cheap

points (Ac(xc)), expensive points (Ac(xe) and Ae(xe)) and

the cross-correlation between the cheap and expensive points

(Ac(xc,xe)). Details on the formulation and derivation of this

equation can be found in Kennedy and O’Hagan (2000) and

Forrester et al. (2007).

Both kriging and co-kriging emulators are constructed us-

ing readily available software from Forrester et al. (2008).

4.3 Dimensional reduction using principal component

analysis

So far, we have only discussed the use of GP emulators

for single outputs. This can be a summary quantity such

as the strength of the AMOC or the global average SAT

(Hankin, 2005). The relevant output is, however, usually a

high-dimensional array, containing fields and/or time series

of many climate variables (e.g. SST, SAT or precipitation).

Climate variables at different spatial or temporal loca-

tions can be emulated independently (Lee et al., 2012).

This method, however, requires large computational power

and ignores the covariances between outputs close to one

another (Rougier, 2007). Other extension techniques using

approaches that can capture the correlations between the

outputs have been developed (Rougier, 2008; Conti and

O’Hagan, 2010). However, these methods are not well suited

for high-dimensional output.

In this work, we use principal component analysis (PCA)

via singular value decomposition (SVD) to transform the

high-dimensional data into a meaningful representation with

lower dimensionality. While there are several techniques to

accomplish this task, PCA is efficient and has the advan-

tage that the leading components explain the majority of the

variance across the ensemble (Holden and Edwards, 2010;

Wilkinson, 2010). It is by far the most popular unsuper-

vised linear technique. The mapping from the input parame-

ter space to the reduced dimensional output space, specified

by PCA, is the function being emulated instead of the direct

input–output relationship. This method has been applied suc-

cessfully in emulating temporally evolving spatial patterns

of climate variables in Challenor et al. (2010), Holden et al.

(2013) and Holden et al. (2014).

For each ensemble member, our field of interest, SAT, with

dimension 64× 32 is reshaped as a (2048× 1) vector. The

whole ensemble consisting of n fields is represented by the

(2048× n) matrix Y. Singular value decomposition is then

performed on the centred matrix; i.e. the ensemble-averaged

vector, µ, is removed:

Y−µ= LSRT , (8)

where L is the (2048×n) matrix of left singular vectors, also

known as the empirical orthogonal functions (EOFs), S is

the (n× n) diagonal matrix of singular values and r is the

(n× n) matrix of right singular vectors, or the component

scores. The product P of the singular values and the compo-

nent scores is commonly known as the matrix of principal

components (PCs):

P= S×RT . (9)

Any of the simulated fields can be constructed as a linear

combination of the EOFs, weighted by their respective series

of PCs. Each (2048× 1) column of Y is an EOF, describ-

ing a map or a mode of variation in the ensemble. These are
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stationary spatial structures that constitute directions of vari-

ability with no particular amplitude. The corresponding PC

for each of these modes is the (n× 1) column of P. The nth

element of each PC corresponds to the nth simulation from

the training ensemble. These PCs provide the sign and the

overall amplitude of the EOF corresponding to each simula-

tion. They can, therefore, be considered as scalar functions

of the input parameters and can be emulated using kriging or

co-kriging. The number of training points, n, become nc and

ne for the cheap and expensive emulator, respectively.

The EOFs and PCs of EMBM and PLASIM SAT can be

obtained by decomposing each set separately. However, we

are interested in using EMBM’s PCs as the cheap approxima-

tion of PLASIM’s values; therefore, the SAT fields from both

models are projected onto the same orthogonal basis vectors

defined by PLASIM’s EOFs. This gives a new set of PCs for

EMBM’s SAT:

Pr = LTe ×Yc. (10)

In other words, EMBM data (Yc) are rotated onto PLASIM’s

coordinate system (Le) and the PCs obtained (Pr) are the co-

ordinates of EMBM’s SAT fields in this new system. For co-

kriging, the normal PCs are used as expensive training data

from PLASIM while the rotated PCs are used as cheap train-

ing data from EMBM.

The top (or high order) EOFs explain most of the variance

in the data such that the dimension of Y can be reduced by

keeping only the first q components (q < n). The elements

of the PC vectors are now used as training data instead of the

direct climate variable. We assume that these PCs also fulfil

the same assumptions made for the climate variables. Emula-

tors are built for the first q PCs, providing an estimation, P̂ ,

for an unknown input vector, i.e. the (214× 13) input vector

of the validation set. They are then used to work out the final

prediction of the emulated field:

Ŷil = µ+

q∑
j=1

Lij P̂
T
jl, (11)

where Ŷil is a component of the (2048× 214) matrix Ŷ .

The prediction, Ŷ , is different from the simulated value

of Y by an error component, which can be decomposed into

truncation error and component error. Truncation error is due

to dimensional reduction. This is kept low by making sure

that enough EOFs are retained to explain most of the vari-

ance in the ensemble. Although there is no definite rule on

what percent explained would be sufficient, a high value such

as 90 % should be satisfactory. EOFs that explain less than

1 % of the total variance are often truncated since the data

contained in them are often indistinguishable from random

noise. Here, the first 10 EOFs are emulated and added pro-

gressively. Validation is performed after each step and only

EOFs, which contribute positively to the total variance ex-

plained, are kept. Component error is a result of imperfect

estimation by the emulator, i.e. an error in estimating the cor-

rect hyperparameters. This can be minimised by making sure

enough training data are used to ensure the emulator can cap-

ture the real trend of the ensemble. The GP emulator also

provides an estimate of this error.

