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Abstract. Two methods for detecting abrupt shifts in the variance – Integrated Cumulative Sum of Squares
(ICSS) and Sequential Regime Shift Detector (SRSD) – have been compared on both synthetic and observed
time series. In Monte Carlo experiments, SRSD outperformed ICSS in the overwhelming majority of the modeled
scenarios with different sequences of variance regimes. The SRSD advantage was particularly apparent in the
case of outliers in the series. On the other hand, SRSD has more parameters to adjust than ICSS, which requires
more experience from the user in order to select those parameters properly. Therefore, ICSS can serve as a good
starting point of a regime shift analysis. When tested on climatic time series, in most cases both methods detected
the same change points in the longer series (252–787 monthly values). The only exception was the Arctic Ocean
sea surface temperature (SST) series, when ICSS found one extra change point that appeared to be spurious. As
for the shorter time series (66–136 yearly values), ICSS failed to detect any change points even when the variance
doubled or tripled from one regime to another. For these time series, SRSD is recommended. Interestingly, all
the climatic time series tested, from the Arctic to the tropics, had one thing in common: the last shift detected
in each of these series was toward a high-variance regime. This is consistent with other findings of increased
climate variability in recent decades.

1 Introduction

A concept of regime shifts, i.e., abrupt structural changes in
climatic time series, has gained popularity in recent decades.
Literature reviews (Beaulieu et al., 2012; Liu et al., 2016;
Rodionov, 2005a) show that most of the effort in this area
is directed towards changes in the mean, where numerous
methods of shift (or change point) detection have been devel-
oped. Changes in climate variability, and more specifically
in variance, as a direct measure of variability, have received
less attention, both in documenting those changes and devel-
oping of methods for their detection. Thus, a comprehensive
review of change point detection techniques for climate data
by Reeves et al. (2007) has no mentioning of any methods
for shifts in variance. It is known, however, that the potential
impact of changes in climate variability may be as great or
greater than the impact of changes in climate means (Hansen
et al., 2012; Katz, 1988). There are indications that an in-
crease in variance may signal impending shifts in ecosystems

(Carpenter and Brock, 2006) and regional climates (Wu et al.,
2015).

Patterns of climate variability in the first half of the twen-
tieth century were investigated by Schuurmans (1984), who
showed that the minimum interannual variability of surface
air temperature in western Europe occurred during the 1890–
1920 period. In central Europe, this minimum was less pro-
nounced and shifted to a later period. For the Northern Hemi-
sphere as a whole, the minimum frequency of temperature
extremes occurred in the decade of 1920–1929.

More recently, Scherrer et al. (2005) investigated stan-
dardized distribution changes for seasonal mean tempera-
ture in central Europe and found that temperature variability
showed a weak increase (decrease) in summer (winter) from
1961 to 2004, but these changes were not statistically signif-
icant at the 10 % level. Peel and McMahon (2006) reported
that the interannual variability of temperature and precipita-
tion marginally decreased since 1970. Coherent regions of
decreasing interdecadal temperature variability (after 1970)
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were observed in Japan, East Coast (USA), Pacific North-
west (USA), western Canada, northwestern Russia, and east-
ern Australia. Huntingford et al. (2013) demonstrated that al-
though fluctuations in annual temperature showed substantial
geographical variation over the past few decades, the time-
evolving standard deviation of globally averaged tempera-
ture anomalies was stable. In contrast, Hansen et al. (2012)
showed a widening of temperature probability density func-
tions in the past 3 decades, especially in summer.

Summer extreme events, such as the heat waves of 2003
in western Europe (Chase et al., 2006) and of 2010 in east-
ern Europe (Barriopedro et al., 2011), sparked debates about
whether or not these were signs of global warming, the great-
est impact of which could be due to changes in frequency of
extreme events, and not just because of a simple increase in
the mean. Although the probability of extreme events may
be affected by changes in the mean state of the atmosphere
(Rhines and Huybers, 2013), changes in the variance may be
just as important. According to Katz and Brown (1992), the
more extreme the event, the more important a change in the
variability is relative to the mean. Indeed, Schär et al. (2004)
calculated that the 2003 heat wave would be extremely un-
likely given a change in the mean only. They showed that
a recent increase in variability would be able to explain the
heat wave.

Still, individual extreme events by themselves are not
enough proof that the overall variance is on the rise. Those
events may turn out to be just outliers that make the detection
of regime shifts in the variance even more difficult. In fact,
using very long and homogenized instrumental climatic time
series Böhm (2012) found no change in variability during the
past 250 years in Europe, not for pressure, not for tempera-
ture, and not for precipitation. Interestingly, evidence from
Greenland ice cores showed that an enhanced year-to-year
temperature variability was probably more characteristic of
past cold, rather than warm climates (Steffensen et al., 2008).
Therefore, in spite of suggestions of higher variability in re-
cent decades (Hansen et al., 2012), there is still considerable
uncertainty as to whether it is actually occurring.

Conflicting reports and often statistically inconclusive re-
sults underscore difficulties in detecting abrupt changes in
the variance of climatic time series. As it will be shown in
this paper, it is often hard to detect a regime shift even if the
variance increases 2-fold from one period to another, partic-
ularly for short time series, and even more so in the presence
of outliers.

The most common statistical tool to study changes in cli-
mate variability is the running standard deviation; however,
this tool cannot be used in the case of abrupt transitions
between variance regimes. Downton and Katz (1993) de-
veloped a test to detect and adjust inhomogeneities in the
variance of temperature time series. Their test uses a non-
parametric bootstrap technique to compute confidence inter-
vals for the discontinuity in variance. More recently, Killick
et al. (2010) used a change point analysis to detect abrupt

changes in the variance of significant wave heights in the
Gulf of Mexico. They adopted a penalized likelihood ap-
proach using the Schwarz information criterion proposed
by Yao (1988). Topál et al. (2016) examined the perfor-
mance of three change point detection methods: (1) kink
point (Matyasovszky, 2011), (2) modified cross-entropy (CE;
Evans et al., 2011), and (3) change point model (CPM)
framework (Hawkins and Zamba, 2005). The experiments
were conducted with one white and one red noise series of
size n= 200 with artificially modified last quarter of the se-
ries to simulate a change point. When a detected change point
was located within an “acceptance interval” (defined as±5 %
of n around the true change point), it was considered as ac-
curately found. The kink method tended to find not one, but
two change points in variance within the acceptance interval,
which was attributed to the fact that the method was origi-
nally designed for abrupt changes in trend. The CE method
was not able to recognize any changes in variance, regardless
of the magnitude of a shift. The CPM method was the most
accurate, but it turned out to be overly sensitive. When tested
on 1000 normally distributed random white and red noise se-
ries with no change point, the method found change points in
more than 60 % of the series.

