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Abstract. Scientific records of temperature and precipitation have been kept for several hundred years, but for
many areas, only a shorter record exists. To understand climate change, there is a need for rigorous statistical
reconstructions of the paleoclimate using proxy data. Paleoclimate proxy data are often sparse, noisy, indirect
measurements of the climate process of interest, making each proxy uniquely challenging to model statisti-
cally. We reconstruct spatially explicit temperature surfaces from sparse and noisy measurements recorded at
historical United States military forts and other observer stations from 1820 to 1894. One common method for
reconstructing the paleoclimate from proxy data is principal component regression (PCR). With PCR, one learns
a statistical relationship between the paleoclimate proxy data and a set of climate observations that are used as
patterns for potential reconstruction scenarios. We explore PCR in a Bayesian hierarchical framework, extending
classical PCR in a variety of ways. First, we model the latent principal components probabilistically, accounting
for measurement error in the observational data. Next, we extend our method to better accommodate outliers that
occur in the proxy data. Finally, we explore alternatives to the truncation of lower-order principal components
using different regularization techniques. One fundamental challenge in paleoclimate reconstruction efforts is
the lack of out-of-sample data for predictive validation. Cross-validation is of potential value, but is computa-
tionally expensive and potentially sensitive to outliers in sparse data scenarios. To overcome the limitations that
a lack of out-of-sample records presents, we test our methods using a simulation study, applying proper scoring
rules including a computationally efficient approximation to leave-one-out cross-validation using the log score
to validate model performance. The result of our analysis is a spatially explicit reconstruction of spatio-temporal
temperature from a very sparse historical record.

1 Introduction

There is a need for accurate estimates of paleoclimate, es-
pecially temperature and precipitation, to better understand
how climate has changed in the past. Scientific measure-
ments of temperature and precipitation have been recorded
for several hundred years, and in many locations for a much
shorter time. Because of long-standing interest in weather,
there are a vast number of anecdotal, nonscientific records of

weather. However, many reconstructions of paleoclimate us-
ing compiled historical records are not amenable to direct
statistical analysis because they consist of imprecise mea-
surements of weather reported in letters, newspapers, books,
and other documents (Bell and Ogilvie, 1978; Ogilvie, 1984;
Kastellet et al., 1998; Brázdil et al., 2006). The large quan-
tity of historical weather records, combined with appropriate
statistical models, has the potential to facilitate the extension
of scientific understanding of climate further back in time.
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Thus, there is a need for a statistical framework that can
model historical data compiled from a variety of disparate
sources by leveraging climate data from the recent past.

Historical observer weather data are often unreliable,
sparse both temporally and spatially, and noisy because these
data were recorded before widespread adoption of scien-
tific measurement standards. As a result, historical observer
weather data have not been widely used for rigorous statisti-
cal reconstructions of climate because these challenges make
it difficult to create generic statistical approaches for anal-
ysis. Historical observer climate data can occur at hourly,
daily, or monthly timescales, and the current-era analog data
used to train statistical models can also vary in temporal reso-
lution. Therefore, there is often a change of temporal support
between the historical observer and current-era analog data
that must be accounted for (Gotway and Young, 2002).

Another complication is that the true target one wishes to
predict (the historical, unobserved climate) is never avail-
able to evaluate model predictive performance. Moreover,
the historical observer data are often of unknown or of vary-
ing reliability and are typically sparse, sometimes involving
only a few locations per year. The consequences of such data
characteristics for evaluating model performance are under-
explored; hence, we explore methods to validate historical
observer-era model predictions under these sparse data sce-
narios.

We used spatially and temporally sparse historical ob-
server measurements of temperature recorded at United
States (US) military forts and other historical observer sta-
tions to reconstruct spatially explicit maps of mean mid-
day July temperature by leveraging modern spatially explicit
current-era analog data to impute missing spatial structure.
We perform the reconstruction within a model framework
that accounts for uncertainty in current-era data products and
uncertainty in parameter estimation, and properly evaluates
predictive skill. We test eight model specifications using a
simulation study, generate predictions for mid-day July tem-
perature at approximately 20 000 locations for each year in
1820–1894 with associated uncertainties, and evaluate model
performance using a computationally efficient approxima-
tion to leave-one-out cross-validation.

2 Data

We used two datasets we refer to as the historical observer
dataset and the current-era analog dataset. The historical ob-
server dataset consists of temperature records from 1820 to
1894 at US forts in the Upper Midwestern US as well as non-
military observer stations. These data were compiled as part
of the Climate Database Modernization Program (Andsager
et al., 2004; CDMP 19th Century Forts and Voluntary Ob-
servers Database Build Project: http://www.isws.illinois.edu/
atmos/clirecord.asp; CDMP, 2016). At the observer stations,
measurements were recorded with time and date; however,

the timing of measurements varied among and within indi-
vidual observer stations and was often temporally imprecise
(“daily min”, “daily max”, “mid-day”, etc.).

Protocols varied across the observer stations through space
and time, leading to many irregularities in the historical ob-
server data. Temperature measurements were obtained by a
variety of methods: some records report daily minimum and
maximum temperatures, others report hourly measurements,
and sometimes there are days or weeks with missing mea-
surements. In addition, the number and locations of the ob-
server stations change through time, containing between 1
and 234 locations per year; this variation is due to historical
events, including the Civil War and the westward expansion
of the US in the late 19th century. Most years have only a
few observations and, in general, the number of observer lo-
cations per year increases through time. Therefore, the model
must align the temporal and spatial scales of the two data
sources to reconstruct continuous temperature fields across
the Upper Midwest. An example of 4 years of historical data
is shown in Fig. 1a.

Because the historical observer data are spatially sparse,
traditional spatial statistical methods, such as Kriging, are
not applicable, as these methods require larger sample sizes
to produce reasonable predictive surfaces. Thus, we used the
current-era analog data to provide spatial structure for the
reconstruction. For the current-era analog data, we used the
Parameter-elevation Relationships on Independent Slopes
Model (PRISM) monthly mean mid-day temperature sur-
faces created by interpolation of the US Historical Climate
Network (USHCN) data over the period 1895–2010 (PRISM
Climate Group, Oregon State University, 2016). The PRISM
data include 115 years of mean mid-day July temperatures
resolved to an 800 m×800 m grid, resulting in almost 20 000
spatial locations of interest in the study region (Fig. 1b). Un-
like the historical observer data, the PRISM data are com-
piled from the USHCN and consist of commonly used model
interpolated temperature records. Other data products are
available, including high-quality data from satellite measure-
ments; however, we used PRISM for the current-era analog
data due to the longer temporal coverage that provides the
model with more examples of the spatial structure of mid-
day July temperature. Because PRISM is a data product and
not raw data, we account for potential measurement errors in
the current-era analog data using our modeling framework.

