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Abstract. Dynamical downscaling of earth system models is intended to produce high-resolution climate in-
formation at regional to local scales. Current models, while adequate for describing temperature distributions at
relatively small scales, struggle when it comes to describing precipitation distributions. In order to better match
the distribution of observed precipitation over Norway, we consider approaches to statistical adjustment of the
output from a regional climate model when forced with ERA-40 reanalysis boundary conditions. As a second
step, we try to correct downscalings of historical climate model runs using these transformations built from
downscaled ERA-40 data. Unless such calibrations are successful, it is difficult to argue that scenario-based
downscaled climate projections are realistic and useful for decision makers. We study both full quantile cali-
brations and several different methods that correct individual quantiles separately using random field models.
Results based on cross-validation show that while a full quantile calibration is not very effective in this case, one
can correct individual quantiles satisfactorily if the spatial structure in the data are accounted for. Interestingly,
different methods are favoured depending on whether ERA-40 data or historical climate model runs are adjusted.

1 Introduction

The intensification of climate research over the past decade
produces a steadily increasing number of data sets combin-
ing different global circulation or earth system models, CO2
emissions scenarios and downscaling techniques. Turning fu-
ture projections into robust and reliable information available
at a local scale is imperative for the successful modelling of
impacts of climate change in nature and society. The compre-
hensive financial and safeguarding challenges of mitigation
and adaptation call for thorough validation, improvement and
extensions of current downscaling techniques.

The comparison of climate models to weather data raises
interesting statistical problems. For a statistician, the most
natural definition of the climate is that it is the distribution
of weather (and other earth system variables) over multi-

decadal timescales (Smith et al., 2010; Guttorp, 2014). A
climate model (general circulation model or more generally
earth system model) describes the distribution of observable
variables based on physical principles. Because some of the
processes (e.g. convection, clouds) occur on scales smaller
than the large grid squares needed to approximate a solution
to the Navier–Stokes equations, such processes are often cal-
culated using simple approximations (or parameterizations).

A multitude of models have emerged for projection of fu-
ture climate change at different spatial (and temporal) scales.
Essential in the process of going from the coarse resolu-
tion of the global models to finer spatial scales are the re-
gional climate models (RCMs). Such models propagate in-
formation from a coarse-scale model along the boundary of
a higher-resolution area of interest, using a more detailed ter-
rain description, model solutions using finer resolution, and
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improved physical process parameterizations. The boundary
conditions may be computed either from a global weather
model forced with updated historical observations to calcu-
late consistently the state of the atmosphere (reanalysis), or
from a global climate model. A regional model using re-
analysis boundary conditions is sometimes said to be run in
“weather forecasting mode”, and is the closest one can hope
to get to observed weather using a regional climate model.
Maraun et al. (2010) described approaches to downscaling
precipitation.

One major purpose of regional climate models is to give
end users such as stakeholders and decision makers a rep-
resentation, preferably a reliable projection, at a practically
useful spatio-temporal scale, of future weather. In the in-
surance industry, for instance, the interest lies in high pre-
cipitation projections under various possible future scenar-
ios to assess the changing risk of damages to buildings or
flooding (Scheel and Hinnerichsen, 2012). Typically, sce-
nario runs are built from the regional model forced by global
coupled ocean–atmosphere or earth system model runs. The
question then becomes how reliable these regional models
are, at the scale needed by the actual effect study. For exam-
ple, to understand patterns of risk for the insurance of build-
ings, precipitation at meso- to local-scale level is needed.

Orskaug et al. (2011) compared precipitation from the
HIRHAM regional model (Bjørge and Haugen, 1998), run
over Europe and forced with ERA-40 reanalysis (Uppala
et al., 2005) boundary conditions, to a gridded precipitation
product for Norway (Jansson et al., 2007) on a 25× 25 km2

scale. They used a variety of statistical measures for compar-
ing the two data sets. The regional model output was found
to describe low levels of precipitation fairly well, but failed
to reproduce large quantities. Maule et al. (2013) found that
most of the regional models in ENSEMBLES give fairly ac-
curate descriptions of drought indices and other functions of
low precipitation regimes. These findings, together with the
need for representative scenarios called for by most impact
studies, serve as a motivation for improving the local-scale
description of extreme future climate precipitation.

