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Abstract. A new approach is explored for computing estimates of the error covariance associated with the
intrinsic errors of a numerical forecast model in regions characterized by upwelling and downwelling. The ap-
proach used is based on a combination of strong constraint data assimilation, twin model experiments, linear
inverse modeling, and Bayesian hierarchical modeling. The resulting model error covariance estimates Q are ap-
plied to a model of the California Current System using weak constraint four-dimensional variational (4D-Var)
data assimilation to compute estimates of the ocean circulation. The results of this study show that the estimates
of Q derived following our approach lead to demonstrable improvements in the model circulation estimates and
isolate regions where model errors are likely to be important and that have been independently identified in the
same model in previously published work.

1 Introduction

Data assimilation has been a mainstay of numerical weather
prediction since the 1980s and is a critical component of
any forecast system. Data assimilation methods are also used
routinely for computing estimates of the ocean circulation
based on sparse and incomplete observations, and have been
adopted in other fields such as sea-ice modeling and bio-
geochemical modeling of the atmosphere and ocean. A thor-
ough review of data assimilation methods and applications in
the geosciences is beyond the scope of this paper, but excel-
lent reviews can be found in Daley (1991), Bennett (2002),
Kalnay (2002), and Wunsch (2006).

Formally, data assimilation methods can be derived from
Bayes’ theorem (Wikle and Berliner, 2007) and can be
viewed as the combination of a prior estimate (usually from
a forecast model) and observations, appropriately weighted
according to a priori assumptions about the relative uncer-
tainties in both. The Kalman filter (or smoother) provides the
most complete solution to linear data assimilation problems.

However, the dimension of most atmosphere and ocean mod-
els prohibits application of the Kalman filter in its full form,
and some approximations or alternative approaches must be
considered. Data assimilation methods that are now in com-
mon use at operational forecast centers for computing atmo-
spheric and oceanic analyses generally fall into three cat-
egories: (i) ensemble Kalman filters, (ii) variational meth-
ods, and (iii) hybrid combinations of (i) and (ii). Ensemble
Kalman filters employ Monte Carlo methods to estimate (and
propagate in time) the prior error and posterior error covari-
ances employed in the full Kalman filter formulation. Varia-
tional methods, on the other hand, employ the methods of op-
timal control theory to directly identify the state of the system
that corresponds to the maximum of the posterior probability
distribution. Both approaches have important strengths (and
weaknesses) and hybrid methods are an attempt to capitalize
on these. In all cases, however, a linear analysis is assumed
subject to errors that belong to a Gaussian distribution. Our
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focus here is on variational data assimilation methods since
they are employed in the present work.

Regardless of the variety of data assimilation method em-
ployed, most operational centers ignore the direct influence
of model errors when computing an analysis. This assump-
tion is made not because the forecast models are believed to
be perfect, but because the nature and size of model errors
is very poorly understood, which hampers any formal treat-
ment of them during the analysis procedure. In this study,
we demonstrate a dynamically based method for estimating a
reduced-rank form of the model error covariance of an ocean
model that can be used during data assimilation in regions
where the ocean circulation and wind forcing are tightly cou-
pled.

The paper is structured as follows. In Sect. 2, we present
a brief overview of the variational data assimilation method
used in our experiments. The ocean model configuration is
described in Sect. 3, while Sect. 4 describes in some detail
the methods used to estimate the model error covariance ma-
trix. The resulting estimates of the model error covariance are
tested via a series of weak constraint variational data assim-
ilation experiments which are described in Sect. 5. A sum-
mary and discussion of the findings from the experiments
follows in Sect. 6.

2 4D-Var data assimilation

In this study, we employ a four-dimensional variational
(4D-Var) data assimilation method for estimating the time-
evolving state of the ocean circulation. Following the stan-
dard notation used in the meteorological and oceanographic
literature (Ide et al., 1997; Daget et al., 2009), the ocean state
vector will be denoted as x and comprises the model grid
point values of temperature, salinity, two components of ve-
locity, and sea surface height. The state vector x(ti) is ad-
vanced forward in time by the forecast model, which is de-
noted asM so that

x(tf )=M(ti, tf ;x(ti),f (ti, tf ),b(ti, tf )), (1)

where x(ti) represents the initial state, and f (ti, tf ) and
b(ti, tf ) represent the ocean surface forcing and lateral
boundary conditions, respectively, for the time interval t =
[ti, tf ]. All observations during the same interval will be de-
noted as the elements of the vector y. If xb(ti), f b(ti, tf ), and
bb(ti, tf ) denote the background estimates of the circulation,
surface forcing, and lateral boundary conditions, the goal of
4D-Var is to identify the analysis estimates xa(ti), f a(ti, tf ),
and ba(ti, tf ) that minimize the cost function

JNL = (z(ti)− zb(ti))TB−1(z(ti)− zb(ti))

+ (y−H (z))TR−1(y−H (z)), (2)

where z= (xT (ti),f T (ti, tf ),bT (ti, tf ))T is the vector of
control variables, and H denotes the observation operator

that maps z into the observation space. In general, H will
also include the modelM. Uncertainties in the background
control vector zb(ti) and the observations y are described by
the background error and observation error covariance matri-
ces B and R, respectively.

For Gaussian errors, the conditional probability of z given
zb and y is proportional to e−JNL , in which case the z that
minimizes JNL also maximizes the conditional probability
(Wikle and Berliner, 2007). The calculus of variations can be
used to identify the z that minimizes JNL (Le Dimet and Tala-
grand, 1986). However, because the nonlinear forecast model
M is an integral component in H in 4D-Var, the cost func-
tion JNL may have a complicated topology which can make
identification of the minimum difficult. It is therefore com-
mon practice to linearize the state estimation problem about
the background under the assumption that increments δz to
zb are small, so that za = zb+ δz. Following this so-called
incremental approach (Courtier et al., 1994), the variational
data assimilation problem is transformed to one in which an
iterative sequence of linear minimizations are performed to
identify the increments δzk , where the cost function is given
by

Jk = δz
T
k B−1

k δzk + (Gk−1δzk − dk−1)T R−1(Gk−1δzk − dk−1), (3)

where k is iteration index, dk−1 = y−H (zk−1) is referred to
as the innovation vector, and Gk−1 is the generalized obser-
vation operator and represents a tangent linearization of H
about zk−1(t). The background error covariance matrix Bk
in general depends on the outer-loop iteration via the pres-
ence of a state-dependent balance operator (see Sect. 3). In
4D-Var, Gk−1 represents the tangent linear model sampled at
the observation locations and GT

k−1 the adjoint model forced
at the observation locations. The iterates zk are referred to
as outer loops, and each iterate is identified by minimizing
Jk via a sequence of inner loops. After each outer loop, a
new iterate is computed according to zk = zk−1+ δzk . The
final iterate in the sequence identifies the analysis circulation
estimate za = zb+

∑n
k=1δzk . The iterative procedure involv-

ing inner and outer loops is equivalent to a truncated Gauss–
Newton method (Lawless et al., 2005) and yields an estimate
of the control vector z that minimizes JNL.

As currently formulated, the minimization of JNL in
Eq. (2) via the sequence of inner and outer loops of the form
Eq. (3) neglects errors in the modelM. As a result, the result-
ing analysis circulation estimate xa is constrained to be an
exact solution of the model equations. This is commonly re-
ferred to as strong constraint data assimilation (Sasaki, 1970)
and is the practice frequently adopted at most operational
centers. However, the control vector z can be augmented
to include the influence of model errors also, so that δz=
(δxT (ti),δf T (ti, tf ),δbT (ti, tf ),ηT (ti, tf ))T , where η(ti, tf )
represents corrections to the model grid point values over
the interval t = [ti, tf ] to account for the presence of model
error. In this case, the background error covariance matrix
B now contains a block Q along the leading diagonal that
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describes the covariance of the model errors. Specifically,
B= diag(Bx,Bf ,Bb,Q), where Bx , Bf , and Bb are the ini-
tial condition, surface forcing, and lateral boundary condition
background error covariance matrices. The block diagonal
structure of B assumes that the errors in each control vari-
able type are uncorrelated (i.e., the initial condition errors are
assumed to be uncorrelated with the surface forcing errors),
although each block will typically be a non-diagonal, full-
rank covariance matrix. This approach differs fundamentally
from strong constraint 4D-Var in that the resulting analysis
circulation estimate xa is now only an approximate solution
of the model equations M. The dynamics of the model are
therefore imposed on the estimate as a weak constraint (Ben-
nett, 2002).

