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Model
Autoregressive Moving average Innovation

parameters parameter standard
φ1 φ2 φ3 φ4 θ1 deviation (◦C) AICc BIC

ARMA(4,1)
-0.29 0.36 0.05 0.24 0.80 0.09 -258 -242
(0.19) (0.12) (0.09) (0.09) (0.19)

AR(1)
0.52 – – – – 0.09 -257 -252

(0.07)

Table S1. Coefficient estimates (with standard errors in parentheses), innovation standard deviations, and AICc and BIC associated with
ARMA(4,1) and AR(1) fits to the residuals from model (4). These two models minimize AICc and BIC, respectively. We use the ARMA(4,1)
model because this model appears to better represent the low-frequency variation in the residuals (see Figure 3), which is crucial for inferences
about trends.

S1 Coefficient estimates for noise model

Table S1 gives information about the ARMA(4,1) and AR(1) models fit to the residuals of model (4) used in Section 4. The
ARMA(4,1) model give more conservative inferences about the systematic trend, and is the model we adopt in Section 4 (see
Figure 3).

S2 Performance of misspecified methods under AR(2) and ARMA(4,1) simulations5

In Section 5.2, we compared the five methods for generating nominal p-values in two settings where the pre-specified AR(1)
model was incorrect, where the AR(1) model either over- or under-represented low-frequency variability. Here we present two
more comparisons. For these, Table S2 gives the model parameters and Figure S1 shows the two true spectra and the corre-
sponding best AR(1) approximations. The first comparison is to an AR(2) noise model under which the AR(1) approximation
over-represents variability at the lowest frequencies but under-represents variability at intermediate frequencies (Figure S1,10
left). The second comparison is to the ARMA(4,1) model used in our main analysis, under which the AR(1) approximation
under-represents variability at the lowest frequencies (Figure S1, right).

First, we show results for the AR(2) true noise model model (Figure S2). In this setting, all methods perform better than in
the setting of Figure 9, but the relative performance of the different methods is largely the same as there, except that selection
by AICc now performs even more poorly than the block bootstrap at the smallest sample sizes.15

Second, we show results for the ARMA(4,1) model used in our main analysis (Figure S3). In this setting, the results are
similar in nature to but less extreme than those from the fractionally differenced AR(1) model shown in Figure 10. All methods
perform poorly but the parametric methods tend to perform better, especially when the time series length is short.

The behavior from both of these simulations again serves to emphasize that when making inferences about smooth trends, it
is most crucial to represent low-frequency variability well.20

S3 Model coefficients for simulations in Sections 5 and S2

In Sections 5 and S2, we generate synthetic, mean zero time series with different correlation structures. The models that we
simulate from are summarized in Table S2. The general form for an autoregressive fractionally integrated moving average
model (ARFIMA) of order (p,d,q) (of which all the simulated models are special cases) is(

1−
p∑

k=1

φkB
k

)
(1−B)dYt = (1+

q∑
k=1

θkB
k)ε(t),

where Yt is the time series at time t, the φ’s are the AR parameters, the θ’s are the MA parameters, d is the (fractional)
differencing parameter, B is the backshift operator (i.e., BkYt = Yt−k), and ε(t) are uncorrelated innovations with constant
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Figure S1. Analogous to Figure 8 but for the AR(2) (left) and ARMA(4,1) (right) models considered in Section S2. See Table S2 for noise
model parameters.
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Figure S2. Same as Figure 7 but with simulations from an AR(2) model. The relative results are similar to the setting of Figure 9 but all
methods perform better here.
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Figure S3. Same as Figure 7 but with simulations from a the ARMA(4,1) model used as the noise model in our main analysis. The relative
results are similar to but less extreme than those in the setting of Figure 10.

Figure Name
AR MA Differencing

parameter(s) parameter parameter
7 AR(1) 0.5 0 0
9 ARMA(1,1) 0.5 0.25 0

10 fractional AR(1) 0.5 0 0.25
S2 AR(2) (0.5,-0.25) 0 0
S3 ARMA(4,1) (-0.29, 0.36, 0.05, 0.24) 0.80 0

Table S2. Parameters in models from which we simulate in Sections 5 and S2.

variance. (The convention is that the acronym is shortened to account for parameters that are set to zero, so for example an
ARFIMA(1,0,0) model is called an AR(1) model.)25

S4 Performance of maximum likelihood vs. REML

In Section 5, parametric inference was done using maximum likelihood estimators. As shown there, the MLE for covariance
parameters can give anticonservative estimates of standard errors for trend parameters in small sample sizes. This problem can
be substantially ameliorated using restricted maximum likelihood (REML) instead. Figure S4 repeats the tests in Section 5.1
(where both the true and assumed models are AR(1)) and compares the performance of maximum likelihood and REML. For30
larger sample sizes, the two procedures are comparable, but in small sample sizes REML is much better calibrated (although
still slightly anticonservative in the smallest sample sizes).
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Figure S4. Comparison of maximum likelihood and REML in the same context as Figure 7. The first row is the same as the second row of
Figure 7. In the second row here, the estimation is instead done using REML. The REML standard errors give better calibrated inferences in
small sample sizes.
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