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Abstract. The goal of the attribution of individual events is to estimate whether and to what extent the proba-
bility of an extreme climate event evolves when external conditions (e.g., due to anthropogenic forcings) change.
Many types of climate extremes are linked to the variability of the large-scale atmospheric circulation. It is
hence essential to decipher the roles of atmospheric variability and increasing mean temperature in the change
of probabilities of extremes. It is also crucial to define a background state (or counterfactual) to which recent
observations are compared. In this paper we present a statistical framework to determine the dynamical (linked
to the atmospheric circulation) and thermodynamical (linked to slow forcings) contributions to the probability of
extreme climate events. We illustrate this methodology on a record precipitation event that hit southern United
Kingdom in January 2014. We compare possibilities for the creation of two states (or “worlds”) in which proba-
bility change is determined. These two worlds are defined in a large ensemble of atmospheric model simulations
(Weather@Home factual and counterfactual simulations) and separate periods (new: 1951–2014, and old: 1900–
1950) in reanalyses and observations. We discuss how the atmospheric circulation conditioning can affect the
interpretation of extreme event attribution. We eventually show the qualitative coherence of results between the
choice of worlds (factual/counterfactual vs. new/old).

1 Introduction

Many extreme events that occur on a local scale are spe-
cific to large-scale atmospheric patterns (e.g., rainfall, wind-
storms, heatwaves in Europe, and phases of the North At-
lantic Oscillation). If such links have been identified, changes
in the probability of local extremes can be due to changes in
the properties of the atmospheric circulation or changes in
the link between the local variable and the circulation (which
can remain unchanged). The first cause is sometimes quali-
fied as “dynamic” because it refers to the motion of the atmo-
sphere. The second cause is qualified as “thermodynamic”
(or “non-dynamic”), because it implicitly assumes that the
local variable is related to the local change of atmospheric
physical properties (e.g., temperature, water content) in the
absence of flow changes (Trenberth et al., 2015).

The extreme event attribution (EEA) consists of estimating
if and how the probability of an extreme event depends on the
climate forcings (National Academies of Sciences Engineer-
ing and Medicine, 2016). One of the outcomes is the assess-
ment of whether anthropogenic forcings alter such probabil-
ity. This type of study has been used for estimates of liability
for extreme events that caused damages (Allen, 2003).

The first scientific challenge of EEA is to define two
worlds to be compared. The EEA studies speak of a factual
world when all climate forcings (natural and anthropogenic)
are considered (Stott et al., 2004; Pall et al., 2011). This is
presumably a world that “is”, and in which an event is ob-
served with probability p1. The counterfactual world con-
tains only natural forcings, and is a world that “might have
been” without anthropogenic forcings. In such a world, the
same class of extreme event would occur with probability
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p0. Defining a counterfactual world is a difficult task be-
cause it is a possible but non-observed state of climate. Then,
some studies define the fraction of attributable risk (FAR),
which is the relative change of probability between the two
worlds FAR≡ (p1−p0)/p1 = 1−p0/p1 (Stott et al., 2004).
Other combinations of the p0 and p1 probabilities also pro-
vide pieces of valuable information (Hannart et al., 2016) in
the framework of causality theory (Pearl, 2009). The FAR is
interpreted in terms of a probability of necessary causation.
A probability of sufficient causation is defined by 1− 1−p1

1−p0
.

An alternative approach to factual/counterfactual worlds
can be proposed, as in van Haren et al. (2013): a “new” world
in which we live, like the recent decades, and an “old” world
in which our ancestors lived, like the beginning of the 20th
century. We implicitly assume that these two worlds are dif-
ferent (at least from the environmental point of view). For
instance, the anthropogenic forcings are likely to be stronger
in the new world than in the old world. The main feature of
this approach is that it can be based on observed data. It is
difficult to decipher the natural and anthropogenic forcings
between old and new. Moreover, the old world might not be
free of anthropogenic forcings. It is just assumed that the old
world is less affected than the new world by anthropogenic
forcings. Therefore, such an observation-based approach can
only provide qualitative information on EEA, from implicit
hypotheses in the forcing changes, like “greenhouse gas forc-
ing” is larger in the new world than in the old world.

Each of these two approaches can be summarized in terms
of a universe containing two worlds (factual/counterfactual
or new/old) in which probabilities of extreme events are de-
termined.

A second challenge is to determine the dynamical and
thermodynamical contributions to the change of probabili-
ties of a class of events. We assume that extreme values of
a climate variable are generally reached for given patterns
of atmospheric circulation. The challenge is (i) to estimate
the contribution of atmospheric variability in climate change,
and (ii) to determine how the properties of a local climate
variable would change if the atmospheric circulation is fixed
to these patterns but forcings (natural vs. anthropogenic) are
different. This is advocated by a “storyline” approach to de-
scribe a class of extreme events, by understanding the gen-
eral synoptic conditions leading to the extremes (Trenberth
et al., 2015; Shepherd, 2016). The storyline approach is de-
signed to decompose the role of climate change in the dy-
namical and thermodynamical contributions. From a statisti-
cal point of view, this motivates the term “conditional attribu-
tion”; we investigate how the probability of a local extreme
event that depends on a large-scale atmospheric circulation
is affected by global climate change or the properties of the
circulation itself. If we focus on precipitation extremes, the
issue is to evaluate changes in atmospheric flows leading to
high precipitation (the dynamical contribution) and changes
in precipitation rates given a favorable atmospheric flow (the

conditional thermodynamical contribution) (Trenberth et al.,
2015). This requires one to define a metric to follow the at-
mospheric circulation conditioning. We propose two choices
of such metrics and evaluate how they affect the interpreta-
tion of extreme event attribution.

The primary goal of this paper is to propose a statis-
tical Bayesian framework to identify dynamical and ther-
modynamical contributions to a change of probability of
a class of extreme events involving the atmospheric circu-
lation. The Bayesian aspect emphasizes the role of atmo-
spheric circulation trajectories that drive extreme events. For
illustration purposes, we focus on the heavy precipitation
event that occurred in Europe in January 2014, which has
been investigated by many authors (Huntingford et al., 2014;
Matthews et al., 2014; Christidis and Stott, 2015; Schaller
et al., 2016). This event was a record precipitation in southern
UK and Brittany (France). We test this statistical framework
on a combination of two universes (factual/counterfactual
and new/old) and two atmospheric circulation metrics. These
four experiments allow for a focused discussion on the inter-
pretation of extreme event attribution.