Currently, the most advanced methods of regime shift de-
tection in the variance appear to exist in econometrics, espe-
cially quantitative finance, where the concept of stock market
volatility is very important. One of the most popular among
those methods is the Iterated Cumulative Sum of Squares
(ICSS) algorithm developed by Inclan and Tiao (1994).
Whitcher et al. (2002) applied ICSS to test homogeneity of
variance in time series of water levels in the Nile River. Using
a version of the discrete wavelet transform, they confirmed
that the point at which the test statistic in ICSS achieves its
maximum value can be used to estimate the time of the un-
known variance change.

The purpose of this paper is to compare ICSS with the Se-
quential Regime Shift Detector (SRSD), a method developed
by the author Rodionov (2005b). These two methods are de-
scribed in Sect. 2. In Sect. 3, the methods are tested using
Monte Carlo experiments with different sequences of vari-
ance regimes, magnitudes of shifts and positions of change
points. The effect of outliers is also evaluated. The real-
world examples are presented in Sect. 4. The methods are ap-
plied to climatic time series from different geographic zones,
from the Arctic to the tropics. The results are summarized in
Sect. 5.

2 Methods

2.1 Iterated cumulative sums of squares

Suppose {xi} , i = 1, . . .n is a series of independent, normally
distributed random variables with zero mean and variance σ 2
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Table 1. Percentages of total numbers of change points detected
by SRSD (p, 30, 2) in each series on average and hits of the true
change point c1 = 51. The regime variances are σ 2

j
= (1,2).

Change points
detected

p 0 1 ≥ 2 Hits

0.05 57 41 2 4.5
0.1 41 54 5 5.9
0.3 13 65 22 7.7

that experiences abrupt shifts at unknown time, i.e.,

σ 2
i =


σ 2

1 , i = 1, . . .,c1,

σ 2
2 , i = c1+ 1, . . .c2,

. . .

σ 2
m, i = cm−1+ 1, . . .n.

(1)

The task is to find the number of variance regimes m and
locations of change points cj ,j = 1, . . .,m− 1. To solve this
task, Inclan and Tiao (1994) proposed to use the centered
(and normalized) cumulative sum (CUSUM) of squares:

Dk =
CUSUMk

CUSUMn

−
k

n
, k = 1, . . .,n, (2)

where CUSUMk =
∑k
i=1x

2
i . The algorithm consists of sev-

eral steps, dividing time series {xi} into pieces and applying
Dk to each of them iteratively.

Step 1. Calculate Dk(x [i1 : i2]) for the entire time series,
i.e., i1 = 1 and i2 = n. Let k∗(x [i1 : i2]) be the point at
which maxk|Dk (x [i1 : i2]) | is obtained and let

M (i1 : i2)=
√

(n− i1+ 1)/2 |Dk (x [i1 : i2])| . (3)

If M(i1 : i2) is greater than the critical value D∗ from
Table 1 in Inclan and Tiao (1994), then there is a
change point at k∗(x [i1 : i2]) and proceed to step 2a.
If M (i1 : i2)<D∗, there is no evidence of variance
changes in the series and the algorithm stops. For signif-
icance level p = 0.05 (the level used in this paper) and
100 observations, the critical value D∗0.05 = 1.27. As
the number of observation increases, the critical value
also slightly increases. The asymptotic critical value is
D∗0.05 = 1.358.

Step 2a. Evaluate Dk(x [i1 : i2]) for the first part of the se-
ries from the beginning up to i2 = k

∗(x [i1 : i2]). If
M (i1 : i2)>D∗, step 2a is repeated for a new (smaller)
i2 until M (i1 : i2)<D∗. When this occurs, the first
point of change is kfirst = i2.

Step 2b. Now do a similar search for the second part of the
series from the change point found in step 1 till the

end of the time series, i.e., i1 = k∗+ 1 and i2 = n. If
M (i1 : i2)>D∗, step 2b is repeated using a new (larger)
i1 untilM (i1 : i2)<D∗. When this occurs, the last point
of change is klast = i1− 1.

Step 2c. If kfirst = klast, there is just one change point. If
kfirst < klast, keep both values as possible change points
and repeat steps 1 and 2, but for the middle part of
the series, i.e., i1 = kfirst+ 1 and i1 = klast. Each time
steps 2a and 2b are repeated, the result can be one or
two more change points. Call m the number of variance
regimes (m− 1 change points) found so far.

Step 3. Check each possible change point cj by calculating
Dk
(
x
[
cj−1+ 1 : cj+1

])
,j = 1, . . .,m−1; c0 = 0, cm =

n. If M
(
cj−1+ 1 : cj+1

)
>D∗, then keep the point;

otherwise, eliminate it. Repeat step 3 until the number
of change points does not change and the points found
in each new pass are “close” (within two observations
in our case) to those on the previous pass.

2.2 Sequential regime shift detector

The SRSD software package consists of three modules for
detection of regime shifts in the mean, variance, and corre-
lation coefficient (see www.climatelogic.com). The variance
module, which is the focus here, was first described in Ro-
dionov (2005b) and then, as part of a three-step procedure,
in Rodionov (2015). Similar to ICSS, SRSD is a CUSUM-
type method. An important difference is that ICSS is a retro-
spective algorithm, whereas SRSD employs a sequential ap-
proach. While ICSS can be applied only after all the data are
collected, SRSD treats the data sequentially, one data point at
a time. This allows for using SRSD for monitoring of regime
shifts beyond the history period 1, . . .,n.

The SRSD algorithm is based on the F -test that compares
the ratio of sample variance for the “current” regime, s2

j to
that for the “new” regime to be detected, s2

j+1, with the criti-
cal value Fcr:

F =
s2
j

s2
j+1

Fcr. (4)

Here Fcr is the value of the F -distribution with ν1 and ν2 de-
grees of freedom and a significance level p (two-tailed test),
Fcr = F (p/2,ν1,ν2). The degrees of freedom are calculated
as ν1 = ν2 = l− 1, where l is called the cutoff length, a pa-
rameter that allows one to focus on certain timescales of vari-
ance regimes. More about the effect of p and l on regime shift
detection in the next section.

For the new regime to be statistically significantly different
from the current regime, variance s2

j+1 should be greater than

critical variance s2↑
cr , if the variance increases, or smaller than
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s
2↓
cr , if the variance decreases, where

s2
cr =

{
s

2↑
cr = s

2
jFcr,

s
2↓
cr = s

2
j /Fcr.

(5)

When a new observation xi arrives at time i, it is checked
against s2

cr. If x2
i falls outside the interval [s2↓

cr s
2↑
cr ], this point

in time is marked as a potential change point c∗, and the sub-
sequent l− 1 data points are used to test the null hypothesis
of no regime shift. The decision rule is based on the residual
sum of squares index (RSSI):

RSSI=
1
l

k∑
i=c∗

(x2
i − s

2
cr), k = c∗,c∗+1, . . .,c∗+ l−1. (6)

If during this testing period RSSI remains positive in the case
of increasing variance, or negative in the case of decreasing
variance, the null hypothesis of a constant variance is re-
jected, and c∗ becomes a true change point cj+1. If RSSI
changes its sign, the test for c∗ stops, because the null hy-
pothesis cannot be rejected. The observation xi is included
in the current regime j , and the regime variance s2

j is recal-
culated incrementally as in Finch (2009):

s2
new =

nj s
2
old+ x

2
i

nj + 1
, (7)

where nj is the length of regime j before adding a new ob-
servation.