It has long been understood that regional models tend to be
regionally biased in terms of precipitation (e.g. Christensen
et al., 2008; Monjo et al., 2014; Mishra et al., 2014). Bias
correction is an approach that attempts to adjust (statistically
or otherwise) the climate model output (regional or global) to
make it closer to observed data for historical runs. The idea
is then that applying this bias correction to future simulations
should also provide more realistic projections. Kerkhoff et al.
(2014) develop a framework for assessing the bias correc-
tion, and the assumptions needed to apply such corrections to
projections. They focus on temperature data, and can there-
fore assume normal distributions, which is not appropriate
for precipitation.

There are a variety of bias correction methods in the liter-
ature (Maraun et al., 2010, contains a review). The simplest
is a multiplicative correction to make the empirical means

of data and RCM output agree (Lenderink et al., 2007).
Some authors (e.g. Schmidli et al. (2007) prefer to make the
correction only to the mean of precipitation on rainy days.
An intermediate approach adjusts the coefficient of variation
of data and model output (Teutschben and Seibert, 2012).
More advanced methods try to match quantiles, either by fit-
ting gamma distributions (with point mass at zero) to data
and models (Piani et al., 2010) or non-parametrically us-
ing full quantile mappings (Themeßl et al., 2011). The bias
corrections are typically done grid square by grid square,
without an explicit spatial model for between grid square
dependence. Quantile corrections (or smoothed estimates
thereof) typically are found superior in comparative assess-
ments (Gudmundsson et al., 2012; Räty et al., 2014; Fang
et al., 2015).

In this paper we consider approaches to statistical adjust-
ment of the regional model output, obtaining a calibrated
product that is closer in distribution to the observed data
than the original output. We first investigate the Doksum shift
function (Doksum, 1974), which makes a full quantile cali-
bration, as the basic tool for adjustment. Next, we restrict
ourselves to less ambitious models that correct individual
quantiles separately. Considering gridded data products cov-
ering Norway, we build transformations either separately for
each grid cell, or via models that incorporate some kind of
spatial structure. The models are fitted to a training set of
downscaled ERA-40 data, and then used to correct down-
scaled ERA-40 on a test set. We also try to correct downscal-
ings of historical climate model runs using the same transfor-
mations built on downscaled ERA-40 data. Unless such cal-
ibrations are successful, it is difficult to argue that scenario-
based downscaled climate projections are realistic and useful
for decision makers.

The paper continues as follows. In Sect. 2 we present the
various data sets used in the analysis. Section 3 deals with
using the shift function to do full quantile bias correction,
while Sect. 4 focuses on bias correction of individual quan-
tiles. Section 5 discusses the potential use of the methodol-
ogy in assessment and uncertainty quantification of regional
climate models.

All code needed to run the analysis on the data are found
at Bolin et al. (2016).

2 Data

The data used in this study constitute 40 years of daily pre-
cipitation values for the Norwegian mainland, covering the
period 1961 to 2000. The data set is twofold: one part con-
sists of dynamically downscaled model data (ERA-40 reanal-
ysis and climate model), and the other is a gridded product
based on in situ observations. A more thorough description
of the data are given in Orskaug et al. (2011).
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2.1 ERA-40 reanalysis

Reanalysis data express the best, physically consistent, esti-
mate available for the historical state of the atmosphere. They
are formed in retrospect from feeding various sources of
past meteorological observations into a current meteorolog-
ical forecast model. ERA-40 reanalysis data (Uppala et al.,
2005) are a product of the European Centre for Medium-
Range Weather Forecasts in the UK.

Downscaled ERA-40 data are collected from the ENSEM-
BLES project website (http://ensemblesrt3.dmi.dk) (Chris-
tensen et al., 2010). Gridded large-scale ERA-40 data along
the boundary of an integration area covering most of Europe
are dynamically downscaled to weather variables on a grid
with a spatial resolution of 25× 25 km2, which amounts to
777 grid cells covering the Norwegian mainland. The down-
scaled ERA-40 reanalysis data will be referred to as dERA40
in this paper. The downscaling is done by the Norwegian Me-
teorological Institute using their HIRHAM Regional Climate
Model (Bjørge and Haugen, 1998).

