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Abstract. In an earlier paper, Rakonczai et al. (2014) emphasised the importance of investigating the effective
sample size in case of autocorrelated data. The simulations were based on the block bootstrap methodology.
However, the discreteness of the usual block size did not allow for exact calculations. In this paper we propose
a new generalisation of the block bootstrap methodology, which allows for any positive real number as expected
block size. We relate it to the existing optimisation procedures and apply it to a temperature data set. Our other
focus is on statistical tests, where quite often the actual sample size plays an important role, even in the case of
relatively large samples. This is especially the case for copulas. These are used for investigating the dependencies
among data sets. As in quite a few real applications the time dependence cannot be neglected, we investigated
the effect of this phenomenon on the used test statistic. The critical value can be computed by the proposed new
block bootstrap simulation, where the block size is determined by fitting a VAR model to the observations. The
results are illustrated for models of the used temperature data.

1 Introduction

In the last decades the bootstrap methodology has become
more and more widespread in different areas of statistical ap-
plications. See, e.g., Chernick (2011) for a review of possi-
ble areas from spatial models to financial data and data min-
ing, where bootstrap may be used. In this paper we focus
on the effect of the serial dependence, naturally arising in
many time series data. The bootstrap samples must match
the dependence within the data, so the block bootstrap is the
suggested method for bootstrapping time series. Hall et al.
(1995) investigated this approach in some detail, including
suggestions for selecting the optimal block size. In an ear-
lier paper, Rakonczai et al. (2014) investigated the possibil-
ities for using the block bootstrap methods for checking the
validity of the copula models. In this paper we present an
improvement to the classical block bootstrap methodology,
which is especially relevant in our applications.

In Sect. 2, we first briefly review the importance of sta-
tionarity of time series. In the bivariate case, the vector au-
toregression (VAR) process is one of the most important
models, becoming popular first in the area of econometrics
(Sims, 1980). For recent applications of VAR models in me-
teorology, see for example Hill et al. (2014), Norrulashikin

et al. (2015) or Farook and Kannan (2016). Norrulashikin
et al. (2015) investigated the applicability of VAR models to
monthly temperature, precipitation and wind speed data, and
they found that in quite a few cases VAR(1) was among the
best models. We briefly present the main properties of VAR
models, which are used in the sequel and present the nota-
tions.

In Sect. 3, we introduce the concept of copulas, the most
convenient objects for analysing the dependence structures
among variables. Their history goes back as far as Hoeffding
(1940), but their applications are much more recent. How-
ever, they have spread very quickly to the most important
areas – for a recent analysis in meteorology, see Cong and
Brady (2012). Schölzel and Friederichs (2008) provided an
overview of the possible applications of copula models in
meteorology, more specifically in joint analysis of tempera-
ture and precipitation data. Most of these works use different
parametric copula models, but we are more interested in test-
ing for possible changes in the dependency structure, so we
also introduce the most recent approaches in testing homo-
geneity of such models, which are based on the empirical
copula process.

Section 4 is devoted to the bootstrap resampling method,
including the block bootstrap approach, which is suitable for
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the case of serially dependent observations. Here we intro-
duce a generalisation, which helps overcoming the problem
that originally the block size was supposed to be a natural
number. In our approach the block size is a random variable
with arbitrary positive real-valued expectation greater than 1,
and it contains the original block bootstrap as a special case.
Due to this small variance in the sample size, it overcomes
the problem of extensive random error in the case of the sta-
tionary bootstrap (Politis and Romano, 1994).

Section 5 shows the results of our simulations regarding
the properties of the proposed homogeneity test. It turned out
that it is consistent and it has reasonable power for relatively
small sample sizes. We have also investigated the effect of
the block size for the properties of the test.

In Sect. 6 we apply our approach to the gridded tempera-
ture data base of E-OBS, which is a product of the EU-FP6
project ENSEMBLES (Haylock et al., 2008). Here we use
the daily mean temperature data from the 0.5◦ grid. Our fo-
cus is on checking for possible changes in the dependence
pattern between the grid point close to Budapest and some
other grid points within the Carpathian Basin. We show that
in some cases there is a significant deviation from homogene-
ity of the first and second part of the data. The application of
bootstrap methods in the context of statistical inference for
copulas is a recent but quickly expanding area. Kojadinovic
and Yan (2011b) proposed a quick method for bootstrapping
the p values in goodness-of-fit tests. For us the most rele-
vant paper is Bücher and Volgushev (2013), where the con-
sistency of the block bootstrap method for the empirical cop-
ula is proven under general conditions.

The conclusion summarises our findings and gives some
interesting open questions.

2 Vector autoregression (VAR) processes

We call the d-dimensional random variable series {Xt }t∈Z =

(X0,X±1,X±2, . . .) a time series if its elements are d-
dimensional random vectors, which are usually not inde-
pendent from each other. Here we consider t as the time.
Let us assume that the random variables have finite sec-
ond moments. The time series {Xt }t∈Z is weakly stationary
(hereafter just called stationary), if neither the mean function
E(Xt ) nor the covariance matrix Cov(Xt+s,Xt ) depends on
t for all s ∈ Z. Stationarity is an important property, it means
that translation invariance holds for its statistical properties
(mean, variance, autocovariance structure, etc., depending on
the specific notion of stationarity considered).