Handling outliers

An outlier is a data point, whose value is substantially differ-
ent from the other data points in a sample. The presence of
outliers can lead to large errors in estimates of regime statis-
tics and greatly affect the timing of regime shifts. This is par-
ticularly true for the variance, because the data values are
squared.

When dealing with outliers, it is desirable to leave an ob-
servation intact if it falls within a “normal” range of varia-
tion, and assign it a small weight if it is outside that range
(Huber, 1981). In SRSD, each observation xi in the current
regime j is assigned a Huber-type weight wi , which is de-
fined as

wi =min
(

1,h
scale
|xi |

)
, (8)

where h is a tuning constant and “scale” is first estimated as
the median absolute deviation (MAD):

MAD=median(|xi |) , i = cj ,cj + 1, . . .,c∗− 1. (9)

After the weights are estimated, the regime variance is cal-
culated as

s2
j =

∑c∗−1
i=cj

w2
i x

2
i

V1− (V2/V1)
, (10)

where

V1 =

c∗−1∑
i=cj

w2
i , V2 =

c∗−1∑
i=cj

w4
i . (11)

To improve accuracy of the estimates, the weights are recal-
culated, this time using the weighted standard deviation as
scale. Then the regime variance is recalculated one more time
as in Eq. (10) using more accurate weights.

When a potential regime shift is tested by calculating
RSSI, the weights for data points i = c∗,c∗+1, . . .,c∗+l−1,
are assigned as

wi =min
(

1,h
sj ± scr

|xi |

)
. (12)

If the test cannot reject the null hypothesis and xi is added to
the current regime, the weight for this observation is recalcu-
lated using Eq. (8) with scale= sj . The weighted version of
Eq. (7) for incremental recalculation of the regime variance
is

s2
new =

V1s
2
old+w

2
i x

2
i

V1+w
2
i

. (13)

3 Monte Carlo experiments

Both the ICSS and SRSD algorithms were implemented by
the author as VBA (visual basic for applications) macros
for Microsoft Excel. The majority of experiments were per-
formed using samples of size n= 100, which is a typical
length (in years) of instrumental climatic time series. For
each test, 10 000 samples of random normally distributed
numbers are generated with zero mean and one or two change
points in the variance. A change points is defined as in SRSD,
i.e., as the first point of a regime. Since ICSS defines a change
point as the last point of a regime, all the change points de-
tected by ICSS are shifted one step forward. A total of four
groups of experiments were conducted: (1) with one change
point located in the middle and closer to the ends of time se-
ries, (2) with two change points and different combinations
of variance regimes, (3) with outliers, and (4) with autocor-
relation. Before starting comparing the two methods, it is
important to clarify the role of the significance level p and
cutoff length l on regime shift detection by SRSD.

3.1 The effect of tuning parameters p and l

As shown above, the performance of SRSD can be controlled
by three parameters: the significance level p, cutoff length l,
and Huber’s tuning constant h. This will be denoted as SRSD
(p, l, h). Let us clarify the role of the first two parameters.
The Huber’s tuning constant becomes really important only
in the presence of outliers.

The significance level p (also called the target probability
level) controls how sensitive SRSD is to shifts in the vari-
ance. Since the critical value Fcr decreases with the increase
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Figure 1. Frequency distribution of change points detected by
SRSD (p, 30, 2) for three different values of p: 0.05, 0.1, and
0.3. The true change point is c1 = 51 and regime variances are
σ 2
j
= (1,2).

of p, SRSD becomes sensitive to smaller and smaller shifts
in the variance, thus reducing the probability of a type II error
(false negative). On the other hand, the probability of a type
I error (false positive) increases, leading to spurious shifts.
This is demonstrated in Fig. 1 that shows the frequency of
shift detection for different values of p. The true change
point is located at i = 51 and the variance doubles from the
first regime to the second. At p = 0.05, the percentage of
hits (change points detected exactly at i = 51) is 4.5. In 57 %
of the time, SRSD fails to detect any shift in the series (Ta-
ble 1). As p increases, the percentage of hits also increases,
but the tails of the distribution in Fig. 1 become heavier. It
is important to note, that since SRSD is a sequential algo-
rithm, the frequency of change points found at the end of the
series increases substantially, as illustrated for p = 0.3. But
these are only potential change points that may or may not
pass the test. Therefore, when comparing SRSD and ICSS,
only the fully resolved change points were considered. More
specifically, the numbers of change points detected in each
series (as presented in Tables 1–5) were counted for the pe-
riod 1, . . .,n− l for both methods.

The choice of p depends on the magnitude of shifts. Fig-
ure 2 shows that as the magnitude of a shift increases, the
accuracy of shift detection is increasing faster for smaller p.
Thus, if the ratio of variances between two adjacent regimes
is greater than 4, it is better to use p = 0.05, which provides
better accuracy of detection and fewer false positives, than
p = 0.1 or p = 0.3. If the goal is to detect shifts of smaller
magnitude, the choice of p = 0.1 or higher would be appro-
priate. The target probability level p can be considered as
the upper limit of the desired significance level of the shifts;
the p values, calculated after all shifts in a series have been
detected, are usually lower.

The cutoff length l controls the timescale of the detected
regimes. As an example, Fig. 3a shows the results for time
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Figure 2. Percentage of hits as a function of the variance ratio be-
tween two regimes (σ 2

2 /σ
2
1 ) for different values of p in SRSD (p,

30, 2).

Table 2. Percentages of total numbers of change points detected by
SRSD (0.1, l, 2) in each series on average and hits of the true change
points cj = (31,61).

Change points detected Hits

l 0 1 2 ≥ 3 c1 c2

Regime variances σ 2
j
= (1,3,1)

20 12 13 70 5 12.6 14.5
30 13 14 73 0 17.7 15.7
40 46 38 16 0 6.8 13.3

Regime variances σ 2
j
= (3,1,3)

20 2 9 69 20 15.8 15.8
30 3 17 79 1 16.9 16.5
40 21 69 10 0 15.0 15.0

series with three variance regimes, σ 2
j = (1,3,1), and two

change points, cj = (31,61). The best results were obtained
when l was set to be equal the length of the first two regimes
(l = 30). In 73 % of the time, SRSD detected two shifts si-
multaneously and the percentage of hits was the highest (Ta-
ble 2). At l = 20, the test statistics in Table 2 do not change
much, except for the percentage of hits for c1. When the cut-
off length is larger than the regime length (l = 40), the effect
on the test statistics is more dramatic. The percentage of two
shifts detected simultaneously in a series sharply decreases,
while the percentage of one or zero shifts increases. The first
shift is affected more significantly than the second one. For
a reversed order of the variance regimes (3, 1, 3), the per-
centage of hits for both shifts is about the same for all cutoff
lengths used (Fig. 3b). Table 2 shows, however, that at l = 40,
only one of the two shifts is detected most of the time (69 %).