5 Results

5.1 Simulated climates

The EMBM output SATs are averaged over the final year of

the 5000-year simulations while PLASIM output fields are

averaged over the last 30 years. The ranges of some out-

put variables obtained from the 600-member ensembles of

GENIE-1 and PLASIM simulations are summarised in Ta-

ble 2. The diversity of the output climate states is demon-

strated by the large variation in SST, SAT, Antarctic sea-ice

area and strength of the AMOC, which is weakened or shut

down in some simulations. Because of the large upper limit

of atmospheric CO2 concentration and GENIE-1’s general

bias towards low Antarctic sea ice, in some simulations, the

Southern Ocean appears to be completely ice free. The SAT

in PLASIM is lower in general and exhibits a slightly larger

variation compared to EMBM’s value.

Figure 2 shows the ensemble mean and standard deviation

of PLASIM and EMBM SAT. Although similar spatial pat-

terns are seen in both, PLASIM exhibits a larger variation

spatially and across the ensemble, especially at high eleva-

tion. The comparison between the two models also shows

that EMBM climate is much more zonal, with little land–

sea difference. This is one of the known weaknesses of the

energy–moisture balance model of the atmosphere, which is

too diffusive (Lenton et al., 2006). A clearer distinction be-

tween the ocean and the continents is modelled in PLASIM

as shown in the standard deviation plot of Fig. 2.

The differences seen in Table 2 and Fig. 2 are partly due

to the nature of EMBM and PLASIM SAT fields. In contrast

to PLASIM, EMBM does not take into account the effect of

the elevation when calculating SAT. EMBM’s and PLASIM’s

global mean SAT can be compared to the annual global mean

SAT at the 1000 mb pressure surface and the 2 m surface

from NCEP-DOE (National Centers for Environmental Pre-

diction – Department of Energy) reanalysis (1979–2013), re-

spectively. The two climatologies have global mean SAT of

8.5 ◦C (1000 mb) and 6.9 ◦C (2 m), respectively, correspond

to a difference of 2.6 ◦C. The difference in each PLASIM–

EMBM pair ranges from −1.3 to 6.1 ◦C, with a mean of

1.32 ◦C. Among simulations with modern glacier configura-

tions and atmospheric CO2 within 340–400 ppm, the average

difference is 1.51 ◦C, lower than the climatological value by

approximately 1 ◦C. The large difference between the two

ensembles can be attributed to the large parameter range and

the difference in climate sensitivity. With dynamic wind and

interactive cloud, PLASIM is expected to produce a more

realistic precipitation pattern, especially over the continents.
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Figure 2. The mean and standard deviation of SAT across the 600-member ensembles of GENIE-1 and PLASIM. There are white cells on

the PLASIM SD plot where the outputs go beyond the plotted range. The largest standard deviation in PLASIM is 17.5 ◦C. The contours on

the mean and SD plots are shown every 10 and 4 ◦C, respectively.

Interactions between the atmosphere and the ice sheets can

also lead to larger variations due to orography or precipita-

tion feedbacks. Their climate sensitivities will be explored

later on with the help of the GP emulators constructed.

The resulting SAT from both models are compared against

climatology in Fig. 3 using Taylor diagrams. These plots

demonstrate the range of output obtained with respect to

modern climate. The modern climate states here serve as

reference points to better demonstrate the spread of the

simulated ensembles as well as their differences. Both the

standard deviations (SD) and root mean square differences

(RMSD) are normalised (and non-dimensionalised) by divid-

ing them by the SD of the observations. GOLDSTEIN SST

from all simulation runs are compared with annual mean SST

(1900–2005) from NOAA World Ocean Atlas (Locarnini

et al., 2006). The SATs from the single-layer atmosphere

EMBM are compared with annual mean surface air tem-

perature over the period from 1979 to 2013 at the 1000 mb

pressure surface from NCEP-DOE reanalysis-2 (Kanamitsu

et al., 2002). The SATs from PLASIM are compared with the

air temperature at 2 m from the same reanalysis. The sim-

ulation runs with ice sheet configuration and CO2 concen-

tration similar to those within the 1979–2013 period, ICF ∈

{0,1,2,3,4} and 340 ppm<RFC<400 ppm, are highlighted

in red. A plot showing the difference between the mean sur-

face temperatures over this group of simulations and clima-

tology is included in the Supplement (Fig. S1 in the Supple-

ment).

The simulated pattern of SST correlates well with obser-

vation (average correlation coefficient of 0.95), while the

majority of the ensemble exhibits smaller spatial variabil-

ity than climatology (average normalised SD of 0.85). The

spread in these modern GOLDSTEIN SST points is due to

the large range of the varied GENIE-1 parameters. The stan-

dard deviations of SAT are also underestimated in EMBM

(average normalised SD of 0.83). PLASIM SAT correlate

well with the climatology (average correlation coefficient of

0.97). The spatial variation in PLASIM SAT has a similar

mean to EMBM but has a larger range (both ensembles have

average normalised SD of 0.83).