Both strong and weak constraint data assimilation present
considerable challenges in the large dimensional systems en-
countered in atmosphere and ocean modeling. The curse of
dimension, however, is exacerbated by the weak constraint
formulation because of the need to compute the elements of
η at every model grid point and possibly every time step.
This problem can be mitigated by using the dual approach to
4D-Var. The iterate zk that minimizes Jk in Eq. (3) is given
by

zk = zk−1+Kk−1dk−1, (4)

where Kk−1 is the Kalman gain matrix for the kth outer loop.
The Kalman gain matrix can be written in two equivalent
forms:

Kk = (B−1
k +GT

k R−1Gk)−1GT
k R−1 (5)

or

Kk = BkGT
k (GkBkGT

k +R)−1. (6)

Equation (5) is referred to as the primal form and involves
computing an estimate of the inverse of the Hessian matrix
(B−1
k +GT

k R−1Gk) which has the dimension of the control
space. Conversely, Eq. (6) is referred to as the dual form and
involves computing an estimate of the inverse of the stabi-
lized representer matrix (GkBkGT

k +R) which has a dimen-
sion equal to the number of observations, regardless of the
size of the control vector. Therefore, the dual form presents a
more tractable approach to the weak constraint 4D-Var prob-
lem and will be used here.

3 Model configuration

The model used here is the Regional Ocean Modeling Sys-
tem (ROMS), which solves the primitive equations subject to
the hydrostatic approximation. ROMS is designed primarily
for regional applications (Haidvogel et al., 2008) and em-
ploys curvilinear coordinates in the horizontal direction and
terrain-following coordinates in the vertical direction, mak-
ing it very flexible for coastal applications (Shchepetkin and

McWilliams, 2005). A state-of-the-art 4D-Var system is also
available for ROMS, both in the primal and dual formulations
(Moore et al., 2011b). Using the same background estimates,
observations, and error covariances, both the primal and dual
forms of ROMS 4D-Var yield the same circulation estimates
(Gürol et al., 2013).

The configuration of ROMS employed here is shown in
Fig. 1 and spans the California Current System (CCS) which
is the dominant circulation environment off the west coast
of North America. The CCS forms the eastern branch of the
North Pacific subtropical gyre and is subject to pronounced
seasonal variations (Hickey, 1998). During the spring and
summer, the winds along the entire coast from the Canadian
border to Baja California are equatorward. This drives off-
shore Ekman transport in the surface layers of the ocean cre-
ating cold, nutrient-rich conditions immediately adjacent to
the coast. These conditions are favorable for blooms of phy-
toplankton and fuel high levels of primary production in the
ocean, which in turn support a variety of rich marine ecosys-
tems (Checkley and Barth, 2009). A schematic of some im-
portant circulation features in the region is shown in Fig. 1. In
fact, the CCS is one of four so-called eastern boundary large
marine ecosystems that also include the Humboldt–Peru Cur-
rent in the South Pacific, the Canary Current in the North At-
lantic, and the Benguela Current in the South Atlantic. As
such, ocean state estimation and forecasting of the CCS is of
considerable socioeconomic importance.

The model was configured with 1/10◦ horizontal resolu-
tion and 42 terrain-following σ levels in the vertical that vary
in thickness between 0.3 and 8 m over the continental shelf
and between 7 and 100 m in the deep ocean.

ROMS strong constraint 4D-Var has been successfully ap-
plied to the CCS in a series of studies (Broquet et al., 2009a,
b, 2011; Moore et al., 2011a, 2013) culminating in two long
sequences of historical circulation analyses spanning the pe-
riod 1980–2012 (Neveu et al., 2016, hereafter N16). Expe-
rience with weak constraint 4D-Var is more limited (Moore
et al., 2011a) because of the difficulty in quantifying model
error.

The present study capitalizes on the WCRA14 histori-
cal analyses of N16. Therefore, only a brief description
of the 4D-Var configuration will be given here, and inter-
ested readers should consult N16 and references therein for
more detailed information. The specific N16 analysis period
considered here is 1999–2012. During this time, the back-
ground surface forcing f b was derived from near-surface
atmospheric fields from the Coupled Ocean-Atmosphere
Mesoscale Prediction System (COAMPS) described by
(Doyle et al., 2009). As shown in Fig. 1, ROMS has three
open boundaries that were constrained by time-evolving cir-
culation fields from the global Simple Ocean Data Assimila-
tion (SODA; version SODA POP 2.2.4) product of Carton
and Giese (2008). These constitute the background lateral
boundary conditions bb.
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Figure 1. The model domain and bathymetry used in the present study. A schematic representation of some of the important circulation
features is also shown.

The observations y take the form of satellite-derived sea
surface temperatures (SSTs) from the AVHRR, MODIS and
AMSR-E instruments, a satellite-derived gridded sea surface
height product from Aviso (specifically, the DUACS version
DT-2010), and quality-controlled in situ profiles of temper-
ature and salinity (confined primarily to the upper 1000 m)
from the Met Office EN3 database (v2a) described by In-
gleby and Huddleston (2007). Observation errors were as-
sumed to be uncorrelated, in which case R is a diagonal ma-
trix. While this is a reasonable assumption for in situ mea-
surements, it is unlikely to be correct for satellite observa-
tions. However, incorporating the effects of correlated ob-
servation errors in current data assimilation systems is very
challenging and currently a topic of active research.

Following Weaver et al. (2005), the circulation incre-
ments δx can be decomposed into dynamically balanced and
unbalanced components, and the background error covari-
ance matrix for the increments factorized according to Bx =
Kb6C6TKT

b . The unbalanced increments are assumed to
have no cross-correlations and are described by the univari-
ate correlation matrix C, and the standard deviations are rep-
resented by the elements of the diagonal matrix 6. Cross
covariances are introduced by the balance operator Kb. The
univariate correlation matrix C is modeled as the solution
of a pseudo-heat diffusion operator following Weaver and
Courtier (2001). The background error covariances Bf and
Bb are factorized in a similar way, except that there is no
balance operator. A discussion of the choice of correlation
length scales and standard deviations used to model each of

the background error covariances can be found in N16. The
balance operator was not used in N16.

Strong constraint 4D-Var was applied sequentially by N16
over the 1999–2012 period using overlapping 8-day assimi-
lation windows. All available observations during each win-
dow were assimilated into the model. Each assimilation win-
dow overlaps with the previous window by 4 days, so the
analysis circulation estimate xa at the midpoint of the previ-
ous window was used as the background circulation xb for
the current assimilation window. In all cases, 1 outer loop
and 15 inner loops were used to approximate the minimum
of JNL using Eq. (3) and the dual formulation of 4D-Var (i.e.,
circulation estimates based on Eq. 4 using Eq. 6).

Using a non-data-assimilative configuration of the same
model, Veneziani et al. (2009) showed that the difference
between modeled and observed SSTs along the central and
northern California coast varies seasonally. During the win-
ter and spring, the model SST between Cape Mendocino
and Point Conception (Fig. 1) is typically colder than ob-
served by ∼ 0.5 ◦C, although in spring the model is warmer
by ∼ 0.25 ◦C right at the coast south of Point Arena. Mean-
while, during the fall the entire central California SST is
warmer than observed. North of Cape Mendocino, the model
is typically colder than observed year-round by ∼ 0.5–1 ◦C.
The standard deviation of the model minus observation dif-
ferences in SST were found to be smallest during the spring
and largest during fall, when the eddy kinetic energy in the
region also reaches a maximum. During strong constraint
4D-Var experiments in which the forcing was included in the
control vector, Broquet et al. (2011) found that a reduction
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in the model minus observed difference in SST was accom-
panied by a change in the strength of the alongshore surface
wind stress derived from COAMPS. Changes in the strength
of alongshore winds during 4D-Var led to changes in the rate
of upwelling in the model and surface temperatures in closer
agreement with observations, although changes in the 4D-
Var adjusted surface heat flux were also found to be impor-
tant in some areas. The COAMPS wind stress agrees very
well with satellite scatterometer observations in the region
(Doyle et al., 2009), while the 4D-Var corrected wind stress
is typically weaker than observed compared to the same
scatterometer product (Broquet et al., 2011). The associated
changes in surface heat flux are of course harder to quan-
tify due to the lack of good observations. However, based on
these previous studies, it appears that during data assimila-
tion the influence of errors in the model on the upwelling
circulation are compensated for by changes in the surface
forcing. It is these findings that motivate the present study
and the methodology that is proposed in Sect. 4. Similar re-
sults have been reported by Stammer et al. (2002), who found
that the addition of vorticity via corrections to wind stress in
the vicinity of boundary currents in a coarse-resolution ocean
model is needed to yield proper separation of currents from
the coast.