In the Monte Carlo experiments below, the values of p
are chosen in order to make type I errors about the same for
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Figure 3. Frequency distributions of change points detected by SRSD (0.1, l, 2) with three different values of l: 20, 30, and 40. The true
change points are cj = (31,61), and regime variances are (a) σ 2

j
= (1,3,1) and (b) σ 2

j
= (3,1,3).

Table 3. Percentages of total numbers of change points detected by SRSD (p, l, 2) and ICSS in each series on average in the case of one true
change point. The corresponding frequency distributions of the detected change points are presented in Fig. 4.

SRSD ICSS

Fig. 4 c1 σ 2
j

p l 0 1 ≥ 2 0 1 ≥ 2

a 51 (1, 2) 0.2 40 35 64 1 42 55 3
b 51 (2, 1) 0.2 40 20 79 1 41 57 2
c 25 (1, 3) 0.05 20 28 59 13 53 46 2
d 90 (1, 3) 0.1 20 67 19 14 51 47 2
e 21 (3, 1) 0.1 20 8 69 23 22 76 2
f 71 (3, 1) 0.1 25 15 71 14 28 69 3

both methods. The values of l are used a bit smaller than a
specified regime length, because in practice the exact length
of regimes in a series is usually unknown. In some cases,
the results for two or three different values of l are shown
to demonstrate the effect of this parameter. When working
with real time series it is recommended to experiment with
different values of p and l, in the same way as it is always
advised in spectral analysis to try different window shapes
and sizes when smoothing a periodogram.

Before discussing the results of testing with any change
points, it is important to show that the methods are not overly
sensitive in finding change points when no such points are
present in a series. For this purpose, 10 000 white noise time
series of size n= 100 were generated. With p set to 0.05,
ICSS finds zero change points in 96 % of the series. The re-
sults for SRSD with the same p vary depending on l, increas-
ing from 83 % for l = 20 to 98 % for l = 50.

3.2 Series with one change point

The first two experiments were performed with a change
point positioned in the middle of the series (c1 = 51), while
the variance either increased from one to two (Fig. 4a) or
decreased from two to one (Fig. 4b). In both cases, SRSD
outperformed ICSS in terms of the correct number of change
points detected and percentage of hits (Table 3). Note that
ICSS found no shifts at all in about 40 % of the generated
series. Some variations in l did not affect much the principal

results. For example, when l was reduced from 40 to 30, with
all other parameters being equal, the percentages of hits and
numbers of time series with one shift detected by SRSD, re-
mained practically the same in both cases of increasing and
decreasing variance. What changed was the percentages in
two other categories in Table 3, that is, with zero and two or
more points detected; the former decreased by about 7–10 %,
while the latter increased by the same amount.

It is important that the modes of frequency distributions
in Fig. 4a and b coincide exactly with the positions of true
change points; however, the percentages of hits are only
about 8 % for SRSD and 6 % for ICSS. These small num-
bers underscore the difficulty of detecting a regime shift even
when the variance doubles. This sentiment is echoed by Kil-
lick et al. (2010), who tested the penalized likelihood method
in a similar Monte Carlo experiment with sample sizes of
200 points. They concluded that satisfactory power of their
method was obtained only for variance ratios greater than
three.

It is worth noting an asymmetry in the frequency dis-
tributions of detected change points, particularly for ICSS.
Change points tend to be detected more frequently after c1
than before if the variance increases, and the opposite is true
if the variance decreases. This is because of a higher prob-
ability density near the mean (zero in this case) in a normal
distribution. Thus, when the variance increases, the proba-
bility of getting small values of xi at c1 or right after it is

Adv. Stat. Clim. Meteorol. Oceanogr., 2, 63–78, 2016 www.adv-stat-clim-meteorol-oceanogr.net/2/63/2016/



S. N. Rodionov: A comparison of two methods for detecting abrupt changes in climatic time series 69

Figure 4. Results of Monte Carlo experiments with one change point. The parameters of SRSD used in each of the experiments are given in
Table 3.

relatively high, which delays a shift detection. In the case
of SRSD, the frequency distribution is more symmetric, be-
cause the probability of a potential change point passing the
test increases toward the true change point c1.

When the variance increases from one regime to another,
ICSS performs particularly poor if the change point is located
closer to the beginning of a time series. In an experiment
with a change point at c1 = 25, and a regime shift from one
to three, ICSS found one change point 46 % of the time, but
these change points were all over the place, with only 1.1 %
of hits of the true change point c1 (Fig. 4c). In contrast, ICSS
performed better, being on par with SRSD, when a change
point was shifted toward the end of a time series, unless it
was too close to the end. Since SRSD is a sequential method,
designed to work in a monitoring mode, it is not surprising
that it outperformed ICSS when a change point was placed at
c1 = 90 (Fig. 4d).

When the variance decreases from one regime to another,
ICSS performs much better if a change point is shifted to-

ward the beginning of a time series than toward the end. In
an experiment when a change point was placed at c1 = 21,
ICSS and SRSD showed similar results (Fig. 4e), but when
a change point was moved to c1 = 71, the percentage of hits
for SRSD was more than twice that of ICSS (Fig. 4f).

3.3 Series with two change points

In this group of experiments, the locations of change points
remain constant at cj = (34,67). The main goal here is to test
different regime sequences. For the first regime sequence,
σ 2
j = (1,3,1), ICSS correctly detected two change points in

39 % of the series, vs. 62 % for SRSD (Table 4). In more than
50 % of the series, ICSS detected no shifts at all. The accu-
racy of change point detection, as expressed by the promi-
nence of the peaks at c1 and c2 in Fig. 5a is much lower for
ICSS than for SRSD. It should be noted that when the cutoff
length l was decreased from 25 to 20 or increased to 30, the
numbers in Table 4 for SRSD did not change much (within
±5 %).
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Figure 5. Results of Monte Carlo experiments with two change points cj = (34,67). The parameters of SRSD used in each of the experiments
are given in Table 4.

Table 4. Percentages of total numbers of change points detected by SRSD (p, 25, h) and ICSS in each series on average in the case of two
true change points cj = (34,67). The corresponding frequency distributions of the detected change points are presented in Fig. 5.

SRSD ICSS

Fig. 5 σ 2
j

p h 0 1 2 ≥ 3 0 1 2 ≥ 3

a (1, 3, 1) 0.05 2 23 15 62 0 55 5 39 1
b (3, 1, 3) 0.05 2 17 27 56 0 62 16 21 1
c (1, 3, 9) 0.2 3 0 28 69 3 0 54 44 2
d (9, 3, 1) 0.2 3 0 9 84 7 0 64 34 2

The situation becomes even worse for ICSS, if the lower
variance regime is in the middle; i.e., σ 2

j = (3,1,3) (Fig. 5b).
In this case, ICSS correctly detected two change points in
only 21 % of the series, and the accuracy of detection is about
one-third of that for SRSD. This is consistent with the results
of Inclan and Tiao (1994), who found that ICSS performs
best when the larger variance is in the middle, and its perfor-
mance deteriorates in the opposite situation.

