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Abstract. Climate models produce output over decades or longer at high spatial and temporal resolution. Start-
ing values, boundary conditions, greenhouse gas emissions, and so forth make the climate model an uncertain
representation of the climate system. A standard paradigm for assessing the quality of climate model simula-
tions is to compare what these models produce for past and present time periods, to observations of the past
and present. Many of these comparisons are based on simple summary statistics called metrics. In this article,
we propose an alternative: evaluation of competing climate models through probabilities derived from tests of
the hypothesis that climate-model-simulated and observed time sequences share common climate-scale signals.
The probabilities are based on the behavior of summary statistics of climate model output and observational data
over ensembles of pseudo-realizations. These are obtained by partitioning the original time sequences into sig-
nal and noise components, and using a parametric bootstrap to create pseudo-realizations of the noise sequences.
The statistics we choose come from working in the space of decorrelated and dimension-reduced wavelet coeffi-
cients. Here, we compare monthly sequences of CMIP5 model output of average global near-surface temperature

anomalies to similar sequences obtained from the well-known HadCRUT4 data set as an illustration.

Copyright statement. The author’s copyright for this publication
is transferred to California Institute of Technology.

1 Introduction

Climate models are computational algorithms that model the
climate system. They simulate many complex and interde-
pendent processes, yielding global or regional fields that
evolve from the past to the present and into the future. The
models allow scientists to understand the consequences of
different assumptions about both the physics of the climate
system and the forcings on it, including human influences.
Climate models are also now viewed as decision-making
tools because their projections of the future increasingly in-
form policy-making at the local, national, and international
levels. The reliability of these future projections is central to
both political and scientific debates about climate change.

Published by Copernicus Publications.

Understanding climate and climate change is truly an in-
ternational effort, with modeling centers from around the
world contributing model runs for the most recent IPCC (In-
tergovernmental Panel on Climate Change) report. The di-
versity of scientific opinion reflected by these multiple runs,
which use different initial conditions, parameterizations, and
assumptions, is a key strength of this very democratic ap-
proach to science. However, it also leads to uncertainty be-
cause the results differ both across models and between runs
of the same model using different initial conditions and pa-
rameter settings. To organize the effort, the Coupled Model
Intercomparison Project (CMIP) was established “to provide
climate scientists with a database of coupled GCM simula-
tions under standardized boundary conditions,” and “to at-
tempt to discover why different models give different out-
put in response to the same input, or (more typically) to
simply identify aspects of the simulations in which “con-
sensus” in model predictions or common problematic fea-
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tures exists” (Covey et al., 2003). CMIP, now beginning its
sixth incarnation (CMIP6), has grown to facilitate the use
of multi-model (Tebaldi and Knutti, 2007) and perturbed
physics (Murphy et al., 2004; Deser et al., 2010) ensembles
as a means of quantifying uncertainties in future projections
of climate change.

An enormous literature exists on the use of climate mod-
els, and ensembles of model outputs, to make predictions of
future climate conditions and quantify reliabilities of those
predictions. A basic strategy for quantifying reliability of
individual model runs is to assess their performance, over
the past and present, against observations. Baumberger et al.
(2017) call the ability of climate models to generate simu-
lations that agree with observed data “empirical accuracy”.
The supposition is that agreement of climate model simula-
tions with observations is an indication that the physics of
the climate model is correct. Assuming that the physics of
the future is the same as the physics of today, this implies
that future projections of models that achieve empirical ac-
curacy are more reliable than the projections of those models
that do not. There are many reasons to believe that things
are not that simple (Baumberger et al., 2017; Sanderson and
Knutti, 2012), but nonetheless there are plenty of examples of
the use of observations to determine how members of model-
generated ensembles of predictions should be weighted (An-
nan and Hargeaves, 2010; Boe and Terray, 2015; Hung et al.,
2013; Giorgi and Mearns, 2002; Suh and Oh, 2012).

Even if empirical accuracy is not sufficient to establish re-
liability of future projections, there are other reasons why
one might want to compare climate model simulations to ob-
servations. First, there is diagnostic value in understanding
the ways in which climate model simulations agree or dis-
agree with observed conditions (Kiehl, 2006; Watanabe et al.,
2010; Meehl et al., 2009). Second, there is growing consen-
sus that CMIP activities should include systematic evalua-
tion of models against observations to document improve-
ments in the models over time and identify those aspects of
model performance most in need of improvement (Eyring
et al., 2016). The World Climate Research Program (WCRP)
Working Group on Numerical Experiments (WGNE) has es-
tablished a Diagnostics and Metrics Panel to oversee the de-
velopment of “metrics” that can be used for these purposes.
Metrics endorsed by the panel at present tend to be simple
descriptive summary statistics such as root mean squared er-
ror (RMSE) over a time series or spatial field (see Gleckler
et al., 2008, for example).

Descriptive metrics are valuable as relative measures of
the goodness of fit of climate model simulations to observa-
tions. One can say that the RMSE, against observations, of
one model run is lower than that of another. However, it is
hard to know how to interpret metric values in an absolute
sense: how does the value of the metric relate to the proba-
bility that a model is “right” in its representation of an ob-
served physical process? That question is malformed until
we are precise about what right means. We must articulate a
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specific hypothesis about the relationship between observed
and climate-model-simulated data; the model is deemed to
be right if a formal statistical test of that hypothesis is not re-
jected at an agreed-upon level of significance. The p value
of this test can be interpreted as a measure of the com-
patibility of the data with the hypothesis (Wasserstein and
Lazar, 2016). This compatibility measure can be used as a
probability-scale metric of the degree to which the model
simulation is a correct representation of the observed data.