Section 2 details the datasets that are used to define two
worlds. Section 3 explains the notation and methodology that
is developed in the paper. Section 4 gives the results of the
analyses from the two datasets. The results are discussed in
Sect. 5 and conclusions appear in Sect. 6.

2 Data

This section explains the two universes that are considered
in this study. The first one is based on a large ensemble of
climate simulations. The second is based on reanalyses and
observations.

2.1 Weather@Home

We used an ensemble of atmospheric model simulations from
Weather@Home to test factual vs. counterfactual worlds.
The Weather@Home data come from the “weather@home”
citizen-science project (Massey et al., 2015). This project
uses spare CPU time on volunteers’ personal computers to
run the regional climate model (RCM) HadRM3P nested
in the HadAM3P atmospheric general circulation climate
model (AGCM) (Massey et al., 2015) driven with prescribed
sea surface temperatures (SSTs) and sea ice concentration
(SIC). The RCM covers Europe and the eastern North At-
lantic Ocean, at a spatial resolution of about 50 km. These
simulations were used by Huntingford et al. (2014) and
Schaller et al. (2016) to investigate the impact of climate
change on the extreme precipitation of January 2014 in
southern UK.

The factual world is made of ≈ 17 000 winters
(December-January-February: DJF) simulated under
observed 2013/2014 greenhouse gas (GHG) concentrations,
SSTs and SICs. Initial conditions are perturbed slightly for
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each ensemble member on 1 December to give a different
realization of the winter weather.

The counterfactual world is made of ≈ 117 000 simula-
tions with different estimates of conditions that might have
occurred in a world without past emissions of GHGs and
other pollutants including sulfate aerosol precursors. The at-
mospheric composition is set to the pre-industrial, the max-
imum well-observed SIC is used (DJF 1986/1987) and esti-
mated anthropogenic SST change patterns are removed from
observed DJF 2013/2014 SSTs (Schaller et al., 2016). To ac-
count for the uncertainty in the estimates of a world without
anthropogenic influence, 11 different patterns are calculated
from climate model simulations of the Coupled Model Inter-
comparison Project phase 5 (CMIP5) (Taylor et al., 2012).

The circulation C is taken from the sea-level pressure
(SLP) data of the RCM simulations. The climate variable
R is the southern UK precipitation averaged over land grid
points in 50–52◦ N, 6.5◦W–2◦ E. Simulated R for the factual
ensemble members with the wettest 1 % are comparable to
observations of January 2014. The mean climate of the RCM
has a wet (positive) bias of +0.4 mm day−1 in January over
southern UK (Schaller et al., 2016) but most RCM simula-
tions for January 2014 show smaller anomalies than in the
observations reported by Matthews et al. (2014), and show
a weaker SLP pattern for the same precipitation anomaly.
On average, the factual simulations reproduce a stronger
jet stream, compared to the 1986–2011 climatology of Jan-
uary 2014 in the North Atlantic, suggesting some potential
predictability for the enhanced jet stream of January 2014
(Schaller et al., 2016). The differences in SSTs, SICs and at-
mospheric composition between the two sets of simulations
lead to an increase (from the counterfactual to factual) of up
to 0.5 mm day−1 in the wettest 1 % ensemble members for
January southern United Kingdom precipitation.

2.2 Reanalyses and observations

The comparison of old vs. new worlds was performed with
two reanalysis datasets. We consider the circulation C from
the SLP over the North Atlantic region (80◦W–50◦ E; 25–
70◦ N) for both reanalyses. The new world is made of the
National Centers for Environmental Prediction (NCEP) re-
analysis data for the winters (December to February) be-
tween 1951 and 2014 (Kalnay et al., 1996). The old world
is made of the 20CR reanalysis dataset for the winters be-
tween 1900 and 1950 (Compo et al., 2011). The reason why
both reanalyses need to be considered is that 20CR ends in
2011 and hence does not include the winter 2013/2014, in
which we are interested, for the case study of Schaller et al.
(2016). A few tests on the statistical properties of the circula-
tion in both reanalyses were performed on their overlapping
period (Schaller et al., 2016). It appears that in spite of us-
ing different climate models and with different resolutions,
both reanalyses exhibit similar features. This means that the
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Figure 1. Time series of January cumulated observed precipitation
in southern United Kingdom between 1900 and 2014 (in mm). The
red dot indicates the value of R for January 2014.

shift from the old world (with 20CR) to the new world (with
NCEP) is rather smooth.

The precipitation R is taken from daily precipitation ob-
servations from the UK Met Office (Matthews et al., 2014)
between 1900 and 2014. The dataset consists of observa-
tions from 14 stations in the southern UK. These stations
include Oxford, Rothamsted, Wisley, Bognor Regis, Cam-
bridge, Eastbourne, East Malling, Goudhurst, Hampstead,
Hampton, Larkhill, Otterbourne, Shanklin (Isle of White)
and Woburn. The variable R is an average of daily values of
these 14 stations. We verify that a record of January monthly
precipitation was reached in 2014 (Fig. 1).

3 Methodology

3.1 Notations and rationale

We assume that a climate variable R (e.g., temperature, pre-
cipitation) and atmospheric circulation C (e.g., SLP, geopo-
tential height at 500 hPa) are observed in a universe that con-
tains two distinct worlds that we call W0 and W1. Here,
R is a real variable and C is a two-dimensional field. For
the first universe, W1 is the “factual” world and W0 is the
“counterfactual” world. This universe is represented by the
Weather@Home ensemble. In the second universeW1 is the
new world and W0 is the old world. This universe is rep-
resented by the NCEP (1951 to 2014) and 20CR (1951 to
2014) reanalyses, and observed precipitation. We specify in
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the text the universes to which the worldsWi belong, in order
to avoid unnecessarily complicated notations.

We recall that the W1 worlds (in the two universes) are
close to the one in which we live, either in terms of an-
thropogenic/natural climate forcings or in terms of tempo-
ral proximity (e.g., the last decades). TheW0 worlds contain
only natural climate forcings, or temporal remoteness (e.g.,
beginning of 20th century: 1900–1950 vs. recent decades:
1951–2014).

We define an extreme event (in either worlds and uni-
verses) when a reference threshold Rref for R has been
equalled or exceeded. A “class of events” includes the en-
semble of weather types for which the threshold can be
equalled or exceeded. In this paper, we assume that such an
extreme event is reached during a spell of atmospheric circu-
lation Cref in the worldW1.