The most difficult situation, according to Inclan and
Tiao (1994), is when the variances change in a monotone
way, i.e., the variance increases at the first change point and
increases again at the second change point. They estimate
that, if this is the case, then it is necessary to have 500 or
more observations for ICSS to be able to detect two change
points in more than half of the time. Indeed, for a sequence of
variances σ 2

j = (1,3,9) (Fig. 5c), ICSS detected two change
points in only 44 % of the series vs. 69 % for SRSD (Table 4).
Especially problematic for ICSS was the detection of the first
change point, c1, which was correctly detected in only 9.9 %
of the series, compared to 16.8 % for SRSD. The detection
statistics for c2 is about the same for both methods.

When the variance decreased in a monotone way as σ 2
j =

(9,3,1), ICSS detected the first change point more often than
the second one, while SRSD detected both change points
with about the same accuracy (Fig. 5d). The difference in
the frequency of detection of two change points simultane-
ously between the two methods is quite substantial: 84 % for
SRSD and only 34 % for ICSS (Table 5).

3.4 Series with outliers

Even a single outlier can have a substantial impact on regime
shift detection procedure; it is like a monkey wrench thrown
in the works. Figure 6 and accompanying Table 5 show a
few examples of negative effects of outliers. In this set of
experiments, the variance changes 6-fold from one regime
to another and an outlier (x∗i ) has a value of six. In the first
example (Fig. 6a), a true change point was placed at i = 34
and an outlier at i = 65. Both SRSD and ICSS detected the
change point equally well. The results for ICSS, however, re-
vealed a spurious shift at i = 65. Interestingly, in 41 % of the
series ICSS found three or more change points. The outlier
had practically no effect on SRSD.

Adv. Stat. Clim. Meteorol. Oceanogr., 2, 63–78, 2016 www.adv-stat-clim-meteorol-oceanogr.net/2/63/2016/



S. N. Rodionov: A comparison of two methods for detecting abrupt changes in climatic time series 71

 

 

 

 

 

0

5

10

15

20

25

30

35

1 11 21 31 41 51 61 71 81 91

Fr
eq

ue
nc

y 
(%

)

Data point

𝑐𝑗 = (34 , 68)
𝜎𝑗2 = (6, 1 , 6)
𝑥50∗ = 6

0

5

10

15

20

25

30

35

1 11 21 31 41 51 61 71 81 91

Fr
eq

ue
nc

y 
(%

)

Data point

𝑐𝑗 = (34 , 68)
𝜎𝑗2 = (6, 1 , 6)

No outliers

0

5

10

15

20

25

30

35

1 11 21 31 41 51 61 71 81 91

Fr
eq

ue
nc

y 
(%

)

Data point

𝑐1 = 34
𝜎𝑗2 = (6, 1 )
𝑥65∗ = 6

0

10

20

30

40

50

60

70

80

1 11 21 31 41 51 61 71 81 91

Fr
eq

ue
nc

y 
(%

)

Data point

SRSD

ICSS

𝑐1 = 34
𝜎𝑗2 = (6, 1 )
𝑥45∗ = 6

(a) (b)

(c) (d)

Figure 6. Results of Monte Carlo experiments with an outlier x∗
i
= 6. The parameters of SRSD used in each of the experiments are given in

Table 5.

Table 5. Percentages of total numbers of change points detected by SRSD (0.05, l, 2) and ICSS in each series on average in the case of
experiments with an outlier x∗

i
= 6. The corresponding frequency distributions of the detected change points are presented in Fig. 6.

SRSD ICSS

Fig. 6 cj σ 2
j

Outlier l 0 1 2 ≥ 3 0 1 2 ≥ 3

a 34 (6, 1) 65 25 0 88 12 0 1 54 4 41
b 34 (6, 1) 45 25 0 83 17 0 0 94 3 3
c (34, 68) (6, 1, 6) N/A 20 0 4 90 6 31 4 61 4
d (34, 68) (6, 1, 6) 50 20 2 10 85 3 63 21 14 2

The effect of an outlier was even more dramatic when it
was placed closer to the true change point (Fig. 6b). In this
case, ICSS detected one change point in 94 % of the series,
but the overwhelming majority of those change points were
found at i = 45 (position of the outlier), not at i = 34 (true
change point). Again, the results for SRSD were not affected,
except for a small bump in the frequency distribution at i =
45 (Fig. 6b).

In some situations, an outlier may not cause a spuri-
ous shift, but rather a drastic deterioration of ICSS perfor-
mance. For example, Fig. 6c and d show the results for the
same variance regimes, σ 2

j = (6,1,6), and change points,
cj = (34,68). The only difference is that, in the latter case,
there was an outlier at i = 50. As a result, both the sensi-
tivity and accuracy of ICSS was drastically reduced. In the
majority of the series (63 %), ICSS found no change points
at all, and the percentage of hits for c1 and c2 was reduced to
5.2 and 4.4, respectively. The performance of SRSD was not
seriously affected by the outlier.

3.5 Series with autocorrelation

The majority of the methods for change point detection
assume that the data are independent and identically dis-
tributed. This is not always true for climatic time series
that may contain autocorrelation that often exhibits itself in
the form of red noise (Rudnick and Davis, 2003). Lund et
al. (2007) investigated the effect of serial autocorrelation on
change point detection in the case of shifts in mean. They
found drastic performance degradation even in the presence
of minor positive lag-1 autocorrelation coefficient (ρ). Thus,
at ρ = 0.15, the rate of type I errors (too many false change
points) was three times as large as that at ρ = 0.

Given the strong impact of serial autocorrelation on
change point analysis, it is recommended to use a prewhiten-
ing procedure to remove the red noise before applying a
change point detection method (Serinaldi and Kilsby, 2015).
A problem with prewhitening is that estimates of ρ can them-
selves be affected by regime shifts in time series, and tech-
niques have been described for sectioning the data and cor-
recting for the bias caused by a small sample size (Rodionov,
2006).
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Figure 7. Percentage of hits as a function of the autocorrelation
coefficient in experiments with one change point at c1 = 51 between
two variance regimes σ 2

j
= (1,3). The parameters for SRSD were

set as p = 0.1, l = 40, and h= 2.