In this article, we present the statistical machinery for
deriving compatibility measures between climate-model-
simulated and observed time sequences. The null hypothe-
sis we test is that the coarse-timescale coefficients of wavelet
decompositions of the two sequences are the same. This al-
lows for the possibility that, in the time domain, the se-
quences do not match exactly, but rather share longer-term,
climate-scale behavior. Specifically, we break the time se-
quences of observations and climate-model-generated output
into two components: low-frequency sequences described by
coarse-level wavelet coefficients and high-frequency (possi-
bly non-stationary) sequences described by an integrated au-
toregressive moving average (ARIMA) model. The coarse-
level wavelet coefficients characterize decadal- and multi-
decadal-scale oscillatory patterns, which we call “climate
signals”, while the ARIMA processes characterize tempo-
ral dependence at finer timescales, and which we call “cli-
mate noise”. Our measure of similarity is the squared Eu-
clidean distance between vectors of climate signal wavelet
coefficients. The high-frequency climate noise might be in-
terpreted as “weather” and does not contribute to this mea-
sure of similarity. To generate sampling distributions under
the null hypothesis, we employ a parametric bootstrap in the
time domain, based on the ARIMA model’s fit to the climate
noise. We demonstrate our method by computing the com-
patibilities of 139 CMIPS historical model runs, of 44 dif-
ferent models, simulating monthly global near-surface tem-
perature anomalies. We use the HadCRUT4 monthly global
near-surface temperature anomaly data set as our observa-
tional benchmark.

The remainder of this paper is organized as follows. Sec-
tion 2 describes the statistical model that relates model-
generated output, observations, and true climate to one an-
other. Section 3 defines the hypothesis testing framework that
is crucial to our evaluation, along with the algorithm we use
to implement it. In Sect. 4, we demonstrate our method and
algorithm by evaluating the output of CMIP5 climate models
against observations. Conclusions follow in Sect. 5.

2 A wavelet-based statistical model for true climate,
model-generated, and observed time sequences
Consider a single climate variable (e.g., global average near-

surface temperature) whose true value is generically denoted
as Y. Define Y = (Y1,...,Y;,...,Y7) to be a column vector
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of length T representing a sequence of values of Y through
time up to the present. Observations are represented by the
T -dimensional column vector Z, and the /th climate model’s
simulated time sequence is denoted by X;, [=1,2,...,L
where L is the number of model runs.

Assume that the true sequence Y, the /th climate model’s

sequence X/, and the sequence of observations Z, are related
statistically as follows:
X;=Y+e and Z=Y +e, @))]
where e; is the error of the /th climate model sequence, and
e is the error on the observations (Rougier, 2007). This is the
standard “truth-plus-error” statistical model often discussed
in the climate literature (Annan and Hargeaves, 2010).

Direct comparison of X; to Z, say by computing D; =
1X;—Z||? (ora weighted version), suffers from several prob-
lems that make the result difficult to interpret. First, X; and
Z are not expected to match element by element. We would
like to capture some notion of common structure, rather
than pointwise agreement in time. Second, all these time se-
quences will exhibit temporal dependence, so any method-
ology and its associated theory needs to account for it. Both
issues are effectively addressed by transforming the time se-
quences using a wavelet decomposition.

The wavelet decomposition is a decorrelator, just like the
usual Fourier spectral decomposition, but wavelets capture
local behavior through functions that are of compact support,
multi-resolutional, and translational within a resolution. Lin
and Franzke (2015) have shown that wavelets can capture
multi-resolution temporal structure in global average near-
surface temperatures.

In wavelet analysis, the discrete wavelet transform (DWT)
is

Cx=WX, @

where W is a square, orthonormal matrix (i.e., W'W =
I) that acts on a generic time sequence, X, resulting in
the wavelet coefficients Cx (Percival and Walden, 2006).
The choice of wavelet basis functions (father and mother
wavelets) will determine the form of W.

We augment the model given in Eq. (1) as follows. Let
Y® and Y" denote the climate “signal” and “noise” com-
ponents of Y, where climate signal is defined by the num-
ber of coarse-scale wavelet decomposition levels that distin-
guish climate-scale variability from weather-scale variability.
This partitioning depends on the scientific problem being ad-
dressed, the hypothesis of interest, and the assumptions the
analyst is willing to make. Define X7, X ?’ Z*, and Z" anal-
ogously. Then, since the wavelet transformation is linear,

Y=Y +Y", 3)
X, =Y +Y"+e,
Z=Y 4+Y"+ey.
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Cy = Cys +Cyn, “)
Cx, =Cys + (Cyn +Ce,) ,
Cz =Cys + (Cy'l +Ce0) .

The terms in parentheses in Eq. (4) cannot be separately iden-
tified, so they are combined and we consider them to be resid-
ual errors.