2.1 Temporal change of support

To enable statistical learning about climate in the historical
observer period, we aligned the two data sources to com-
mon spatial and temporal scales. We assigned each histori-
cal observer station to the closest grid cell in the current-era
analog data, thus accounting for any potential spatial mis-
alignment. Because the grid we aligned to is very fine scale
(800 m× 800 m grid cells) and temperature surfaces are gen-
erally smooth over this spatial resolution, we assume any er-
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Figure 1. Four years of the historical observer temperature data (a) and the current-era analog temperature data (b).

rors induced by the spatial alignment are negligible relative
to other sources of noise in the data and ignore potential ef-
fects of spatial misalignment. Aligning the data sources in
time was more complicated because the historical observer
station data are highly irregular, whereas the current-era ana-
log data are monthly mean mid-day temperatures. We mod-
eled the historical observer period mean mid-day July tem-
perature using cyclic cubic splines that are highly flexible,
able to accommodate the irregular nature of the historical
data, and constrained to reconstruct diurnal patterns (Wood,
2006). We focused on the month of July because the annual
temperature curve peaks in July and thus there is little/no sea-
sonal change in temperature that needs to be accounted for
when computing a monthly average. The methodology could
be applied to other months, but the calibration in Eq. (1)
would need to account for seasonal trend.

We define our models using the following notation. Scalars
are denoted by lowercase letters, vectors are bold lowercase
letters, and matrices are bold uppercase letters. Fixed values,
like data, are generally represented by Latin letters and pa-
rameters are written in Greek letters. Using this notation, the
linear mixed model for estimating daily historical observer
mean mid-day July temperature is

ỹitj (s)= liβ + b(s)′α+ ηit + ηi + ηt + εitj (s) , (1)

where ỹitj (s) is the raw historical observer temperature ob-
servation at location i, year t , day j , and hour s. The covari-
ate li is the latitude at location i and gives rise to a spatially
varying intercept for temperature parameterized by the coef-
ficient β. The vector b(s) is a cyclic cubic spline basis expan-
sion of order 4 over the 24 h daily cycle with coefficients α
that account for the diurnal pattern in temperature. The ran-
dom effects ηi , ηt , and ηit adjust the model fit with varying
intercepts for location i, year t , and the interaction between
location and year. The model is completed by the inclusion
of independent, uncorrelated Gaussian error εitj (s), giving
rise to interpolated daily temperature curves for July at each

observer station location i and year t . From the daily tem-
perature curves, we estimated mean mid-day July tempera-
ture by first predicting yit (̃s)= li β̂ +B(̃s)′α̂+ η̂it + η̂i + η̂t
at 1 min intervals (̃s = {0,0+ 1

60 , . . .,23+ 59
60 }) for each fort

location and year. We estimated the mean mid-day tempera-
ture using the same formula as the current-era analog data,

yit =

(
min
s̃
yit (̃s)+max

s̃
yit (̃s)

)
/2, aligning the sparse, ir-

regular historical observer data to the monthly timescale of
the current-era analog data.

To facilitate parameter estimation in the presence of sparse
data, the calibration model borrows strength among days,
sites, and years within the historical observer data for the
month of July, reducing the influence of measurement error
and improving prediction of the mid-day diurnal tempera-
ture curve. By borrowing strength, the calibration model pro-
duced a mean mid-day estimate that has less variability than
the raw historical observer data. We fit the calibration model
to the historical data using R package mgcv (Wood, 2011)
and refer to the pre-processed mid-day estimates yit as the
historical observer data in what follows. We justify the loss
of information induced by using the calibration model pre-
dictions instead of the raw historical observer data because
the linear mixed model explained approximately 70 % of the
variability in the data (R2

= 0.69) and provided a mecha-
nism for changing temporal support by integrating uncer-
tainty over the within-month mid-day temperature.

2.2 Modeling outline

After aligning the two data sources to a common temporal
scale, we constructed a modeling framework to perform our
reconstruction. One method commonly used for the recon-
struction of paleoclimate is principal component regression
(PCR), often called empirical orthogonal function (EOF) re-
gression in the paleoclimate literature (Preisendorfer, 1988).
The use of PCR for the statistical reconstruction of climate
has a long tradition, dating back to Lorenz (1956). In PCR re-
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constructions, the climate proxy observations are regressed
on a set of patterns created from direct observations of the
climate process. After learning about the regression param-
eters, the model is used to predict climate at the unobserved
locations.

To build our spatio-temporal predictive model, we used
traditional principal component regression (PCR) as well as
probabilistic principal component regression (pPCR) that as-
sumes the empirical principal components are a noisy mea-
sure of the true, latent principal components (Tipping and
Bishop, 1999). We explore the temporal PCR and pPCR
models in a Bayesian hierarchical framework using regular-
ization methods to select important principal components for
each year’s reconstruction. Within this framework, we assign
hierarchical pooling priors to improve parameter estimation
for years with few observations by borrowing strength from
years with many observations (Gelman and Hill, 2006). We
also develop robust, Student’s t specifications of PCR and
pPCR models that accommodate potentially outlying mea-
surements of mid-day July temperature in the historical ob-
server data that may have arisen from the non-standardized
data collection.

We introduce traditional PCR in Sect. 3.1 within a tempo-
ral framework that allows for flexibility among years while
borrowing strength among years to improve estimation in
years with few observations and define the probabilistic ex-
tension (pPCR) of PCR that accounts for measurement error
in Sect. 3.2. In Sect. 3.3, we introduce the robust specification
of our PCR and pPCR models that better accommodate out-
lying observations, and in Sect. 3.4, we show how to improve
computation by integrating out the latent principal compo-
nents in the pPCR model. We describe three scoring rules to
validate model performance in Sect. 4, and describe a simu-
lation study in Sect. 5 where we evaluate predictive perfor-
mance in a synthetic data scenario. In Sect. 6, we apply our
models to reconstruct historical mean mid-day July temper-
ature in the Upper Midwestern US, choosing the model that
performs best based on scoring rules.

3 Model statement

3.1 Principal component regression

A common statistical approach for reconstruction of the his-
torical climate using current-era analog data is to regress the
partially observed historical observer data onto the current-
era analog observations. For a given reconstruction year, de-
fine the regression model

yit = µt + x
′

iαt + εit , (2)

where yit is a historical observer period observation (pre-
processed using calibration model Eq. 1) of mean mid-day
July temperature at location i for year t . The vector yt con-
sists of the nt historical observer period observations of the
temperature field for year t , where we observe only nt out

of the n locations, with the number and locations of observa-
tions changing through time (Figs. 1a and 7b). The columns
of the n× d matrix X contain d replicates of the current-
era analog temperature surfaces at the n locations in the do-
main of interest, forming a basis set of patterns for the re-
gression, where x′i represents the ith row of X. A greater
number of replicates of current-era analog temperature sur-
faces d gives a larger set of potential spatial patterns that can
be used to learn about spatial patterns in the historical ob-
server data. The d-dimensional vector of regression coeffi-
cients αt link the historical observer data yt with the set of
climate patterns X in the current-era analog data for each year
t , allowing for climate fields that are linear combinations of
observed current-era analogs, up to uncorrelated model er-
ror. Thus, we can model temperatures that are warmer or
cooler than the current-era analog period, but patterns that
are not linear combinations of the current-era analogs are
not accommodated in the model, necessitating use of a suf-
ficiently long temporal record of current-era analogs. The
uncorrelated model error εit is assumed to be independent
and identically distributed Gaussian with variance τ 2

t , prior
τt ∼ logN (µτ ,σ 2

τ ), and vague hyperpriors µτ ∼ N(0,1) and
στ ∼ U (0,1). Because the likelihood is unaffected if µt is
integrated out, we assume that the data yt are centered and
assume µt = 0 (i.e., anomalies).