2.2 Observation-based data

Precipitation is measured daily at stations irregularly dis-
tributed across Norway. Based on all observations of precip-
itation available at every time step, high-resolution precipi-
tation grids (1× 1 km2) are estimated applying a Delaunay
triangulation (Jansson et al., 2007). The interpolated precip-
itation values are adjusted locally by taking the deviations
between triangulated station elevations and ground heights
as given by a detailed terrain model into account. Also, prior
to the interpolation, observed precipitation is corrected for
exposure-dependent undercatch due to wind loss (Førland
et al., 1996).

In order to compare the two data sets, the 1×1 km2 obser-
vation grid was aggregated into the larger 25×25 km2 grid of
dERA40. This was obtained by collecting all 1× 1 km2 grid
cells with centre points within a dERA40 cell, and taking
their average as a representation of the measured precipita-
tion inside that grid cell. We use the abbreviation OBS for
this data set.

2.3 Climate model data

The global Bergen Climate Model, BCM, data set (Fure-
vik et al., 2003) is downscaled by the Norwegian Meteoro-
logical Institute using the same HIRHAM Regional Climate
Model as for dERA40 and also collected from the ENSEM-
BLES project website. This downscaled climate data set has
the same spatial resolution of 25× 25 km2. The downscaled
BCM climate model data set will be referred to as dBCM in
this paper.

3 Full quantile calibration of Norwegian
precipitation

The results of the evaluation of the regional model (Orskaug
et al., 2011) underlines the need for enhanced climate projec-
tions at a local scale. Discrepancies between the distributions
of observed and downscaled precipitation exist for the whole
range of data, suggesting that a full quantile calibration func-
tion is needed. In Sect. 3.1 we address this issue using a cal-
ibration that will make the model data distribution closer to
that of the observed data.

3.1 Distributional calibration using Doksum’s shift

We characterize the transfer function between two distribu-
tion functions, in our case those of a model and of obser-
vations, using Doksum’s shift function (Doksum, 1974). To
define this function, consider data from two distributions, F
and G, and let 1(x)=G−1(F (x))− x. If X ∼ F (i.e. X is
a random variable with cumulative distribution function F),
it is easy to see that X+1(X)∼G. In other words, 1(x)
measures how much the distribution F needs to be shifted
at a value x in order to coincide with the distribution G. The
shift function1 can be estimated using empirical distribution
functions for F and G:

1̂(x)= Ĝ−1(F̂ (x))− x,

where F̂ and Ĝ are the empirical cumulative distribution
functions of F and G, respectively. The empirical cumula-
tive distribution function is a step function:

F̂ (t)=
1
n

n∑
i=1

I (xi ≤ t),

where I (A) is the indicator of event A, and (x1, . . .,xn) are
observations of independent and identically distributed real
random variables distributed according to F . We follow the
standard statistical notation where Xi stands for a random
variable and xi for its observed value.

If the shift function is constant, it means that there is only
a difference in location between the two distributions (and
particularly if that constant equals zero there is no differ-
ence between the distributions). If it is linear, a location-scale
transformation is implied.

Assume next that a region is divided into S grid cells.
For grid cell i, i = 1, . . .,S, let Xi denote downscaled model
precipitation and Yi observations. Let Fi be the cumulative
distribution function of Xi and Gi that of Yi . Assume fur-
ther that we have downscaled model output xit and observa-
tions yit for days t = 1, . . .,T (using a common T implies
no loss of generality; should the number of data points for F̂
and Ĝ rather be TF̂ and TĜ, respectively, those are used in-
stead). Our interest lies in distributional coherence between
the downscaled model data and the observations, rather than
daily correspondence between xit and yit .
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Figure 1. Fisher tests of the 95 % quantile of the winter season uncalibrated dERA40 test data (left panel), the calibrated dERA40 test data
(middle panel), and the calibrated dBCM test data (right panel). The plots show significance level α = 5 %.

Calibration of a new value xuncal
it ′

drawn from the same dis-
tribution F̂i but with t ′ 6∈ 1, . . .,T is done by adding its Dok-
sum shift,

xcal
it ′ = x

uncal
it ′ + 1̂i(x

uncal
it ′ )

= xuncal
it ′ + Ĝ

−1
i (F̂i(xuncal

it ′ ))− xuncal
it ′ (1)

= Ĝ−1
i (F̂i(xuncal

it ′ )),

showing that this calibration is indeed a full quantile calibra-
tion.