The key assumption that we make is that Cz can be de-
noised, at least in an asymptotic sense, to leave behind only
the wavelet coefficients associated with climate signal, Cys.
Suppose that T, the length of the time sequences, is an ex-
act power of 2. If it is not, the sequences can be padded ap-
propriately as discussed below in Sect. 3. Let J be a con-
stant, J < J = log, T, that specifies the number of coarse-
scale wavelet decomposition levels that define climate signal
in the wavelet-level hierarchy. Let S(Cyx, J)bea smoothing
function that operates on a generic vector of wavelet coeffi-
cients, Cy, by setting elements corresponding to levels above
the first J to zero. Let T(S(Cx, J ) be a truncation function
that deletes the trailing zero elements in S(Cy, J ). Then,

CX = ()/003 Vo1, -+ y(]_l)z(]—l)s YIJ—=Dls--os V(J—l)(zl—l))
/
L), ©)

v v /
rX = T(S(CXv J), J) = (VOOs YO1s -« y(j_l)z(j—l)) s

SCx,J)= (VOO’ YOls - y(j_l)z(‘;_l),o, RPN

where yji is the kth wavelet coefficient at level j. Our as-
sumption is that I' z = 'ys, that the wavelet coefficients that
define the true climate signal can be recovered from the ob-
servations. Of course, this requires us to specify an appropri-
ate value of J. As noted above, this choice will be problem-
dependent. The corresponding smoothed time sequence is
S(X,J)=W'SCx, J).

We now establish some important notation for
further  specifying the statistical models. Write
X =X (D),..., Xu(T)Y, for I=1,...,L, and
Z=(Z(1),...,Z(T)). We model X;(tr) and Z(t) as
follows:

Xi()=oy+ Bt +yVit/T)+ @) + e (1), (6)
for t=1,....,T, I=1,...,L,

Z(t) = oo+ Bot + v Vot /T) + no(t) + eo(r), @)
fortr=1,...,T,

where o and B; are linear trend coefficients, V;(-) and y;2
are scaling functions and coefficients, respectively, and [ =
0,..., L. Note that the case / = 0 refers to quantities in the
statistical model of the observations. In Egs. (6) and (7),

J—127—1

@ =D Wi/ 1), ®)

j=0 k=0
for [=0,...,L, t=1,...,T,
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where W (-) is a fixed family of wavelet basis functions. The
vectors of climate-scale wavelet coefficients are

/
er = (yl()o, ceny yl(]—])(Zj‘l)) , for I=1,...,L, C)]
and

/
T2 = (Y000, Yoy _pyoi1)) - (10)

Further, we assume that the noise terms, ¢;(¢) and ey(t), are
ARIMA processes that are independent of each other.

We will apply the same wavelet transform to detrended
versions of {X;: [=1,...,L}, Y, and Z, and work in the
equivalent space of wavelet coefficients. Thus, we can now
clearly define what we mean by common structure of two
time sequences: they share the same climate-scale wavelet
coefficients. We think of this as a null hypothesis:

Hy:Tx,=Tgz. (11)

3 Hypothesis testing framework

To carry out a test of the hypothesis Hp in Eq. (11), we must
identify a test statistic and generate the distribution of that
statistic under the assumption of Hy.

3.1 Test statistic that captures a relationship to the true
climate

The test statistics that we use are based on a weighted
squared distance between the climate-scale wavelet coeffi-
cients of X; and Z. Recall,

P72 =T(SC2. 0. 7) = (W00 -+ Voj_yain) - (12

v v /
P, =7 (SCx. H.9) = (v00. o V5_pion)) » - (13)
forl=1,...,L,

for a fixed value of J. These vectors are of length A =

ZJJ.;& ,%J:Bl 1, which is the total number of wavelet coef-
ficients corresponding to the climate signal. We define the
test statistic Dy,

. A\ [ .
D= (Fx, ~Tz) @(fx - 12), (14)
Q = diag(w11, 022, ..., 011),
where T x, and I z are estimates of I'y, and I'z computed
from X; and Z, respectively, and € is an A x A diagonal ma-
trix of weights in which the diagonal element corresponding
to y,jk is proportional to T/2/, for k=0,1,...,2/ — 1, and
1 =0,1,...,L. This makes the weights proportional to the
number of time points influenced by the wavelet coefficients.
We rescale these diagonal entries so that they sum up to one
in order to facilitate easier interpretation as weights.
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3.2 Simulating the null distribution of the test statistic

In what follows, it is crucial to obtain good estimates of the
test statistic’s variance under Hy : I'y, = I'z against the al-
ternative Hy :Tx, #Tz; I =1,..., L. We obtain variance
estimates by generating B “pseudo-realizations” of a time se-
quence from a single parent time sequence, under Hy. Then,
for each pseudo-realization indexed by b, we detrend, per-
form the wavelet decomposition, and compute the test statis-
tic to obtain B resampled values of Dy, {D}, : b=1,..., B}.
The empirical variance of this sample is an approximation to
the sampling variance of D; under Hy.

Starting with the original sequences, Z of length Ny and
X of length N;, we perform the following steps.

1. Set B (the number of trials).

2. Obtain ):é ; and E as follows:

(a) Perform simple linear regression of Z on the se-
quence {t : t = 1,2, ..., No} to obtain the regression
intercept and slope, &g and By.

(b) Perform simple linear regression of X; on the se-
quence {t :t =1,2,..., N} to obtain the regression
intercept and slope, &; and §;.

() Set Z(1) = Z(t) — éo — fot, fort = 1,2, ..., No.
(d) Set X;(t) = X;(t) — & — fyt, fort = 1,2, ..., N;.
Retain the computed values of the trend coefficients,
(&o,,éo) and (&1,,31)-

3. If ei@er No_or N is not an exact power of 2, then

pad Z and X; so that both their lengths are equal to
T =2M°0%N1 N = max(Ny, N;), where [-] is the ceil-
ing function. This padding is implemented by reflection
at the beginnings and ends of the sequences. Call the
padded sequences Z and X;. If no padding is required,

set Z=7 and X ;= X;. Note that padding sequences
in this way is standard practice in wavelet-based anal-
ysis (Ogden, 1997). In our application below, we actu-
ally do not need to implement this step since our time
sequences are of lengths that are exact powers of two.