One of the most frequently applied time series models
are the autoregressive (AR) processes and their multidimen-
sional counterparts, vector autoregressive (VAR) models. In
the following, we define the VAR(p) process and give its
main properties in two dimensions as this is necessary to our
applications.

The time series {Xt }t∈Z = {(X1,t ,X2,t )T }t∈Z is called a
zero-mean two-dimensional VAR(p) process if

Xt = A1Xt−1+A2Xt−2+ . . .+ApXt−p + εt , (1)

where A1, . . .,Ap are 2× 2 parameter matrices, the indepen-
dent innovation process {εt }t∈Z is a two-dimensional white
noise with E(εt )= 0= (0,0)T and Cov(εt )= C a symmet-
ric positive definite covariance matrix. The VAR(p) process
is stationary if the roots of the characteristic polynomial
P (x)= det(I2−A1x− . . .−Apxp) lie outside the unit cir-
cle.

Any VAR(p) process can be rewritten as a VAR(1) process
in the following way: Zt = AZt−1+ et , where

Zt =


Xt

Xt−1
...

Xt−p+1

 ,et =


εt
0
...

0

and

A=


A1 A2 · · · Ap−1 Ap
I2 0 · · · 0 0
0 I2 · · · 0 0
...

...
. . .

...
...

0 0 . . . I2 0

 .

This representation is convenient in calculating the autoco-
variances. An equivalent condition for stationarity is that
all the eigenvalues of the coefficient matrix A are smaller
than 1 in modulus. In this case, the time series has a causal
representation in terms of an infinite moving average form

Zt =
∞∑
i=0
Aiet−i .

For the remainder of this section we assume that Xt is sta-
tionary. Let us denote with 0X(h)= E(X1+hX

T
1 ) the autoco-

variance function of the process Xt . 0X(h) is a 2×2 matrix-
valued function, the symbols γi,j (h) stand for its elements.
We denote with 0Z(h)= E(Z1+hZT1 ) the 2p× 2p matrix-
valued autocovariance function of the process Zt . The co-
variance matrix of Zt is 0Z(0), which can be determined by
solving the matrix equation 0Z(0)−A0Z(0)AT = Cov(et ).
It is easy to see that for 1≤ h ∈ Z, the autocovariances can be
calculated by 0Z(h)= Ah0Z(0). The powers of the matrix
A can easily be computed using the spectral decomposition.
Lastly, we need the autocovariance matrix of the original pro-
cess, and by construction, it is the upper left 2× 2 submatrix
of 0Z(h).

In the applications we will use the covariance matrix of the
sample mean. The following asymptotic result will be crucial

in our investigations: if
∞∑

h=−∞

|γi,i(h)|<∞ for i = 1,2, then

n · tr
(
Cov(Xn)

)
−→

2∑
i=1

∞∑
h=−∞

γi,i(h) as n→∞, (2)

where tr(·) denotes the trace of a matrix.
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It is important to check if the chosen time series model is
adequate. If the model fits well, the fitted residuals should be-
have as a realisation of a white noise process. The hard part is
to check whether the residuals are independent, thus there is
no serial dependence among them. There are several methods
for verifying this property, the most standard is the Ljung–
Box test, which tests whether a specified group (usually the
first 10–20 lags) of autocorrelations is different from zero.
Another often applied serial correlation test is the Breusch–
Godfrey test. A more recent multidimensional approach was
published in Kojadinovic and Yan (2011a), where the test
was based on the empirical copula process. The main ideas
and the concept of this test stem from Genest and Rémillard
(2004).

For further details about time series analysis, see, for ex-
ample, Brockwell and Davis (2013) or Shumway and Stoffer
(2011).

3 Copulas and their goodness-of-fit

Let X = (X1, . . .,Xd )T be a random vec-
tor with joint distribution function FX(x)=
FX1,...,Xd (x1, . . .,xd ) and marginal distribution functions
F1(x1)= FX1 (x1), . . .,Fd (xd )= FXd (xd ). Sklar’s theorem
claims that there exists a copula C, a distribution over the
d-dimensional unit cube, with uniform margins, such that

FX1,...,Xd (x1, . . .,xd )= C (F1(x1), . . .,Fd (xd )) .

Moreover, the copula C is unique if the marginal distribution
functions are continuous. This construction allows for the in-
vestigation of the dependence structure without specifying
the marginal distributions. In the recent literature, various
families of copulas have been introduced; for an overview
and examples see, e.g., the introductory textbook of Nelsen
(2007).

In this paper we focus on testing the homogeneity of copu-
las, motivated by the question of whether climate change also
has an effect on the dependence between pairs of temperature
observations. If this change is indeed observable, then it may
have a substantial effect on the spatial structure of tempera-
ture anomalies, worth further meteorological investigations.
So we do not have to go into the parametric inference, as we
are just interested in the homogeneity analysis.