3.2 Transferability of calibration

Assume that we want to apply the calibration in Eq. (1) to
data from another data set, i.e. to zH

it ′
not necessarily dis-

tributed according to F and where t ′ may or may not over-
lap with 1, . . .,T . A typical example would be extending
the calibration established for a re-analysis to a historical
climate model run. As before, we use data from F and G
to calculate empirical distributions F̂i and Ĝi respectively,
where F̂i is estimated from xit , t = 1, . . .,T and Ĝi from yit ,
t = 1, . . .,T . We then correct the new data set, zH

it ′
, by

zcal
it ′ = z

H
it ′ + 1̂i(z

H
it ′ )

= zHit ′ + Ĝ
−1
i (F̂i(zHit ′ ))− z

H
it ′

= Ĝ−1
i (F̂i(zHit ′ )).

3.3 Shift function calibration results

In Orskaug et al. (2011) it was shown using several crite-
ria that the dERA40 and OBS data sets lack agreement. A
detailed comparison of specific local features showed that
the global disagreement was due to poor agreement for high
quantiles. As mentioned in Orskaug et al. (2011) the day-
by-day correlation is partly lost when downscaling the ERA-
40 data; hence we compare distributions rather than using

day-by-day test measures. We test the calibration models de-
scribed in Sects. 3.1 and 3.2 by considering different seasons
separately. The seasons used are winter (December to Febru-
ary), spring (March to May), summer (June to August) and
autumn (September to November).

In our current setup, the dERA40 and OBS data are further
divided into a training set and a test set. The training set is
used to fit the calibration model. The transfer function thus
obtained is applied to dERA40 data for the test period, which
then is compared to observations for the test period. Here the
training data are chosen to be the first 80 % of the total data,
i.e. the years from 1961 to 1992. The test data are chosen to
be the last 20 % of the data, i.e. the years from 1993 to 2000.

The dERA40 data are calibrated using Doksum’s shift
function as described in Sect. 3.1. In particular, for a spe-
cific xuncal

it from the test data set, its calibrated value xcal
it is

calculated from Eq. (1) where F̂ and Ĝ both are estimated
based on the training data.

Assuming independence between the test statistics for dif-
ferent grid squares, if all null hypotheses are true, we would
expect about 39 spurious significances at 95 % confidence
level in a plot with 777 grid cells. We have carried out the
same kind of comparisons as in Orskaug et al. (2011), but
here we only report the Fisher test of the 95th percentile.
Figure 1 shows substantial amounts of rejections (74 %) in
the uncalibrated dERA40, with an improvement (24 % rejec-
tions) for the calibrated data, and a deterioration (48 % rejec-
tions) for the downscaled Bergen climate model. Things are
worse for the Kolmogorov–Smirnov test, in particular for the
climate model data (77, 18 and 79 %, respectively). Since we
are estimating the calibration from the training data, we do
not expect to get only 5 % rejections in the test set. Further-
more, spatial dependence also affects the rejection rates.

The main reason for the difficulty of making a full quantile
calibration is that the bulk of the distribution is concentrated
around very small precipitation values, and the Kolmogorov–
Smirnov statistic tends to focus on these well-estimated parts
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of the distribution, where very small differences in amounts
are the reason for rejection. It would be natural to hope to use
a spatial model to borrow strength from nearby grid squares.
However, the high variability in the quantile correction for
large values (occurring since there are relatively few high
observations of precipitation) makes it difficult to fit a spa-
tial functional model. Instead we will focus on calibrating
directly quantities of higher interest for adaptation, namely
high quantiles, where the full calibration did somewhat bet-
ter.

4 Calibrating individual quantiles

We now focus on calibrating a fixed quantile, q, over a time
period of r days. Because of the cross-validation comparison
we will perform in the next section, we denote these time pe-
riods as folds. An observation Y qi,k is the qth empirical quan-
tile at location si and fold k. That is,

Y
q
i,k = Ĝ

−1
i,r(k−1)+1:rk(q), (2)

where Ĝ−1
i,r(k−1)+1:rk(q) is the left inverse of the empirical

density function made from observations corresponding to
the days of fold k, Yr(k−1)+1:rk . To link the downscaled pre-
cipitation to Y qi,k , we construct

X
q
i,k = F̂

−1
i,r(k−1)+1:rk(q). (3)

The goal is now to predict the spatial field Y qi,k using a
calibrated version of Xqi,k , where the calibration is estimated
using all data that are not in fold k, that is, Y qi,−k and Xqi,−k ,
where the subscript −k stands for all folds except the kth.