5.2 Scalar emulation

An emulator is first constructed for EMBM global mean

SAT with a starting number of 30 training points. The co-

efficients of determination (r2) and the root mean square er-
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 Reanalysis
 Simulation
 Simulation with modern ICF and RFC

Figure 3. Taylor diagrams showing a comparison between model runs with climatology: GOLDSTEIN SST (left), EMBM SAT (middle)

and PLASIM SAT (right). The magenta dots represent reanalysis taken from Locarnini climatology (1900–2005) (Locarnini et al., 2006)

(left), NCEP-DOE reanalysis 2 annual mean SAT (1979–2013) at 1000 mb (Kanamitsu et al., 2002) (middle) and NCEP-DOE reanalysis 2

annual mean SAT (1979–2013) at 2 m (Kanamitsu et al., 2002) (right). The points highlighted in red represent runs with ICF ∈ {0,1,2,3,4}

and 340ppm<RFC< 400 ppm.

ror (RMSE) between the simulated and emulated validation

points (Sect. 3.2) are computed and then used as indications

of the validity of the emulator. The coefficient of determina-

tion, r2, is the square of the sample correlation coefficient:

r2
=

(
cov(Y, Ŷ )√

var(Y)var(Ŷ )))

)2

. (12)

More training points are gradually added to produce more ac-

curate emulators with decreasing RMSE and increasing r2.

At approximately 200 points (nc = 200), adding more train-

ing data no longer significantly reduces the RMSE value. It

is concluded that approximately 200 cheap points are suffi-

cient to capture the variation over the EMBM output space.

We then attempt to build co-kriging emulators for global

mean SAT in PLASIM using 200 cheap points and additional

expensive data points. Again, 30 expensive points are cho-

sen for initial training. It is found that 50 PLASIM points

(ne = 50) are enough to construct a good emulator with

RMSE= 0.51 ◦C and r2
= 0.98.

The number of training points required varies from one

emulator to another since it depends strongly on the func-

tion being emulated. As the number of parameters increases,

the dimension of the emulator also increases and hence more

training points are required. Typically an average of 10 points

per dimension is assumed. This, however, depends on how

non-linear or how “active” the function is. A highly non-

linear function might require many more points while a more

linear function might not need as many as 10 points per di-

mension.

Kriging emulators using only expensive points are also

constructed to provide comparison between the two tech-

niques. When the same amount of training data is used, co-

kriging outperforms kriging. More expensive points are then

added to improve the kriging emulator until a similar value

of RMSE is obtained. In this case, the kriging emulator using

ne = 200 PLASIM training points gives RMSE = 0.50 ◦C

and r2
= 0.98. Therefore, co-kriging achieves of the same

level of accuracy with only 25 % as much expensive data.

A second pair of emulators is produced for the global SAT

anomaly from SST (global annual mean SAT minus SST).

In this case, the component of the SAT response that is a

trivial function of the boundary conditions is removed. Fol-

lowing the procedure described above, a co-kriging emula-

tor using 70 expensive points and 250 cheap points were

constructed and compared to a kriging emulator using only

70 expensive points. The RMSE and r2 are included in Ta-

ble 4. The co-kriging emulator obtains RMSE= 0.31 ◦C and

r2
= 0.95. This time, a kriging emulator using 100 expensive

points gives similar validation result, RMSE= 0.33◦C and

r2
= 0.92. The co-kriging emulator still manages to utilise

meaningful information from EMBM, albeit not as well as

in the previous example, and reduces the expensive points

needed by approximately 30 %.

For both kriging and co-kriging emulators using the same

expensive training points, the emulated global mean SATs at

the 214 validation points are plotted against their simulated

values (Fig. 4). The corresponding RMSE and r2 values are

shown in Table 3. Tables 3, 4 and Fig. 4 show that the co-

kriging emulators reproduce the simulated values more accu-

rately. Tables 3 and 4 also contains the ensemble mean and

standard deviation from both co-kriging and kriging emula-

tors, compared with the true values obtained from the simu-

lated ensemble.

While co-kriging outperformed kriging in both cases,

multi-level emulation does a much better job at predicting

SAT than SAT minus SST. Nevertheless, the r2 scores be-
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Table 3. Validation results for kriging and co-kriging emulators of PLASIM global mean SAT. The co-kriging emulator uses 50 expensive

points and 200 cheap points while the kriging emulator here uses the same 50 expensive points.

Kriging emulator Co-kriging emulator Simulated ensemble

RMSE (◦C) 0.93 0.51 N/A

r2 0.94 0.98 N/A

Ensemble mean (◦C) 10.96 11.30 11.40

Ensemble SD (◦C) 4.89 4.73 4.57

Table 4. Validation results for kriging and co-kriging emulators of PLASIM global mean SAT – SST. The co-kriging emulator uses 70

expensive points and 250 cheap points while the kriging emulator here uses the same 70 expensive points.