To examine the effect of autocorrelation on detection of
regime shifts in variance, 10 000 first-order autoregressive
series of length n= 100 were generated. A change point was
positioned in the middle of the series (c1 = 51), while the
variance increased from 1 to 3. Under this settings, the hit
rates for white noise series (ρ = 0) were about the same for
both SRSD (0.1, 40, 2) and ICSS (Fig. 7). With an increase
of ρ, the hit rates start decreasing, but first quite slowly. At
ρ = 0.3, the decrease is only 8 % for SRSD and 11 % for
ICSS. As ρ increases further, the decrease in hit rates accel-
erates; at ρ = 0.7, it drops by 45 % for SRSD and by 57 % for
ICSS. Also, for ρ ≥ 0.6, the mode of frequency distribution
of change points detected by ICSS does not coincide with the
position of the true change point at c1 = 51, being shifted 1–
2 points forward. It should be noted that while the sensitivity
or detection power of the methods deteriorates with the in-
crease of ρ, the rate of spurious change points, expressed by
the tails of the frequency distribution around the true change
point (not shown), remains about the same. Apparently, the
effect of serial autocorrelation on detection of regime shifts
in variance is less dramatic than in mean.

4 Examples of climatic time series

4.1 Arctic Ocean sea surface temperature

In recent decades, the Arctic has been warming faster than
other parts of the globe, a phenomenon known as Arctic
amplification. Some observational analyses found evidence
for a “wavier” jet stream in response to rapid Arctic warm-
ing (Francis and Vavrus, 2015), which, in turn, may lead
to greater temperature variability in the Arctic. Figure 8a
shows monthly sea surface temperature (SST) anomalies for
the Arctic Ocean (65–90◦ N), based on the NOAA optimum
interpolation SST data set. This data set (a.k.a. Reynolds
OI.v2) is compiled using observations from ship inlets, buoys
(both moored and drifting), and from satellites covering the

Figure 8. Arctic Ocean SST, November 1981–December 2015:
(a) SST anomalies (deviations from the period mean values for each
month) and the LOWESS curve with a smoothing parameter of 0.1;
(b) residuals (after removing the LOWESS curve and prewhitening)
with two change points, December 1996 and July 2007, detected by
SRSD (0.05, 120, 3). ICSS detected the same change points plus
a third change point in September 2009 with a shift toward lower
variance.

period from late 1981 to the present. It is available from the
National Centers for Environmental Information (NCEI) web
site at https://www.ncdc.noaa.gov/oisst.

Apart from an obvious warming trend in Fig. 8a, one can
notice that SST fluctuations in recent years have become
more intense. The exact cause of increased SST variabil-
ity are beyond the scope of this paper, but this time series
is a good example to test the regime shift detection algo-
rithms. First, it is necessary to detrend the SST series that
can be done in a number of ways, depending on the re-
searcher’s view on what constitutes a trend. For this example,
the LOWESS (local-weighted regression) technique (Cleve-
land and Devlin, 1988) was used with a smoothing parame-
ter of 0.1. When the LOWESS curve was subtracted from the
SST anomalies, the residuals still contained a strong autocor-
relation (red noise); therefore, a prewhitening was needed.
Given the ordinary least squares estimate of ρ = 0.72, the
prewhitening was performed as ei = xi − 0.72xi−1.

The result of the application of SRSD (0.05, 120, 3) to time
series {ei} is presented in Fig. 8b. Three variance regimes
have been identified, with two change points: December
1996 and July 2007. The variance is lowest during the middle
regime between these two change points (s2

2 = 0.003). The
variance is twice as high during the first regime (s2

1 = 0.006)
and almost 3 times as high during the most recent regime
(s2

3 = 0.010). These regime shifts are highly statistically sig-
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nificant, especially the second one, with the observed p val-
ues of 1.2× 10−4 and 5.5× 10−9, respectively.

The ICSS algorithm found three change points, two of
which coincided with those found by SRSD, and the third
one was in September 2009. Formally, based on the F test,
the difference in the variances for two regimes, July 2007–
August 2009 (0.021) and September 2009–November 2015
(0.007), is statistically significant at p = 3.2× 10−4. The
change point in September 2009 was not selected by SRSD
for two reasons. First, the period July 2007–August 2009 is
only 27 months, i.e., much shorter than the used cutoff length
of 120 months. Second, given the Huber’s tuning constant of
2, the weighted variance for this short regime is only 0.012,
which makes the difference between the two regimes, statis-
tically insignificant.

4.2 Arctic oscillation

The Arctic oscillation (AO) is defined as the first empiri-
cal orthogonal function (EOF) of sea level pressure (SLP)
in the Northern Hemisphere (20–90◦ N; Thompson and Wal-
lace, 1998). Instead of SLP, the EOF analysis is often per-
formed using monthly mean 1000 hPa height anomaly data
to obtain the AO loading pattern (first EOF). The AO index
is then calculated by projecting the AO loading pattern to
the daily anomaly 1000 hPa height field over 20–90◦ N. The
monthly index values from January 1950 to the present are
available from the NCEI website at https://www.ncdc.noaa.
gov/teleconnections/ao/.

Broadly speaking, positive values of the AO index indi-
cate zonal atmospheric flow, while negative values suggest
increased meridional circulation with ties to cold air advec-
tion into the midlatitudes (Thompson and Wallace, 2000).
Analyzing variability of the winter (DJF) AO index, Feld-
stein (2002) calculated that the ratio of its variance for the
1967–1997 time period to that for the 1899–1967 period was
2.02 and concluded that it was well in excess of what was
to be expected if all of the interannual variability was due to
atmospheric intraseasonal stochastic processes. Other stud-
ies (Hanna et al., 2015; Woollings et al., 2010) argue that AO
variability is most likely a result of atmospheric internal vari-
ability, although it can be an early sign of destabilization of
the polar jet stream and an increased susceptibility to exter-
nal sources (Overland and Wang, 2015). Firm attribution of
recent increased circulation variance is currently not possible
(Trenberth et al., 2015).

Using the data since 1950, Overland and Wang (2015) no-
ticed that the past decade showed the most variability in AO
extremes for the month of December. Since they used the 9-
year-running standard deviations, the timing of the transition
to a high-variance regime was rather vague. Figure 9a shows
the result of the application of SRSD (0.1, 25, 2) to the time
series of December AO index, 1950–2015. Note that the lag-
1 autocorrelation coefficient for this series is close to zero;
therefore, no prewhitening is needed. The same is true for all
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Figure 9. The Arctic oscillation index: (a) December values, 1950–
2015, with a change point in 2005 detected by SRSD (0.1, 25, 2);
(b) monthly values, January 1995–December 2015, with a change
point in April 2009 detected by SRSD (0.05, 120, 2) and ICSS.

other climatic time series analyzed below. The AO index con-
tains one change point in 2005 that separates two regimes:
(1) 1950–2004, with the variance of 0.91, and (2) 2005–2015,
with the variance of 2.71. The latter includes the record and
near-record high values in 2006 and 2011, respectively, as
well as the record and near-record low values in 2009 and
2010, respectively. The difference in the variance for these
two regimes is statistically significant at p = 0.009, based on
the two-tailed F test.

As noted in Sect. 3, if a change point is shifted toward the
end of time series, ICSS performs better when the variance
increases, then when it decreases. Nevertheless, ICSS failed
to detect any change points in the December AO index, prob-
ably because the time series was too short for that method
and the change point was too close to the end.