Much of the aforementioned primary coastal upwelling
circulation along the North American west coast can be un-
derstood in terms of linear dynamics (e.g., Gill, 1982). While
the rate of upwelling is controlled by the coastal divergence
of Ekman transport, the resulting vertical displacement of
isopycnals depends also on the stratification (Gill, 1982), and
interactions with the bottom boundary over the continental
shelf can further complicate the circulation (Jacox and Ed-
wards, 2011). However, if we view coastal upwelling in the
CCS as a predominantly linear process, then we argue (based
on the previous aforementioned findings) that errors in the
ocean model temperatures in coastal upwelling zones that are
associated with errors in the model formulation (e.g., numer-
ics and parameterizations) may be compensated for during
4D-Var by adjustments in the surface wind stress. Linear dy-
namics would seem to imply a one-to-one relationship be-
tween the surface wind stress and coastal ocean response.
So, conversely, if the ocean model is subjected to the 4D-
Var adjusted wind stress, the upwelling response will be af-
fected in such a way as to mitigate the temperature errors
associated with model error. This suggests that in a linear dy-
namical regime, the 4D-Var corrections made to good qual-
ity ocean forcing estimates f should provide direct infor-
mation about the circulation corrections that are required to
offset the influence of intrinsic model errors. In practice, be-
cause the two-dimensional surface forcing f projects onto
a three-dimensional circulation field x, a unique one-to-one
relationship will generally not exist between the two. In the
“forward” problem, the surface forcing f does uniquely de-
termine the 3-D circulation x (in conjunction with the initial
conditions and boundary conditions, of course). However, in

the “inverse” problem, given the 3-D circulation x, the sur-
face forcing f cannot, in general, be uniquely determined un-
less additional constraints are imposed on the problem. This
is the strategy employed by data assimilation methods such
as 4D-Var. Specifically, 4D-Var identifies corrections to the
prior surface forcing f b(t) subject to the constraints imposed
by prior information (i.e., the model dynamics M, the ini-
tial conditions xb(ti), boundary conditions bb(ti, tf ), back-
ground error B, and observation error R covariance matri-
ces). If we have confidence in the prior information, then we
can place equal confidence in the 4D-Var posterior estimates
of the surface forcing. Therefore, 4D-Var alleviates the un-
derdetermined nature of the inverse relationship between the
surface forcing and the coastal upwelling response, and it is
this property that we aim to capitalize on here.

4 Estimates of the model error covariance

Forecast models are subject to model errors (e.g., discretiza-
tion errors, errors associated with parameterizations of unre-
solved processes), and as noted in Sect. 2, these errors should
be accounted for during data assimilation. However, the na-
ture and magnitude of model errors is poorly known, mak-
ing it difficult to reliably estimate the model error covariance
matrix Q. In some cases, careful consideration of the various
sources of errors can be fruitful (e.g., Bennett, 2002, and ref-
erences therein). The method used here to estimate sources
of model error differs from previous approaches and is based
on a combination of twin model experiments (Sect. 4.1), lin-
ear inverse modeling (Sect. 4.2), and Bayesian hierarchical
modeling (Sect. 4.3).

By way of an introduction to the approach used here, con-
sider a perfect ocean forecast model subject to error-free sur-
face forcing, so that

dxt
dt
=N (xt )+wt (t), (7)

where N represents the model operators, wt (t) is the in-
fluence of the surface forcing on the ocean interior (e.g.,
the projection of the surface forcing onto the barotropic and
baroclinic modes), and xt denotes the true ocean circulation.
Specifically, w(t) is the result of a linear map of the surface
forcing f onto x via the boundary conditions for the ver-
tical diffusion of momentum, heat, and salt. For example,
for the zonal momentum, the surface boundary conditions
are κ∂u/∂z= (1/ρo)τx , where τx is the zonal surface wind
stress and κ is the vertical diffusion coefficient. Therefore,
we can represent w(t) as w(t)= Pf (t), where P is the pro-
jection matrix that depends on the vertical mixing scheme
that is employed. We will assume that P is independent of the
state x; however, P could be a function of x depending on the
vertical mixing parameterization used. Consider now an im-
perfect model, but still subject to error-free surface forcing:

dx
dt
=N (x)+wt (t)+ ε(t), (8)
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where ε(t) represents the error in the time tendency of each
element of the state vector. The assumption here is that ε(t)
takes the form of additive noise and is independent of the
state vector x. In general, this may not be true of errors in
model parameterizations, but it is a reasonable starting point
here. However, the more challenging problem of multiplica-
tive noise deserves further attention. From Eqs. (7) and (8),
the evolution of the state-vector differences1x = x−xt over
time will be given by

d1x
dt

= N (x)−N (xt )+ ε(t) (9)

' N1x+ ε(t),

where the second equality follows from a first-order Taylor
expansion and N= ∂N /∂x|xt . When N is autonomous1, so-
lutions of Eq. (9) can be written as

1x(t)= eNt1x(0)+

t∫
0

eN(t−t ′)ε(t ′)dt ′, (10)

which shows that the state-vector differences at any time de-
pend on the time-evolved initial error 1x(0) and the inte-
grated influence of the model error, ε(t).

Consider the following thought experiment, and suppose
that we perform strong constraint 4D-Var using the imperfect
forecast model Eq. (8), with error-free surface forcing, and
using the initial conditions and surface forcing as the control
variables, z. The data assimilation procedure will attempt to
compensate for the presence of model errors ε through erro-
neous adjustments to both the initial conditions and surface
forcing.

Consider now a pair of model integrations using Eq. (8)
(a “twin model” approach), one subject to error-free forcing,
wt , that yields the circulation x1, and a second subject to the
4D-Var corrected forcing, wa , that yields the circulation x2.
To first order, the circulation difference δx = x2−x1 will be
given by

dδx
dt
'Mδx+ δw(t), (11)

where M= ∂N /∂x|x1 and δw = wa −wt . Equation (11)
clearly has the same mathematical form as Eq. (9). There-
fore, if the two model integrations for x1 and x2 start from
the same initial condition (x1(0)= x2(0)), we hypothesize
that the circulation differences δx that develop over time in
response to δw = P(f a −f b) will mimic the characteristics
and influence that the model errors ε (that give rise to δw
during strong constraint 4D-Var) have on the circulation er-
ror 1x. That is to say, there will be some model error ε(t)

1For the non-autonomous case, a continuous closed form solu-
tion like Eq. (10) cannot be written, although for the discrete case
the integral can be written as a Riemann sum involving the propaga-
tors for each time step. The physical interpretation in this case, how-
ever, is the same as for the continuous autonomous case Eq. (10).

which will yield the circulation errors 1x(t), and it is this
ε(t) which we aim to identify. In general, the model error
will also project onto the initial conditions (see Appendix A),
but the approach we propose here will identify only the sig-
nature of model error in the surface forcing. As described in
Sect. 4.3, a critical element of the approach adopted here is
the partitioning of the increments δz between legitimate cor-
rections and those associated with model error. This requires
independent estimates of the probability distribution of each
component of the control vector. Such estimates are avail-
able for f using Bayesian methods (see Sect. 4.3), but not
for x(ti) due to the large dimension and multivariate nature
of the ocean state. In fact, the goal of data assimilation is
to estimate properties of the state-vector distribution. There-
fore, we confine our attention here to what we can learn about
model errors from the surface forcing increments.

To estimate the model error covariance E{εεT } =Q, we
use the technique of linear inverse modeling as described in
Sect. 4.2. While the surface forcing will never be known pre-
cisely, uncertainties in the forcing fields can be accounted for
if their probability distributions can be estimated. To this end,
we will use the methods of Bayesian hierarchical modeling
as described in Sect. 4.3.

4.1 Twin model approach

The “twin model” approach outlined above was applied to
ROMS CCS circulation estimates from the WCRA14 his-
torical analyses described by N16 using strong constraint
4D-Var. As noted in Sect. 3, these analyses cover the pe-
riod 1999–2012, and each 4D-Var assimilation window spans
an 8-day interval. In the following, we confine our attention
to the shorter period 2003–2004. Two sequences of nonlin-
ear ROMS integrations were performed spanning this period.
During the first sequence, the model was initialized with the
4D-Var background circulation for each 8-day assimilation
window and integrated forward in time for 8 days subject
to the COAMPS background surface forcing. The circula-
tions from this sequence will be denoted by xi , where i de-
notes the 4D-Var cycle number. During the second sequence,
the model was initialized with the same background circula-
tion as in xi , but in this case the strong constraint 4D-Var
analysis estimates of the wind forcing were used to inte-
grate the model forward in time over the same 8-day win-
dow. These winds represent the corrections made by strong
constraint 4D-Var to the COAMPS background and, as ar-
gued earlier, contain a signature of the model error (see also
Appendix A). The background fluxes of heat and freshwater
were constrained to be the same in both sequences. The cir-
culations from the second sequence will be denoted by x̂i .
In this demonstration study, the focus is on the surface wind
forcing alone because only a Bayesian hierarchical model for
the winds is available at the present time (see Sect. 4.3). The
circulation sequences xi and x̂i are synonymous with x1 and
x2 described earlier in connection with Eq. (11). During each
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4D-Var cycle, an estimate of the ocean circulation is com-
puted every 8 days as described by N16. The corrections that
must be made to account for the presence of model error dur-
ing each 4D-Var cycle should therefore reflect the growth and
evolution of circulation changes due to model errors during
an 8-day period, rather than the climatological variance as-
sociated with such errors. For example, in the case of perfect
initial conditions, surface forcing, and open boundary con-
ditions, the errors in the circulation on day 8 will be those
associated with model error only during that period. This is
the rationale for focusing on the circulation differences on
day 8 in the twin experiments.