Let us suppose we have two independent samples of Rd -
valued random vectors. The first sample is X1, . . .,Xn and
the second one is Y 1, . . .,Ym. Formally we intend to test the
hypothesis that the dependence structure of the two copu-
las has arisen from the same copula C0. The most obvious
way for testing the homogeneity of two copulas is to consider
multidimensional χ2 approaches, but in this case we need to
discretise the data, losing valuable information. In order to
avoid its use, we can follow the approach of Rémillard and
Scaillet (2009), who have developed a method for this prob-
lem. Their approach is based on the empirical copula, defined

for the first sample as

Cn(u)=
1
n

n∑
i=1

I (U i ≤ u),

where u ∈Rd and U i denotes the d-dimensional vec-
tor of the rank-based pseudo-observations: U i = U i,n =

(Ui1,n, . . .,Uid,n), where n refers to the size of the sample and
Uij,n =

n
n+1Fj (Xij ). For illustrations see Figure 1, which de-

picts the original data points (standardised temperature data)
and the U i pseudo-observations for the grid point pairs close
to Budapest and Sopron, respectively. Similarly, based on the
pseudo-observations U i and V i of the first and the second
samples, respectively, we can define the empirical copulas
C1,n(u) and C2,m(u) (where n and m denote the sizes of the
samples).

The proposed tests for checking the homogeneity of two
samples are based on functionals of the empirical process:

κn,m(u)=
C1,n(u)−C2,m(u)√

1
n
+

1
m

,

where the asymptotic properties of the statistic can be based
on the limit of the empirical copula processes. There are
two different kinds of approaches investigated in Genest
et al. (2006): the Cramér-von Mises type statistic Sn,m =∫
[0,1]d

(
κn,m(u)

)2
du, and the Kolmogorov-Smirnov type

statistic Tn,m = sup
u∈[0,1]d

∣∣κn,m(u)
∣∣. As the second approach

is considered to be generally less powerful, we based our
inference on the statistic K∗ = 1

Nd

∑
i1,...,id

(
κn,m(ti1 , . . ., tid )

)2,

where (tij )Nij=1, j = 1, . . .,d are appropriately fine divisions
of the interval (0,1). After some calculations, the Cramér-
von Mises test statistic can be written in the following form
(see Rémillard and Scaillet, 2009):

Sn,m =

(
1
n
+

1
m

)−1

·

[
1
n2

n∑
i=1

m∑
j=1

d∏
s=1

(1−Uis,n ∨Ujs,n)+

+
1
m2

m∑
i=1

m∑
j=1

d∏
s=1

(1−Vis,m ∨Vjs,m)− (3)

−
2
nm

n∑
i=1

m∑
j=1

d∏
s=1

(1−Uis,n ∨Vjs,m)

]
,

where u∨ v =max(u,v).

4 Bootstrap methods

The bootstrap is a usually computer-intensive, resampling
method for estimating the distribution of a statistic of inter-
est. The concept of the bootstrap was introduced in the classi-
cal article by Bradley Efron (Efron, 1979) and, since then, it
has become one of the most widely used Monte Carlo meth-
ods in a number of areas of applied sciences.
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Figure 1. Bivariate data and the corresponding pseudo-observations.

4.1 Bootstrap for i.i.d. data

Let Xn = (X1, . . .,Xn)T be a sequence of independent, iden-
tically distributed (i.i.d.) random variables with unknown
common univariate distribution F and let Tn = tn(Xn;F ) be
a statistic (like the sample mean X). As F is unknown, the
distribution of the statistic Tn is also unknown. Our main
purpose is to approximate the distribution of Tn or its func-
tion of interest – for example the standard deviation of Tn
(the standard error) or some of its quantiles for estimating p
values. The basic bootstrap method (mostly referred as i.i.d.
bootstrap) is the following. For a given Xn, we draw a ran-
dom sample X ∗m = {X∗1, . . .,X

∗
m} of size m (usually m= n)

with replacement from Xn. Therefore, the common distribu-
tion of the X∗i is given by the empirical distribution F̂n =
n−1∑n

i=1δXi , where δz is the probability measure having unit
mass at z. In the next step, we define the bootstrap version of
the statistic Tn: T ∗m,n = tm(X ∗m; F̂n). By repeating this proce-
dure, we can approximate the unknown distributionGn of Tn
by its bootstrap counterpart G∗n. In most of the cases the dis-
tribution of G∗n cannot be determined explicitly, but it can be
approximated by simulation.

4.2 Block bootstrap methods

In our case we are interested in the effect of serial depen-
dence on the homogeneity tests and on modelling in general,
for example on the covariance matrix of our estimators. If the
data are dependent then the estimates based on i.i.d. bootstrap
methods may not be consistent.

In the presence of serial dependence, one of the most com-
monly used methods is the block bootstrap, see Lahiri (2003)
for details. In this paper, we generalise the circular block
bootstrap (CBB), which can be defined as follows. First, we
wrap the dataX1, . . .,Xn around a circle, i.e. define the series
X̃t =Xtmod(n) (t ∈N), where mod(n) denotes division “mod-
ulo n”. This means that Xk = X̃k = X̃k+n = X̃k+2n = . . . for

all k ∈ {1,2, . . .,n}. For some m, let i1, . . ., im be a uniform
sample from the set {1,2, . . .,n}. Then, for a given block size
b, we construct n′ =m · b (n′ ≈ n) pseudo-data:

X̃∗(k−1)b+j = X̃ik+j−1 where j = 1,2, . . .,b

and k = 1,2, . . .,m.

Finally, let us calculate the function of interest, for exam-

ple the bootstrap sample mean as follows: X̃
∗

n′ =
X̃∗1+...+X̃

∗

n′

n′
.

For the sake of simplicity we do not use this notation in the
sequel; the asterisk simply denotes that the sample is a boot-
strap sample.

Block length plays an important role in the process, and it
is not trivial to determine its optimal value. Politis and White
(2004) suggested an “automatic” block length selection al-
gorithm (its correction was published in Patton et al., 2009)
– but the practical applications of this method are far from
obvious as there are parameters in it that have to be chosen.