Kriging emulator Co-kriging emulator Simulated ensemble

RMSE (◦C) 0.42 0.31 N/A

r2 0.91 0.95 N/A

Ensemble mean (◦C) −5.81 −5.77 −5.72

Ensemble SD (◦C) 1.65 1.70 1.50

tween simulated and emulated values from the co-kriging

emulators are over 0.90 for both. The standard deviations

across the ensembles are slightly overestimated in both em-

ulators. From the figure, the emulated values can be seen to

deviate more for larger anomalies.

The uncertainty in the emulator predictions, arising from

not having evaluated the model at untried input configura-

tions, is called the “code uncertainty” (O’Hagan, 2006). An

advantage of the GP emulator employed is that we can quan-

tify this uncertainty, which is represented as the error bar at

each prediction in Fig. 4. The additional information from

the cheap training data helps reduce this uncertainty for the

co-kriging emulator.

5.3 EOF decomposition

The following analysis attempts to explain the processes and

parameters that determine the spatial distributions of SAT

in GENIE-1 and PLASIM using PCA. SVD was applied to

two (2048×n) matrices of EMBM and PLASIM SAT fields,

where n= nc = ne = 660. Over 99 % of the variance across

the ensemble in these fields can be explained by the top

10 EOFs, as shown in Table 5. This indicates that they are

sufficient to generate a good approximation to the simulated

responses. As suggested from the emulator for global mean

SAT, less than 600 points would be sufficient for the emu-

lators. To ensure that the decomposition is robust, SVD is

applied on smaller subsets (n= 30 to n= 250). The EOFs

appear to be qualitatively the same. Only minor quantita-

tive differences are obtained, therefore, the EOFs and PCs

are judged as robust and representative of the ensemble be-

haviour. These subsets are chosen using the same exchange

algorithm mentioned in Sect. 4.2 to obtain designs that give

the best space-filling Morris–Mitchell criterion (Morris and

Mitchell, 1995).

Table 5. Percentage of variance in SAT, explained by the first

10 EOFs for GENIE-1 with EMBM and with PLASIM. The 150-

member ensembles are used to obtain these values.

EMBM PLASIM

EOF 1 86.33 % 79.53 %

EOF 2 11.27 % 8.62 %

EOF 3 1.55 % 6.85 %

EOF 4 0.47 % 2.61 %

EOF 5 0.10 % 0.43 %

EOF 6 0.07 % 0.57 %

EOF 7 0.05 % 0.30 %

EOF 8 0.03 % 0.21 %

EOF 9 0.03 % 0.16 %

EOF 10 0.03 % 0.07 %

Total 99.93 % 99.35 %

The high percentage of variance explained by the retained

EOFs mean that by successfully emulating them, the SAT

field of PLASIM can be accurately estimated. For EMBM

data to be useful, its EOFs and PCs need to carry meaning-

ful information about PLASIM’s modes. To verify this, an

analysis of the EOFs and PCs of the two models are carried

out.

The first EOFs of SAT in both models are illustrated in

Fig. 5. Their corresponding PCs are emulated as functions

of the model parameters using universal kriging (Sect. 4.1).

Also shown in this figure are the emulator coefficients, β (as

described in Eq. 3), which reflect the relative importance of

the parameters in determining each PC. These coefficients

are the gradients of the linear mean function fitted to the

data. Each coefficient corresponds to a dimension or an in-

put parameter. They are not purely objective measures since

their values depend on the ranges over which the parame-
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Figure 4. The upper panels show PLASIM simulated global mean SAT at the 214 validation points plotted against their emulated values

from both kriging (left) and co-kriging (right) emulators. The error bars indicate a 2 standard deviation interval at each point. The lower

panels show the results of the global mean SAT–SST emulators.

ters were varied. Also, the mean function is linear so they

do not contain information on the non-linearity of the emu-

lated function. They also inherit uncertainties from imperfect

emulation.

The first EOF for both models is of the same sign globally,

suggesting a change in the radiation budget due to the green-

house gas and the albedo effects. The effects due to chang-

ing glacier condition and atmospheric CO2 concentration are

accentuated in PLASIM because corresponding changes are

taken into account in PLASIM. According to the emulator

coefficients, the largest contributions are due to RFC, OL0,

RMX and ICF in both PLASIM and EMBM. Large values of

ICF result in a lower global mean SAT due to higher albedo.

Large values of RFC, OL0 and RMX, on the other hand, have

the opposite effect on global mean temperature due to more

heat being absorbed by the increased greenhouse gas content

in the atmosphere. Hence, ICF has the opposite sign to RFC,

OL0 and RMX.

The second EOFs in EMBM and PLASIM exhibit changes

of opposite sign at Equator and polar regions, reflecting a re-

distribution of the heat budget (Fig. 6). The parameters con-

trolling heat diffusivity in the atmosphere (AHD and AMD)

play the largest role in this process. While they dominate the

signals, there are smaller contributions from the ocean heat

diffusivity parameters (OHD and OVD), which have similar

but smaller effects compared to AHD and AMD. Other small

signals do not necessarily agree with each other; i.e., RFC

has opposite signs in the two models.