We will use the notation Y qk for the vector [Y q1,k, . . .Y
q
S,k],

and similarly for Xqk . Further, we will denote a diagonal ma-
trix with diagonal entries b by diag(b).

As a baseline method, we use the empirical quantile at
each location Y qi,−k as the predictor of Y qi,k . We will later de-
note this as Model 0, and it should be noted that this predic-
tion does not use the downscaled data. However, it should be
a reasonable prediction assuming that the climate is station-
ary.

As a reference model, we use the smoothing spline method
that performed well in Gudmundsson et al. (2012). We will
later denote this as Model Ref. The method matches (all)
quantiles of the model output to (all) quantiles of the observa-
tions using a cubic spline regression, for days with non-zero
precipitation.

4.1 Model 1: linear regression

As a first method for doing the calibration, we do linear re-
gression withXqi,k as covariate. Since the model is for precip-
itation data, which is asymmetric and positive, we formulate
the regression in log scale as

log(Y qi,k)= α+ log(Xqi,k)βi + εi,k,

where εi,k ∼N (0,σ 2). Note that we have one parameter βi
for each location, and thus have a spatially varying cal-
ibration of the downscaled data. The parameter estimates
(α̂, β̂) are estimated by ordinary least squares, and we use
Ŷ
q
k = exp(α̂+diag(log(Xqk ))β̂) as a predictor for Y qk . That is,

we use the median as a point estimate (and not the mean).
Finally, to apply the method to other data sets as discussed in
Sect. 3.2, one simply replaces Xqk with XH,qk .

4.2 Model 2: incorporating the spatial dependence

There is clearly spatial dependence in the data, which we
want to incorporate in the model to improve the predictions.
We can do this by assuming that the regression coefficients
are spatially dependent, using a stochastic model as follows

log(Y qk )= α+ diag(log(Xqk ))β + εk (4)
β ∼N (0,6(ν,κ,φ)), (5)

where again εk ∼N (0,σ 2I ) and 6ij = C(‖si − sj‖), where
C is a Matérn covariance function (Matérn, 1960):

C(d)=
φ221−ν

0(ν)
(κd)νKν(κd).

Here φ determines the variance of the process, ν is a shape
parameter of the covariance function, and κ determines the
correlation range.

A more computationally efficient alternative to the
covariance-based model would be to use a Markov random
field prior on β, similar to that by Bolin et al. (2009). How-
ever, this is not needed since the data are measured only
at 777 spatial locations, and we therefore use the simpler
covariance-based approach here.

The model parameters θ = {α,κ,σ,φ,ν} are estimated
using maximum likelihood. The log-likelihood function is
given by

L(θ;Y )=
1
2

∑
j 6=k

log |6j | −
1
2

∑
j 6=k

(log(Y qj )−α)T6−1
j (log(Y qj )−α),

where 6j = diag(log(Xqj ))6(ν,κ,φ)diag(log(Xqj ))+ σ 2I .

We find the ML estimates θ̂ = {α̂, κ̂, σ̂, φ̂, ν̂} of the param-
eters using numerical optimization of the log-likelihood
function. Specifically, the function optim in R Core Team
(2015) is used for the optimization; see the source code at
Bolin et al. (2016) for further computational details.
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Figure 2. Pointwise 95 % quantiles of OBS (left), dERA40 (middle), and dBCM (right) for the first 5-year period in the cross-validation.