The goal of extreme event attribution is to determine how
the probability of an extreme event differs between W1 and
W0. Achieving this goal is trivial if a rare event can occur
in one of the worlds and cannot in the other. In practice, this
does not happen for most extreme events that have occurred
in the past decades, because there are often historical exam-
ples of such events (e.g., most European winter storms, Eu-
ropean heatwaves). Thus, we assume that a given extreme or
rare climate event has a probability of occurrence p1 in W1,
and p0 inW0.

The probabilities p1 and p0 are defined by

pi = Pr(R(i) >Rref), (1)

where R(i) is the climate variable R in the Wi world, and
i ∈ {0,1}.

For obvious pragmatic reasons, we can assume that p1 >

0, because we want to study an event that was observed in the
real world. In addition, p1 can be fixed to a quantile of the
probability distribution of R in W1. Here we take p1 = 0.01
to be consistent with (Schaller et al., 2016). This could be in-
terpreted in a one-in-a-century event if the data have a yearly
sampling. This defines a class of events (here high values of
R). Therefore, there is no uncertainty in the determination of
p1. The uncertainty is shifted to the estimate of Rref fromW1
data (if 1/p1 is larger than the size ofW1), and in p0.

We want to estimate the ratio p0/p1, determine its uncer-
tainty and investigate how it is controlled by physical factors.
These physical factors include changes in the probability dis-
tribution of the circulation C between W1 and W0 and the
changes in the probability distribution of R if C is similar
in W1 and W0. We introduce the notion of vicinity of cir-
culation trajectories, or the neighborhood V of an observed
circulation Cref. The trajectory neighborhood will be defined
in two ways: from the distance to a known weather regime
(Sect. 3.3.1), which is computed independently of the event
itself, or from the distance to the observed trajectory of cir-
culation (Sect. 3.3.2).

3.2 A conditional formulation of extreme event
attribution

The probabilities pi(i ∈ {0,1}), which represent the marginal
probability that the climate variable R(i) exceeds a thresh-
old Rref (unconditional on the circulation) in world Wi , can
be decomposed into a product of conditional probabilities
involving the atmospheric circulation C(i) ∈ V(Cref) using
rules of probability (Bayes’ formula) as follows:

pi ≡ Pr(R(i) >Rref) = Pr(R(i) >Rref|C(i) ∈ V(Cref))
×Pr(C(i) ∈ V(Cref))

/Pr(C(i) ∈ V(Cref)|R(i) >Rref). (2)

The three terms of the right-hand side of Eq. (2) can be
computed from data in the two worldsWi .

The ratio ρ = p0/p1 is then decomposed into three terms
that can yield physical interpretations. The first one is the
thermodynamical change between the two worlds for a given
circulation:

ρthe
≡

Pr(R(0) >Rref|C(0) ∈ V(Cref))
Pr(R(1) >Rref|C(1) ∈ V(Cref))

. (3)

In this term, the circulation is fixed to one that is close toCref,
and changes of the probability of R are due to causes such as
an increased temperature (increasing the water availability in
the atmosphere, Peixoto and Oort, 1992). If the Cref pattern
is prone to high precipitation, this conditional term allows for
a closer focus on the tail of the distribution of R.

The second term accounts for changes in the patterns of the
atmospheric circulation and is hence called “circulation”:

ρcirc
≡

Pr(C(0) ∈ V(Cref))
Pr(C(1) ∈ V(Cref))

. (4)

It is important to note that Cref is the same in the numerator
and denominator. The circulation term measures the change
of likelihood of observing circulation sequences that look
like Cref.

The third term is a reciprocity condition for the circulation
trajectory C:

ρrec
≡

Pr(C(1) ∈ V(Cref)|R(1) >Rref)
Pr(C(0) ∈ V(Cref)|R(0) >Rref)

. (5)

This term determines the extent to which the circulation
Cref is necessary when R > Rref. For a fixed Rref precipita-
tion rate, it evaluates how likely a circulation such as Cref
is. This reciprocity term allows one to connect the risk-based
approach of EEA, based on the study of ρ alone (Shepherd,
2016) to the “storyline approach” (Trenberth et al., 2015;
National Academies of Sciences Engineering and Medicine,
2016), which involves the processes that drive the extreme
precipitation.

The product ρdyn
≡ ρcirc

×ρrec defines the dynamical con-
tribution of the atmospheric change to the precipitation ex-
treme conditional to a fixed thermodynamics. The reciprocity
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term explores the extent to which the circulation is close to
the observed one when the cumulated precipitation is high.
This multiplicative decomposition of probabilities can be
compared with the “additive” decomposition of Shepherd
(2016, Eq. 1), who also introduces a non-dynamical term.
Our decomposition allows for the fact that the probability
distribution of R and C could remain unchanged between
W0 andW1, while the physical link between these variables
evolve in compensating ways; the probability of having a
high R when C is close to Cref could decrease and the prob-
ability of having C close to Cref when R is high could in-
crease.

Sampling uncertainties on these three ratios can be deter-
mined by bootstrapping over the elements ofWi .

The estimation procedure is the following:

1. determine p1 (for example a century return period) and
an empirical Rref (for example fromW1);

2. determine the neighborhood of Cref (for example from
the monthly frequency of a weather regime);

3. determine ρthe, ρcirc, ρrec and their sampling distribu-
tion for the two worlds, for example by bootstrapping
over Wi . The bootstrap is done by repeating random
samples of seasons so that the intra-seasonal coherence
is preserved.

We then assess whether ρthe, ρcirc and ρrec are significantly
different from 1 by comparing their sampling distributions.
We denote ρ̄ the estimate of each ratio from all data. The 5th
and 95th quantiles (ρ̂5 % and ρ̂95 %, respectively) of the boot-
strap simulations provide an interval of the sampling confi-
dence interval (ρ̄− (ρ̂95 %

− ρ̄), ρ̄− (ρ̂5 %
− ρ̄))

We will illustrate this approach on the high precipitation
event of the winter 2013/2014 in southern UK.

3.3 Circulation neighborhood

In this section, we propose two ways of defining the neigh-
borhood of the circulation Cref. This has an impact on the
computation of the thermodynamical and dynamical terms
of the decomposition of ρ.