In Eq. (2), the columns in X are highly multicollinear.
Multicollinearity inflates the coefficient estimate variance
and, in cases of severe multicollinearity, the least squares
solution is nearly singular, causing algorithm instability and
unreliable estimation. One could use this model to estimate
the dynamics influencing a given year’s temperature surface
by interpreting the estimated regression coefficients, but be-
cause we are interested in prediction of the dependent vari-
able yt and less interested in interpretation of the regression
coefficients, we manipulate the form of X to improve sta-
tistical learning. We begin by computing the singular value
decomposition (SVD) of X= U3V′, where the columns of
U are the left singular vectors of X, the diagonal matrix 3
has the singular values in descending order on the diagonal,
and the columns of V are the right singular vectors. The PCR
model using the SVD is

yit = u
′

i3V′αt + εit

= u′i3
1
2β t + εit

= z′iβ t + εit , (3)

where u′i is the ith row of U. If the regression coeffi-

cient is given the prior αt ∼ N(0,σ 2
αt I), then β t =3

1
2 V′αt ∼

N (0,σ 2
βt3) where σ 2

αt = σ
2
βt . In this model, the columns of U

are the eigenvectors of X′X, the diagonal elements of 3 are
the eigenvalues of X′X, and z′i = u

′

i3
1
2 is the scaled principal

component at location i. In applications of PCR, one often
performs dimension reduction by retaining only the first p
eigenvectors of U in the n×pmatrix Up and the first p eigen-
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values in the p×p matrix3p. After truncation, the truncated

PCR design matrix is Zp = Up3
1
2
p . Typically, p is chosen by

cross-validation or by choosing the smallest p so that the pro-
portion of variability explained in the model is a large value.
Because truncation removes the highest-frequency eigenvec-
tors, the truncation implies a prior that shrinks the regression
coefficients and provides an implicit regularization on the
model (Hastie et al., 2005). Although truncation of lower-
order principal components disregards small-scale variabil-
ity and therefore can only reduce the theoretical minimum
prediction error, the truncated model is often more compu-
tationally stable than Eq. (2) and can improve prediction in
practice.

Preexisting research suggests that truncation of the trail-
ing principal components is not always appropriate because
the higher-frequency components are often important predic-
tors (Hadi and Ling, 1998; Jolliffe, 1982). In our paleocli-
mate reconstruction method, inclusion of lower-order princi-
pal components is important, especially if there are climate
signals that are slowly varying or show up occasionally (i.e.,
every decade or century). If these uncommon processes ap-
pear in the lesser eigenvectors of the current-era analog data
(which is likely because such processes are not the primary
contributors to the annual-scale variability in climate), these
signals would be discarded by truncation as high-frequency
noise. Allowing the important principal components in the
regression to vary with time, the model is capable of detect-
ing the changes in temperature. For example, the irregular
but periodic cycles of the Pacific Decadal Oscillation and
the Atlantic Multidecadal Oscillation likely do not explain
a large portion of the variability in the temperature records.
Therefore, these and other similar climate signals could be
removed through the truncation of the principal components.
Ideally, one chooses the truncation p to be as large as compu-
tationally possible and then performs a variable selection or
regularization method to select important principal compo-
nents. Wang (2012) approached the problem of choosing the
important principal components through the Bayesian model
selection technique known as stochastic search variable se-
lection (SSVS; George and McCulloch, 1993; see Hooten
and Hobbs, 2015, for a review). The SSVS variable selection
assumes the hierarchical prior on the j th regression coeffi-
cient at time t

βtj ∼

{
N (0,σ 2

βt
λpj ) if ξtj = 1,

N (0,σ 2
βt
κ−1
j λpj ) if ξtj = 0,

(4)

where λpj is the j th diagonal element of3p. The SSVS prior
for the pPCR model is similar, but does not include the λpj
terms. The variables ξtj are indicators of the importance of
the j th latent principal component in the regression for year
t and have independent Bernoulli(0.5) priors. The regression
coefficient variance σ 2

βt
could be assigned a prior if desired,

but the shrinkage value κj > 1 must be fixed. A large κj pro-
duces a mixture distribution of a broad, relatively uninfor-

mative prior with large variance σ 2
βt

(the “slab”) and a highly
informative prior at a small neighborhood around zero (the
“spike”) that provides shrinkage by truncating less impor-
tant principal components using probabilistic learning, thus
reducing the chance of omitting important principal com-
ponents while avoiding the computationally expensive task
of exploring all 2p possible model configurations. We set
κj = 1000 and pool across years by assuming the hierarchi-
cal model with prior σβt ∼ logN (µσβ ,σ

2
σβ

) and vague hyper-
priors µσβ ∼N (0,1) and σσβ ∼ U(0,1).

An alternative to variable selection methods like SSVS is
penalized regression (Hastie et al., 2005). Common forms of
penalized regression include ridge regression (Tikhonov or
L2 shrinkage; Hoerl and Kennard, 1970), where one mini-
mizes

n∑
i=1

(yit − z′iβ t )
2
+ γt

p∑
j=1

β2
tj

with respect to β t , and the least angle subset selection opera-
tor (LASSO or L1 shrinkage; Tibshirani, 1996), which mini-
mizes

n∑
i=1

(yit − z′iβ t )
2
+ γt

p∑
j=1
|βtj |

with respect to β t given the penalty term γt . The L2 penalty
shrinks the coefficients non-linearly toward zero and the L1
penalty shrinks large coefficients linearly, but in a way that
the coefficients can equal zero exactly. When viewed from
this perspective, the LASSO can be viewed as a compro-
mise between regularization and variable selection methods
because, as the coefficients in the LASSO model approach
zero, there is nonzero probability that the LASSO will shrink
the covariate estimates to zero, thereby removing that vari-
able from the model (Efron et al., 2004). We apply both
SSVS and LASSO shrinkage methods to explore the empiri-
cal consequences of the choice of regularizer. One drawback
to regularization methods is the need to estimate the penalty
parameter γt . Often, the optimal γt is determined by cross-
validation using predictive skill. In the Bayesian framework,
the shrinkage can be estimated by cross-validation or by as-
signing a prior distribution and performing a fully Bayesian
inference (Park and Casella, 2008; Hooten and Hobbs, 2015).