We used a similar approach in our previous paper (Rakon-
czai et al., 2014). Our idea was that we tried to find the best
block size by fitting a VAR model to the data and then check-
ing the variance ofX with the help of the block bootstrap. For
sake of their simplicity, we restrict our attention to VAR(p)
models. The methodology should be general enough to be
compatible with other more complex classes of statistical
models as well.

In Rakonczai et al. (2014), the block size was determined
as the b̂, for which the estimated trace of the covariance ma-
trix was closest to the one derived from the fitted VAR model:

b̂ = argmin
1≤b∈Z

∣∣∣tr(Cov
(
XVAR

))
− tr

(
Cov∗(X

∗

b)
)∣∣∣ , (4)

where Cov∗(X
∗

b)= Cov(X
∗

b|Xn).
In the literature, simulations are naturally based on inte-

ger block sizes. But using the block length of Eq. (4), the
estimated trace of covariance may be not be close enough to
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the theoretical trace of covariance. The same is true for other
methods for block size determination. This may cause sub-
stantial bias, as in our case the relative difference between
subsequent values of tr(Cov∗(X

∗

b)) can be quite large, espe-
cially for small b. This can be overcome by the following
generalisation of the block bootstrap methodology.

4.3 Generalised block bootstrap

In case of b>1, b∈R, let the generalised block bootstrap
sample be defined as follows. Let k be a random integer be-
tween 1 and the sample size n and, again, let us wrap the
sample around the circle. The bootstrap blocks are either of
length bbc or dbe:
Xk,Xk+1, . . .,Xk+bbc with probability 1− b+bbc
Xk,Xk+1, . . .,Xk+dbe with probability b−bbc,
where dbe denotes the upper and bbc the lower integer part

of b. At last, we put the blocks together. This procedure en-
sures that for integer-valued b the new definition coincides
with the traditional one, so this is indeed a generalisation.
In the applications (Sect. 6) we show the clear advantages
of this approach. Actually all relevant algorithms for finding
the optimal block size can easily be adapted to find a solution
in this generalised sense. In our case, instead of Eq. (4), we
simply solve the equation in b

tr
(
Cov(XVAR)

)
= tr

(
Cov∗(X

∗

b)
)
. (5)

In the same way as the circular block bootstrap sample,
our generalised bootstrap sample is not a stationary process,
conditional on the original sample. It is an important theoret-
ical result of Politis and Romano (1994) that the stationary
bootstrap sample is the only stationary block bootstrap sam-
ple – here the block lengths follow a geometric distribution,
independent of each other.

The covariance matrix Cov∗(X
∗

b) can be explicitly calcu-
lated. Henceforth, P∗ and E∗ denote the conditional distribu-
tion and the conditional expectation given the sample Xn;
therefore, P∗(L1 = dbe)= P (L1 = dbe|Xn) and E∗(L1)=
E(L1|Xn). Let us denote with L1,L2, . . . the block sizes
– they are random variables independent of each other
with common conditional distribution P∗(L1 = dbe)= 1−
P∗(L1 = bbc)= b−bbc. We can also write Li = bbc+ Ji ,
where Ji |Xn follows a Bernoulli distribution with parameter
p = b−bbc. Let N be the random variable, which gives the
number of blocks with block size bbc. If we have N , we can
calculate the number of blocks with block size dbe, denoting
it with g(N ). Therefore, g(N )=

⌊
n−N ·bbc
dbe

⌋
. Let us denote

the remainder block size with r(N ), we can calculate it from
the others: r(N )= n−N ·bbc−g(N )·dbe. It can be seen that
the conditional covariance matrix of the bootstrap mean can

be calculated the following way:

Cov∗(X
∗

b)=
bbc2

n2

[
Cov∗(X

∗

bbc,i ) ·E∗N +Cov∗N ·Xn(Xn)T
]
+

+
dbe2

n2

[
Cov∗(X

∗

dbe,i ) ·E∗(g(N ))+Cov∗(g(N )) ·Xn(Xn)T
]
+ (6)

+
1
n2

[
bbc∑
i=0

i2P∗(r(N )= i) ·Cov∗(X
∗

i,1)+Cov∗(r(N )) ·Xn(Xn)T
]
.

We have to mention that the Politis and White algorithm
actually gives a real number and not an integer as the optimal
block size – this could be used without any rounding by our
proposed method. In their original paper (Politis and White,
2004), the algorithm has been tested on data simulated from
an AR(1) process and gave fair values for the optimal block
length. However, when we tried to use this method to esti-
mate the optimal block length for some meteorological data
(wind speed and precipitation), the algorithm gave too large
optimal block lengths.

Note as well that the type of block length that would be
best for the block bootstrap method depends on the inference
problem (e.g. variance estimation or testing), as described in
Hall et al. (1995) or Lahiri (2003). There are two general
strategies for block selection that can be applied to problems
such as the homogeneity testing problem that we wish to con-
sider. These block selection methods are described in Lahiri
(2003) and Nordman and Lahiri (2014), based on either sub-
sampling (Hall et al., 1995) or non-parametric plug-in (Lahiri
et al., 2007). We think that these approaches can be modified
for the proposed generalised block bootstrap, and we plan
to investigate this possibility in a separate more theoretical
paper.