3.3.1 Proximity based on weather regimes

High winter precipitation in Europe is generally associated
with zonal atmospheric circulation. The circulation around
the North Atlantic can be described by four weather regimes,
which are quasi-stationary states of the atmosphere (Vautard
et al., 1988; Kimoto and Ghil, 1993; Michelangeli et al.,
1995). These weather regimes are obtained by a K means
classification of anomalies of the winter SLP daily field
from the NCEP reanalysis (Michelangeli et al., 1995; Yiou
et al., 2008) on a reference period (1970–2000). The weather
regime centroids are shown in Fig. 2.

The weather regimes of the 20CR reanalysis are the same
as for NCEP, as well as the regime frequencies (Schaller
et al., 2016, supplementary Fig. 7). After a removal of the
mean, the SLP of Weather@Home simulations is projected
onto these reference centroids to compute the weather regime
frequencies. This is done to ensure the consistency of the in-
terpretation of the regime frequencies.

The frequencies of the weather regimes are computed
for each winter season (December-January-February). Very
wet winters in the UK or northwestern France occur when
the frequencies of zonal (ZO) or negative phase of the
North Atlantic Oscillation (NAO−) weather regimes are high
(≥ 75 %). This threshold duration roughly corresponds to
the 97th quantile of frequency for the zonal (ZO) regime
in Weather@Home simulations. This allows one to have a
non-zero probability of Pr(C(i) ∈ V(Cref) for the ZO regime
in both reanalysis worlds.

The average frequency of the zonal weather regime is
close to 25 % and the frequency reached 81 % in Jan-
uary 2014. The two other weather regimes (Scandinavian
blocking and Atlantic Ridge) do not lead to very high precip-
itation rates in southern UK. The zonal weather regime fa-
vors warm temperatures in Europe, while NAO− favors cold
temperatures (Yiou and Nogaj, 2004; Cattiaux et al., 2010).

The atmospheric trajectories can then be tracked by daily
sequences of weather regimes. We summarize the informa-
tion of a trajectory over a whole winter season (or a sin-
gle winter month) by the frequencies of the four weather
regimes. Hence, if Cref was mainly zonal (as was the win-
ter of 2013/2014), we will say that the circulation C is in
the neighborhood of Cref (C ∈ V(Cref)) if the frequency of
the zonal weather regime exceeds 75%. This definition obvi-
ously oversimplifies the notion of circulation neighborhood,
but it gives an intuitive and qualitative understanding of the
atmospheric circulation. This approach is also taken for con-
sistency with the study of Schaller et al. (2016).

3.3.2 Proximity based on analogues of circulation

The computation of weather regimes provides an intuitive
and physical interpretation of the atmospheric circulation
patterns. But the atmospheric flow trajectories that are con-
sidered are, by construction, just closer to one of the weather
regime centroids than the others, and not necessarily close to
the circulation that prevailed during the event, which could
be atypical in terms of weather regimes. Hence, we also ex-
plore the atmospheric circulation with analogues, which ex-
ploit explicitly a distance to a reference observed circulation
pattern sequence.

If C(d) is the SLP during some day d, the analogues of
C are the days dk in a different year, for which the Eu-
clidean distance d(C(d),C(dk)) is minimized. This defines
analogues of circulation, based on SLP. Here we consider
the North Atlantic sector (80◦W–50◦ E; 25–70◦ N) to com-
pute the distance between two SLP patterns, as in Yiou et al.
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Figure 2. Four winter (DJF) weather regimes of the North Atlantic, computed from the SLP anomalies (in hPa) of NCEP reanalysis.
(a) Atlantic Ridge (AR); (b) NAO−; (c) Scandinavian blocking (BLO); (d) zonal (ZO). The red circles indicate the region where high
precipitation was observed.

(2013). We take theK = 20 best analogues of circulation for
each day.

A justification to use analogues of circulation to describe
the January 2014 atmospheric circulation comes from the
fact that the SLP had a rather unusual pattern, which did
not have all the characteristics of the zonal weather regime
shown in Fig. 2. We illustrate this in Fig. 3 with the mean
of analogues from W0 (1900–1950 in 20CR; Fig. 3c) and
W1 (1950–2014 in NCEP; Fig. 3d). The mean SLP yields
a rather steep gradient over UK and France. This steep SLP
gradient is better reproduced in the analogue mean than in
the ZO weather regime.

A heuristic way to define the neighborhood of the trajec-
toryCref (e.g., a sequence ofC(d) with days in January 2014)
is to compute the mean (over the days) of a quantile of the
distances of the best analogues ofK . This value can be mod-
ulated by a “safety” factor to ensure that there are enough
trajectories around Cref to construct statistics. This defines
a neighboring “tube” around Cref in the SLP phase space.

This threshold is computed from the analogues ofCref in Jan-
uary 2014 for the NCEP reanalyses (1950–2014, excluding
January 2014) and gives a value of ≈ 12 hPa for a median
quantile of the K = 20 best daily analogues and a safety fac-
tor of 1.5.

In addition to a definition of proximity, we use the dates
of the best SLP analogues simulated reconstructions of cli-
mate variables. Here we focus on precipitation R. From a
statistical perspective, the analogue precipitation is random
“replicates” of the precipitation at the day conditioned by the
atmospheric circulation. This allows for a determination of
the probability distributions of precipitation (R) variability
conditioned to the atmospheric circulation C.

Analogues of C and R provide a natural way of comput-
ing the probabilities in Eq. (2). We compute this estimate
from the reanalysis datasets (W0 = 20CR andW1 = NCEP).
By contrast, we test the null hypothesis H0 that circulation
does not play a role in the high precipitation rate by com-
puting the probability distribution of cumulated precipitation
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Figure 3. The mean SLP of January 2014 (in hPa) for (a) NCEP reanalysis (b) ZO weather regime computed from NCEP (Fig. 2d); (c) Mean
of analogues in 20CR (1900–1950,W0); (d) Mean of analogues in NCEP (1950–2014,W1). The red circles indicate the region where high
precipitation was observed.

in January when random days are drawn inW0 = 20CR and
W1 = NCEP. Hence, the null hypothesis H0 provides an es-
timate of the probability distribution of cumulated random
precipitation for January months. We use a Kolmogorov–
Smirnov test (von Storch and Zwiers, 2001, p. 81) to ex-
amine the difference between the H0 distribution and the
circulation-dependent precipitation distribution. We decide
to reject H0 at the 1 % level. When comparing the first and
second (and third and fourth) box plots, Fig. 4 emphasizes
the rejection of this null hypothesis because the distribution
of analogue cumulated precipitation probabilities are signifi-
cantly higher than for random days. In both cases (NCEP and
20CR), H0 is rejected with a level far below 1 %.