4. Set J =log,T and J equal to the number of levels in
the wavelet decomposition that constitute the climate
signal.

5. Perform the J-level wavelet decomposition on Z to ob-
tain the set of climate-signal wavelet coefficients I'z =

()70007 70015 - -+ )90(]_1)2(,;1)). Our choice of wavelet
basis ensures that the coefficient of the scaling func-
tions, yy2 and yp2 in Egs. (6) and (7), can be assumed to
be zero, because of the linear regression implemented
in Step 2. Consequently we do not include these terms
from the climate signal’s wavelet-coefficient vectors.
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6. Compute fiy = (o(1), 20(2), ..., fo(T)) from I'z:

~¢

—12/—

—_

fo(t) = P Wik(t/T), 1=1,2,...T. (15)

I
=)

j k=0

7. For a given climate model / € {1,..., L}, generate B
pairs of pseudo-sequences, {(X;;l, ZZ) h=1,..., B}.
The bth pair contains a length-T pseudo-sequence de-
rived from X, denoted by X Z,, and a length-T pseudo-
sequence derived from Z, denoted by ZZ. To do this,
create the bootstrapped values

X3 = (X3, ..., X5(D), (16)
where X, (1) = & + Byt + fo(t) + R}y (1),
Zy=(Z;(),..., Z(D)), (17)

where  Zj(t) = o + ot + fLo(t) + Rjjo(1).

where Ry (t) is the bth simulated residual, /=
0,1,...,L. For the given / under consideration, note
that the same values [1;(t) = [io(¢) are used in Egs. (16)
and (17) thus enforcing the null hypothesis. To simulate
R;,(1), see Step 8.

8. Simulation of R;’;l(t), t=12,...T,b=1,2,...,B:

(a) Define R; = (R;(1), R;(2), ..., Ri(T)) as the resid-
ual time series,

Ri=X;—a1—pt—py, (18)

where 1 is the column vector of ones of length
T,and t=(1,2,...,T). Fit an auto-regressive in-
tegrated moving average (ARIMA) model (Brock-
well and Davis, 1991) to R; and denote the fitted
model by

Al s Ouig)s TF)s (19)

where p and g are the numbers of parameters in the
autoregressive and moving average components of
the model, and d is the degree of differencing ap-
plied to make the time series R; stationary. The es-
timated coefficients of the autoregressive part of the
model are qgl Iy ¢1( p+d)> and the estimated coef-

él(p#»d)véll, CERY)

ficients of the moving average part are o, ..., qu.
The estimate of the noise variance is 1:12.

(b) Simulate the bth realization from the fitted model
Ai@i1s o Picprays Oty - -, Oiag), 67) by setting
Ry (1) = Rp(1), Ry (2) = Rpi(2), ..., Ry (d) =
Rpi(d), sampling €/ (¢) from N (0, flz), and comput-
ing
Ryy(0) = dn Ryt = D+ ..+ digpi—1) (20)

Ri sy = p)+0n(t — eyt — 1)
+ oo A Ot — q) + ey (0),
fort=d+1,d+2,....T

www.adv-stat-clim-meteorol-oceanogr.net/3/93/2017/
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9. For b=1,..., B, and a given [, obtain the values D hl
from X7, and Z}, as follows.

(a) Obtain ):2 Zl and EZ by repeating Step 2 above with
X}, in place of X; and Zj in place of Z.

(b) Obtaln X, » and Z » by repeatmg Step 3 above with
Xbl in place of Xl and Zb in place of Z.

(c) Perform  wavelet
and Zb to

I = (Vbzoo’ﬁzop-- val(J 120~ 1)) and
Recall

=k
decompositions on X,
obtain wavelet coefficients

o _ [ox ~ %
Lo = (Vbooo’ Ypoo1> -+ > VbO(J 10— 1>)
that J < J is the number of wavelet decomposition

levels that define the climate signal in the time
sequences.

(d) Compute  the Dy, =
A A / A A
(£5,~150) @(F5 —T5,). foro=1.....8

simulated  values,

For a given [ €{l,...,L}, the set {D},:b=1,2,...,B}
gives an empirical approximation to the null distribution of
Dy under Hp.

3.3 Computing p values

Recall from Eq. (14) that the value of the test statistic, com-
puted using the actual time sequences X; and Z, is denoted
by Dy, for a given [. The collection {D},:b=1,2,..., B}
approximates the sampling distribution of D; under the null
hypothesis that X; and Z share the same climate signal, esti-
mated from Z by fij in Eq. (15).

The quantile at D; in the distribution of
{DZI b=1,..., B} is an empirical approximation to
one minus the p value of the test of the null hypothesis,

o : T'x, =Tz, under the conditions and assumptions de-
scribed in Sect. 3. It is interpreted here as a probability-scale
measure of compatibility between the test statistic’s value
and how extreme it is under the null hypothesis (Wasserstein
and Lazar, 2016). To emphasize this interpretation, we refer
to these p values as “compatibilities” and denote them by
ci. Specifically, the compatibility associated with the test is
estimated by

#Dy, > D))

B ; ey

= P*(Dl>k > Dj|Hp) =

where P* denotes a probability with respect to the empirical
distribution {D}, : b=1,..., B}.

4 Case study: evaluating CMIP5 models using
observations

In this section, we demonstrate our methodology described
in the previous sections by applying it to the evaluation of
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monthly global average near-surface temperatures produced
by 44 CMIP5 models. We evaluate these against a benchmark
observational data set used in a similar comparison presented
in the 2013 IPCC report, specifically in chap. 9, “Evaluation
of Climate Models” (Flato et al., 2013).