4.4 Algorithm for calculating p value for homogeneity
test of copulas

As the limit distribution of the statistic Sn,m is not distribu-
tion free, a simulation algorithm is needed to get critical val-
ues. The algorithm is the following:

1. Compute the statistic Sn,m, based on the original sam-
ples.

2. Generate B generalised bootstrap samples
X ∗(i)n = (X∗(i)1 , . . .,X

∗(i)
n )T i = 1,2, . . .,B

from the first observation vector of size n.

3. Compute the statistics S∗(i)n,m i = 1,2, . . .,B, based on
the bootstrap samples and the original second, m length
sample.

4. Compute the p value:
1+ #

{
S
∗(i)
n,m≥Sn,m

}
B+1 .

Guaranteeing the homogeneity of copulas in the context
of bootstrap approaches is still an unsolved problem in gen-
eral. Traditional bootstrap approaches have been claimed to
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be inconsistent for Cramér–von Mises statistics (Rémillard
and Scaillet, 2009). The multiplier method of Rémillard and
Scaillet (2009), which addresses the latter problem, is consis-
tent but numerically costly, and thus practically not applica-
ble to sample sizes of O(1000) as considered in the present
work. Martínez-Camblor et al. (2014) introduced a general
bootstrap algorithm leading (under weak assumptions) to a
consistent bootstrap statistic when testing for the homogene-
ity of the marginal distributions of a k-dimensional random
variable; Huang and Jing (2014) suggested a special boot-
strap method for a Cramér–von Mises test for the homogene-
ity of two distributions, which has a consistent limit distri-
bution. However, these two recent developments are not di-
rectly transferable to the problem of testing for the homo-
geneity of two copulas. In the case of VAR(1) models as
studied in the present work, numerical results indicate the
homogeneity of the copulas under the employed generalised
block bootstrap.

5 Simulations

In this section we present some properties of the copula ho-
mogeneity test obtained via simulations, strongly focusing
on a specific VAR(p) process, arising in Sect. 6.

By using the bootstrap methodology, we can investigate
the significance level of the homogeneity test. Our simula-
tions indicate that the test is consistent for each block size
and each relevant time series model. However, we find, that
for VAR(p) processes, the distribution of the test statistic is
different, if the first sample is generated via block bootstrap
simulations. We will illustrate this via the VAR(1) process
with parameters

A=
(

0.097 0.216
−0.103 0.403

)
and C=

(
0.449 0.406
0.406 0.436

)
,

let us call the VAR(1) process simulated with these parame-
ters the “Budapest and Apatovac process”, as these A and C
matrices are the VAR(p) coefficient estimates of temperature
data pairs for Budapest and Apatovac, as described in Sect. 6.
Table 1 shows that the empirical mean and the 0.9, 0.95 and
0.99 empirical quantiles of the test statistic are substantially
greater, if the first sample is bootstrapped, but essentially un-
affected by the block size. So we found that the distribution
of the bootstrapped test statistic is not the same as the one
without bootstrapping. This is an interesting result, worthy
of further investigation. Therefore, the reference distribution
for our hypothesis testing was the empirical distribution of
the generalised block bootstrap procedure, which depends on
the underlying stochastic process and also the sample size.

Now we estimate the power of the proposed homogene-
ity test. We take samples from the VAR(1) process of Bu-
dapest and Apatovac – these are the fixed, H0 samples. As
alternative,H1 hypothesis, we chose several models: VAR(p)
models, but with other parameters, representing stronger de-
pendence; i.i.d. bivariate normal distributed samples; MA(4)

Table 1. Simulated quantiles of the homogeneity test statistic for
the VAR(1) process approximating the temperature data close to
Budapest and Apatovac with sample size n= 1000. The first row
presents the simulation results without using the bootstrap.

Block
Mean

Quantiles
size 0.90 0.95 0.99

– 0.00629 0.0085 0.0093 0.0110

1 0.00829 0.0124 0.0142 0.0178
1.5 0.00823 0.0121 0.0141 0.0184

2 0.00825 0.0124 0.0140 0.0181
2.5 0.00824 0.0122 0.0140 0.0177

3 0.00834 0.0125 0.0144 0.0190
5 0.00821 0.0122 0.0139 0.0174

5.5 0.00828 0.0122 0.0139 0.0179
6 0.00832 0.0125 0.0144 0.0186
7 0.00829 0.0124 0.0142 0.0178
8 0.00831 0.0125 0.0143 0.0181

8.5 0.00822 0.0121 0.0139 0.0178
9 0.00839 0.0124 0.0142 0.0185

10 0.00823 0.0123 0.0140 0.0184
11 0.00824 0.0123 0.0140 0.0182
12 0.00826 0.0123 0.0143 0.0180
15 0.00831 0.0125 0.0142 0.0187

models; mixtures of MA(4) models. In each case, the power
of the test seems to converge to 100 %, as the sample size
increases. For example, Table 2 shows powers for different
block sizes, if the alternative hypothesis is a VAR(1) process
with parameters

Ã=
(
−0.1 0.3
−0.8 0.9

)
and C̃=

(
0.449 0.406
0.406 0.436

)
.

The block size does not have a big effect on the power.
We have to mention that although the numbers manifest con-
sistency, the last digit of the powers in the table may not be
accurate. We took 100 samples with 100 bootstrap replicates
(let us call these 100× 100 simulations) and as we made an-
other 100× 100 simulations, the powers sometimes differed
by several percentages. This was especially true for the 99%
significance level, therefore in the following, we do not show
the simulations for this level.