Table 1. Cross-validation mean square error for the 95 % quantile. The best model for each fold is displayed in bold.

k Model 0 Model 1 Model 2 Model 1s Model 2s Model Ref

1 13.29 9.68 8.06 8.59 7.91 10.69
2 31.67 7.83 13.17 6.16 14.97 6.57
3 14.45 11.23 8.70 10.72 9.15 14.11
4 13.54 6.04 7.85 5.29 8.61 5.95
5 10.93 5.63 6.59 4.99 7.22 5.79
6 23.90 10.15 12.11 8.37 13.55 9.78
7 25.47 11.84 14.79 9.50 15.83 10.15
8 16.35 10.72 11.47 9.54 12.03 10.96

Mean 18.70 9.14 10.34 7.89 11.16 9.25

The predictor of Y
q
k is obtained as Ŷ

q
k = exp(α̂+

diag(log(Xqk ))β̂), where

β̂ = E(β|Y q
−k, θ̂ )=

(
6(ν̂, κ̂, φ̂)+

1
σ̂ 2

∑
j 6=k

diag(log(Xqj )2)

)−1

∑
j 6=k

1
σ̂ 2 diag(log(Xqj ))(log(Y qj )− α̂).

To apply the model to other data one simply replaces Xqk
with XH,qk .

4.3 Model 1s and Model 2s: pre-smoothing the
covariates

A somewhat surprising feature of the data are that the quan-
tiles of the observed data, Y , are spatially smoother than the
downscaled climate model output (see Fig. 2). Because of
this, it is natural to add a step in the analysis where covari-
ate is smoothed spatially before it is used in the regression

model. This is done using the following model

log(Xqk )= log(X̃qk )+ εk

log(X̃qk )∼N (µ,6(νx,κx,φx)).

Here log(X̃qk ) are independent realizations of a Gaussian–
Matérn field and εk ∼N (0,σ 2

x I ). We estimate the parame-
ters using numerical maximization of the log-likelihood

L(µx,σx,νx,κx,φx;X)=

8
2

log |6̂| −
1
2

8∑
k=1

(log(Xqj )−µx)T 6̂−1(log(Xqj )−µx),

where 6̂ =6(νx,κx,φx)+σ 2
x I . Model 1s and Model 2s are

then obtained by using

E(log(X̃qk )|Xqk , µ̂x, σ̂x, ν̂x, κ̂x, φ̂x)=

µ̂+ (6(ν̂x, κ̂x, φ̂x)−1
+

1
σ̂ 2
x

I )−1(log(Xqk )− µ̂)

instead of log(Xqk ) as covariate in Model 1 and Model 2 re-
spectively.
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Table 2. Cross-validation mean square error for the 95 % quantile using dBCM predictions. The best model (excluding Model 0) for each
fold is displayed in bold. For this comparison, Model 0 can be seen as the target value we want to reach with the dBCM-based predictions.

k Model 0 Model 1 Model 2 Model 1s Model 2s Model Ref

1 13.29 17.35 11.76 17.95 10.53 19.80
2 31.67 12.34 14.31 8.40 13.53 12.15
3 14.45 60.26 33.90 73.64 31.18 64.41
4 13.54 17.03 9.34 19.53 7.77 20.24
5 10.93 33.23 13.60 42.82 10.90 41.06
6 23.90 57.05 37.95 65.99 35.37 64.30
7 25.47 98.60 58.07 118.3 52.40 114.17
8 16.35 47.72 29.71 55.38 27.33 51.96

Mean 18.70 42.95 26.08 50.25 23.63 48.52

Observation dBCM Calibrated dBCM

10

20

30

40

50

60

70

Figure 3. Example calibration for the pointwise 95 % quantiles using Model 2s with the dBCM covariate (right). The result is for the final
5-year time period in the cross-validation study. The observed quantiles (left) and uncalibrated dBCM (middle) are shown as references.

4.4 Results for individual quantiles

In this section, we evaluate the performance of the methods
described in Sect. 4 for calibrating individual quantiles. As
the tests in Sect. 3 were based on the 95 % quantile, we focus
on predicting QOBS

0.95 .
The results in Sect. 3 rested on predicting the last 20 % of

the data (8 years) based on the first 80 %. Here, we make a
more detailed investigation using 8-fold cross-validation to
evaluate the performance of the models. The data are divided
into eight 5-year periods, and the quantile for each 5-year
period is predicted using a model estimated on the rest of
the data. The quantiles for the observations, dERA40, and
dBCM data for the first 5-year period can be seen in Fig. 2.