4.1 Data sources

In this subsection, we describe both the climate model out-
puts from CMIP5 and the global average near-surface tem-
perature anomaly observations against which the CMIP5 cli-
mate models can be evaluated.

4.1.1 Climate model output

The CMIP5 experiments are broadly divided into near-term
and long-term experiments, with the long-term experiments
designed specifically for model evaluation (Taylor et al.,
2012). One subcategory of long-term experiments is the so-
called “historical” runs for which climate modeling centers
have provided simulated time sequences from the mid-19th
though the early 21st century. These simulations start where
pre-industrial control runs finish, and they are forced by both
natural and anthropogenic conditions. Both simulated and
observed time sequences exhibit variability due to these forc-
ings and also due to internal variability, which is defined by
Taylor et al. (2012) as “variations solely due to internal inter-
actions within the complex nonlinear climate system.” They
g0 on to say, “a realistic climate model should exhibit in-
ternal variability with spatial and temporal structure like the
observed” and caution that this does not mean there will be
a one-to-one match between simulated and observed occur-
rences of specific events or patterns. In other words, statisti-
cal agreement is to be assessed in these comparisons. In this
example, we define statistical agreement between two time
sequences as agreement between their climate-scale wavelet
coefficients, where our definition of climate-scale is the three
coarsest wavelet coefficient levels. This corresponds roughly
to 10-year periodicity. We emphasize that this choice is made
here only to illustrate our methodology, and others may wish
to define climate scale with a different choice of threshold
separating climate scale from weather scale in the wavelet
decomposition hierarchy.

We obtained a total of 139 time sequences of global
monthly mean near-surface air temperature anomalies, gen-
erated by 44 CMIP5 models, from the KNMI (Royal Nether-
lands Meteorological Institute) Climate Explorer website
(https://climexp.knmi.nl/). Climate Explorer allows on-the-
fly aggregation, averaging, and renormalization of data sets
with a simple menu-driven interface. We selected all time se-
quences available for which the variable tas (near-surface
air temperature) was available in the historical experiment,
except for the GISS (Goddard Institute for Space Studies)
models. For the GISS models, we limited our selection to
those that were designated physics version 1 (“pl”), since
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they represent prescribed rather than calculated aerosol and
ozone fields and thus more closely match what is done by
the other centers for the historical experiment. The monthly
global mean is expressed as an anomaly from the mean of the
period 1961-1990, as in Flato et al. (2013).

The collection of sequences produced by a given model
is called an ensemble; some models produced just one en-
semble member, while other produced as many as 10. Most
sequences cover the period 1850-2005, although some start
as late as 1861 and some end as late as 2015. The common
period that we use in this case study is May 1918 through
August 2003; a sequence of exactly 1024 months. Table 1
lists the 44 models used in this study, the modeling centers
that are responsible for them, and the size of the models’ en-
sembles.

4.1.2 HadCRUT4 observations

Following Flato et al. (2013), we used the HadCRUT4 data
set (Morice et al., 2012) as our observational time sequence.
HadCRUT4 combines land, air, and sea-surface temperature
data to produce a 100-member ensemble of monthly grid-
ded surface temperature fields reaching back to 1850. Docu-
mentation for these data and an in-depth description of how
they were produced can be found in Morice et al. (2012).
As with the model simulations, we used the KNMI Climate
Explorer to obtain the monthly global average near-surface
temperature anomalies for the period May 1918 thought Au-
gust 2003, where the anomalies are computed relative to the
average of the period 1961-1990. Our observational time se-
quence is computed from the median value of the 100 ensem-
ble members’ global average near-surface temperature value.
Additional details can be found at http://www.metoffice.gov.
uk/hadobs/hadcrut4/faq.html.