4.2 Linear inverse modeling and estimation of Q

Assume for the moment that the surface fluxes derived from
the COAMPS near-surface fields are error-free. They are not,
of course, but we will relax this assumption in Sect. 4.3. By
the aforementioned logic, the sequence of model circulation
differences δxi = x̂i − xi from Sect. 4.1 can be viewed as
an expression of the influence of model error, ε(t), on the
CCS circulation estimates. In this sense, we can view the δxi
as an ensemble of the influence of different realizations of
the model error ε(t) on the circulation. Here, we focus our
attention on the δxi at the end of each 8-day assimilation
window since, as noted above, we are interested in estimat-
ing the influence of model errors over the length of a typi-
cal assimilation window. By invoking the ergodic hypothesis,
we can view the ensemble δxi as equivalent to a time series
δx(ti) and make a further assumption that this time series can
be modeled as a first-order Markov process. Specifically, we
will assume that the δx vectors are described by

δx(ti+1)= Aδx(ti)+ ξ (ti), (12)

where A is a linear operator that advances δx forward one
time step dt = ti+1− ti , and ξ (ti) is stochastic forcing that is
white in time. Equation (12) is a discrete analog of Eq. (9)
and reveals that, apart from a scaling factor, the stochastic
forcing ξ (ti) is synonymous with the model error ε(t). While
it is unlikely that the true model error ε(t) is an additive white
noise time-continuous process, this may be a reasonable as-
sumption for the discrete case considered here depending on
the choice of dt , which in the current case is 4 days (i.e., the
time between each overlapping 8-day assimilation window).
We will return to this point shortly.

Following von Storch et al. (1995), right multiplying both
sides of Eq. (12) by δxT (ti) and taking the expected value,
yields

A= E{δx(ti+1)δxT (ti)}E{δx(ti)δxT (ti)}−1
= C1C−1

0 , (13)

where C0 and C1 are the lag-0 and lag-1 covariance ma-
trices of δx(ti), respectively. Once A has been estimated
from Eq. (13), the stochastic forcing ξ can be diagnosed
from Eq. (12) according to ξ (ti)= (δx(ti+1)−Aδx(ti)). For-
mally, the model errors ε(t) in Eq. (9) can be represented

as a Wiener process (i.e., Brownian motion). For the discrete
form of Eq. (9) that is equivalent to Eq. (12), ε(ti+1)−ε(ti)∼
O(dt

1
2 ) sinceE{(ε(ti+1)−ε(ti))T (ε(ti+1)−ε(ti))} ∝ dt (Kloe-

den and Platen, 1992), where dt = ti+1− ti is assumed con-
stant (i.e., the mean squared distance between two realiza-
tions of the Wiener process increases linearly with time).
Therefore, ε scales as ξ/dt

1
2 , where it is understood that the

square root is applied to the numerical value of dt and not
the time units. Following Penland and Matrosova (1994), the
model error covariance matrix can then be estimated accord-
ing to Q= E{ξξT }/dt .

As noted in Sect. 1, the dimension of the state vector of
atmospheric and oceanic forecast models is typically very
large and, in the case of ROMS CCS, is ∼ 106

− 107. This
precludes the direct computation of A based on Eq. (13).
However, as shown by von Storch et al. (1995) and Pen-
land and Sardeshmukh (1995) the dimension of the problem
can be greatly reduced by expanding δx in terms of the em-
pirical orthogonal functions (EOFs) of C0. Following Craw-
ford et al. (2016), Eq. (12) was transformed into an equiva-
lent first-order Markov equation for the variable u=W

1
2 δx,

where W is the matrix such that δxTWδx defines the phys-
ical energy per unit volume (hereafter referred to as the en-
ergy density) of δx. In this way, all of the state variables are
appropriately scaled and the trace of the lag-0 covariance ma-
trix C̃0 = E{u(ti)uT (ti)} yields the total energy density. This
choice of W was predicated on the fact that energy is a fun-
damental physical quantity that naturally links all elements
of the state vector.

The leading EOFs and eigenvalues of C̃0 were computed
using a Lanczos algorithm (Golub and van Loan, 1989) as de-
scribed by Crawford et al. (2016) which negates the need to
explicitly compute the matrix C̃0. The Lanczos algorithm is
iterative, and Fig. 2a shows the leading eigenvalue estimates
of C̃0 that result from 120 iterations. Figure 2b shows a for-
mal estimate of the error |C̃0ψ i − λiψ i | in each estimated
eigenpair (λi,ψ i). The leading 40 or so eigenpairs have very
small expected errors (< 10−10), and even for EOF 50 we
consider the errors to be acceptably small. Figure 2c shows
the cumulative percentage variance explained by the EOFs.
In the following analyses, the leading N = 50 EOFs were
used to compute estimates of Q and account for ∼ 61 % of
the energy density of δxi . Spatial smoothing was used to sup-
press any spurious covariances that may result from a finite-
sized ensemble. If the δx values are spatially smoothed us-
ing five applications of a second-order Shapiro filter prior to
computation of C̃0, the variance explained by the leading 50
EOFs increases to ∼ 75 % (Fig. 2c).

If 9 denotes the matrix of the leading N EOFs, then
δx(ti)'W−

1
29p(ti), where p(ti) is the vector of N prin-

cipal component time series for each EOF. Equation (12) can
then be recast in terms of p(ti) so that

p(ti+1)= Âp(ti)+ ξ̂ (ti), (14)
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Figure 2. (a) An estimate of the leading 120 eigenvalues λ of C̃0
based on 120 iterations of the Lanczos algorithm using unsmoothed
(red curve) and smoothed (black) δxi . (b) Log10 of formal error
estimates of |C̃0ψj − λψj | vs. EOF number j using unsmoothed
(red curve) and smoothed (black) δxi . (c) The cumulative percent
variance explained vs. the number of EOFs using unsmoothed (red
curve) and smoothed (black) δxi .

Figure 3. The autocorrelation vs. lag for the stochastic forcing as-
sociated with each principle component element of p in Eq. (14).

where Â and ξ̂ are the system matrix and stochastic forcing
in the reduced dimensional space. Analogous to Eq. (13), Â
can be estimated according to

Â=818
−1
0 , (15)

where81 and80 are the lag-1 and lag-0 covariance matrices
for the principal component time series p(t).

Figure 3 shows the autocorrelation for each component
of ξ̂ for N = 50 using unsmoothed δxi . In each case, the
stochastic forcing decorrelates very quickly in time and
within one time step, dt , as expected for a Wiener process.
We conclude therefore that Eq. (13) is an appropriate model
for δx. The model error covariance matrix is approximated
as Q=W−

1
29Q̂9TW−

1
2 , where Q̂= E{ξ̂ ξ̂T }/dt .

Because of the linear relationship between coastal up-
welling/downwelling and alongshore wind stress, the ap-

Figure 4. The standard deviation derived from Q̂ (computed using
unsmoothed δx) associated with the surface fields of (a) tempera-
ture (C per dt), (b) salinity (per dt), (c) current speed (ms−1 per
dt), and (d) sea surface height (m per dt). The black lines delineate
a central and northern CCS region used to compute several diagnos-
tics in Sect. 5.

proach used here to diagnose Q from f alone can only ef-
fectively isolate sources of model error near the coast. This
is demonstrated in Appendix A. The variance associated with
Q̂ in physical space is given by diag(W−

1
29Q̂9TW−

1
2 ) and

is shown in Fig. 4 for the surface variables. The highest vari-
ance is confined to the coast, with largest values along the
coast of northern California, Oregon, and Washington, con-
sistent with the influence of model errors in the circulation in
these regions (as demonstrated in Appendix A), and known
errors in these regions discussed in Sect. 3. The vertical struc-
ture of the variance near the coast is shown in Fig. 5 for the
upper 250 m of the water column. The largest variances are
confined primarily to the upper 50 m except close to the coast
where the variance is large over the upper 100–250 m. When
the δxi values are smoothed prior to computing the EOFs, the
variance structure is similar to that shown in Figs. 4 and 5 al-
though the magnitude is approximately 25–30 % lower (not
shown).

The eigenspectrum estimate of Q̂ and the cumulative vari-
ance explained by each eigenvector is shown in Fig. 6 for
smoothed and unsmoothed δx. The surface structure of the
leading EOF of Q̂ is shown in Fig. 7, explains ∼ 10 % of the
variance, and shares many features in common with the total
variance of Fig. 4.
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Figure 5. Vertical sections of the standard deviation derived from Q̂ along various longitudinal sections (computed using unsmoothed δx)
for (a) temperature (C per dt), (b) salinity (per dt), (c) zonal velocity (ms−1 per dt), and (d) meridional velocity (ms−1 per dt).