Both methods, however, were able to detect exactly the
same change point in the monthly series of the AO in-
dex, January 1950–December 2015 (Fig. 9b). The change
point in April 2009 marks the transition from a low-variance
regime (s2

1 = 0.83) to a high-variance regime (s2
2 = 1.69).

The p value for this regime shift is 1.1× 10−4.

4.3 Temperature in the midlatitudes

Analyzing long-term temperature records (since 1820) in
eastern Minnesota, Skaggs et al. (1995) described a period of
increased variability centered around 1920–1940, followed
by a sharp minimum in the middle to late 1960s, after which
the variance started increasing again. They underscored, that
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Figure 10. First differences of winter (DJF) SAT anomalies in Min-
neapolis, MN, along with the 13-year-running standard deviations
and two change points (1946 and 1980) detected by SRSD (0.1, 35,
3).

this pattern of temperature variability was characteristic of
not just eastern Minnesota. The period of low temperature
variability in the late 1960s–early 1970s occurred more or
less simultaneously over the contiguous United States. Us-
ing more recent gridded temperature data, Huntingford et
al. (2013) examined changes to standard deviations before
and after 1980. Although this change point year was se-
lected without explicit testing, their map showed prominent
changes over the midlatitudes for both hemispheres, with
large parts of Europe and North America experiencing in-
creased variability in more recent decades.

To illustrate the temporal pattern of changes in tempera-
ture variability noticed by Skaggs et al. (1995), a homog-
enized monthly temperature data set for Minneapolis, MN,
was obtained from the Goddard Institute for Space Stud-
ies (GISS) at http://data.giss.nasa.gov/gistemp/station_data/.
Figure 10 shows the first differences of mean winter (DJF)
temperature for that station for the period 1897–2015, along
with the 13-year-running standard deviations. Using the first
differences is a simple way of eliminating a trend in the mean
and focus on variability. The running standard deviations ex-
hibit a general decline toward the middle of the series and
an increase in more recent decades. Although running devi-
ations are useful in depicting trends in variability, they make
it hard to pinpoint the exact locations of regime shifts. Ap-
plying SRSD (0.1, 35, 3) to this time series revealed three
temperature regimes with two change points, 1946 and 1980.
During the first regime shift the variance decreased about
50 %, from 1.59 to 0.74. The second regime shift was more
prominent; the variance jumped 3-fold to 2.32. The p val-
ues for the shifts were 0.02 and 0.001, respectively. Despite
the high statistical significance of these shifts, ICSS failed to
detect any of them.

A significant increase in summer temperature variability
was also observed at numerous European stations (Della-
Marta et al., 2007; Parey et al., 2009; Yiou et al., 2009). For
example, Della-Marta et al. (2007) found that over the period
from 1880 to 2005 the length of summer heat waves over
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Figure 11. (a) Normalized (by standard deviations) monthly sur-
face air temperature (SAT) anomalies in western Europe (45–50◦ N,
0–10◦ E) and regime shifts in the mean detected by SRSD (0.05,
120, 2). The change points are February 1962 and August 1987;
(b) Residuals after removing the stepwise trend in the mean and
regime shifts in the variance detected by SRSD (0.1, 120, 2) and
ICSS. The change points are July 1971 and September 2001.

western Europe doubled and the frequency of hot days al-
most tripled. This trend of increasing temperature variability
is projected to continue and even intensify in the 21st century
(Fischer et al., 2012).

Figure 11 shows the results of a regime shift analysis for
monthly surface air temperature (SAT) anomalies in western
Europe (45–50◦ N, 0–10◦ E) using the NCEP/NCAR Reanal-
ysis monthly data set available from the Earth System Re-
search Laboratory (ESRL/NOAA; http://www.esrl.noaa.gov/
psd/data/timeseries/). The anomalies were calculated as devi-
ations from the 1981–2000 base period normalized by stan-
dard deviations for each month. The regime shift analysis
was performed in two steps. First, regime shifts in the mean
were identified using the sequential t test algorithm included
in SRSD (Rodionov, 2004). The three detected regimes are
presented in Fig. 11a as a stepwise trend. Although the dif-
ferences between these regimes are seemingly small (their
mean values are 0.16,−0.19, and 0.22, respectively), they are
highly statistically significant, with the p values of 0.003 for
the shift down in February 1962, and 6.0×10−6 for the shift
up in August 1987. On the second step, this stepwise trend
was removed from the original data, and the residuals were
used as an input to SRSD and ICSS. The results for the two
methods are exactly the same: three variance regimes with

Adv. Stat. Clim. Meteorol. Oceanogr., 2, 63–78, 2016 www.adv-stat-clim-meteorol-oceanogr.net/2/63/2016/

http://data.giss.nasa.gov/gistemp/station_data/
http://www.esrl.noaa.gov/psd/data/timeseries/
http://www.esrl.noaa.gov/psd/data/timeseries/


S. N. Rodionov: A comparison of two methods for detecting abrupt changes in climatic time series 75

the change points between them in July 1971 and September
1981 (Fig. 11b). The p values for the shifts in variance are
0.007 and 7.6× 10−5, respectively.

4.4 El Niño–Southern Oscillation

The magnitude of El Niño–Southern Oscillation (ENSO)
events has varied significantly over time, with multidecadal
periods of strong and weak variability. Trenberth and
Hoar (1996) noted strong ENSO variations from 1880 to
the 1920s, and after about 1950 and, except for a strong
event during 1939–1942, weaker variations from the mid-
1920s to 1950. Exceptional ENSO variability can also be
found in long ENSO-proxy records (Dunbar et al., 1994).
Those periods usually coincided with large pre-industrial cli-
mate variations (Quinn and Neal, 1992). More recently, Hu et
al. (2013) investigated an interdecadal shift in the variability
and mean state of the tropical Pacific Ocean within the con-
text of changes in ENSO. They concluded that, compared
with 1979–1999, the interannual variability in the tropical
Pacific was significantly weaker in 2000–2011.

The ability of SRSD and ICSS to detect periods of high
and low variability of ENSO was tested on the cold tongue
index (CTI), one of the longest ENSO indices. The index is
defined as the average SST anomaly over the region 6◦ N–
6◦ S, 180–90◦W minus the global mean SST. The index val-
ues are available from the University of Washington, Seattle,
WA (http://research.jisao.washington.edu/enso/). According
to the website, the global mean SST anomaly is subtracted
from the CTI in order to remove a step shift upward at the
onset of World War II when the composition of the marine
observations largely changed from bucket to engine intake
measurements and to lessen the secular trend in the time se-
ries that has been associated with global warming. Appar-
ently, this has led to overcorrection of the CTI, because now
there is a statistically significant (p = 0.03) step shift down-
ward in 1943, as detected by SRSD (Fig. 12a).