4.2 Exploratory comparison

Figure 1 shows time sequence plots of the first ensemble
member from each of 44 CMIPS5 models, with a slightly
smoothed version of HadCRUT4 observations (for better
readability) superimposed. All sequences are truncated to the
period May 1918 through August 2003, which provides a
sequence of 1024 months that includes the periods covered
by all models and by HadCRUT4. The figure is similar but
not identical to Fig. 9.8a in Flato et al. (2013) due to differ-
ences in normalization and masking. The HadCRUT4 values
lie mostly inside the envelope defined by the 44 model output
sequences. Note that the spread among the model sequences
appears to decrease over time, as does the variability of in-
dividual sequences including HadCRUT4. There are sharp
increases in all the anomaly values starting in about 1961.
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Table 1. The 44 CMIP5 models used in this study.
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Model Center Members | Model Center Members
ACCESS1-0 CSIRO-BOM (Australia) 1 | GFDL-ESM2M GFDL (USA) 1
ACCESSI1-3 CSIRO-BOM (Australia) 3 | GISS-E2-H pl NASA GISS (USA) 1
BCC-CSM-1 Beijing Climate Center (PRC) 3 | GISS-E2-H-CC pl NASA GISS (USA) 6
BCC-CSM-1-M Beijing Climate Center (PRC) 3 | GISS-E2-R pl NASA GISS (USA) 1
BNU-ESM Beijing Normal Univ. (PRC) 1 | GISS-E2-R-CC pl NASA GISS (USA) 6
CanSM2 CCCMA (Canada) 5 | HadGEM2-AO NIMR/KMA (UK/Korea) 1
CCSM4 NCAR (USA) 6 | HadGEM2-CC MOHC/INPE (UK/Brazil) 1
CESM1-BGC NCAR/DOE/NSF (USA) 1 | HadGEM2-ES MOHC/INPE (UK/Brazil) 4
CESM1-CAMS5 NCAR/DOE/NSF (USA) 3 | INMCM4 INM (Russia) 1
CESM1-CAMS5-1-FV2  NCAR/DOE/NSF (USA) 4 | TPSL-CM5A-LR IPSL (France) 6
CESM1-FASTCHEM NCAR/DOE/NSF (USA) 3 | IPSL-CM5A-MR IPSL (France) 3
CESM1-WACCM NCAR/DOE/NSF (USA) 1 | IPSL-CM5B-LR IPSL (France) 1
CMCC-CESM CMCC (Italy) 1 | MIROC-ESM MIROC (Japan) 3
CMCC-CM CMCC (Italy) 1 | MIROC-ESM-CHEM  MIROC (Japan) 1
CMCC-CMS CMCC (Italy) 1 | MIROC5 MIROC (Japan) 5
CNRM-CM5 CNRM (France) 10 | MPI-ESM-LR MPI (Germany) 3
CSIRO-Mk3-6-0 CSIRO (Australia) 10 | MPI-ESM-MR MPI (Germany) 3
EC-EARTH EC-EARTH 9 | MPI-ESM-P MPI (Germany) 2
Consortium (Europe)
FGOALS-g2 LASG (PRC) 5 | MRI-CGM3 MRI (Japan) 3
FIO-ESM FIO (PRC) 3 | MRI-ESM1 MRI (Japan) 1
GFDL-CM3 GFDL (USA) 5 | NorESM1-M NCC (Norway) 3
GFDL-ESM2G GFDL (USA) 3 | NorESM1-ME NCC (Norway) 1
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Figure 1. Monthly global average near-surface temperature

anomaly time sequence plots for the first ensemble member of each
of the 44 CMIP5 models (colors), and the HadCRUT4 observational
sequence (red), for May 1918—August 2003. The black line is a 12-
month running mean computed from the HadCRUT4 data.

4.3 Compatibility of CMIP5 model simulations and
observed HadCRUT4 data

We performed the steps described in Sect. 3.2 and 3.3 on the
139 CMIPS historical time sequences using the HadCRUT4
observations as a benchmark. The number of replications in
the simulation was set to B = 5000. No padding of the se-
quences was required since all time sequences are of a length
of 1024 months. Padding may introduce artifacts by giving
some time points in the sequences more importance than oth-
ers, so it is desirable to avoid it if possible. The CMIP5 and
HadCRUT4 data extend back to about 1850, but the Had-
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CRUT4 observations are almost certainly less reliable as one
goes back in time. For these reasons, we choose a period
starting in the early 20th century and continuing for 1024
consecutive months, that covers the time period covered by
all the models.

The DWT was applied to the detrended time sequences
shown in Fig. 2, with J =3. This corresponds to a cycle of
approximately 10 years, which is, in our opinion, the finest
timescale that one could legitimately call “climate”. The
choice of J is important because it defines the set of tempo-
ral scales over which we evaluate agreement between mod-
els and observations. This choice may also be impacted by
the choice of the wavelet basis; here, we use the Daubechies
least asymmetric wavelet family with eight vanishing mo-
ments (DBS8). The choice of wavelet family was made after
experimentation with this and other families. The choice of
wavelet family did not affect our results significantly.

We used R’s wavethresh (Nason, 2015) package for the
wavelet decomposition and the forecast package (Hynd-
man and Khandakar, 2008) for fitting the residual time se-
quences in Step 8 of the procedure described in Sect. 3.2.
In particular, forecast provides the auto.arima func-
tion, which automatically chooses the best ARIMA model
by the Akaike information criterion (AIC). The base pack-
age’s arima.sim function can then generate realizations
from the model fit by auto.arima, given its estimate of
the noise variance, tlz, and assuming that the residuals from
the fit are a white noise process. To check the latter as-
sumption, we ran the function whitenoise.test (Lo-
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Figure 2. Model evaluation results for 139 time sequences generated by CMIP5 models in the historical experiment. Different models
correspond to positions along the x axis, with multiple ensemble members from the same model shown along the vertical line above the
model name. Height along that line is the compatibility value. The maximum compatibility value of 1 is indicated by the grey horizontal line.

Square plotting symbols indicate model ensemble members for which
plotting symbols indicate ensemble members which did not pass.

bato and Velasco, 2004) from the package normwhn.test.
Of the 139 time sequences, 23 failed this test: the null
hypothesis of white noise was rejected at the 0.001 level.
For these 23 sequences, we attempted to fit ARIMA mod-
els, possibly including seasonal components, manually. Af-
ter rechecking the residuals, a total of nine ensemble mem-
bers did not pass the white noise test on their residuals:
CNRM-CM5/9, CSIRO-Mk3-6-0/7, CSIRO-Mk3-6-0/9, EC-
EARTH/1, FGOALS-g2/1, FIO-ESM/2, GISS-E2-H-pl/1,
GISS-E2-H-p1/3, and GISS-E2-R-p1/1. We proceeded with
the processing of these sequences anyway, but note them as
special cases in Fig. 2.