The L2 penalty implies the prior β t ∼N (0,γt I) and the
L1 LASSO penalty assigns a Laplace (double exponential)
prior β t ∼

∏d
j=1

γt

2
√
τ 2
t

exp{− γt |βtj |√
τ 2
t

}. The LASSO penalty

can also be specified using the more computationally ef-
ficient hierarchical-scale mixture of Gaussian distributions
with exponential mixing distribution by assigning the hier-
archical prior
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β t ∼N (0,τ 2
t Dγt ),

γtj ∼ Exp
(
λ2

2

)
,

where Dγt = diag(γt1, . . .,γtp) (Park and Casella, 2008). We
hierarchically pool the error standard deviation by assigning
the hyperprior τt ∼ logN (µτ ,σ 2

τ ) with vague hyperparame-
ters µτ ∼N (0,1) and στ ∼ U (0,1), where learning across
years is achieved by updating µτ and στ . To perform a fully
Bayesian regularization that properly accounts for parameter
uncertainty, we assign the hyperpriors λ2

t ∼ Gamma(αλ,βλ)
to allow for differential regularization through time. We as-
sign the hierarchical pooling prior by modeling the param-
eters αλ and βλ, reparameterizing the Gamma distribution
using its mean µλ = αλ

βλ
and variance σ 2

λ =
αλ
β2
λ

and assigning

the vague hyperpriors µλ ∼ logN(0,1) and σλ ∼ U(0,1).

3.2 Probabilistic principal component regression

PCR assumes the data X, and therefore the principal com-
ponents derived from X are observed without measurement
error. The current-era analog data are model interpolated,
and, therefore, the principal components have unaccounted
for measurement error that violates the assumptions of tradi-
tional PCR. Hence, the eigenvectors in U can be thought of as
estimates of the true eigenvectors under an appropriate prob-
abilistic model. As a remedy, probabilistic principal compo-
nent models assume the data matrix X is a noisy measure-
ment of the true process (Tipping and Bishop, 1999). Letting
x′i be the ith row of X, the model for the noisy observations
is

xi =m+Kzi + ηi, (5)

where m is the d-vector of means, K is a d ×p rotation ma-
trix, zi is a p-vector that represents the latent eigenvectors
of the process of interest, and ηi is zero mean, independent
Gaussian error with variance σ 2. Note that m can be inte-
grated out of Eq. (5) without changing the likelihood; thus,
we assume that the data X have centered rows and set m= 0
(i.e., anomalies). Because principal component vectors are
orthonormal, we complete the principal component model
specification by assigning independent priors zi ∼N (0,I),
for i = 1, . . .,p. A more general model is the factor analysis
model, where the error term η has a generic diagonal covari-
ance matrix 6 (Tipping and Bishop, 1999). Thus, the proba-
bilistic principal component model can be viewed as a special
case of factor analysis where the error term η is constrained
to be diagonal with variance σ 2.

Tipping and Bishop (1999) showed the maximum likeli-
hood estimate (MLE) of the rotation matrix K with p com-
ponents under the pPCR model is

K̂= Up
(
3p − λ̄Ip

) 1
2 R,

where Up is a d ×p matrix with the first p columns con-
taining the leading eigenvectors, 3p is a p×p diagonal ma-
trix with the associated eigenvalues λ1 ≥ . . .≥ λp of X′X
on the diagonal, the matrix Ip is the p×p identity matrix,

λ̄=

∑d
j=p+1λj
d−p

is the average variance contribution for the
truncated eigenvectors, and R is an arbitrary orthogonal ro-
tation matrix (which we set to be Ip). We set K at the MLE
and rewrite Eq. (5) as

x′i = K̂zi + ηi . (6)

After accounting for the measurement uncertainty in our
predictor matrix X by estimating the unknowns Z and η in
Eq. (6), we link the historical observer data and current-era
analog data by regressing yt onto the latent eigenvectors Z

yit = z
′

iβ t + εit (7)

and estimate the unknown regression coefficients β t in
Eq. (7).

3.3 Robust regression

The historical observer data were collected using non-
standard methods; thus, there is likely more variability in
the data than can be explained by assuming a Gaussian error
distribution. We propose extending Eq. (7) to a model that
is robust to outliers. The robust pPCR data model using the
Student’s t distribution

yit ∼ t(z′iβ t ,τ
2
t ,νt )

is a model that better accommodates outliers in the data.
The parameter νt is the degrees of freedom of the Stu-
dent’s t distribution. A common choice of prior for the
degrees of freedom νt is to model the inverse degrees of
freedom with a U (0,0.5) distribution. We generalize this
prior to pool across years, assigning the inverse degrees
of freedom the prior 1

νt
∼ Beta(αν,βν,0,0.5) where the

four-parameter Beta(α,β,L,U ) prior is a Beta(α,β) prior
scaled to the interval [L,U ]. To hierarchically pool the prior
model, we reparameterize αν = µνην and βν = (1−µν)ην
for µν ∈ [0,1] and ην ∈ [0,∞). We complete the model
statement by assigning the hyperpriors µν ∼ Beta(5,5) and
ην ∼ Gamma(10,0.1). Although these priors appear infor-
mative, when reparameterized, the prior specification is sim-
ilar to the commonly used vague Gamma(2,0.1) prior on the
degrees of freedom νt (Juárez and Steel, 2010). To regularize
the robust data model, we modify the LASSO prior for the
regression coefficients using the variance of the Student’s t
distribution, resulting in the prior

β t ∼N

(
0,τ 2

t

νt

νt − 2
Dγt

)
,

where the parameters have the same priors as introduced pre-
viously.
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3.4 Posterior distribution

The latent principal components zi are high dimensional (ap-
proximately 20 000-dimensional for i = 1, . . .,p). We aim to
avoid the computational burden of sampling this parameter.
Therefore, we wish to integrate out the latent principal com-
ponents∫
[yit |zi,β t ,τ

2
t ,νt ][xi |zi,σ

2
][zi]dzi, (8)

but this integral is not analytically tractable. We could
attempt to numerically integrate out zi , but at great computa-
tional cost. Instead, we write our Student’s t data model as a
scale mixture where yit ∼ N(z′iβ t ,v

2
it ), v

2
it ∼ inv-χ2(νt ,τ 2

t ),
and [yit |zi,β t ,τ

2
t ,νt ] =

∫
[yit |zi,β t ,v

2
it ][v

2
it |τ

2
t ,νt ]dv

2
it .