Figure 6. (a) The eigenspectrum of Q̂ derived from smooth (red)
and unsmoothed (black) δx. (b) The cumulative percentage vari-
ances explained by the EOFs of Q̂.

4.3 Bayesian hierarchical modeling of surface winds

The discussion in preceding sections has progressed based on
the assumption that the COAMPS surface forcing is error-
free and perfectly known. This is of course not the case,
even given the high degree of correspondence between the
COAMPS wind fields and independent observations (Doyle
et al., 2009). Therefore, before performing the twin model
experiments of Sect. 4.1, it is desirable to obtain an estimate
of the uncertainty in the COAMPS background surface forc-

ing. Based on these estimates of the uncertainty in the back-
ground forcing, the analysis surface forcing estimates from
4D-Var can then be assessed to determine if they are consis-
tent with the surface wind distribution of COAMPS. Specifi-
cally, consider the following cases:

– Case 1: if the analysis surface forcing estimates from
4D-Var are statistically indistinguishable from a sample
drawn from the surface wind distribution of COAMPS,
then we accept the analysis estimate as a legitimate rep-
resentation of the COAMPS state.

– Case 2: if the analysis surface forcing estimates from
4D-Var fall outside the COAMPS probability distri-
bution, then we would reject this as a likely state of
COAMPS and attribute the erroneous analysis forcing
to the influence of model error.

These comparisons can be performed at each model grid
point. In terms of the twin model run for x2, at grid points
that satisfy Case 1, we accept the background COAMPS
forcing as an good estimate of the true forcing, while at grid
points that satisfy Case 2, we replace the COAMPS forcing
with the 4D-Var analysis estimate of surface forcing. In this
way, x2(t) will be subject to the background COAMPS sur-
face just as in x1 except at locations where the COAMPS
surface wind distribution indicates that the 4D-Var posterior
surface forcing estimates are unduly influenced by model er-
ror. In theory, the same approach could be applied to the sig-
nature of model error in the initial conditions as well, and
as demonstrated in Appendix A, this would be an effective
method for recovering model error information over the en-
tire domain. However, as previously noted, estimates of the
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Figure 7. The structure of the leading EOF of Q̂ (computed using
unsmoothed δx) for surface (a) temperature, (b) salinity, (c) merid-
ional velocity, and (d) sea surface height.

distribution of the ocean circulation are not available, so in
practice there is no way to distinguish between legitimate
initial condition corrections to x(ti) during strong constraint
4D-Var and those associated with the signature of model er-
ror.

Therefore, as noted earlier, in this demonstration study we
will restrict our attention to the surface wind stress compo-
nents from COAMPS. The surface wind distribution for the
COAMPS 4D-Var background wind forcing was estimated
using a Bayesian hierarchical model (BHM). The BHM wind
model for the CCS is modified slightly from the implemen-
tation for the Mediterranean Sea as described in Milliff et al.
(2011) (see their Appendix for a complete model specifi-
cation). The important difference in the BHM design for
the CCS involves a change from the multi-resolution nested
wavelet bases used to enforce a k−2 slope for the surface
wind component of kinetic energy vs. spatial wave number,
at the highest resolved wave numbers. In the CCS implemen-
tation, the wavelet bases are replaced with Fourier modes.
Hyperprior amplitude specifications for a sequence of high-
wave-number two-dimensional Fourier modes enforce the
desired kinetic energy spectral behavior.

The surface wind BHM for the CCS ingests higher-spatial-
resolution data stage inputs as well. Surface pressure and sur-
face wind components (u,v) are taken from COAMPS anal-

yses at 0.1◦ resolution, at four canonical times each day, i.e.,
03:00, 09:00, 15:00, and 21:00 UTC. Surface vector wind ob-
servations are taken from in-swath retrievals in the Level 2B
data set for the QuikSCAT mission as provided by the
JPL PODAAC (http://podaac.jpl.nasa.gov/dataset/QSCAT_
LEVEL_2B_OWV_COMP_12). The QuikSCAT winds are
produced at 12.5 km resolution within the observation swath,
and QuikSCAT swaths cross the CCS domain twice each day
near 03:00 and 15:00 UTC. We assign the QuikSCAT data to
these times in the BHM.

Given the COAMPS and QuikSCAT input data stages, the
CCS surface wind BHM produces daily estimates of the pos-
terior mean surface wind vector as well as 10 realizations
from the posterior distribution at each grid location on a
25 km regular grid from 30 to 42◦ N and from 135◦W to the
coast. Data stage inputs are weighted such that inputs ob-
tained closest to the output time of 12:00 UTC are twice as
influential as earlier and later inputs in the iterations leading
to the posterior distribution.

Figure 8 shows the QuikSCAT and COAMPS surface
vector wind inputs as assigned to 03:00, 09:00, 15:00, and
21:00 UTC in the CCS domain. The observations from 09:00
and 15:00 UTC are twice as important in the data stage distri-
bution as the observations from 03:00 or 21:00 UTC because
they are closer in time to the nominal forecast model output
time of 12:00 UTC for 19 January 2003.

The abundance of domain-filling and relatively precise ob-
servations from QuikSCAT have a marked effect on surface
wind uncertainty estimates. While snapshots of the surface
vector wind posterior mean and realizations represent mete-
orological variability at atmospheric mesoscale and synoptic
scales resolved on the 25 km grid, the estimates of the vari-
ance show data stage impacts as well, as shown in Fig. 9a
and b. Note the swath patterns in the surface vector wind
variance estimates in Fig. 9a and b.

The parameters of the pressure-gradient wind balance im-
posed in the process model part of the BHM (see Milliff
et al., 2011) are estimated as part of the posterior distribution.
Traces over the course of the Gibbs iterations (not shown)
demonstrate that the BHM has converged to the target poste-
rior distribution, and samples from this portion of the chains
are valid samples from the posterior distribution. For exam-
ple, the 10 realizations shown at each grid location in Fig. 9c
are selected after the BHM chains have converged. Impor-
tantly, to ensure that these are independent samples, each re-
alization is separated by 10 000 iterations starting after the
BHM has converged to the posterior distribution.

In the twin model experiments of Sect. 4.1, surface wind
stress derived from COAMPS was assumed to be error-free.
This assumption will be relaxed here using the CCS BHM
for surface winds. Our working hypothesis has been that
during strong constraint 4D-Var, corrections to the surface
forcing are a manifestation not only of uncertainties in the
model forcing but also of errors in the model in regions of
coastal upwelling and downwelling. Since the BHM pro-
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Figure 8. Data stage inputs for the surface wind BHM in the CCS. Analysis fields for surface wind (vectors) and sea-level pressure contours
(hPa) from COAMPS for (a) 03:00, (b) 09:00, (c) 15:00, and (d) 21:00 UTC. QuikSCAT surface vector wind retrievals from overflights
assigned to (e) 03:00 UTC and (f) 15:00 UTC. The domain shown, 128–124◦W, 40–44◦ N, is a small subset of the larger CCS domain of
Fig. 1. Data stage inputs from COAMPS and QuikSCAT are for 19 January 2003.

Figure 9. CCS surface wind BHM posterior distribution summaries for 19 January 2003. Velocity component variances (m2 s−2) for (a) u
and (b) v as estimated in the BHM posterior distribution. Uncertainties, expressed as variances, arise from data stage coverage (swath patterns
are evident in a and b) and from process model misfits. The spread in velocity vector clusters (red) in (c) provides an intuitive sense of these
uncertainties as well. In (c), 10 surface wind realizations (red) have been randomly selected from the posterior distribution (e.g., see Milliff
et al., 2011) in the same subdomain used for Fig. 8. Posterior wind vectors from the 4D-Var are shown in black in panel (c). The strong-
constraint 4D-Var corrections have incrementally adjusted the surface wind forcing to unrealistic values outside the distribution obtained
from the BHM for this region (see text).
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vides an estimate of the posterior space–time wind distribu-
tion, we can use this information to make an informed de-
cision about where the 4D-Var corrected winds are unduly
influenced by model error. Specifically, in cases where the
4D-Var corrected winds fall within the BHM posterior dis-
tribution, the 4D-Var winds represent a physically realizable
state of the atmosphere, and the influence of model error is
assumed to be minimal. Conversely, if the 4D-Var corrected
winds fall outside the BHM distribution, this is taken to rep-
resent a situation where model error exerts a considerable
influence on the ocean circulation and where 4D-Var is push-
ing the winds into a state that is not realizable but necessary
in order to better fit ROMS to the observations and circula-
tion background estimate. Following this approach, a second
set of twin model experiments was performed spanning the
period 2003–2004. The first sequence was identical to xi de-
scribed in Sect. 4.1 in which the model was initialized with
the 4D-Var background circulation for each 8-day window of
N16 and integrated forward in time for 8 days subject to the
COAMPS background surface forcing. During the new sec-
ond sequence, the model was initialized with the same 4D-
Var background circulation for each 8-day window, but in
this case forced with surface wind fields that were a combi-
nation of the COAMPS background and the 4D-Var adjusted
winds, hereafter referred to as “mixed winds”. At model grid
points and times where the 4D-Var adjusted increments fall
within the BHM posterior distribution (within ±2 standard
deviations), COAMPS winds were used; otherwise, the 4D-
Var adjusted winds were used. For example, Fig. 9c shows
a comparison of the 4D-Var adjusted wind stress (black vec-
tors) with 10 realizations of surface stress (vector cluster in
red) derived from the surface wind BHM within the subdo-
main 128–124◦W, 40–44◦ N. This is a region where the 4D-
Var corrections to the COAMPS background wind stress are
generally large and where model error is known to be im-
portant (see Fig. 10). The sequence of circulation estimates
derived from the mixed winds will be referred to as x̃i . The
surface heat and freshwater fluxes were constrained to be the
same during both sequences of runs.