The ρ term is estimated by random resampling of daily
R values in January and computing a monthly average. The
probability distribution simulations of R in January 2014 for
circulation analogues in W0 = 20CR and W1 = NCEP are
shown in Fig. 4. For comparison purposes, mean precipi-
tation taken from random days in the two worlds are also

shown, to emphasize the role of the circulation in the high
precipitation event in January. By comparing the second and
fourth box plots, Fig. 4 shows a slight increase of the proba-
bility of having high precipitation in the new world with re-
spect to the old world. The uncertainty on ρ can be estimated
from these box plots.

The thermodynamical term is estimated from probabilities
of R for analogues of Cref inW1 andW0. The first step is to
compute analogues of Cref (the circulation in January 2014)
in the two reanalysis datasets. For each day d of January
2014, we draw random circulation analogues inW1 andW0,
and keep the sequence of their dates. Then we compute the
sum of the analogue R for January 2014. By repeating this
procedure, we obtain a Monte-Carlo estimate of the prob-
ability distributions of R > Rref conditional to Cref for the
old and new worlds. This procedure is similar to the static
weather generator based on analogues described by Yiou
(2014). This procedure allows one to estimate the probabil-

www.adv-stat-clim-meteorol-oceanogr.net/3/17/2017/ Adv. Stat. Clim. Meteorol. Oceanogr., 3, 17–31, 2017
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Figure 4. Box plots of cumulated precipitation simulations (in
mm month−1) from circulation analogues of January 2014 from
20CR (1900–1950) and NCEP (1951–2014). The NCEP H0 and
20CR H0 box plots of precipitation are taken from random days in
January in 20CR and NCEP (rather than analogues). The horizon-
tal thick dashed line is the observed value for January 2014. The
horizontal thin dashed line is the 99th quantile of DJF monthly pre-
cipitation. The box plot lines indicate the 25th (q25), median (q50)
and 75th (q75) quantile (boxes). The upper whiskers classically in-
dicate min(1.5× (q75− q25)+ q50,max(R)). The lower whiskers
have a conjugate formula for low values.

ity distribution of ρthe. In this study, we produce N = 1000
random samples of C and corresponding R.

The dynamical term ρdyn is obtained by dividing ρ by ρthe

(and using the Bayes formula). This procedure does not give
an easy access to the circulation and reciprocity terms be-
cause it samples the vicinity of Cref, not all the possible tra-
jectories of SLP, including those which are not close to Cref.

4 Results

4.1 Weather@Home

The daily SLP anomalies of the model simulations were clas-
sified onto the NCEP reanalysis weather regimes of Fig. 2.
For each month, the four weather regime frequencies were
computed.

For simplification we pooled all W0 simulations, un-
like Schaller et al. (2016), who investigated each ensem-
ble of counterfactual simulations separately. For each of the
weather regimes (Atlantic Ridge: AR; zonal: ZO; NAO−;
Scandinavian blocking: BLO), we determined the condi-
tional probability distribution of January precipitation in
southern UK when a weather regime frequency exceeds 75 %
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Figure 5. January precipitation probability distribution (box
plots) conditional to winter weather regimes exceeding 75 % in
Weather@Home simulations (a:W1 factual world; b:W0 counter-
factual world). The thin dashed horizontal line is the 99 % quantile
of theW1 (factual) Weather@Home simulations. The thick dashed
horizontal line is the observed precipitation value for January 2014.

of the month. Figure 5 shows that only ZO and NAO−
weather regimes reach the record values observed in January
2014, forW0 andW1. A dominant zonal weather regime ob-
viously increases the probability of high precipitation in the
winter, although extreme precipitation can also be reached
with the NAO− pattern. A visual comparison of the two pan-
els of Fig. 5 suggests that the probability of exceeding the
99th precipitation quantile inW1 slightly increases fromW0
toW1, because the upper whiskers of the box plots increase.
This visual impression is quantified by the analysis proposed
in Sect. 3.2. The fact that precipitation can reach higher val-
ues in the counter factual world (Fig. 5b) is due to the fact
that W0 contains approximately 7 times more simulations
thanW1.

Figure 5 shows that the North Atlantic circulation patterns
are discriminating for heavy precipitation in southern UK.
Hence, we focus on the zonal and NAO− atmospheric pat-
terns to compute the probability changes.

The difference of high precipitation distribution be-
tween W0 and W0 is determined by quantile–quantile plots
for each weather regimes (Fig. 5). This quantile–quantile
plot can only be obtained for a large ensemble such as
Weather@Home, which effectively sample persisting atmo-
spheric patterns and high precipitation. Such a diagram can-
not be obtained for observations, which do not yield a suffi-
cient number of data over the 20th century.
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Figure 6. Quantile–quantile plots of January precipitation (in mm month−1) probability distributions between counterfactual (W0) and
factual (W1) worlds in Weather@Home simulations, for each weather regime (a: Atlantic Ridge; b: zonal; c: NAO−; d: Scandinavian
blocking). The continuous line is the first diagonal. The thick dashed lines indicate the observation in January 2014. The thin dashed line
indicates the 99th quantile of observed January precipitation.

Figure 6b shows that W1 simulations are generally wet-
ter than W1 for the zonal weather regime, apart from one
extreme exception. The precipitation distributions are rather
similar for the NAO− weather regime, albeit for an extreme
value that far exceeds the observed record (Fig. 6c). The two
weather regimes (Atlantic Ridge and Scandinavian blocking)
hardly reach the value of the 99th quantile of observed pre-
cipitation. Figure 6 hence justifies a posteriori our methodol-
ogy to compare the tails of the distributions of precipitation
totals. The remainder of the paper focuses on the circulation
patterns for which precipitation is likely to exceed the 99th
quantile of observations.

The ρ ratios were computed from the (≈ 17 000) fac-
tual and (≈ 117 000) counterfactual Weather@Home simu-
lations. Since p1 is fixed to be 0.01 (for a return period of 1
century), the spread of ρ stems from the uncertainty on p0
that is computed over the pooled counterfactual simulations
(although, strictly speaking, Rref uncertainty depends on the

bootstrap sample from W1). The distribution of ρ is signifi-
cantly different from 1, with a mean value ρ̄ = 0.71 (Fig. 7,
“all” box plot). This indicates an increase of the probabil-
ity of heavy precipitation in W1 with respect to W0, with a
fraction of attributable risk (FAR= 1−p0/p1) of 0.29. This
probability ratio can be decomposed for the ZO and NAO−
weather regimes. The estimates of ρthe, ρcirc and ρrec for the
ZO and NAO−weather regimes are shown in Fig. 7. By con-
struction, the products of the mean values recover the mean
value of ρ (all box plot).