As we shall see in the next section, for the data pairs Bu-
dapest and Apatovac, the block size of 8.71 is going to be a
good choice. Table 3 shows that the tests are consistent also
for this block length, using 100×100 simulations. It is impor-
tant to note that these results are power values for a specific
null and alternative hypothesis (typical for non-parametric
statistical tests).

We also simulated the test statistic for other models: if the
reference H0 sample is

– i.i.d. bivariate normal distributed;

– an MA(4) process;
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Table 2. The power of the homogeneity test (%). Null hypothesis: the VAR(1) process of Budapest and Apatovac for different block sizes
and sample sizes (n). Alternative hypothesis: also a VAR(1) process, but with other parameters, representing stronger dependence.

n= 100 n= 500 n= 800 n= 1186

Block Confidence level Confidence level Confidence level Confidence level
size 90 % 95 % 99 % 90 % 95 % 99 % 90 % 95 % 99 % 90 % 95 % 99 %

1 37.13 25.27 11.72 77.12 69.20 48.12 92.54 88.25 72.51 98.96 97.84 91.72
1.5 36.50 24.86 11.87 77.44 69.12 45.84 92.27 87.58 74.16 98.65 97.16 90.48

2 35.61 25.43 11.61 77.00 66.76 47.2 92.65 87.43 71.69 98.52 97.08 90.20
5 32.54 22.48 8.95 77.48 67.68 43.16 92.61 86.62 72.40 98.56 96.68 89.96
6 32.63 22.39 9.08 77.96 68.60 48.12 92.06 87.72 70.62 98.68 97.68 90.92

6.5 33.47 22.90 9.15 77.64 68.88 50.56 91.83 87.69 74.17 98.38 97.16 91.43
7 33.72 23.16 9.90 76.84 66.56 48.44 92.78 86.43 71.62 98.12 96.88 91.40

7.5 32.68 22.14 8.91 77.84 69.20 46.48 92.18 86.90 73.89 98.39 97.16 90.02
8 32.93 22.39 8.63 78.12 68.92 48.92 93.28 87.11 75.81 98.48 97.32 87.24

8.5 33.49 23.01 9.39 78.56 69.52 48.84 93.37 87.02 74.47 98.49 97.16 91.85
9 33.00 22.84 10.13 76.24 66.88 43.72 91.99 88.24 73.48 98.48 96.88 90.08

9.5 33.41 21.83 8.30 76.92 66.60 45.00 92.24 87.91 72.06 98.31 97.16 91.64
10 33.40 23.19 9.46 78.28 69.28 44.04 92.44 87.00 69.80 98.44 96.96 90.52
11 32.69 22.65 8.38 75.92 66.96 48.36 92.48 87.72 74.16 98.16 96.88 92.12
12 32.80 22.04 9.66 77.04 68.00 44.16 92.04 88.20 75.28 98.28 97.16 90.00
13 31.68 21.84 8.53 77.04 69.28 48.96 92.80 88.28 76.28 98.12 96.68 88.72
14 31.98 22.24 9.32 77.84 68.40 47.56 92.52 88.48 72.56 98.60 96.24 89.12
15 32.33 22.65 8.44 77.20 66.84 42.80 91.64 86.84 71.00 98.56 96.68 88.24

Table 3. The power of the homogeneity test (%). Null hypothesis:
the VAR(1) process of Budapest and Apatovac (H0) for block size
8.71; against the VAR(1) process simulated with coefficient matri-
ces Ã and C̃ as alternative hypothesis.

Sample Confidence level Sample Confidence level
size 90 % 95 % size 90 % 95 %

50 22.44 14.76 500 81.28 74.28
100 34.04 24.76 800 92.80 89.04
200 48.04 37.04 1000 96.80 93.84
300 64.92 55.04 1200 98.96 98.08
400 74.68 65.08 1500 99.92 99.88

– a stationary GARCH(1,1) process.

In the two latter cases, we simulated samples for two cases
in which the coordinates were independent and correlated,
respectively. The alternative hypothesis varied from test to
test, for example if the H0 sample was i.i.d. bivariate normal
distributed, we chose H1 as another i.i.d. bivariate normal
distributed process and a VAR(1) process. Each homogene-
ity test proved to be consistent. Table 4 shows the power of
the homogeneity test, when the coordinates of the reference
sample are a realisation of a GARCH(1,1) process with pa-
rameters 0.001, 0.028 and 0.97 – typical values if we model
exchange rates with the GARCH(1,1) process. The alterna-
tive hypothesis was a VAR(1) process. In this case the frac-
tional block size had a bit of a stronger effect on the powers
of the test and the block size 11.35 proved to be the most

Table 4. The power of the homogeneity test (%). Null hypothesis:
GARCH(1,1) process with different block sizes, with sample size
n= 100. Alternative hypothesis: VAR(1) process simulated with
coefficient matrices A and C.

Block Confidence level Block Confidence level
size 90 % 95 % size 90 % 95 %

1 60.13 47.41 8 61.04 45.15
1.25 60.12 46.41 10 60.82 46.69

1.5 60.53 46.53 11 63.08 47.26
1.75 61.07 45.63 11.25 63.13 47.94

2 61.28 48.01 11.35 63.67 48.29
3 59.92 47.00 11.75 63.36 47.57
4 62.20 46.39 12 62.19 46.32
5 61.14 46.63 12 60.86 46.83
6 61.30 46.69 13 60.77 45.95
7 59.91 44.57 15 61.06 46.02

powerful. This was the only example in which we found a
specific block size, which essentially maximised the power
of our homogeneity test.