Then, we write the integral Eq. (8) as∫
[yit |zi,β t ,τ

2
t ,νt ][xi |zi,σ

2
][zi]dzi

=

∫ (∫
[yit |zi,β t ,v

2
it ][v

2
it |τ

2
t ,νt ]dv

2
it

)
[xi |zi,σ

2
][zi]dzi

=

∫ (∫
[yit |zi,β t ,v

2
it ][xi |zi,σ

2
][zi]dzi

)
[v2
it |τ

2
t ,νt ]dv

2
it

=

∫
[yit |µyit ,σ

2
yit
][v2

it |τ
2
t ,νt ]dv

2
it , (9)

where the integral in Eq. (9) is evaluated by Markov chain
Monte Carlo (MCMC), first sampling v2

it ∼ inv-χ2(νt ,τ 2
t ),

then evaluating the density [yit |µyit ,σ
2
yit
]. These modifica-

tions result in the integrated data model (see the Supplement
for details)

yit ∼ N(µyit ,σ
2
yit

), (10)

where µyit =
x′iK̂M−1

p β t

σ 2 and σ 2
yit
= v2

it +β
′
tM−1

p β t with

Mp =
3p

σ 2 + Ip, a diagonal matrix that can be inverted effi-
ciently. Integration results in significant computational sav-
ings because we avoid sampling p vectors of length n (ap-
proximately 20 000 each). The cost of not sampling the latent
principal components Z is loss of conjugacy for the regres-
sion coefficients β t in the MCMC algorithm. The posterior
distribution (for the robust pPCA model with LASSO regu-
larization) from which we sample using MCMC is

T∏
t=1

∏
i∈Ht

[
β t ,v

2
it ,τt ,µτ ,στ ,νt ,µν ,ην ,σ,γ t ,λ

2
t ,µλ,σλ

∣∣yit ,X]∝
T∏
t=1

(∏
i∈Ht

[
yit
∣∣β t ,σ,v2

it

][
vit
∣∣νt ,τt ])[β t ∣∣γ t ,τt ,νt ][τt ∣∣µτ ,στ ]

× [µτ ] [στ ] [σ ]
[
γ t
∣∣λ2
t

][
λ2
t

∣∣µλ,ηλ] [µλ] [ηλ] ,

whereHt is the set of locations where there are observations
for year t . We fit our models using JAGS (Plummer, 2003)
within the R computing environment (R Core Team, 2016).

For each of the eight candidate models, we fit four par-
allel chains with random initial conditions, running 20 000
iterations per chain and discarding the first 10 000 itera-
tions as burn-in. Fitting all eight models and the associated
post-processing took approximately 18 h on a 2014 dual-core
2.6 GHz MacBook Pro with 8 GB RAM. We thinned our
chains every 10 iterations to reduce post-processing time, re-
sulting in a total of 4000 samples and evaluated model con-
vergence using the R̂ statistic (Gelman and Rubin, 1992).
We chose vague hyperpriors throughout; the ability to esti-
mate temperature surfaces from these priors implies the re-
sults are not highly sensitive to the prior values. A choice
of stronger hyperprior values could improve inference, but
very strong hyperpriors could also dominate the influence of
the data in the posterior estimates. Preliminary analyses not
shown in this paper indicated little sensitivity to reasonable
prior choices.

4 Scoring rules

To evaluate model performance, we apply scoring rules to the
estimated posterior predictive distributions. A highly desir-
able property of a scoring rule is propriety (Gneiting, 2011).
A scoring rule is proper if the expected score of the opti-
mal prediction is less than or equal to the expected score of
any other prediction (Bernardo and Smith, 2009). Hence, a
proper scoring rule, on average, chooses the best prediction
from a set of candidate predictions (Gneiting et al., 2007).
Often, paleoclimate reconstructions evaluate predictive per-
formance by holding out some of the training set data for
use in cross-validation, using skill scores like the coefficient
of efficiency (CE) and relative efficiency (RE) (Cook et al.,
1994; Rutherford et al., 2005; Tingley and Huybers, 2010a,
b). Although these scoring rules are common in the pale-
oclimate reconstruction community, Gneiting and Raftery
(2007) suggest that scoring rules like CE and RE are im-
proper in general. Because CE and RE are improper, it is
possible that the optimal prediction can, on average, have a
worse score than a sub-optimal prediction, leading to incor-
rect inference. Therefore, we focus on three proper scoring
rules: mean square prediction error (MSPE), the continuous
ranked probability score (CRPS), and a computationally effi-
cient approximation to leave-one-out cross-validation (LOO)
using the log score. In general, MSPE is not proper, but be-
cause our data models are Gaussian and Student’s t , MSPE
is proper for predictions of the posterior mean in this case.

The use of MSPE as a scoring rule implies anL2 loss func-
tion on the posterior distribution; therefore, our predictions
are the posterior predictive means

E(̃yt |yt )=
∫
ỹt [̃yt |yt ]dỹt ,

where [̃yt |yt ] =
∫
[̃yt |θ t ][θ t |yt ]dθ t is the posterior predic-

tive distribution for model parameters θ t . Given out-of-
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sample observations yoos,t , MSPE is

1
T

T∑
t=1

1
n− nt

∑
i 6∈Ht

(
E(̃yit |yt )− yoos,it

)2
,

where n− nt is the number of out-of-sample locations for
year t andHt is the set of observed locations in the historical
observer data. Because MSPE uses the posterior predictive
mean (a point prediction) instead of the full posterior distri-
bution, MSPE ignores much of the information in the pos-
terior distribution gained by performing Bayesian inference.
Therefore, MSPE is not an ideal scoring rule for a proba-
bilistic prediction, such as a posterior predictive distribution,
even when MSPE is proper. For example, consider two mod-
els that give rise to posterior predictive distributions with the
same posterior predictive mean but different posterior pre-
dictive variances. In this case, it is obvious that the predic-
tive distribution that has better predictive coverage should be
preferred, but MSPE would score the two models identically,
demonstrating how MSPE loses information by collapsing
the posterior distribution into a point estimate.

An alternative to MSPE is the CRPS scoring rule. CRPS is
proper, utilizes the full posterior predictive distribution, and
allows for a direct comparison of point predictions and prob-
abilistic predictions (Gneiting and Raftery, 2007). CRPS re-
solves the issue presented in the previously described sce-
nario by including the width of the predictive distribution in
the evaluation of the score. Several recent papers presenting
climate reconstructions have made use of the CRPS for these
reasons (Barboza et al., 2014; Werner and Tingley, 2015;
Tipton et al., 2016). Given a prediction with the cumulative
distribution function, Fit , at location i and time t , and out-
of-sample observations yoos,t , the CRPS is defined as

CRPS({Fit }Tt=1,yoos,t )=

−

T∑
t=1

∑
i 6∈Ht

∞∫
−∞

(
Fit (y)− I{y≥yoos,it}

)2
dy. (11)

Gneiting and Raftery (2007) show that Eq. (11) can be writ-
ten alternatively as

CRPS({Fit }Tt=1,yoos)= (12)
T∑
t=1

1
n− nt

∑
i 6∈Ht

(
EFit

∣∣yit − yoos,it
∣∣− 1

2
EFit

∣∣yit − y∗it ∣∣) ,
where yit and y∗it are independent copies of a random vari-
able with distribution function Fit and the expectation E is
with respect to the probability density induced by Fit . The
first expectation in Eq. (12) measures calibration (the ab-
solute error of the prediction relative to the out-of-sample
value) and the second expectation rewards predictions that
are precise (i.e., narrow prediction intervals).