Figure 10 shows the root mean square (rms) difference be-
tween the COAMPS background wind stress and the mixed
wind stress and reveals that the largest differences typically
occur close to the coast near to and equatorward of Cape
Blanco. As described in Sect. 4.2, the circulation differ-
ences δx̃i = x̃i−xi were represented by a first-order Markov
model (Eq. 12), and a new estimate of the model error covari-
ance matrix Q̃ was computed. The eigenspectra of Ã and Q̃
are similar to those described in Sect. 4.2 (not shown).

It should be noted that the approach used here to compute
the mixed winds may potentially introduce discontinuities
in the surface wind field that could be manifest in the twin
experiment circulation differences as local wind stress curl-
induced circulations. Such discontinuities could be elimi-
nated by spatially smoothing the mixed wind fields; however,
this was not done here since smoothing may introduce other

Figure 10. The root mean square (rms) difference between the
COAMPS background surface wind stress and the “mixed wind”
stress for the period 2003–2004. The rms differences are shown as
vectors for more clarity.

artifacts into the ocean surface forcing. We instead preferred
to preserve the spatial distributions of the wind fields derived
from the BHM when present. This aspect of our approach,
however, probably deserves further attention.

5 Data assimilation results

The estimates of Q̂ and Q̃ described in Sect. 4 were used
in a sequence of weak constraint 4D-Var data assimilation
experiments following the approach outlined in Sect. 2. Two
periods were considered corresponding to 2003 and 2005. As
noted in Sect. 4, twin model experiments and a wind BHM
spanning the period 2003–2004 were used to estimate Q̂ and
Q̃ which means that weak constraint 4D-Var during any part
of this interval will not be independent of the observations
since they are used in the twin experiments. Therefore, 2005
represents an independent period, apart from the propagation
of information from the data assimilation cycles during 2003
and 2004 into 2005. The 4D-Var configuration is identical to
that of N16, only in this case the control vector is augmented
with η(ti, tf ), which are the corrections added to the model
grid point values to account for model error. The background
model error covariance matrix used to compute η is given
by W−

1
29Q̂9TW−

1
2 or W−

1
29Q̃9TW−

1
2 as described in

Sect. 4.
Four sequences of weak constraint 4D-Var circulation es-

timates were computed for 2003 and 2005:

1. Experiment NOBHM uses a Q̂ estimated from the twin
model runs alone, making no use of the posterior wind
distributions from the BHM.
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Figure 11. Time series of the observational component of the cost function, Jo, for observations within the two coastal regions shown in
Fig. 4 that delineate a region spanning the northern CCS and the central CCS to 100 km offshore during 2003 (a and b) and 2005 (c and d).
The regional Jo is shown for the strong constraint case (blue curve), and the weak constraint experiments BHM (red curve) and NOBHM
(green curve).

2. Experiment SNOBHM is the same as NOBHM except
that the δxi were spatially smoothed prior to computing
9 to account for the limited sample size.

3. Experiment BHM uses a Q̃ estimated from the twin
model runs and the wind BHM as described in Sect. 4.3.

4. Experiment SBHM is the same as BHM except that the
δx̃i were spatially smoothed.

The strong constraint circulation estimates of N16 spanning
the same periods were used as a reference, and in all exper-
iments, the strong constraint circulation estimates on 4 Jan-
uary 2003 and 1 January 2005 were used as the background
circulation estimates xb on those dates for the first cycle of
each sequence of weak constraint 4D-Var calculations. In
subsequent data assimilation cycles, the analysis circulation
estimate from day 4 of the previous cycle was used as the
background estimate for the next cycle using the same 8-day
overlapping cycles as described in N16. During each cycle,
the corrections η were computed every 6 h, and the realiza-
tions of η were assumed to be uncorrelated in time. The η
values were interpolated in time to estimate a value at every
model time step. While this introduces a correlation in time,
the 6 h interpolation interval is very short compared to the
4-day time step dt used to estimate Q. Since the results are

quantitatively similar for all four experiments, we will con-
centrate mainly on experiment BHM and highlight any im-
portant differences between experiments where appropriate.

Figure 11 shows time series of the second term on the
right-hand side of the cost function JNL in Eq. (2) given by
Jo = (y−H (za))TR−1(y−H (za)), which is a measure of the
weighted difference between the observations and the anal-
ysis za . Since the 4D-Var corrections due to model error are
confined to the coast, Jo in Fig. 11 was computed only for
observations that fall within the two regions adjacent to the
coast shown in Fig. 4 that span the northern and central CCS
and extend 100 km offshore. Time series of these regional
Jo values are shown for the strong constraint case of N16
and the weak constraint experiments BHM and NOBHM for
both 2003 and 2005. The posterior fit of the model to the ob-
servations is similar in all cases, but is generally lowest dur-
ing experiment BHM indicating that accounting for model
error brings the circulation estimates closer to the observa-
tions. Much of this improvement is associated with a better
fit of the model to the satellite observations (not shown). The
change in the degree of fit of the model to the observations
is not expected to change dramatically between the strong
and weak constraint experiments since the strong constraint
system is already performing well (see N16). Nonetheless,
Fig. 11 also shows that experiment BHM is generally supe-
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Figure 12. The rms difference between analysis and background 4D-Var estimates of (a) zonal wind stress (Nm−2), (b) meridional wind
stress, (Nm−2), and (c) surface heat flux (Wm−2) from the strong constraint calculations of N16 for 2005. Panels (d)–(f) show the corre-
sponding differences for the weak constraint 4D-Var experiment BHM.

rior to the experiment NOBHM, indicating that the BHM is
providing useful information about the model error statistics.
The fit of the model to the observations during SBHM and
SNOBHM is generally inferior to that of the unsmoothed
cases, although still marginally superior to the strong con-
straint case (not shown).

As discussed in Sect. 4 and Appendix A, strong con-
straint 4D-Var is likely to compensate for model errors in
regions of upwelling and downwelling by making adjust-
ments to the surface forcing fields. When explicit allowance
is made for model error during weak constraint 4D-Var, we
expect the corrections to the surface forcing to be smaller
than those subject to the strong constraint. This is illustrated
in Fig. 12d–f, which show the rms differences between the
4D-Var background and analysis estimates of surface wind
stress and surface heat flux for the BHM weak constraint
4D-Var calculations during 2005. Also shown in Fig. 12a–c
are the corresponding rms differences from the strong con-
straint 4D-Var calculations of N16. Figure 12a–c indicate
that strong constraint 4D-Var makes sizable corrections to

the surface stress (∼ 0.02–0.06 N m−2) and surface heat flux
(∼ 150 W m−2). The surface freshwater fluxes change lit-
tle between the strong and weak constraint experiments and
are not shown here. In the case of meridional wind stress
(Fig. 12b), the 4D-Var corrections are largest near the coast
in the vicinity of Cape Mendocino and Cape Blanco. We
attribute much of this correction to the influence of model
error since COAMPS verifies well against independent ob-
servations (Doyle et al., 2009), and as discussed in Sect. 3,
ROMS CCS is known to possess errors in this region (Bro-
quet et al., 2009a). This is also the same region where the
wind BHM indicates that 4D-Var winds are inconsistent with
the COAMPS background estimates (cf Fig. 10). Figure 12d–
f reveal that surface forcing corrections during the weak con-
straint BHM experiment are substantially smaller (∼ 50 %)
than those made during the N16 calculations, indicating that
4D-Var places more confidence in the background surface
forcing when explicit allowance is made for model errors in
the coastal regions. The results are quantitatively similar for
the SBHM, NOBHM, and SNOBHM experiments and for
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Figure 13. The mean weak minus strong constraint 4D-Var differences for (a) SST and (c) SSS for the experiment BHM estimates dur-
ing 2005. The standard deviation for the (b) SST and (d) SSS weak minus constraint differences are also shown.