With emulator coefficients of approximately 0, the dummy

variable is correctly identified as an inactive parameter in all

cases (Figs. 5 and 6), giving us more confidence in using the

coefficients. Any parameter with coefficients of comparable

magnitude to FFX is also assumed to be inactive, such as

OHD and OVD for EMBM and PLASIM’s first EOF.

These EOFs indicate similar modes of variability in GE-

NIE and PLASIM, fulfilling the assumption made for co-
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Figure 5. The first EOFs of EMBM and PLASIM SAT (upper) and the universal kriging emulator coefficients of their corresponding PCs

(lower). All 600 data points are used to train each of these emulators. The black cells in PLASIM EOF1 indicate values lower than the plotted

range. Contours are drawn over both plots at a 2 ◦C interval.

kriging. The extra training points from EMBM, therefore, are

expected to provide inference on PLASIM’s behaviour. Each

pair of PCs from EMBM and PLASIM form a set of cheap

and expensive training data for the corresponding emulator.

Even though this is applied to all 10 PCs, according to Ta-

ble 5, only the first 4 modes contribute significantly to the

total variance. Lower-order modes appear indistinguishable

to noise. It is difficult to emulate them independently and so

it is unlikely that any meaningful relationship between them

can be found by co-kriging.

Although all 600 data points are used to train each of these

emulators, results obtained from smaller subsets show no

systematic differences.

The assumptions made for Eq. (6) are expected to hold in

the case of emulating PLASIM’s PCs. The emulator coeffi-

cients in Figs. 5 and 6 show that the PCs of the two models

exhibit similar trends due to the varying input parameters.

The difference in the magnitude of the contributions from

these parameters should be sufficiently approximated using a

scaling constant, ρ, and a stochastic process, fd. The spatial

pattern in PLASIM, however, depends on the EOFs and so

different regional responses compared to EMBM can still be

emulated using this method.

5.4 Emulation of 2-D output fields

We retained the first 10 EOFs of EMBM and PLASIM SAT,

which describe 99.93 and 99.35 % of the simulated ensem-

ble variance, respectively (Table 5). Each individual field can

be approximated as a linear combination of these 10 EOFs,

scaled by their respective PCs according to Eq. (8). Using

this method of dimensional reduction, only 10 emulators or

less are needed instead of 2048 emulators if each individual

grid point is emulated. Both kriging and co-kriging emula-

tors are then constructed for each of these PCs.

Using the same procedure as described in Sect. 5.2, ex-

ploratory exercises show that approximately nc = 150 train-

ing points are needed to obtain a good emulator of the

EMBM SAT fields. The cheap data are, therefore, the 150

indices of each of the first 10 rotated PCs of the (2048×150)

matrix of GENIE data. It is found that at ne = 50, we obtain

a co-kriging emulator that validates well against simulated

values.

Kriging emulators using only the expensive data from

PLASIM are also constructed for comparison. Again, co-

kriging outperforms kriging when the same 50 expen-

sive training points are used. More expensive points are

then added to the kriging emulators and for approximately

150 points, similar RMSE and r2 are obtained. Therefore,
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Figure 6. The second EOFs of EMBM and PLASIM SAT (upper) and the universal kriging emulator coefficients of their corresponding

PCs (lower). All 600 data points are used to train each of these emulators. The white cells in PLASIM EOF2 indicate values higher than the

plotted range. Contours are drawn over both plots at a 2 ◦C interval.

co-kriging reduces the required expensive training data to

one-third of the amount needed when using kriging.

The co-kriging (trained with 50 expensive and 150 cheap

points) and kriging (trained with 50 expensive points) are val-

idated using the 214-member validation set. Both the individ-

ual PCs and the final reconstructed SAT are validated against

true values. First, to test the emulator’s ability to reproduce

PC values, each emulated PC is validated against those de-

composed from the simulated ensemble (Table 6). For the

first score, co-kriging emulator validated very well with an

r2 value of 0.97. Lower-order PC coefficients are generally

harder to emulate; hence, the value of r2 decreases down the

list. It is possible that they reflect physical processes that are

more difficult to represent as simple functions of the input pa-

rameters or simply represent stochastic processes. With a low

value of r2, the emulator does little more than adding some

random noise, e.g. from the 6th to the 10th PCs, with the ex-

ception of the 9th. There are several reasons for this. First,

the PCs of EMBM might reflect random noise and so can-

not be emulated. Since the cheap emulators are not meaning-

ful, the expensive ones can gain no useful information. Sec-

ond, PLASIM’s PCs might be noise and co-kriging fails to

work for the same reason. Finally, the relationships between

EMBM and PLASIM PCs might not have been successfully

determined. This either means that EMBM did not contain

the information on these PLASIM’s modes or the emulator

fails to determine it. Even though the signal from the 9th

mode is very small, it was emulated with some success. De-

spite the fact that mode 6, 7, 8 and 10 were not emulated

successfully, co-kriging still performs either comparably or

better than kriging.

The 10 co-kriging emulators of PLASIM PCs are then

used to reconstruct the SAT fields at each validation point.