The three mean ratios (ρ̄the, ρ̄circ and ρ̄rec) are signifi-
cantly different from 1 for the zonal regime (ρ̄the

≈ 0.63,
ρ̄circ
≈ 0.78 and ρ̄rec

≈ 1.45). The ρthe < 1 is interpreted by
an increase of precipitation from W0 to W1 given the same
weather regime flow. ρcirc < 1 reflects an increase of the fre-
quency of zonal patterns inW1 with respect toW0. ρrec > 1
reflects that large precipitation amounts occur more often
during episodes of zonal circulation.
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Figure 7. Changes in probability ratios from weather regimes in
Weather@Home simulations. The probability ratios (vertical axes)
are shown on a logarithmic scale. The horizonal dashed lines show
the reference ρ = 1 line. The dynamical contribution is the product
of the circulation and reciprocity contributions. The upper panel is
the conditional probability ratios for the zonal regime. The lower
panel is for the NAO− regime. The thick horizontal segment repre-
sents the estimated ratio ρ̄ from all available data. The boxes repre-
sent the bootstrap confidence 90 % intervals (ρ̄− (ρ̂95 %

− ρ̄), ρ̄−
(ρ̂5 %

− ρ̄)), where ρ̂5 % and ρ̂95 % are respectively the 5th and 95th
quantiles of the bootstrap samples.

The NAO− yields a quite different picture, although it can
lead to wet winters in southern UK (Fig. 5). The ρthe ratio is
not distinguishable from 1 and has a large variability. There-
fore, it cannot be concluded that this weather regime has a
significant thermodynamic contribution to changes of heavy
precipitation rates. ρ̄circ > 1 means that the mean January
precipitation rate decreases for NAO− from W0 to W1. The
reciprocity ratio ρ̄rec is lower than 1, meaning that NAO− is
less likely during episodes of high precipitation. This means
that the NAO− regime becomes less frequent and less rainy,
in contradistinction to the zonal regime.

An analogue-like approach was used to estimate the ρ
decomposition from the Weather@Home data. The dis-
tance between the January 2014 SLP in NCEP and each
Weather@Home simulation was computed, as the average
of daily SLP distances. Then the neighborhood of Cref =

CJan.2014 is defined when this average distance is lower than a
threshold estimated from analogues of NCEP data. The value
of the threshold is 1.5 times the average (over January 2014)
of the median of the distances of the 20 best daily analogues.
This leads to a threshold value of 12 hPa and defines the “cir-
culation tube” of Sect. 3.3.2. In this way, the conditional
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Figure 8. Changes in probability ratios from the analogue ap-
proach in Weather@Home simulations. The probability ratios (ver-
tical axes) are shown on a logarithmic scale. The horizonal dashed
lines show the reference ρ = 1 line. The dynamical contribution
is the product of the circulation and reciprocity contributions. The
boxes yield the same convention as in Fig. 7.

probabilities (and their sampling distributions) can be esti-
mated by bootstrapping. The sampling distribution of each
probability ratio are shown in Fig. 8.

We see that the thermodynamical contribution is very sim-
ilar to the one of the zonal circulation pattern in Fig. 7, but the
dynamical contribution has an opposite sign. The circulation
contribution is≈ 1, indicating that the probability of having a
circulation like the one of January 2014 does not change sig-
nificantly, while the reciprocity term is lowered. Therefore,
the frequency of a persisting zonal weather regime increases
between the counterfactual and factual worlds, while proba-
bility of having a circulation history that is similar to 2014 re-
mains stable. This apparent contradiction is explained by the
fact that the circulation of January 2014, although zonal, was
rather dissimilar to the usual zonal weather regime. Hence,
by tightening the class of event from “high precipitation sum
due to zonal weather regime” to “high precipitation sum due
to a specific persisting circulation”, we change the quantifi-
cation of a dynamical contribution.

This emphasizes the need of a precise definition of the
neighborhood of a circulation trajectory for the conditional
attribution exercise. On the one hand, one looks at a persist-
ing zonal circulation in a rather broad sense. On the other
hand, one looks at a circulation trajectory that looks like the
observation of January 2014, which yielded an atypical zonal
pattern (van Oldenborgh et al., 2015).
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Figure 9. Cumulated southern UK January precipitation (in mm)
probability distribution conditional to winter weather regimes ex-
ceeding 75 % in reanalyses (a: NCEP; b: 20CR). The thin dashed
horizontal line is the 99 % quantile of W1 (NCEP). The thick
dashed line is the precipitation amount in January 2014.

4.2 Reanalyses

The two reanalyses (20CR and NCEP) use different mod-
els, assimilation schemes and assimilated data. Schaller et al.
(2016, supplementary information) showed that the weather
regime classification in the overlapping period of the two re-
analyses are very similar. We also verify that the analogues of
January 2014 are qualitatively similar in the two reanalyses
over the 1950–2011 period. For each day of January 2014,
the 20 best analogues have between 12 and 18 days in com-
mon in the two reanalyses. The distances and spatial cor-
relation yield probability distributions that cannot be dis-
tinguished by a Kolmogorov–Smirnov test (von Storch and
Zwiers, 2001).

We set a high threshold of precipitation to the 99th quan-
tile of January cumulated precipitation. Due to the rather low
number of data points, we also considered the months of De-
cember and February during which high cumulated winter
precipitation is likely. This choice can also be justified be-
cause the properties of the atmospheric circulation are baro-
clinic across the winter (Hoskins and James, 2014). We ver-
ify that high values of precipitation R can be obtained with
more than one weather regime (namely, the zonal and NAO−
regimes) in Fig. 9. This justifies that the decomposition of
Eq. (2) is repeated for these two weather regimes, although it
can be anticipated that this threshold cannot be exceeded for
NAO− inW0 in the observations.

Again, the North Atlantic circulation patterns are discrim-
inating for heavy precipitation in southern UK in the obser-
vation universe. Hence, we focus on the ZO and NAO− at-
mospheric patterns to compute the probability changes.