2003, although in the case of SBHM the rms analysis and
background forcing differences are even smaller (not shown).
The similarity between the results of 2003 and 2005 indicates
that the Q derived from the period 2003–2004 is generally
also valid during other independent years.

The mean weak minus strong differences for 2005 based
on experiment BHM are shown in Fig. 13a and c for SST and
sea surface salinity (SSS). The mean differences are gener-
ally small over much of the model domain and relatively in-
coherent for SST. In contrast, the standard deviation of the
weak minus strong differences for SST and SSS are very co-
herent as shown in Fig. 13b and d, and reveal that the largest
variations occur near the coast, consistent with Fig. 4. Fur-
thermore, the standard deviations are a factor of∼ 2–6 larger
than the mean. The vertical structure of the weak minus
strong differences in temperature and salinity is illustrated
in Fig. 14 which shows the mean and standard deviation of
the differences in each case. In general, the mean differences
are relatively incoherent, indicating that the corrections made
to the circulation estimates mainly take the form of unbiased
errors rather than corrections to account for model bias. In
contrast, the patterns of standard deviations are spatially co-
herent in the upper water column and are generally largest in
the vicinity of the thermocline across much of the domain.
Therefore, while the corrections for model error are confined
mainly to the coastal regions, the impacts on the circulation
extend farther offshore.

Recall from Sect. 2 that during weak constraint 4D-Var,
corrections are made to account for model error in the time
tendency for every prognostic state-vector element at every
grid point which correspond to the elements ηj of the vector
η(t)= {ηj (t)}. Figure 15 shows the rms of the corrections
ηj per time step for the elements j that correspond to SST,
SSS, and surface velocity during experiment BHM in 2005.
The largest time tendency corrections correspond to the same

geographic locations as the largest standard deviations of Q
(cf Fig. 4). The vertical structure of η also mirrors that of
the standard deviation in Fig. 5, and the corrections η are
quantitatively similar for 2003 and for the other experiments
(not shown).

The variations of η from one cycle to the next indicate that
the model error corrections primarily take the form of unbi-
ased corrections. For example, Fig. 16 shows a time series
of the temperature component of η, denoted ηT , averaged
over each 8-day assimilation cycle, over the entire water col-
umn, and over the northern CCS region shown in Fig. 4 dur-
ing 2003 during experiment BHM. The mean of ηT is close
to zero (5× 10−5 ◦C per time step), while the standard de-
viation is significantly larger (1.9× 10−4 ◦C per time step).
A nonzero mean would be indicative of corrections of a sys-
tematic error. In addition, there is no obvious seasonal depen-
dence in the amplitude of the model error corrections. Time
series of other components of η from 2003, 2005, the cen-
tral CCS, and the other experiments exhibit a similar behav-
ior (not shown). This is a further indication that the weak
constraint is correcting for unbiased model errors rather than
large systematic errors.

6 Conclusions

In this paper, we demonstrate how strong constraint data as-
similation and a twin model approach can be used in con-
junction with linear inverse modeling and a Bayesian hier-
archical model to estimate the covariance of model error in
a region of coastal upwelling and downwelling. The method
has been applied in a state-of-the-art ocean model of the Cal-
ifornia Current System that is also currently run in near-real
time (http://oceanmodeling.ucsc.edu). The CCS is a particu-
larly challenging test region because of the complex nature
of the circulation environment which is also characterized by

www.adv-stat-clim-meteorol-oceanogr.net/2/171/2016/ Adv. Stat. Clim. Meteorol. Oceanogr., 2, 171–192, 2016

http://oceanmodeling.ucsc.edu


186 W. J. Crawford et al.: Weak constraint four-dimensional variational data assimilation

Figure 14. Vertical sections of the mean weak minus strong constraint 4D-Var differences for (a) temperature and (c) salinity for the
experiment BHM estimates during 2005. The standard deviation for the (b) temperature and (d) salinity weak minus strong constraint
differences are also shown.

Figure 15. The rms corrections η made by weak constraint 4D-Var per time step during experiment BHM in 2005
for (a) SST, (b) SSS, (c) surface zonal velocity, and (d) surface meridional velocity.

a complex system of coastal currents and regions dominated
by energetic mesoscale eddies. The estimates of the model
error covariance matrix Q were implemented in a weak con-
straint 4D-Var data assimilation algorithm. Overall, the per-
formance of the weak constraint system is very encourag-
ing in that it indicates that the proposed methodology is able
to identify and correct for known deficiencies in the model
in the coastal upwelling regions. Furthermore, experiments
in which Q is informed by a BHM of surface wind forc-
ing demonstrate the most improvement, in that the fit of the
model to the observations is most improved in the coastal
regions when compared with strong constraint 4D-Var esti-
mates where the model is assumed to be error-free. Similarly,
during the weak constraint experiments, the corrections that
are made to the background estimates of surface forcing are
greatly reduced compared to those of the strong constraint
case, indicating that the data assimilation places more con-
fidence in the surface forcing fields when explicit allowance
is made for model errors. 4D-Var is based on the assumption
that errors in the observations, background, and analysis es-
timates of the control vector are unbiased and random. The

explicit corrections for model error η computed during the
weak constraint 4D-Var experiments presented here indicate
that these assumptions are generally valid for model error in
our experiments. Particularly encouraging is the finding that
the Q estimated from a specific time interval (2003–2004 in
the cases considered here) is also effective for correcting for
model error during other independent years.

There are, of course, a number of caveats and cautionary
notes that should be mentioned. Firstly, the proposed method
when applied to surface wind stress increments yields infor-
mation only about likely model errors in regions where the
circulation is tightly coupled to the wind stress, such as re-
gions of upwelling and downwelling. While the signature
of model errors on the initial condition increments is po-
tentially more useful for recovering model error information
over broader regions, there is currently no practical way to
isolate this information. Nonetheless, there are many regions
of the world ocean where wind-induced upwelling and down-
welling is important, and at the mesoscale the surface wind
stress curl and divergence are tightly coupled to the SST.
Therefore, the method proposed here could also prove use-
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.

Figure 16. Time series of the cycle-average temperature compo-
nents of η averaged over the entire water column and over the
northern CCS region indicated in Fig. 4 during 2003 for experiment
BHM. The units are ◦C per time step.

ful in some open ocean regions as well, such as the tropi-
cal Pacific. Secondly, the model error covariance estimates
computed here are predicated on the signature of model er-
ror in the 4D-Var analysis estimates of surface wind stress
and the distribution of the background surface wind forcing.
However, model errors will also exert undue influence on the
surface heat and freshwater fluxes, so an obvious extension
of the BHM to compute the posterior distribution of these
additional components of the ocean surface forcing is also
warranted. Thirdly, the model error estimates derived here
will depend on the prior constraints imposed on the data as-
similation system via the background error covariance B, the
observation error covariance R, and the distribution of the
observations. For example, in areas that are devoid of obser-
vations, the surface forcing corrections made by 4D-Var may
be small. This does not necessarily mean that model error is
absent in such regions, only that there is no direct informa-
tion about the presence (or lack thereof) of such errors. How-
ever, further analysis (not shown) indicates that the rms sur-
face flux differences between the 4D-Var analyses and back-
ground fields in Fig. 12 are not obviously related in any way
to the distribution of the observations during the same period.
Therefore, we feel confident that the 4D-Var surface forcing
corrections are not being overly influenced by the observa-
tion sampling in the present experiments. Finally, it is useful
to speculate on the factors that may be contributing to model
errors in coastal regions in the present study. A very obvi-
ous omission in the ROMS CCS configuration used here are
the sources of freshwater associated with the Columbia River
and the Juan de Fuca Strait. This may account in part for the
geographical distribution of the largest model error covari-
ances along the coast of Oregon and Washington (cf. Fig. 4)
and the freshening of coastal waters during weak constraint
4D-Var (cf. Fig. 13c). One could argue that this represents a
source of forcing error rather than model error. However, as
the results of this study indicate, the nature of the corrections
for model error are more consistent with that of an unbiased
error rather than of a correction for a bias such as one might
expect in the presence of a persistent error in the freshwater
flux. Another conspicuous omission in the current configura-

tion of the model is tidal forcing. Intensification of tidal cir-
culations can occur in the vicinity of coastal bathymetry and
topography along the US west coast (e.g., Osbourne et al.,
2014), and may represent another potential source of error
consistent with the localized nature of Q in Fig. 4. Other po-
tential sources of model error include bathymetry. The conti-
nental shelf along the US west coast is generally narrow and
not well resolved by the 10 km model grid used here. In ad-
dition, the required smoothing of the bathymetry in terrain-
coordinate-following models introduces further errors. There
are several bathymetric features, such as Heceta Bank, that
influence the circulation in the northern reaches of the CCS
which are poorly resolved in the present model and consis-
tent with the geographic structure of the variance of Q in
Fig. 4.