To validate the simulated SAT fields, the quality of the in-

dividual emulations and the spatial pattern of the emulated

field are tested. In order to test the proportion of the total

ensemble variance captured by the emulator:

VT = 1−

59∑
n=1

2048∑
i=1

(Sn,i −En,i)
2

/ 59∑
n=1

2048∑
i=1

(Sn,i − S̄i)
2 , (13)

where Sn,i is the simulated output at grid cell i in the nth

member of the validating ensemble,En,i is the corresponding

emulated output and S̄i the ensemble mean simulated output

at grid cell i. VT assesses the error in the emulator for each

simulation, averaged over the 59 simulations, and measures

the degree to which individual simulations can be regarded

as accurate. The RMSE values between each emulated and

simulated surface fields are calculated and averaged across
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Table 6. Validation of each PC emulator using the 59-member ensemble. The correlation coefficients show how well matched the emulated

PCs are compared with the simulated values. The co-kriging emulator uses 50 expensive points and 150 cheap points while the kriging

emulator here uses the same 50 expensive points.

Principal component emulator

1 2 3 4 5 6 7 8 9 10

Kriging r2 0.91 0.75 0.84 0.50 0.15 0.04 0.00 0.09 0.24 0.00

Co-kriging r2 0.97 0.83 0.84 0.64 0.18 0.05 0.02 0.10 0.24 0.00

the whole validation set. VT and RMSE are used in combi-

nation to assess the emulator validity.

Figure 7 demonstrates the effect of each added PC to

the value of VT and RMSE. When only the first emulated

component is considered, the co-kriging emulator reproduces

76.2 % of the simulated variance (averaged over all space and

all ensemble members), which is close to the 79.5 % vari-

ance explained by the first EOF (Table 5). This is also re-

flected by the high degree of accuracy of the PC 1 emulator

(Table 6). The addition of the next four emulated compo-

nents brings the percentage of simulated variance being cap-

tured, VT , to 93.2 %, close to the total amount of 98.0 % ex-

plained by the first five EOFs (Table 5). The average RMSE

is 1.33◦C, which is approximately 1.7 % of the average spa-

tial variation in temperature or 4.8 % of the average varia-

tion across the whole ensemble at each grid point. The last

five emulated PCs have a negligible effect on both VT and

RMSE. Among these, only the 9th PC improves the overall

result while the others worsen it. For the kriging emulators,

the same behaviour is observed but with lower accuracies.

The maximum variance explained by the kriging emulators

is 85.3 %. Also included in Fig. 7 are lines corresponding

to the validation results if the emulators were perfect. These

demonstrate the errors introduced by the dimensional reduc-

tion process.

Figure 8 shows the emulated and simulated spatial pattern

of the ensemble mean and standard deviation. The differ-

ences between these emulated and the simulated fields are

within 1 ◦C. Therefore, the ensemble behaviour is well re-

produced. There is, however, a slight underestimation of the

SD over the Northern America continent where the glacier

mask is applied. The 2-D SAT emulator appears to underes-

timate the ensemble variance by a small amount. The error

seen is a combination of the two types of errors introduced in

Sect. 4.1. Despite having very different outputs (Fig. 3), the

method proposed successfully utilises GENIE-1’s EMBM

output to aid the construction of PLASIM SAT emulator.

In the work presented here, only annually averaged fields

are considered. The generalisation to emulate monthly aver-

age fields or seasonal cycles is straight forward. We simply

have to replace the current (2048×1) annual-averaged maps

with a (24576× 1) map of the 12 monthly averaged fields.

Figure 7. Comparison between kriging (dashed line) and co-

kriging (solid line) emulators. The variance explained (blue) when

each PC is added is shown together with the RMSE (red) of the

corresponding reconstructed validation SAT fields. The dot-dashed

lines represents the same values obtained if the emulator were per-

fect. The deviations of these line from RMSE= 0 ◦C and V =

100 % are errors introduced by dimensional reduction.

5.5 Relationship with the coupled system

We have demonstrated that information from a cheap at-

mospheric model (EMBM) can be used to improve predic-

tions of the steady-state behaviour of an expensive atmo-

spheric model (PLASIM) in unsampled parts of parameter-

/boundary-forcing space. This behaviour is a function of the

boundary conditions on the atmospheric model (SST, long-

wave and shortwave radiative forcing), as represented in this

statistical study by the 13 parameters. This technique has ad-

vantages when attempting to understand or project the de-

coupled response of individual climate system components

to their boundary conditions. For example, in the context of

impact assessment models, the spatial pattern of changes in

SAT and precipitation is often needed to study the impact of

climate change on areas such as health, land use and energy

production. These spatial temperature and precipitation re-

sponse patterns are obtained from climate models forced by

arbitrary CO2 concentrations resulting from particular pol-

icy decisions. Different statistical emulation techniques have
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Figure 8. Mean and standard deviation of the emulated (upper and middle left) and simulated (upper and middle right) validating ensembles.