6 Applications

The observations comprise 63 years of daily temperature data
of the European Climate Assessment (E-OBS; http://www.
ecad.eu). The methodology of deriving the data for the grid
points has been published in Haylock et al. (2008), where
this database has been used extensively for climate analysis.

www.adv-stat-clim-meteorol-oceanogr.net/3/55/2017/ Adv. Stat. Clim. Meteorol. Oceanogr., 3, 55–66, 2017
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Figure 2. The map of the Carpathian Basin with the used grid
points.

We have worked with the part of the 0.5◦ grid – available
for whole Europe and northern Africa – which lies in the
Carpathian Basin. Figure 2 depicts the used grid points. For
later reference, we chose the grid point next to Budapest, one
grid point in the neighbourhood of the Hungarian capital and
four further grid points lying far from Budapest, in different
directions.

The quality of the data has been evaluated, e.g., in Hofs-
tra et al. (2009), and it turned out to be reliable for most of
central Europe. As we have used the grid points, belonging
to the Carpathian Basin, this validates our data.

As we intend to use models, suitable for stationary data,
first the stationarity had to be ensured. We have first sub-
tracted the smoothed daily averages from the observations.
The smoothing was made by loess regression; Fig. 3a, b de-
pict the daily averages and standard deviations of the 63-year
data and the smoothing regression line for the grid point near
Budapest. It turned out that the second-order stationarity as-
sumption is still far from being true (in winter the variances
were substantially larger than in summer), so we have di-
vided the observations by the smoothed estimated standard
deviation for the given day:

x̃t,n =
xt,n−mt

st
,

where x̃t,n is the standardised value for day t in year n,
based on the original observation xt,n for the same day and
the smoothed average mt and smoothed standard deviation
st . Figure 3c shows the original daily observations and the
standardised data between 1 January 2010 and 31 Decem-
ber 2012 for the grid point near Budapest.

In order to reduce the strong serial dependence, we have fi-
nally computed the 10-day averages of the x̃ values. As there
are no outliers in the temperature data (see Fig. 3c) and the
series is nearly normal, the mean was chosen as the most suit-
able function. There is a slight but significant upward linear
trend in the data, but we did not remove it, as one of our main
aims was to detect the changes in the dependencies of the in-

vestigated sites – and these should be based on the original
(standardised) deviations, as constructed above.

In the next step, we examined the fixed grid point near
Budapest paired with other grid points of the database. Us-
ing the Akaike information criterion, we chose the orders
of the most appropriate vector autoregression to model our
data pairs. Despite the adjusted R2 values being rather low
(around 10 %), the Ljung–Box Q test, the Breusch–Godfrey
test and the test of Kojadinovic and Yan (2011a) could not
detect the presence of further serial dependence that has not
been included in the VAR model. Table 5 contains these re-
sults.

Our main goal is to detect if there is a significant change in
the dependence structure of the data. We separated the pairs
of points into two parts – the first part corresponds to the
first 31.5 years’ observations and the second part to the sec-
ond 31.5 years’ observations. For five selected pairs of grid
points, we wanted to test the null hypothesis that the copula
of first half of the sample is equal to the copula of the sec-
ond half of the sample. We have tested the independence by
the Cramér–von Mises type test of Kojadinovic and Holmes
(2009), included in the R package copula and the result
was clear – the test could not detect any dependence (neither
for the used complete halves, nor for shorter adjacent subse-
quences from sample sizes of 100 to 1000).

Table 6 and Fig. 4 depict the optimal block lengths ob-
tained from solving Eq. (5). The second column of Table 6
and the red line of Fig. 4 show the trace of the covariance ma-
trices of the mean, calculated from the fitted VAR(1) models,
multiplied by 1186 – the half of the original sample size. In
Fig. 4a it can be seen that the traces of the covariance matrix
of the mean at the integer block sizes 13 and 14 are 17.8 and
18.05 (green dashed lines), which are quite far from the red
line. Figure 4b shows that the trace is not monotonic in the
neighbourhood of the optimum, so we have to be cautious
when we search for the optimal block size, because Eq. (5)
can have multiple solutions. The trace function (black line
in Fig. 4) is always continuous, but not necessarily differ-
entiable, resulting from the construction of our generalised
block bootstrap method. This follows from Eq. (6), where
there are lower and upper integer parts of b in the formula.

Generally, we noticed, that as the block sizes tend to be
smaller, the trace function is closer to be monotonic. This
phenomenon can be explained by the expansion of Cov∗(X

∗

b)
in formula (6): if the block size is relatively small compared
to the sample size, then the first and second terms are much
more dominant over the third part – which contains the effect
of the remainder block size. We got pretty small, 8.71 opti-
mal block size for the pairs Budapest and Apatovac, and a
much larger value of 55.42 for Budapest and Zaránd Moun-
tains. This reflects that the optimal lag order of the fitted
VAR(1) model was much higher for the pairs Budapest and
Zaránd Mountains. In case of the five selected pairs, as many
as seven iterations were always enough to solve Eq. (5). We
have to mention that there exist some pairs of grid points –

Adv. Stat. Clim. Meteorol. Oceanogr., 3, 55–66, 2017 www.adv-stat-clim-meteorol-oceanogr.net/3/55/2017/
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Figure 3. (a) The daily averages (annual cycle) and the smoothing loess regression; (b) the daily standard deviations (annual cycle) and the
smoothing loess regression; (c) the original and the standardised data for the grid point near Budapest.