7 Data availability

The total volume of data processed in the experiments re-
ported here exceeds 15 TB, so it is not feasible to make
them available online. The strong constraint analysis of
N16 is, however, available at http://oceanmodeling.ucsc.edu/
reanalccs13. Subsets of the data may be requested by con-
tacting the corresponding author directly.
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Appendix A: Recovering model errors from strong
constraint 4D-Var forcing corrections

The underlying premise of the method used in Sect. 4 to re-
cover an estimate of Q is that estimates of additive model
errors can be obtained from the influence that such errors
have on ocean surface forcing fields in regions of coastal
upwelling and downwelling and for which estimates of the
probability distribution are available. The efficacy and limi-
tations of this premise are demonstrated here using two sets
of 4D-Var experiments in which artificial model errors were
added to ROMS. Following this approach, two sequences
of strong constraint 4D-Var experiments for 2003 using 8-
day cycles were performed comprising three sets of runs for
each using the same configuration as N16. During the first
sequence, denoted S1, 4D-Var was run adjusting the initial
conditions (x(ti)), surface wind stress (f τ ), and surface heat
and freshwater fluxes (fQ). The second sequence, denoted
S2, was the same as S1 but included an additional artificial
source of model error εr (t) with known covariance imposed
on the model. The start days ti for each cycle were the same
in both experiments. The prior initial conditions xb(ti) var-
ied with ti but were the same in both experiments for a given
ti . During S1, the 4D-Var analyses are influenced by the ac-
tual model εt (t), which is unknown, while during S2 they are
influenced by both εt (t) and εr (t). Following the notation
introduced in Sects. 2 and 4, each member of the 4D-Var se-
quence S1 will be described by

dxS1

dt
=N (xS1)+ εt (t), (A1)

while for S2,

dxS2

dt
=N (xS2)+ εt (t)+ εr (t). (A2)

Under the assumption of the strong constraint, εt (t) will have
an expression on x(ti), f τ and fQ during S1 while during S2
there will be an additional contribution from εr (t). The dif-
ference between corresponding members of S1 and S2 will
be denoted 1x and will be associated primarily with the in-
fluence of only εr (t) on the elements of the control vector.
Therefore, by subtracting Eq. (A1) from Eq. (A2), the influ-
ence of the actual model error εt (t) can be temporarily elimi-
nated (assuming εt (t) and εr (t) are independent), and to first
order the differences 1x = xS2− xS1 will be described by

d1x
dt
= N|xS11x+ εr (t), (A3)

where N|xS1 denotes the tangent linear model linearized
about the analyses from sequence S1. Since the prior ini-
tial conditions are identical for corresponding cycles of each
4D-Var sequence, the tangent linear Eq. (A3) can be used
to cleanly separate the influence of each component of the
control vector (i.e., x(ti), f τ and fQ) on the circulation es-
timates. For example, if we denote 1xi as the difference

between the analyses of S2 and S1 that are associated with
differences in x(ti) alone, we can use Eq. (A3) to explore
the time evolution of these differences. Similarly, we can use
Eq. (A3) to quantify the analysis differences 1xτ due to dif-
ferences in f τ alone and 1xQh due to fQ alone. The time
series of 1x averaged over each 8-day 4D-Var cycle were
then modeled as a first-order Markov process as described
in Sect. 4.2 (cf Eq. 12) to determine the degree to which the
covariance properties of εr (t) can be recovered from the dif-
ferences in different elements of the control vector arising
from strong constraint 4D-Var.

The experiment S2 was performed using time series of
εr (t) drawn from the distribution N (0,Q). As noted in
Sect. 4.2, the background model error covariance matrix can
be expressed as Q=W−

1
29Q̃9W−

1
2 , where 9 is the ma-

trix of EOFs of the δx and Q̃ is the covariance matrix of
the stochastic forcing of the associated principal compo-
nents. Furthermore, Q̃ can be written as E3ET , where E is
the matrix of eigenvectors of Q̃ and 3 is the diagonal ma-
trix of eigenvalues. The multivariate random vector εr (t)=
9E3

1
2 ξ (t) represents a random draw from a Gaussian proba-

bility distribution with covariance Q, where ξ ∼N (0,I). Two
different representations of Q were considered here. In the
first case, Q=Q1 was based on the 9 identified in Sect. 4.3
and describes errors primarily in the coastal upwelling and
downwelling regions. In the second case, Q=Q2 was con-
structed from a random sample of 50 spatially smoothed
analysis increments from a randomly chosen year (2008) of
N16. From the sample of 50 increments, a new orthonormal
basis 9 was constructed using a Gram–Schmidt procedure.
For convenience, the eigenspectrum 3 of Q2 was chosen to
be proportional to that of Q1 and rescaled to give a similar
total variance for the two estimates of εr (t).

Figure A1 shows a summary of the results of the exper-
iments using Q1 in terms of the standard deviation σsst of
the artificial “model error” in SST added to ROMS. These
results are representative of other fields also. The expected
error associated with Q1 for SST is shown in Fig. A1a and
highlights the coastally trapped nature of εr (t). Figure A1b
shows an estimate of σsst derived from the first-order Markov
model of1xi , the circulation associated with the initial con-
dition differences resulting from εr (t). Clearly the additional
artificial “model error” can be quite successfully recovered
from the signature of εr in x(ti), even given the relatively
small sample size used here (92 realizations of 1x). Fig-
ure A1c shows σsst derived from 1xτ , the circulation asso-
ciated with the surface wind stress differences resulting from
εr (t). Clearly, the wind stress is also able to recover the pat-
tern of σsst quite well, although the amplitude is somewhat
lower than the expected value. Although when 1x only on
day 8 is used, the estimates of σsst are significantly larger (not
shown). The surface heat and freshwater fluxes contribute lit-
tle to the estimates of σsst and are not shown. Figure A1a–c
demonstrate the important point that there is a unique rela-
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Figure A1. The standard deviation of the additional artificial source of model error added to experiments S2: (a) the expected error based on
Q1, (b) derived from 1xi using Q1 during S2, and (c) derived from 1xτ using Q1 during S2. (d) The expected error based on Q2, (e) same
as (b) but using Q2 during S2, and (f) same as (c) but using Q2 during S2. The color bar on the left corresponds to panels (a), (b), (d),
and (e), while the color bar on the right is for (c) and (f).

tionship between the expression of the model error εr in the
upwelling circulation and the expression of model error in
the surface wind stress increments arising from strong con-
straint 4D-Var, the basic hypothesis on which the method
presented in Sect. 4 is based.

Figure A1d–f presents a summary of σsst for the exper-
iments using Q2. Figure A1d shows the expected artificial
model error variance for SST, which, in contrast to the previ-
ous case, spans the entire model domain. Figure A1e shows
σsst derived from 1xi , and as in the case of Q1, the total
variance in SST due to model error can be recovered fairly
well from the first-order Markov model for 1xi alone. Con-

versely, Fig. A1f derived from 1xτ shows that εr in the
deep ocean has little expression in f τ . Only in the regions of
coastal upwelling and downwelling does εr have any appre-
ciable expression on f τ , and the first-order Markov models
of 1xτ can only recover the coastal component of Q2. The
same is true for 1xQ associated fQ (not shown).

Figure A1 suggests that the model error covariance can be
reliably estimated everywhere from the expression of model
error in all elements of the control vector in combination, but
particularly from the initial conditions. However, an opera-
tional practical environment is quite different from the nature
of the experiments presented here, where we chose the prior
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initial conditions to be invariant for a given cycle start date.
In an operational environment, we will never be able to iden-
tify the component of x(ti) that is associated solely with the
model error. This would require an estimate of the probability
distribution of x(ti) based on which we could decide which
corrections to xb(ti) are legitimate corrections for errors in
the background initial conditions and which corrections are
most likely the result of model errors. For the wind stress
f τ , however, an estimate of the probability distribution in the
form of a BHM is available as described in Sect. 4.3. Con-
struction of a BHM for the surface wind stress is tractable be-
cause of the relatively low dimension of the problem and the
availability of good observation coverage from scatterome-
ters. The same approach would be intractable for x(ti), how-
ever, because of the multivariate nature of the state vector and
the much larger dimension of the problem and because of the
lack of high density observations for the entire ocean state. If
the latter were available, we would probably not need ocean
data assimilation at all.

The experiments presented here explore how the signature
of model error is manifested in the surface wind stress over
an 8-day assimilation cycle. It seems reasonable to expect
that the influence of model error on the surface winds will
increase with the length of the assimilation window, so there
may be value in considering windows longer than 8 days
in order to better quantify model error. However, care must
be exercised using this approach since the tangent linear as-
sumption on which 4D-Var is predicated will be violated if
the assimilation window becomes too long.
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