The results using the various models can be seen in Ta-
ble 1, and the results obtained when training the models on
the dERA data but using dBCM for prediction are shown
in Table 2. One can note that the extension of Model 1 to
Model 2 by adding spatial dependency does not improve
the results for the dERA40-based predictions, whereas it
greatly improves the BCM-based predictions. Furthermore,

pre-smoothing improves Model 1 for the dERA40 predic-
tions, whereas it improves Model 2 for the BCM predictions.
The reference model Model Ref performs very similarly to
Model 1.

Overall, Model 1s performs best for the dERA40 predic-
tions, whereas Model 2s performs best for the dBCM predic-
tions. For the dBCM predictions, Model 2s has satisfactory
performance compared with the target performance for that
case which is given by the Model 0 results. An example pre-
diction using this model can be seen in Fig. 3.

The results for the different seasons are summarized in
Table 3. For all seasons, the conclusion is that Model 1s is
preferable if we both train and test the model on dERA40
data, whereas Model 2s is favoured if we train the model
on dERA40 data and use that transfer function to calibrate
dBCM input. The reason for this is likely that the additional
smoothing done in Model 2s compensates for the added un-
certainty when using dBCM data in the model trained on
dERA40 data.

www.adv-stat-clim-meteorol-oceanogr.net/2/39/2016/ Adv. Stat. Clim. Meteorol. Oceanogr., 2, 39–47, 2016
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Table 3. Average mean square error for models trained on dERA40 data. The values in the table are averages across the eight folds for each
season.

Model 0 Model 1s Model 2s Model Ref

RCM – dERA40 dBCM dERA40 dBCM dERA40 dBCM

Winter 18.70 7.89 50.25 11.16 23.63 9.25 48.52
Spring 8.25 5.98 18.39 6.86 9.54 7.69 21.14

Summer 7.67 5.12 28.80 7.05 9.18 6.99 36.28
Autumn 13.17 9.26 60.08 11.14 20.05 11.92 67.25

5 Discussion

The low quality of Norwegian precipitation in the HIRHAM
regional model forced by reanalysis (Orskaug et al., 2011)
necessitates a full quantile recalibration/bias correction. Our
assessment of such a recalibration on test data indicates that
it does a credible job of correcting the dERA40 model, even
under changing weather conditions. In order to apply the cal-
ibration to climate projections, which is the ultimate goal
of this research, we first experiment with the same regional
model using a global climate model (GCM), run using his-
torical forcings and corrected using the same calibration as
for dERA40. Downscaled global models are unable to de-
scribe the observations well. When correcting these down-
scaled global models, we would of course not expect to get a
perfect calibration to data, but would hope that the down-
scaled GCM/earth system model would describe a similar
distribution to that of the observations over a reasonably long
period. Unfortunately, this is not the case.

Instead of adjusting the entire distribution, we are able to
achieve a better performance by focusing on adjusting an in-
dividual quantile. In that case we were able to achieve er-
ror rates that indicate that the corrected downscaled climate
model performed almost as well as the reanalysis-forced
downscaling, indicating that this approach can be a useful
tool in downscaling climate projections of precipitation over
Norway.

There is a case in between the full quantile adjustment and
the individual quantile adjustment, namely simultaneous ad-
justment of several quantiles. This will be subject to further
research.

The sensitivity of regional dynamic downscalings to
the lateral boundary conditions is well known (e.g. Rum-
mukainen, 2010, and references therein), and one possibility
would be to downscale other reanalyses and compare the re-
sults. Since we did not have access to such RCM runs, we
were not able to pursue this. On the other hand, we have
been able to look at other RCMs (such as the Swedish RCA3
(Samuelsson et al., 2011), with the same reanalysis as bound-
ary condition) and other GCMs (such as the Hadley Cen-
tre HadCM3Q0 model). The bias correction based on other
regional and global models is very similar to that based on
HIRHAM and BCM (results not shown).

6 Data availability

Dynamically downscaled BCM and ERA-40 reanalysis data
are accessible from the ENSEMBLES project website http:
//ensemblesrt3.dmi.dk/ (ENSEMBLES, 2009). Interpolated
and gridded precipitation measurements over Norway are
available at a 1× 1 km2 spatial resolution from ftp://ftp.met.
no/projects/klimagrid/ (METOBS, 2010).
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vidual quantile models of Sect. 4. P. Guttorp combined the descrip-
tion of the two approaches, and all authors contributed to fine-tuning
and proofreading the manuscript.
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