We can estimate the CRPS after obtaining posterior sam-
ples ỹ(k)

t from the posterior predictive distribution
[̃
y

(k)
t

∣∣yt]

at each post burn-in iteration k. Then, Eq. (12) is approxi-
mated by

ĈRPS({F̂it }Tt=1,yoos)=

T∑
t=1

 1
n− nt

∑
i 6∈Ht

(
1
K

K∑
k=1

∣∣∣̃y(k)
it − yoos,it

∣∣∣ −
1

2K2

K∑
k=1

K∑
`=1

∣∣∣̃y(k)
it − ỹ

(`)
it

∣∣∣)) . (13)

A major disadvantage of both MSPE and CRPS is the need
for out-of-sample validation data. For our simulation study,
MSPE and CRPS are straightforward to calculate because we
simulated the out-of-sample validation data; in practical pa-
leoclimate reconstructions, there are no out-of-sample data.
Therefore, MSPE and CRPS must be approximated using
cross-validation methods, although these methods are com-
putationally costly and time consuming to implement.

An alternative is to use the approximate leave-one-out
cross-validation method (LOO; Vehtari et al., 2016b). LOO
uses a proper scoring rule, the log score, to evaluate pre-
dictive skill (Geisser and Eddy, 1979; Gneiting and Raftery,
2007; Hooten and Hobbs, 2015). We estimate the leave-one-
out log pointwise predictive density

lpdloo =

T∑
t=1

∑
i∈Ht

log[yit |y(i)t ] =

T∑
t=1

∑
i∈Ht

log
∫
[yit |θ t ][θ t |y(i)t ]dθ t , (14)

where y(i)t are the data yt at time t without the ith location.
One can calculate Eq. (14) directly by cross-validation at a
high computational cost, or one can approximate Eq. (14) us-
ing importance sampling from post burn-in posterior samples
using the full data as described in Vehtari et al. (2016b). Im-
portance ratios with high variance can cause the estimate in
Eq. (14) to be highly unstable and unreliable, and are there-
fore of practical concern. To test for the presence of large
variance of the importance ratios, Koopman et al. (2009) pro-
posed fitting the generalized Pareto distribution to the upper
tail of importance ratios and examining the empirical esti-
mates of the tail shape parameter ξ . If the estimated tail pa-
rameter ξ̂it is less than 1/2, the variance of the importance ra-
tios is finite and the importance ratios approximating the log
posterior score holding out yit can be used directly to approx-
imate LOO. If the estimated tail parameter is 1/2< ξ̂it < 1,
the variance of the importance ratios is infinite but the mean
of the importance ratios exists. Hence, Vehtari and Gelman
(2015) propose using smoothed importance ratios. If the es-
timated tail parameter ξ̂it > 1, this suggests that the mean
and variance of the importance ratios do not exist but that
the variance of the smoothed importance ratios is finite, but
large, and the use of LOO is sensitive to the held-out observa-
tion. Using the smoothed importance weightsw(k)

it , we obtain
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the Pareto-smoothed importance sampling approximation

êlpdPSIS =

T∑
t=1

∑
i∈Ht

log

(∑K
k=1w

(k)
it [yit |θ

(k)
t ]∑K

k=1w
(k)
it

)
. (15)

We use the deviance scale and set L̂OO=−2êlpdPSIS to
make LOO a negatively oriented score (the best model is the
one with the lowest score), implementing our score using R
package loo (Vehtari et al., 2016a).

5 Simulation

With paleoclimate data, it is difficult to verify the predictive
ability of models using cross-validation. With only a hand-
ful of observations in the historical observer data available
for each year, cross-validation techniques could be highly bi-
ased due to the effects of unusual observations in small sam-
ple sizes. This is important because we expect noisy and po-
tentially outlying observations in the historical observer data
due to the data collection procedures. Additionally, the high
dimensionality of the field we aim to reconstruct and the use
of computationally intensive MCMC estimation make cross-
validation costly. Instead, we conducted a simulation study
to explore the different models for the historical observer sta-
tion data and evaluate model performance using the scoring
rules above. Although we do not simulate from the model
that is used for estimation, the simulated data represent a
reasonable approximation to mid-day July temperature, pro-
viding an environment for model testing and exploration of
empirical performance.

We simulate mid-day July temperature in one spatial di-
mension (we extend to two dimensions using the real data),
allowing for faster computation and easier graphical explo-
ration of the spatio-temporal process. We simulate T = 50
realizations of a latent surface from the model

st =Wβ t + ηt ,

where the matrix W represents fixed influences on climate,
such as latitude, elevation, and other covariates that explain
much of the temperature surface as well as time-varying
components that represent slowly varying global-scale cli-
mate processes. To construct patterns that might be seen in
climate observations, we simulate temporally varying regres-
sion coefficients at different periodicities to represent global-
scale climate processes like the Pacific Decadal Oscillation
or the Atlantic Multidecadal Oscillation. We do not claim our
simulation behaves like any climatological process, only that
this example facilitates exploration of complicated patterns
potentially seen in climatological data.

We include a spatially correlated random effect ηt ∼
N
(

0,σ 2
ηt

R (φ)
)

that smooths the patterns, generating realiza-
tions of a one-dimensional climate field (Fig. 2b). A com-
mon choice for the form of R (φ) is the Matérn class of

correlation functions. For our simulation, we use the expo-
nential correlation function, a member of the Matérn fam-
ily. In the exponential correlation function, the i,j th element
Rij (φ)= exp

(
−dijφ

)
, where dij represents the Euclidean

distance between the ith and j th spatial locations and φ is
the spatial range parameter.

To create observations that match the temporal irregulari-
ties and spatial clustering behavior in the historical observer
data, we sample the one-dimensional spatial field using
weighted probabilities that generate clustered observations in
space, storing the simulated temperature observations at the
nt locations in the vector yt . Using this sampling design, we
generate noisy realizations for the simulated historical ob-
server data for simulated years t = 1, . . .,25 (Fig. 2a) using

yit = sit + ε̃it , (16)

where ε̃it is independent Student’s t error with variance σ̃ 2
=

1.5 and degrees of freedom ν = 10 that represent uncertainty
in historical temperature measurements. To generate the set
of simulated current-era analog patterns X that will be used
in our regression model, we define for the simulated current-
era analog years t = 26, . . .,50

xt = st + ε̈t , (17)

where, by adding uncorrelated, independent Gaussian noise
ε̈t with variance σ̈ 2

= 0.75, we account for the measure-
ment error of the temperature process during the current-era
analog period. The measurements used in the model for the
current-era analog period are from PRISM model interpo-
lated data and have measurement error, where this measure-
ment error should be less than that of the historical observer
data; hence, σ̃ 2 > σ̈ 2. We then combine the simulated val-
ues into the noisy pattern matrix X≡ (x26, . . .,x50) that is
used in our model framework. The latent temperature pat-
terns S≡ (s1, . . .,s25) are the unobserved target for our re-
construction. Note that, in the real data, S are unavailable;
therefore, our scoring rules can use only the noisy observa-
tions yt , limiting the ability to improve reconstruction skill.
Figure 2a shows the simulated historical observer period
noisy temperature realizations yt and Fig. 2b shows the sim-
ulated historical observer period true, latent temperature field
that is the target of our reconstruction, with the x axis repre-
senting spatial location. The noisy principal components de-
rived from the simulated current-era analog data are plotted
in Fig. 2c with the simulated latent principal components in
Fig. 2d. Comparing Fig. 2c and d shows that using the noisy
principal components is analogous to the errors-in-covariates
framework, where noisy observations of the current-era ana-
log covariates (in our case the principal components) can lead
to bias in the regression coefficients, inflated residual vari-
ance, and a reduction in prediction skill (Carroll et al., 2006;
Fuller, 2009; Buonaccorsi, 2010).