Similar estimates of ρ, ρthe, ρcirc and ρrec were computed
from the NCEP (W1 from 1951 to 2015) and 20CR (W0
from 1900 to 1950) reanalyses (Figure 10). The mean ratio
ρ̄ is ≈ 0.82 ((0.36;1.37) with a 90% confidence interval),
indicating a FAR value of ≈ 0.18. The distribution of ρ is
not significantly different from 1 (although the sampling dis-
tribution is skewed towards a lower value) due to the low
number of observations, but its range is compatible with the
Weather@Home estimate.

The three ratio distributions (ρthe, ρcirc and ρrec) were
computed for the zonal and NAO− weather regimes
(Fig. 10). The values cannot be determined for the thermo-
dynamical and reciprocity terms because the precipitation
threshold is not reached or exceeded in W0 during winters
dominated by NAO−

The mean value is significantly different from 1 for the
zonal regime (ρ̄the

≈ 0.36 (0.2, 0.71) for a 90 % confidence
interval). They are not significantly different from 1 for the
circulation and reciprocity terms ρ̄circ

≈ 0.89 (0.12, 1.34)
and ρ̄rec

≈ 2.5 (0.2, 4)). This description is qualitatively sim-
ilar to what was obtained with the Weather@Home analy-
sis for the thermodynamical and dynamical terms, although
the magnitudes differ, due to the differences between the two
universes (factual vs. counterfactual, and new vs. old). The
uncertainty increase is partly due to the limited lengths of the
reanalysis datasets. The mean reciprocity ratio ρ̄rec is rather
close to what was found in the Weather@Home analysis. It
indicates an increase of zonal circulation when heavy precip-
itation occurs between the beginning of the 20th century and
the present-day period.

The ρ ratio distributions for the NAO− regime are not
very informative. The thermodynamic and reciprocity con-
tributions cannot be estimated because the threshold of pre-
cipitation is never reached during a winter dominated by
NAO− in the NCEP reanalysis, between 1951 and 2014,
implying zero denominators in Eqs. (3), (5). A first in-
terpretation is that the NAO− regime is so different in
both worlds that the conditional precipitation change cannot
be estimated (because Pr(R(1) >Rref|C(1) ∈ V(Cref))= 0 and
Pr(C(1) ∈ V(Cref)|R(1) >Rref)= 0). This might be due to the
low number of winters in theW0 world (i.e., 50 years).

The ratio distributions with the analysis of SLP analogues
is shown in Fig. 11. The distribution of ρthe yields a smaller
variance than with the weather regime description due to the
tighter constraint on the shape of the atmospheric trajectory.
The dynamical term ρdyn is barely above 1 (contrary to the
ZO weather regime in the same worlds), although not signif-
icantly.

This apparent contradiction is explained by the fact that
the ZO weather regime becomes slightly more probable in
W1 than in W0 (circulation term in Fig. 10), but the average

www.adv-stat-clim-meteorol-oceanogr.net/3/17/2017/ Adv. Stat. Clim. Meteorol. Oceanogr., 3, 17–31, 2017
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Figure 10. Changes in probability ratios in 20CR/NCEP reanal-
yses for the zonal and NAO− weather regimes. The probability
ratios (vertical axes) are shown on a logarithmic scale. The hori-
zonal dashed lines show the reference ρ = 1 line. The dynamical
contribution is the product of the circulation and reciprocity contri-
butions. The upper panel is the conditional probability ratios for the
zonal regime. The lower panel is for the NAO− regime. There are
no thermodynamical or reciprocity terms in the decomposition be-
cause high precipitation sums do not occur during persisting NAO−
episodes in 1900–1950. The boxes yield the same convention as in
Fig. 7.

distance of SLP analogues of January 2014 slightly increases
between W0 and W1 (Fig. 12). This reflects the fact that the
January 2014 pattern is not a typical zonal pattern (as seen
in Fig. 3) and that the thermodynamical term outbalances the
dynamical term in the interpretation of ρ < 1.

The analogue method does not allow for an estimate of the
circulation and reciprocity terms because we are only able to
sample trajectories around January 2014, not all trajectories
like in the Weather@Home experiments.

5 Discussion

We have performed analyses on two different world defini-
tions (factual vs. counterfactual and new vs. old). There is
no quantitative way of claiming that factual equals new and
counterfactual equals old. It is only possible to argue qualita-
tively that the anthropogenic forcings were weaker in the old
world than in the new world.

One of the caveats of attribution studies (including this
one) is the uncertainty in the W0 world, which affects es-
timates of p0. This problem exists in the counterfactual sim-
ulations of Weather@Home, which required the subtraction
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Figure 11. Changes in probabilities in 20CR/NCEP reanalyses
conditional to the January 2014 SLP pattern, with circulation ana-
logues. The boxes yield the same convention as in Fig. 7.
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Figure 12. Distribution of mean distances (in hPa) between winter
2013/2014 and the 20 best analogues in NCEP and 20CR. The black
box plot are for the whole winter (DJF) and the red box plot are for
January 2014 only.

of an SST signal from 11 available CMIP5 simulations. Each
of the individual counterfactual simulations show different
behavior, although the ensemble yields a significant, albeit
small, change with respect toW1, as shown by Schaller et al.
(2016). The quality and quantity of the data that were used
in the reanalysis experiments varies with time. This implies
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that the old world is more uncertain that the new world. The
distributions of distances between analogues in Fig. 12 do
not show large systematic biases in 20CR (1900–1950) with
respect to NCEP (1951–2014). Using the whole ensemble of
20CR could allow for better estimates of weather regime fre-
quency distributions in theW0 world, but the only precipita-
tion data we used come from observations, which means that
uncertainties in the ρ ratio are always large. Another possi-
bility is to consider subperiods of 1900–1950, but the confi-
dence for individual subperiods is bound to be very poor.

The analysis does not consider internal temporal variabil-
ity in each world. The Weather@Home simulations do not
have decadal variability, but reanalyses do. This was not
taken into account here, but could be included by further di-
viding the two worlds (old vs. new) into subperiods (e.g.,
“high SST” vs. “low SST”) in order to evaluate the feedback
of natural SST variability on atmospheric circulation. This
poses the problem of the length of available data onto which
the statistics are built. This difficulty could be overcome
by investigating ensembles of available simulations such as
CMIP5 (Taylor et al., 2012) or CORDEX (Jacob et al., 2013).