Figure 12b shows the residuals (deviations from the
regime means) and two change points detected by SRSD
(0.05, 35, 3). These change points separate three variance
regimes: (1) high-variance regime (s2

1 = 0.82) in 1876–
1919, (2) low-variance regime (s2

2 = 0.42) in 1920–1982,
and (3) high-variance regime (s2

3 = 1.05) that started with
a powerful El Niño event of 1982–1983. The p values are
p = 0.01 for the differences in variances between regimes
one and two, and p = 0.002 between regimes two and three.
Despite the statistical significance of the shifts, ICSS failed
to detect any of them.

5 Summary and conclusions

Changes in the variance of climatic time series are starting
to attract more attention, especially from the perspective of
global warming, because changes in the variance may have
greater impact on temperature extremes than changes in the
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Figure 12. (a) Mean winter (DJF) cold tongue index, 1876–2011,
showing a step shift downward in 1943 as detected by SRSD (0.1,
35, 3); (b) Residuals after removing the stepwise trend in the mean
and regime shifts in the variance detected by SRSD (0.05, 35, 3)
with change points in 1920 and 1983.

mean. In these circumstances, statistical methods capable of
detecting shifts in the variance regimes are needed. A review
of climate literature reveals that there are just a few practical
methods available for that purpose and their applications are
very limited so far. The situation is much more advanced in
the area of econometrics, but the methods developed there
need to be tested on climatic time series, which have their
own specifics, such as a relatively short length and smaller
magnitudes of shifts.

This paper compares two methods: SRSD developed by
the author and ICSS developed by Inclan and Tiao (1994).
The latter method is currently one of the most popular in
econometric research. Both SRSD and ICSS are CUSUM-
type methods, but while ICSS provides retrospective detec-
tion, SRSD utilizes a sequential approach, which makes it
well-suited for monitoring of regime shifts. Another differ-
ence is that, unlike ICSS, SRSD has two tuning parameters,
the target probability level and cutoff length, that control the
magnitude and timescale of variance regimes to be detected.
This allows the users to tune up SRSD software, so that it bet-
ter suits their needs. On the other hand, by offering more pa-
rameters to adjust, SRSD gives more degrees of freedom, and
hence, requires more experience from the user in order to se-
lect those parameters properly. Therefore, it is recommended
to use ICSS at the beginning of a regime shift analysis to get
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a sense of timescales of the regimes and magnitudes of shifts
between them. Using this information will help to tune up
SRSD for further analysis.

An important difference between the methods is that
SRSD has an internal mechanism for dealing with outliers.
Due to the lack of such mechanism in ICSS, Inclan and
Tiao (1994) suggested complementing their procedure with
some other procedure for outlier detection. It is better, how-
ever, to combine these procedures, rather than do them sep-
arately, one at a time, because an outlier in a low-variance
regime may not be considered as such in a high-variance
regime.

A comparison of the two methods was first implemented
using Monte Carlo simulations with series of 100 points,
which is a typical length (in years) of instrumental climatic
time series. An interesting feature of ICSS is that it performs
poor if a change point is located in the first half of a time se-
ries when the variance increases from the first regime to the
second, or if a change point is in the second half of the series
when the variance decreases. In contrast, ICSS performs bet-
ter in the opposite types of situations, that is, when a change
point is in the first half of a series in the case of decreasing
variance, or it is in the second half in the case of increasing
variance. With two change points, ICSS detects the second
point much more often than the first one if the variance in-
creases in a monotone way, that is, from the first regime to
the second and then again to the third. If the variance de-
creases in a monotone way, ICSS more often selects the first
change point than the second one. As for SRSD, it detects
both change points with about the same degree of accuracy,
regardless of the way the variance changes. Overall, SRSD
outperforms ICSS in the overwhelming majority of the mod-
eled situations. The only case when the two methods showed
similar results was when a change point was located off the
center of the series toward the end, but not too close to the
end. For time series longer than 100 points, ICSS performs
better, but it takes 500 or more points before it starts showing
the results on par with SRSD. The experiments with series of
more than 100 points, however, were very limited.

Some applications of ICSS for econometric time series
have shown that it tends to overstate the number of actual
change points in the variance (Fernández, 2004). This is
probably only true for relatively long time series. As shown
here, for time series of 100 points, ICSS rather tends to un-
derstate the actual number of change points, and in many
cases fails to find any change points at all.

When time series contain outliers, SRSD has a clear ad-
vantage over ICSS. The effect of outliers on ICSS is quite
interesting and may vary depending on both the absolute po-
sitions of outliers in the series and their positions in relation
to the true change points. Most commonly, ICSS finds spu-
rious change points at the positions of outliers, but just the
presence of outliers can also make ICSS grossly overstate
the total number of change points in the series. The closer
an outlier to a true change point, the more often it is mis-

takenly selected instead of a true change point. If an outlier
is positioned between two change points, it may not cause a
spurious shift, but rather a drastic deterioration of ICSS per-
formance, when it cannot detect any shifts. The weighting
method employed by SRSD helps effectively minimize the
negative effects of outliers.

The effect of serial autocorrelation on the detection power
of the methods has been examined. As expected, the percent-
age of hits of a true change point in variance decreases as
the autocorrelation coefficient increases (the decrease in hit
rate is a bit stronger for ICSS). This effect, however, is much
less dramatic than in the case of regime shifts in mean (Lund
et al., 2007). Thus, the loss of detection power at ρ = 0.3
is on the order of 10 % only. Therefore, the methods can be
applied directly to time series with a weak to moderate auto-
correlation. For a stronger autocorrelation, a prewhitening is
required.

The methods were also evaluated by their performance on
real climatic time series of different length. For longer time
series with a monthly resolution (252–787 observations),
ICSS and SRSD detected exactly the same change points in
most cases. The only exception was the Arctic Ocean SST se-
ries, when ICSS found one extra change point that appeared
to be spurious. For shorter time series with a yearly resolu-
tion (66–136 observations), ICSS failed to detect any change
points, even when the variance doubled or tripled from one
regime to another and the shifts were highly statistically sig-
nificant. For this type of time series, SRSD is recommended.

It turned out that all the climatic time series considered
in this paper, from the Arctic to the tropics, have one thing
in common: the last shift detected in each of these series
was toward a high-variance regime. The increase in climate
variability in recent decades and associated increase in fre-
quency of extreme events have tangible impacts on society
(Diaz and Murnane, 2008). Therefore, from this perspective
and regardless of whether or not these changes are associated
with global warming, documenting and monitoring regimes
shifts in the variance are of primary importance.

6 Data availability

The homogenized monthly temperature data set for Min-
neapolis, MN, was obtained from the Goddard Institute for
Space Studies (GISS) at http://data.giss.nasa.gov/gistemp/
station_data/. The monthly AO index values from January
1950 to the present are available from the NCEI web-
site at https://www.ncdc.noaa.gov/teleconnections/ao/. The
NCEP/NCAR Reanalysis monthly data set is available from
the Earth System Research Laboratory (ESRL/NOAA, http:
//www.esrl.noaa.gov/psd/data/timeseries/. The cold tongue
index (CTI) values are available from the University of
Washington, Seattle, WA (http://research.jisao.washington.
edu/enso/).
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