We compare the performance of each model specification
using MSPE, CRPS, and LOO scoring rules in our simulation
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Figure 2. Simulation study showing observed noisy historical observer data (a), the simulated true latent climate process we aim to predict
(b), the first four noisy principal components (PCs) estimated from the historical observer data (c), and the first four simulated true latent
PCs (d) that show the effect of measurement error when compared to (c). Each year of the historical observer period in the simulation study
in (a) and (b) is assigned a different color and the historical observer period observations (a) are clustered in space, changing in sample size
through time, and noisier than the latent temperature in (b). Both the noisy (c) and latent (d) PCs increase in variability as the number of
the component increases, but the latent PCs are smoother. The first PC is in black, the second PC is in blue, the third PC is in green, and the
fourth PC is in red.

Table 1. Simulation experiment scores. Smaller values indicate better model performance.

MSPE CRPS LOO

Model Gaussian Robust Gaussian Robust Gaussian Robust

SSVS PCR 0.379 0.380 199 194 2917 2901
SSVS pPCR 0.403 0.404 206 205 2920 2919

LASSO PCR 0.508 0.456 217 205 2970 2934
LASSO pPCR 0.398 0.397 206 205 2918 2918

where the best model is the one with the smallest score. We
fit the PCR and pPCR models using SSVS and LASSO regu-
larization with both the Gaussian and robust Student’s t data
models, comparing eight models with the results displayed
in Table 1. Across scores, the models perform similarly, with
no consistently best model, although the robust models gen-
erally have lower scores than the Gaussian models. The LOO
Pareto tail parameter estimates for the robust models show
less evidence of misspecification than the traditional Gaus-
sian data models (figure not shown) and the pPCR models
have consistently smaller tail parameter estimates than the
PCR models, suggesting that the least misspecified models
are robust pPCR.

Predicted versus simulated temperatures for the robust
PCR and robust pPCR models using LASSO regularization
are shown in Fig. 3 with years represented using different
colors. Because the predictions for each year cluster around
the 45◦ line, this shows the models reconstruct the annual dif-
ferences accurately, which are the main features of the sim-
ulated data and of primary interest in understanding climate

change. However, the models fail to reconstruct much of the
within-year spatial variability (the humps and valleys within
a year in Fig. 2b), which is unsurprising given the small sam-
ple sizes. Despite having similar predictive scores, there are
visible differences in predictions between the two models.
The robust PCR predictions predict some of the spatial struc-
ture of the mean (the point clouds are generally centered on
the 45◦ line), but tend to have unreasonably small predic-
tive standard deviations (not shown). The robust pPCR pre-
dictions estimate a spatially averaged annual mean in years
with small sample sizes, but predict little spatial structure.
Instead, robust pPCR produces predictive standard deviation
estimates that account for uncertainty in years with very little
data.

6 Observer station data reconstruction

After exploring the model framework using a simulation
study, we applied our models to the historical observer data.
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Figure 3. Simulation truth plotted against predicted temperature for the robust PCR LASSO model on the left and the robust pPCR LASSO
model on the right. Predictions for each simulated year are given different colors and the clustering of colors represents annual-scale changes
in the mean temperature surface. Results are shown for the LASSO model and the SSVS model performs similarly.

Table 2. Historical observer reconstruction scores. Smaller values
indicate better model performance.

Full data Outlier removed

Model Gaussian Robust Gaussian Robust

SSVS PCR 7499 7183 7936 7168
SSVS pPCR 7609 7378 8033 7367

LASSO PCR 7445 7065 7935 7067
LASSO pPCR 7616 7370 8053 7352

We fit the eight models to the data and present the results
from LOO in Table 2. Examination of the LOO Pareto tail pa-
rameter plots in Fig. 4a and b identified an outlier occurring
at data point 1452, corresponding to an unrealistic mean mid-
day July temperature measurement of 42 F (7.8 ◦C). After re-
moving the outlier, we fit the models again. Interestingly, the
Gaussian model fits without the outlier showed less predic-
tive skill (larger LOO values in Table 2) and more model
misspecification (a larger tail parameter estimate in Fig. 4e
and f). The decreased performance when removing the out-
lier is explained by the influence of the outlier on the pooled
variance estimate; removing the outlier shrinks the pooled
variance estimate and the Gaussian data model is less able to
accommodate slightly outlying points with the smaller vari-
ance. For the robust models, quality of model fit was slightly
improved when fit with the outlier removed (see Table 2), but
there is little change in model misspecification as defined by
large Pareto tail parameter estimates (Fig. 4c, d, g, and h).

With the outlier removed, the best predictive models are
robust PCR and robust pPCR due to having the smallest LOO
scores (see Table 2). Based purely on LOO, it appears the

best overall predictive model is robust PCR, although the in-
creasing sample sizes through time weight the LOO score to
predictions of the most recent years. All models still show
evidence of misspecification because some Pareto tail pa-
rameter estimates are greater than 0.5 (Fig. 4e, f, g, and h),
but the removal of the outlier improved model fit in general.
Figure 4g and h suggest that the robust pPCR model might
be preferable to the robust PCR model farther back in time
because, for that time period, a much greater proportion of
Pareto tail parameter estimates are less than 0.5 in the ro-
bust pPCR model than the robust PCR model. Hence, there is
some evidence that the choice of model is dependent on the
desired inference. If inference over the entire period is de-
sired, both robust PCR and robust pPCR predict with skill. If
inference is desired on the years furthest back in time, Fig. 4
suggests that robust pPCR predictions are preferable.

To visualize our results, we plot reconstructions of 4 years
of the historical temperature surfaces using the robust PCR
model (Fig. 5) and the robust pPCR model (Fig. 6). Visual
comparison of the reconstructions illustrates differences in
the two models. The robust PCR model assumes the cli-
mate patterns in the observational data are without error;
the stronger influence of these patterns is seen in the pos-
terior predictive mean surface (Fig. 5a), particularly for year
1847. In comparison, the robust pPCR model shows less in-
fluence of these climate patterns in the posterior predictive
mean (Fig. 6a), particularly for year 1847. Because the ro-
bust pPCR model includes the assumption that some of the
pattern is noise, the reconstructions have less spatial struc-
ture in years with little data. Differences in posterior predic-
tive standard deviations are also evident (Figs. 5b and 6b),
where the robust PCR model shows reduction of uncertainty
in the spatial locations near observations and higher uncer-
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Figure 4. Historical observer station data LOO Pareto shape estimates with (a, b, c, d) and without (e, f, g, h) outlying observation. Values
less than 0.5 show good model performance and values over 1.0 show poor model performance. Note the presence of the outlier in the upper
right of (a) and (b) for observation 1452. Also evident is less model misspecification for the pPCR models (b, d, f, h) for observations furthest
back in time.
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Figure 5. Reconstruction of mean mid-day July temperature using the robust PCR model for 4 years. Figures show posterior predictive mean
(a) and standard deviation (b).

tainty away from the observations, while the robust pPCR
model has posterior predictive standard deviations that are
more spatially diffuse and perhaps more realistic given the
lack of spatial predictive ability seen in the simulation study.
The reconstructed temperature surfaces for both the robust
PCR and robust pPCR models for every year are included in
the Supplement.