The emulated–simulated differences in mean (lower left) and standard deviation (lower right) are also shown.

been employed to reproduce the output of AOGCMs under

a large range of forcing scenarios (Holden et al., 2014; Cas-

truccio et al., 2014). Our multi-level emulation technique of-

fers an alternative method to reproduce the key character-

istics of an AOGCM using only a small training set, given

a larger ensemble of a cheaper model of the same system,

covering unsampled CO2 concentrations. Another example

where our technique can be applied is in emulating a carbon

cycle model to provide an estimation of the atmospheric CO2

concentration as a function of a time series of anthropogenic

CO2 emissions and non-CO2 radiative forcing (Foley et al.,

2016). CO2 concentration from coupled climate–carbon cy-

cle models can be emulated and replace the simple carbon

cycle component often used in integrated assessment mod-

els.

In reality, changes to the climate system components that

are focused on will feed back on other climate system com-

ponents; i.e., if the present study were extended to the fully

coupled system, differences in SAT, wind stress and the hy-

drological cycle between PLASIM and the EMBM would

feed back on SST and sea-ice distribution.

Within this context, we now explore the relationship be-

tween the “climate sensitivities” of the EMBM and PLASIM

atmospheres, both forced by GENIE–EMBM SSTs as dis-

cussed above, before considering how our approach could

in future be extended to the fully coupled system. Our 600-

member ensemble design generated in Sect. 3.2 is used as
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Figure 9. Mean (upper panel) and standard deviation (lower panel) of the SAT anomaly corresponding to a double in atmospheric CO2

concentration in EMBM and PLASIM.

the basis of two new designs. ICF is fixed at 0 for both sets.

Climate sensitivity is defined as the warming response to a

doubling of atmospheric CO2 from the pre-industrial values.

Hence, a control set (CTRL) has RFC set to 278 ppm and

another set (2×CO2) has RFC set to 556 ppm. The emula-

tors constructed in the previous section are used to predict

the SAT fields resulting from these two designs. This process

can be done within seconds, at almost no additional compu-

tational cost.

The average SAT anomalies due to a doubling of at-

mospheric CO2 concentration for both models, 2×CO2−

CTRL, are shown in Fig. 9. The area-weighted global mean

SAT are used to calculate the probability distribution of cli-

mate sensitivity for the two models, shown in the upper panel

of Fig. 10. The means of the two distributions are1TCO2 of

2.99± 0.91 ◦C for EMBM and 3.37± 0.95◦C for PLASIM.

Figure 10 shows that the climate sensitivities in the two mod-

els have similar distributions with means differing by ap-

proximately 0.38 ◦C. The range is broad due to the parame-

ters varied. PLASIM displays larger changes in temperature

over the continent in general and especially over high ele-

vation areas (Fig. 9). Because of this, the average anomaly

1TCO2 in a PLASIM simulation is larger than the corre-

sponding value in EMBM. The relationship between the two

distributions is approximately linear, as shown in the lower

panel of Fig. 10. Since no PLASIM parameter is varied apart

from ICF and RFC (which are both held constant in this ex-

periment), PLASIM climate sensitivity is heavily influenced

by the GOLDSTEIN surface conditions.

In a hypothetical coupled experiment, it is reasonable to

speculate that the generally larger response of SAT to CO2

in PLASIM than the EMBM would yield a broader range

of SSTs in the GOLDSTEIN ocean, amplifying the differ-

ence in climate sensitivity between the two models. There

are two alternative approaches that could be used to extend

the technique described here to this fully coupled system.

The first or “direct” approach sees PLASIM fully coupled

to GENIE-1’s subcomponents, allowing for two-way inter-

action between the atmosphere and the ocean/sea ice. In this

case, the current statistical technique can be applied directly

to emulate atmospheric variables from PLASIM as functions

of the ocean’s parameters, using EMBM as the cheap ap-

proximation. How beneficial EMBM’s information is in this

set-up compared to the result presented in Sect. 5.2 and 5.4

is uncertain without further work. The “indirect” approach

involves the coupling of PLASIM’s steady-state emulators
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Figure 10. The upper panel shows the probability distributions of

EMBM (red) and PLASIM (blue) climate sensitivities. The mean

of each distribution is denoted by the dot-dashed line of the same

colour. The lower panel shows a plot of PLASIM anomalies against

EMBM anomalies. The coefficients of the linear function fitted

through the data are included in the figure.

with GOLDSTEIN ocean and sea-ice components. Atmo-

spheric output from PLASIM, such as SAT, precipitation

and wind stress can be emulated as a function of the pre-

scribed SST and used, in return, as boundary conditions for

the ocean. This framework would be able to capture some

processes, which are currently not adequately modelled or

not represented at all in EMBM. There are certain implica-

tions for when such a framework would be useful since the

emulators are built upon a collection of steady-state simula-

tions where only one-way interaction between PLASIM and

the ocean component is available. This type of framework

would not be suitable in the context of processes such as

ENSO (El Niño–Southern Oscillation) in which the atmo-

sphere and ocean vary together on interannual timescales.

However, it may be useful when events with much longer

timescales, where the atmosphere can regarded as being at

equilibrium with the ocean, are considered. While informa-

tion on chaotic higher-frequency atmospheric variability is

lost, extra information from the higher-fidelity atmospheric

model is gained without incurring a large computational cost.

6 Summary and conclusions

We have described in this paper the development and evalu-

ation of large ensembles of GENIE-1 and PLASIM simula-

tions for application in statistical emulation.