Figure 2 displays the compatibilities, computed using the
methodology of Sect. 3, for all 139 time sequences generated
by the 44 models in the CMIP5 historical experiment. The
models are arranged in alphabetical order along the x axis
of the graphic, and each ensemble member’s compatibility
value with the HadCRUT4 observations is shown by the ver-
tical position of a plotting symbol. The nine time sequences
for which the residuals from the ARIMA fit did not pass the
white noise test are indicated by asterisks. The figure shows
a striking degree of variability among members produced
by the same model. For example, the compatibilities of the
10 time sequences generated by the CSIRO-Mk3-6-0 model
with HadCRUT4 range from 0.0088 for member 10 to 0.9998
for member 5. To elucidate the correspondence between our
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the residual from the ARIMA fit passed the white noise test. Asterisk

results and model performance, we now investigate CSIRO-
Mk3-6-0 model’s ensemble in greater depth.

Excluding CSIRO-Mk3-6-0/7 and CSIRO-Mk3-6-0/9
(due to failure of their residual sequences to pass the white
noise test), the eight remaining members of the CSIRO-Mk3-
6-0 ensemble are shown in Fig. 3. The time sequences ren-
dered in color are the best- and worst-performing members
of the ensemble: members 5 and 10, respectively. The other
six members are rendered in grey to give a general impres-
sion of their variability. Figure 4 shows the corresponding
climate-signal time sequences after detrending, estimating
the wavelet coefficients for the three coarsest levels of the
wavelet decomposition, and transforming back to the time
domain. For reference, the HadCRUT4 climate signal, de-
fined and computed in the same way, is superimposed in red.

It is quite clear from this figure that the climate-signal time
sequence for member 5 is closer to that of HadCRUT4 than
is the climate-signal sequence for member 10. This is a re-
flection of the fact that the vector of climate-scale wavelet
coefficients for member 5 is closer, in the metric D; defined
in Eq. (14), to the HadCRUT4 vector (D; = 0.305 for mem-
ber 5 vs. 0.743 for member 10). This is only part of the story,
however.

The other part of the story comes from the characteris-
tics of the climate-noise time sequences that are left behind
after accounting for trend and climate signal. To obtain the
null distribution of D; that we require in order to understand
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the relative magnitudes of this quantity for the two members,
we used a parametric bootstrap to create B = 5000 pairs of
pseudo-realizations from a given ensemble member’s time
sequence and the observational time sequence. The boot-
strapped observational sequence is the sum of (a) the Had-
CRUTH4 trend, (b) its climate-signal time sequence, and (c) a
bootstrapped realization from the following ARIMA(1,0,1)
which was fit to the HadCRUT4 climate noise (R in Eq. 18),

Ro(t) = ¢o1 Ro(t — 1) +Gor€0(r — 1) + (1), (22)
€o(t) ~ N0, d),

with

Bo1 = 0.8539 (se(do1) = 0.0243), (23)
o1 = —0.4223 (se(@m) =0.0422), =0.0117.

The bootstrapped model sequence is the sum of (a) the
model’s trend, (b) the HadCRUT4 climate-signal time se-
quence, and (c) a bootstrapped realization from the a time
series model fit to the climate model’s climate noise (R; in
Eq. 18). For CSIRO-Mk3-6-0/5, the best ARIMA model is
ARIMAC(1,0,2) with zero mean and coefficients,
é11 = 0.9390 (se(do1) = 0.0136), (24)
01 = —0.3857 (se(d;1) = 0.0342),

1 = —0.0667 (se(f2) = 0.0313),
T() =0.009.

For CSIRO-Mk3-6-0/10, the best ARIMA model is
ARIMAC(1,1,1) with coefficients,

b1 = 0.2107 (se(dor) = 0.0643), (25)
61 = —0.6217 (se(d;1) = 0.0514),
2 =0.008.

Thus, we have created 5000 bootstrapped realizations that
mimic the statistical properties of HadCRUT4, and 5000 as-
sociated realizations that have the simulated climate signals
of their HadCRUT4 companions, but trends and climate-
noise sequences from the CSIRO-Mk3-6-0 member being
evaluated (recall Egs. 16 and 17). Finally, each of 5000 com-
panion pairs is evaluated as if they were new model runs
paired with newly acquired observational data, yielding 5000
weighted squared distances between vectors of climate-scale
wavelet coefficients.

Figure 5 illustrates this procedure. Figure 5b and d show
the original HadCRUT4 climate-signal time sequence in red
(the same in both panels) and 10 reconstructed climate-signal
time sequences (in grey) out of the total of 5000 in each
panel. Notice that HadCRUT-simulated realizations used in
the assessment of CSIRO-Mk3-6-0/5 (Fig. 5b) are different
than the HadCRUT4-simulated realizations used in the as-
sessment of CSIRO-Mk3-6-0/10 (Fig. 5d) because they are
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bers 7 and 9) climate-signal time sequences after detrending, esti-
mating the wavelet coefficients for the three coarsest levels of the
wavelet decomposition, and transforming back to the time domain.
The HadCRUT4 climate signal, defined and computed in the same
way, is superimposed in red.

generated in separate simulations, even though they come
from the same ARIMA model. Figure 5a and ¢ show the
same climate signals from CSIRO-Mk3-6-0/5 (Fig. 5a) and
CSIRO-Mk3-6-0/10 (Fig. 5c) that are displayed in Fig. 4,
plotted along with 10 climate-signal time reconstructions (in
grey) from the procedure described above. Every grey tra-
jectory line in the left panels has a companion grey trajec-
tory line in the corresponding right panels. The similarities
between these pairs of climate-scale time trajectories are
quantified by the weighted squared distances between their
climate-scale wavelet coefficients.