The main assumption made in the Bayes decomposition
is that the climate variable R is related to the atmospheric
circulation field C, and that a storyline of C can explain an
observed extreme of R. This ensures that the two conditional
probabilities in Eq. (2) are non-zero so that the ratios are well
defined.

In order to provide consistent results, it is necessary to
have a correct representation of the atmospheric variability.
This assumption is not trivial and required many verifications
on the Hadley Center atmospheric model (Schaller et al.,
2016). The circulation patterns that were simulated were val-
idated over the North Atlantic region and Europe for theW1
factual world. The main difficulty is that there is no way to
assess the validity of C in theW0 counterfactual world. This
is where the assumption that W1 and W0 are close to each
other is heuristically used in the estimate of the probability
changes. Of course, this is not a strict proof of validation of
the atmospheric circulation inW0.

When reanalysis data are used, the question of the atmo-
spheric circulation validity and the R–C relation is tied to the
quality of the data that are used in the assimilation scheme,
for both worldsW0 andW1. The main caveat is that the early
period of reanalyses are constrained by only a few observa-
tions (Compo et al., 2011). This means that the circulation
reconstruction could yield wrong patterns (even for the mem-
bers of the ensemble), with no possible validation test. The
second caveat in this case is the length of datasets on which
the probabilities are computed. Moreover, the observed cli-
mate (or its reanalysis) is one occurrence of many possible
realizations that could have happened for a given climatic
state. Therefore, this analysis should also be understood as
being conditional to a dataset (either Weather@Home or the
earlier part of the 20CR reanalysis), which is an uncertain
representation of the world.

Our paper outlined an apparent discrepancy between
weather regime and analogues of circulation to describe
thermodynamical changes (and dynamical ones). Weather
regimes offer a rather rough description of the atmospheric
flow and the range of possible flows within a weather
regime classification can be fairly large. The recent win-
ter of 2015/2016 demands a finer description of the atmo-
spheric circulation. Indeed, December 2015 had a mostly
zonal weather regime (such as January 2014), with very mild
temperatures in Europe, but southern UK and northwestern
France were very dry (such as the rest of continental Eu-
rope), whereas northern UK experienced record precipitation
and floods. The jet stream was slightly shifted (a few hun-
dred kilometers) to the north, but the weather regime was
still zonal, while having no resemblance to January 2014
(in terms of analogues). This questions the focus of extreme
event attribution on regional climate precipitation alone, as
already discussed by Trenberth et al. (2015), since the large-
scale atmospheric circulation that drives the moisture trans-
port can have shifts within the same weather regime and hit a
region rather than its neighbors just by chance. This suggests
an EEA analysis of the predictands of R (such as C), rather
than R alone, with a focus on the dynamical terms.

Vautard et al. (2016) proposed an alternative method based
on analogues to determine dynamical and thermodynamical
components from the Weather@Home simulation data. It is
interesting to notice that there is a consensus on the estimate
of a thermodynamical term (i.e., with equal atmospheric cir-
culation). Our finding emphasizes that a definition of a dy-
namical contribution is potentially ambiguous. We also em-
phasize that the approach of analogues can also be applied
to daily Weather@Home data (Fig. 8). Vautard et al. (2016)
investigated all possible patterns of atmospheric circulation
on a monthly timescale, while this study focuses on Jan-
uary 2014, with a daily timescale.

The persistence of events and hence the timescale to be
considered are major components to be considered. For in-
stance, the probabilities of having a persistent zonal weather
regime during a month and having a circulation that is sim-
ilar to January 2014 have different distributions, and such
distributions change in different ways between the two re-
analysis datasets. Such a consideration is crucial for regional
climate studies; as mentioned above, the example we chose
in this paper is about precipitation in southern UK (and ar-
guably northwestern France, which also had records of pre-
cipitation in January 2014). But case studies such as northern
UK (in December 2015) or Wales in 2000 (Pall et al., 2011)
would require separate analyses because the difference in at-
mospheric flows is different in a subtle but crucial way.

It is desirable to be systematic in the attribution of ex-
treme events in continuous time, by examining all events.
This pleads for analyses that can be performed quickly in
order to estimate statistical diagnostics in a relatively short
time. This can help guide the choice of costly experiments
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(in terms of computing power and memory management),
such as Weather@Home, in order to refine estimates.

6 Conclusions

We have argued that the use of relatively short datasets (re-
analyses) provides qualitatively similar information in terms
of probability decomposition of the occurrence of a winter
flood event. Such an analysis cannot replace Weather@Home
simulations in order to quantify precisely the contribution of
all factors. Therefore, the exercise with reanalyses is a detec-
tion rather than a thorough attribution, as defined by Bindoff
et al. (2013). The attribution comes if the forcing changes
are clearly identified in both periods, which is not done in
this paper.

The names of terms (thermodynamical and dynamical) of
the decomposition can be debated. It is important to note that
changes in the properties of the atmospheric circulation C
and the coupling between the local climate variablesR andC
play an important role in the definition of the extreme event.

The conditional part of the analysis is the most impor-
tant point as it helps to explore the tail of the distribution
of R. We emphasize that we analyze a high precipitation rate
(R > Rref) conditional to a given circulation pattern Cref. We
had to make the analysis of the two types of weather regimes
leading to high precipitation rates. The thermodynamical and
dynamical contributions differed from one weather regime to
the other. We also showed that the dynamical contribution to
ρ depends on the way the neighborhood of the circulation
trajectory is approximated (qualitative with weather regimes
or quantitative with analogues). This points to the necessity
of an a priori definition of the class events to be investigated,
in order to obtain consistent results when following a story-
line approach to extreme event attribution.

We emphasize that the paradigm of attribution of extreme
events that we have explored can also be applied to other con-
texts, in particular extreme events of the last millennium as a
response to solar and volcanic forcings (Schmidt et al., 2011,
2014; PAGES 2k-PMIP3 group, 2015). This can be done by
exploring analogues of circulation of a given extreme event
in remote periods (in model simulations) where natural forc-
ings are well documented.

Data availability. NCEP reanalysis data can be obtained from
the NOAA web site (https://www.esrl.noaa.gov/psd/data/gridded/
data.ncep.reanalysis.html). Weather@Home data can be obtained
upon request (cpdn@oerc.ox.ac.uk). Southern UK precipitation
data were obtained from the UK Met Office (Tim Legg, tim.legg
@ metoffice.gov.uk).
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