For this work, we employ the non-parametric fitting

method of Gaussian process emulation. Two variations of

this well-established method, kriging and universal kriging,

are briefly described in Sect. 4.1. Compared to polynomial

fitting techniques, such as the one employed by Holden et al.

(2014), this approach provides an estimate of the uncertainty

introduced by the emulation process, also referred to as “code

uncertainty”.

To efficiently extend this method from emulating scalar

output to emulating high-dimensional output, e.g. the 2-D

SAT fields, principal component analysis is used. This pow-

erful technique decomposes the output surface fields of both

EMBM and PLASIM models into orthogonal EOFs, scaled

by the respective PCs. The EOFs are, however, statistical

modes and direct connection to physical processes cannot

always be drawn directly. Emulator coefficients of the PCs

corresponding to these modes, however, can provide a link

between them and the varying model parameters, allowing

for better interpretation of the model behaviour. It also allow

us to identify and preserve the correlation between grid cells.

Here, the first five PCA modes are emulated instead of in-

dividual grid cell values, reducing the computational cost sig-

nificantly. Although not explored in this work, the links be-

tween different model outputs may also be exploited to allow

for further reduction of dimension when emulating multivari-

ate output.

A multi-level emulation technique, co-kriging, is used to

build both scalar and high-dimensional output emulators for

PLASIM with additional information from EMBM. The con-

structed co-kriging emulators successfully estimate both the

global mean SAT and the 2-D array of SAT fields of PLASIM

as functions of the 13 GENIE-1 parameters. Being cheaper to

evaluate, EMBM can be used to sample GENIE-1’s parame-

ter space more finely, providing information where PLASIM

data are sparse. Despite being structurally unrelated, the link

between EMBM and PLASIM is successfully established,

resulting in PLASIM emulators being built using a smaller

amount of expensive data. The combination of PCA with co-

kriging allows us to emulate accurately the spatial pattern of

PLASIM SAT despite the model having a different response

to EMBM’s. Emulated outputs are validated against simu-

lated values using a separate validation ensemble. Both spa-

tial pattern and magnitude of SAT are well reproduced across

the ensemble. Apart from the ensemble mean and standard

deviation, individual simulations are also successfully emu-

lated with high accuracy. The emulators, however, show a

tendency to underestimate the variance spatially and across

the ensemble. This is unavoidable because of the dimensional

reduction process. The quantification of the emulator uncer-

tainties are beyond the scope of this paper and should be ex-

plored in further studies in order to improve the emulators’

performance.

Here, we have focused only on SAT but this method can

be applied to other variables of the atmosphere, such as pre-

cipitation (PPTN) or wind fields. In the case of PLASIM,

co-kriging emulation of PPTN using GENIE’s PPTN field as

a fast approximation is not likely since the description of this

field in the two models differed quite significantly. The same

goes for other PLASIM quantities, which have no equiva-
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lent in EMBM. However, it is possible that other GENIE-1

fields might be more suitable as the fast approximation to

PLASIM’s PPTN, e.g. SST or elevation. Work has been done

in the past using elevation as a fast approximation for PPTN

(Hevesi et al., 1992).

This work establishes the technique for emulating the

equilibrium response of the model. Compared to available

efficient frameworks such as the MIT IGSM-CAM (Mas-

sachusetts Institute of Technology – Integrated Global Sys-

tem Model linked with the National Center for Atmospheric

Research (NCAR) Community Atmosphere Model) (Monier

et al., 2013), a present limitation of this technique is in the

scope for two-way coupling (e.g. in the present study the

PLASIM atmosphere passively responds to the ocean). How-

ever, a future study will show that it is possible to emulate the

atmospheric fields (precipitation, surface winds, etc.) that di-

rectly influence other model components and use these as

boundary conditions. This technique has the limitation that

the atmosphere is treated as being in a steady state with the

ocean, so that the effect of interannual variability cannot be

explicitly represented, but would nevertheless be of value

for modelling long-timescale phenomena such as glacial-

interglacial cycles.

We have demonstrated that multi-level emulation across

structurally unrelated models provides useful information

more efficiently than using either model in isolation. Sev-

eral challenges remain before a coupled model making use

of such an emulator can be constructed, and the steady-state

vs. transient issue is one of them. The seasonality, which is

currently lacking, will also be included by the modification

described in Sect. 5.4. PLASIM’s parameters, which do not

have an equivalent in EMBM, are not yet considered. The

current experiment design does not allow for the effect of

aerosols, sea ice or vegetation to be studied. It simply at-

tempts to improve the current simulated climate in GENIE-1

by incorporating the dynamic of PLASIM atmosphere. The

role of these parameters will likely be explored in future stud-

ies.

The advantage of the emulation technique used here is that

it does not depend on a fix set of models and can be applied to

a wide range of models for different applications. It also pro-

vides a useful tool in coupling models of different fidelity and

resolutions. The emulators, however, are built for specific ap-

plications and so care should be taken to avoid extrapolating

beyond the emulated space.

In conclusion, the work presented here demonstrates a

concept with applications in not only climate research but ex-

tending to a wide range of problems where multi-level com-

puter models are available.
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