The second reason why CSIRO-Mk3-6-0/5 performs bet-
ter in our evaluation than CSIRO-Mk3-6-0/10 is now evident:
there is more variation in the climate-signal time sequences
of member 5’s bootstrapped realizations than in member
10’s. This is a consequence of differences in the structures
of their climate-noise sequences; these structures are quanti-
fied by Egs. (24) and (25). Figure 6 is similar to Fig. 5 except
that it displays the climate-noise time sequences of the boot-
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Figure 5. Impact of internal variability on bootstrapped climate signals. Panels (b) and (d) show the original HadCRUT4 climate-signal
time sequence in red (the same in both panels) and 10 reconstructed climate-signal time sequences (in grey). Panels (a) and (c) show the
climate signals from CSIRO-Mk3-6-0/5 and CSIRO-Mk3-6-0/10, respectively, along with reconstructed climate-signal sequences from 10

bootstrapped realizations (in grey).

strapped realizations instead of the climate-signal sequences.
Greater variability in the noise portion of CSIRO-Mk3-6-
0/5 relative to CSIRO-Mk3-6-0/10 must be a consequence
of the difference in the two ARIMA models and their coef-
ficients, and leads to more heterogeneity in its bootstrapped
time sequences. This, in turn, leads to greater variability in
the climate-signal wavelet coefficients of the bootstrapped
time sequences derived from CSIRO-Mk3-6-0/5.

This conclusion is driven home in Fig. 7. Figure 7b shows
kernel density estimates, fit using R’s density function, of the
null distributions of the test statistic, Dy, for the eight mem-
bers of the CSIRO-Mk3-6-0 ensemble under study. Figure 7a
is identical except that only members 5 and 10 are colored
(to make them easy to identify), and the actual values of their
respective test statistics are shown by suitably colored verti-
cal lines. This makes it clear that the dominant reason why
the compatibility value for CSIRO-Mk3-6-0/5 is so high is
the variability of its climate-noise time sequence. Figure 7b
shows that the different ensemble members exhibit a variety
of levels of this kind of internal variability.

For a single time sequence, generated either by a climate
model or an observational data source, we regard climate
noise as a proxy for internal variability, and our method uses
a parametric bootstrap to create pseudo-realizations from it.
When added to the appropriate trend and climate-signal se-
quences, we thus create pseudo-realizations of full time se-
quences having the same statistical characteristics as their
original counterparts. When uncertainties on observational
data are not available, this may be a viable strategy for mim-
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icking the aggregated effects of natural variability and ob-
servational error. When only a single member of a climate
model ensemble exists, as is the case for some of the CMIP5
models in the historical experiment, the method may present
a way of representing internal model variability. In fact, even
when multiple ensemble members do exist, we argue that
they are the results of purposeful perturbations of initial con-
ditions and model parameters, and should be regarded as
a source of between-member variability rather than within-
member variability.

5 Conclusion

We have introduced a method, based on a hypothesis testing
framework, to determine the degree to which climate-scale
temporal-dependence structures in an observational time se-
quence are reproduced by climate-model-simulated time se-
quences. For a given climate model, the degree of agreement,
or compatibility, is quantified by an empirical p value from a
test of the null hypothesis that climate-scale temporal depen-
dence is the same in both the observed and climate-model-
simulated time sequences. A p value is the probability that
a discrepancy as large or larger than that computed from the
climate-model-simulated and observed sequences would be
obtained if the null hypothesis were true; that is, if the two
sequences really did share the same climate-scale structure.
In this context, a small empirical p value suggests that a cli-
mate signal in the climate model time sequence is incompat-
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Figure 7. Null distributions, obtained by parametric bootstrapping, of eight members of the CSIRO-Mk3-6-0 model. (a) CSIRO-Mk3-6-0/5
and CSIRO-Mk3-6-0/10 highlighted, with their values of D; indicated by the vertical lines. (b) Same as the left, but with the ensemble

members identified by different colors.

ible with the climate signal embedded in the observed time
sequence.

Of course, such conclusions are predicated on the assump-
tions of the hypothesis-testing framework. These include the
underlying statistical models for the time sequences, how we
define “climate scale” in the context of those models, the
choice of test statistic, and how the sampling distribution
of the test statistic is simulated under the null hypothesis.
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We have made necessary choices in this work that we be-
lieve to be reasonable, but others are certainly possible. The
choice of the wavelet decomposition level that constitutes the
boundary between climate signal and climate noise is partic-
ularly important, since experiments have shown that it can
change the results substantially. Users of this methodology
are free to choose differently in accordance with their own
scientific questions and opinions. In fact, one could test hy-
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potheses about specific temporal scales based on wavelet co-
efficients corresponding to individual wavelet decomposition
levels. Other test statistics besides our D; are also possible
and likely useful.

A crucially important methodological question about this
approach is whether our strategy creates variabilities that
are reasonable proxies for internal variabilities of a climate
model and of the natural climate system. It begs the ques-
tion of what, exactly, “internal variability” means. We offer
here an alternative, or perhaps a compliment, to the usual
and somewhat problematic definition that internal variability
or uncertainty is captured by the spread of a multi-model or
perturbed physics ensemble. At the very least, we hope this
work will stimulate discussion on the topic.

Finally, there are natural extensions of this method to
spatial and spatiotemporal contexts. Moving from one-
dimensional to two-dimensional wavelets would allow us to
use the same ideas on spatial maps as we have used here
on time sequences. However, moving to three spatial dimen-
sions, three spatial dimensions with time and multivariate
settings may not be straightforward, since wavelet models
may not be suitable in all cases. We are investigating the use
of other basis functions and bootstrapping methods for these
more complex settings.

Code and data availability. The code used in Sect. 4 is available
from https://dus.jpl.nasa.gov/home/braverman/.
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