By using the spatial structure in the current-era analog
data, we generated temperature predictions at unobserved
locations with corresponding uncertainties. We chose four
locations, Champaign, Illinois, Detroit, Michigan, Madison,
Wisconsin, and Minneapolis, Minnesota, and show the time
series of temperature predictions in Fig. 7a. From these time
series, we see smaller standard deviations for the years with

more historical observer period observations (sample sizes
are shown in Fig. 7b), with greater uncertainty the further we
go back in time. We can also see a general trend for the stan-
dard deviations of the robust PCR model to be smaller than
the robust pPCR model (the red intervals are more often in-
side the blue intervals). The robust PCR model is also more
likely to have structure in the mean that may not be warranted
when the sample size is low (i.e., the spike at Champaign
and Detroit that is not present in Madison or Minneapolis in
1847 and 1848 with sample sizes of 3). The two models show
evidence of a bias/variance trade-off, with the robust PCR
tending toward spatially structured predictions with smaller
variance and the robust pPCR model providing less spatially
structured predictions with larger variance.
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Figure 6. Reconstruction of the mean mid-day July temperature using the robust probabilistic PCR model for 4 years. Figures show posterior
predictive mean (a) and standard deviation (b).

40

60

80

100

40

60

80

100

40

60

80

100

40

60

80

100

Te
m

pe
ra

tu
re

50

150

250

m
t

1820 1840 1860 1880
Year

1820 1840 1860 1880
Year

C
ham

paign
D

etroit
M

adison
M

inneapolis

Model

Robust PCR

Robust pPCR

(a)

(b)

Figure 7. Posterior predictions of a time series of mid-day July temperature with associated 95 % credible intervals at Champaign, Illinois,
Detroit, Michigan, Madison, Wisconsin, and Minneapolis, Minnesota (a). The temporal change in the number of observations is shown in (b).
Note that the uncertainties in the point reconstructions are smallest in years with larger samples and largest in years with few samples. In
general, the robust pPCR credible intervals are larger than the robust PCR credible intervals. The differences in reconstruction in years 1847
and 1848 at Champaign, Illinois, and Detroit, Michigan, demonstrate the bias/variance trade-offs in predictions between the two models. The
robust PCR predictions tend toward lower variance and the robust pPCR predictions tend to lower bias with respect to the spatially averaged
annual mean mid-day July temperature.

7 Conclusions

There are many challenges inherent in modeling paleocli-
mate data. Due to the lack of direct measurements of cli-
mate, paleoclimate reconstructions must rely on sparse, noisy
proxies of climate. The nuances of paleoclimate data often
require specialized modeling techniques and careful investi-
gation into modeling assumptions and performance. In addi-
tion, care is needed to properly validate paleoclimate recon-
struction skill. In summary, we extended principal compo-

nent regression methods, applied regularization techniques
to choose important principal components, developed ro-
bust models to account for the presence of outliers, and ex-
plored the use of a probabilistic principal component model
to account for measurement uncertainty in the spatially rich
current-era analog data. By rigorously evaluating the predic-
tive skill of our models, we were able to explore our exten-
sions of PCR for climate reconstruction, laying the ground-
work for future developments with more complex climate
data than PRISM temperature surfaces. The models pre-
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sented in this paper would be good candidates for modeling
climate variables that are strongly non-stationary and non-
Gaussian (e.g., wind speed or precipitation), but these exten-
sions are the subject of ongoing research.

Within our modeling framework, we presented a simula-
tion study for evaluating paleoclimate reconstructions using
proper scoring rules. By using proper scoring rules and ex-
ploring model performance in a simulation framework, we
have stronger support for the quality of the reconstruction.
We presented three statistical scoring rules and explored their
strengths and weaknesses. MSPE is a commonly used and
easy to understand scoring rule, but is not proper in general
and only uses a point prediction, ignoring the probabilistic
inference that is gained by using Bayesian techniques. The
CRPS is proper and allows for direct comparison of point
predictions and probabilistic predictions, but requires out-of-
sample validation data or computationally expensive cross-
validation. The use of MSPE and CRPS scoring rules al-
lowed for exploration of the empirical properties of the com-
putationally efficient LOO approximation to leave-one-out
cross-validation. Our use of LOO to score the historical ob-
server period model predictions not only enabled us to per-
form model selection, but also aided in diagnosing an outly-
ing observation and refining model fit.

The methods presented in this paper could be applied
to other historical datasets at different locations around
the world, further extending the spatially explicit empirical
record of climate further back in time while rigorously ac-
counting for uncertainties. The methods we presented could
also be extended to model temperature and precipitation for
each month of the year by including a seasonal component
in the calibration model and by modeling dynamics at ap-
propriate timescales. There are many datasets that could be
used within this framework as the current-era analog, includ-
ing modern satellite data. The different options of current-
era analog datasets present a trade-off between the number
of records available as analogs and the quality of the data.
If there are occasionally rare climate processes that occur, it
seems that a longer record of climate analogs would be pre-
ferred. If the climate processes are relatively stable in time
but vary highly in space, a shorter and more precise modern
dataset that is not model interpolated might be preferred. In
addition, use of highly precise current-era analog data could
reduce or eliminate the need to account for measurement er-
ror in the current-era analog data.

Ultimately, our temperature reconstructions extend the cli-
matological record in the Upper Midwestern US further into
the past. These temperature reconstructions, with their asso-
ciated uncertainties, can be used to gain better understanding
of the influences of climate on the biological and ecological
processes observed in the region. By backcasting mean mid-
day July temperature with our models, we gain the poten-
tial to better understand how climate has changed, and this
knowledge could be used to improve future climate recon-
structions. Many of the techniques and methods we used –

modeling principal components with a probabilistic model,
hierarchical pooling to borrow strength among years with
sparse and dense data, model selection and regularization,
and proper model evaluation – can be adapted and used in
future climate reconstruction problems.

8 Data availability

The historical observer data are available from http://
www.isws.illinois.edu/atmos/clirecord.asp and the current-
era analog data are available from http://www.prism.
oregonstate.edu/. Compiled data and code can be ac-
cessed on gitHub at https://github.com/jtipton25/observer
(doi:10.5281/zenodo.242996).

The Supplement related to this article is available online
at doi:10.5194/ascmo-3-1-2017-supplement.
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