Table 5. Results of tests checking for serial dependence between the estimated residuals (p values) and the chosen order of the VAR model
by Akaike criterion.

Pairs of selected grid points
Optimal Ljung– Breusch– Genest–Rémillard–

order Box Godfrey Kojadinovic–Yan

Budapest and Sopron 3 0.271 0.324 0.259
Budapest and Apatovac 1 0.080 0.463 0.120
Budapest and Zaránd Mountains 9 0.174 0.017 0.149
Budapest and Nyíregyháza 4 0.174 0.474 0.258
Budapest and Püspökhatvan 4 0.155 0.539 0.276

especially at the southern part of the Carpathian Basin – for
which Eq. (5) is not solvable.

The last step was conducting the copula homogeneity test
described in Sect. 3. Using the optimal block size, we gen-
erated bootstrap samples via the generalised block bootstrap
method for the first half of the sample. With the empirical
copulas of these bootstrap samples and the empirical copula
of the second part of the original sample, we can calculate the
test statistic Sn,m. In our case n=m= 1186. In order to get

accurate p values, we used 104 repetitions. This procedure
can be conducted in the reversed way as well: we may gener-
ate bootstrap samples from the second half of the sample and
fix the first half. Table 7 contains the results of the homogene-
ity test for both versions. The dependence structure proved to
be different in the first 31.5 years at the two pairs Budapest
and Apatovac and Budapest and Zaránd Mountains. Figure 5
depicts the 10-day averages of the standardised observations
and their copula of the pair Budapest and Apatovac. We can

www.adv-stat-clim-meteorol-oceanogr.net/3/55/2017/ Adv. Stat. Clim. Meteorol. Oceanogr., 3, 55–66, 2017
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Figure 4. (a) The trace of the covariance matrix of the mean for two selected grid points near Budapest and Sopron; (b) the trace of the
covariance matrix of the mean for two selected grid points near Budapest and Apatovac (first half of the sample).

Table 6. Optimal block length for the first half of the samples for the five selected pairs of grid points.

Pairs of selected grid points n · tr
(
Cov(XVAR)

) Optimal Number of
block size iterations

Budapest and Sopron 1.759 13.61 2
Budapest and Apatovac 1.805 8.71 2
Budapest and Zaránd Mountains 4.427 55.42 7
Budapest and Nyíregyháza 1.879 9.88 3
Budapest and Püspökhatvan 2.140 15.68 3

Table 7. p Values of the copula homogeneity test, if the first/second
half of the sample is bootstrapped – based on 104 simulations.

Pairs of selected grid points
p values, bootstrapped half:
first second

Budapest and Sopron 0.064 0.047
Budapest and Apatovac 0.028 0.012
Budapest and Zaránd Mountains 0.034 0.042
Budapest and Nyíregyháza 0.116 0.062
Budapest and Püspökhatvan 0.848 0.751

see that the pseudo-observations are apparently somewhat
different, and the test also detected deviance between the two
copulas.

7 Conclusions

In this paper, we have used the bootstrap for determining the
p values of a homogeneity test for copulas. But the approach
of block bootstrap is much more generally applicable than in
our case. Our results underline that the block size determina-
tion is definitely not yet a completely solved question in spite
of the available asymptotic results, as for finite samples and

different statistical inference or testing problems the results
might also be substantially different.

We can summarise our findings as follows.
First, we proposed a simple generalisation of the block

bootstrap methodology, which fits naturally to the existing
algorithms, and which helps to overcome the problem of dis-
creteness in the usual block size. The proposed generalised
block bootstrap method can easily be applied to any other
problem, where the block size plays an important role, as all
block length determining algorithms give a real number as
estimated block size.

Second, we have found some significant changes in the
dependence structure between the standardised temperature
values of pairs of stations within the Carpathian Basin. The
direction of this change may be worth further investigation,
as this may lead to a better understanding of the recent
changes in our climate.

It is an interesting open question, to which models and
inference problems the proposed block size determining
method – based on functions of the variances – can be suc-
cessfully applied. We have checked by simulation that the
method can be applied to the specific VAR models, described
in our article. For non-linear time series we might need more
observations to get a fit, which is similarly reliable. As a gen-
eral comment on the use of bootstrap methods, we have seen

Adv. Stat. Clim. Meteorol. Oceanogr., 3, 55–66, 2017 www.adv-stat-clim-meteorol-oceanogr.net/3/55/2017/
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Figure 5. The pseudo-observations of Budapest and Apatovac for the first and the second half of the 10-day averages of the standardised
observations.

cases when the block size did not play an important role, but
in our opinion this is rather an exception than a rule. Choos-
ing a not optimal block size may decrease the accuracy of the
applied method somewhat, but not using any type of block
bootstrap may distort the results completely as quite a few of
the references have already demonstrated.

Data availability. The E-OBS dataset is regularly refreshed. The
most up-to-date version is 15.0, dated June 2017. However at the
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ensembles/oldversions.php.
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