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Abstract. A methodology for estimating and downscaling the probability associated with the duration of heat-
waves is presented and applied as a case study for Indian wheat crops. These probability estimates make use
of empirical-statistical downscaling and statistical modelling of probability of occurrence and streak length
statistics, and we present projections based on large multi-model ensembles of global climate models from the
Coupled Model Intercomparison Project Phase 5 and three different emissions scenarios: Representative Con-
centration Pathways (RCPs) 2.6, 4.5, and 8.5. Our objective was to estimate the probabilities for heatwaves with
more than 5 consecutive days with daily maximum temperature above 35 ◦C, which represent a condition that
limits wheat yields. Such heatwaves are already quite frequent under current climate conditions, and downscaled
estimates of the probability of occurrence in 2010 is in the range of 20 %–84 % depending on the location. For
the year 2100, the high-emission scenario RCP8.5 suggests more frequent occurrences, with a probability in the
range of 36 %–88 %. Our results also point to increased probabilities for a hot day to turn into a heatwave lasting
more than 5 days, from roughly 8 %–20 % at present to 9 %–23 % in 2100 assuming future emissions according
to the RCP8.5 scenario; however, these estimates were to a greater extent subject to systematic biases. We also
demonstrate a downscaling methodology based on principal component analysis that can produce reasonable
results even when the data are sparse with variable quality.

1 Introduction

1.1 Weather statistics and society

People have learnt to cope with climate variations and se-
vere weather over historical times and have adapted to vari-
ous weather-related risks. In this respect, climate can be re-
garded as the statistical description of various weather vari-
ables (Benestad et al., 2017a), giving a picture of “typical”
types of weather and what to expect. This statistical descrip-
tion includes the mean, variance, autocorrelation, periodic-
ity, and duration of various climatological events. Weather-
related risks are a product of probability and consequence,
where the probability is provided by the statistical distribu-
tion or a probability density function (pdf). The statistical

character of weather is influenced by physical processes, and
variations and changes to the climate can be linked to a num-
ber of physical conditions. Some of the most severe types of
past weather-related events affecting society have included
harvest failures due to cold summers or prolonged droughts
(Neumann and Kington, 1992; Kumar et al., 2006; Iizumi
and Ramankutty, 2015). For the case of droughts, one impor-
tant statistic is their duration, even though high temperature
and winds are contributing factors in terms of water stress.
Likewise, the duration of events matters for livelihoods when
there are periods with temperature below, above, or within a
range of thresholds. For example, local statistical tempera-
ture characteristics control the prospects for various aspects
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of society, such as wheat crops in India, typical skiing condi-
tions in Norway, or heatwave risks in continental Europe.

It is often tricky to estimate durations defined by a variable
crossing threshold values, especially if it is based on mod-
els which are subject to biases and systematic errors (Ma-
raun et al., 2010; Chen et al., 2012). It is also impossible to
provide a detailed forecast into the far future, but statistical
properties, such as the parameters describing the shape of a
pdf, are more predictable than single events. Some statistical
parameters tend to respond more systematically to changes
in physical conditions, while others are insensitive. One triv-
ial illustration is that the mean temperature exhibits a clear
dependency on conditions such as the seasonal cycle, lat-
itude, and altitude, whereas its autocorrelation is not very
sensitive to such factors (Benestad et al., 2016). The mean
seasonal temperature lends itself to climate change projec-
tions; provided that the daily temperature anomalies follow
a normal distribution, it is also expected to affect the statis-
tics of hot spell duration (here we use “hot spell” and “heat-
wave” as synonyms). One strategy for estimating durations
of episodes, therefore, is to make use of statistical models to
estimate statistical characteristics.

Sivakumar (1992) used an empirical distribution function
to analyse the dry spell lengths over western Africa and
found a relationship that may be used for predictions of the
average frequency of dry and wet spells based on the mean
annual rainfall. Lana et al. (2008) analysed the duration of
dry spells over the Iberian Peninsula, assuming the spell du-
ration statistics could be approximated by a Weibull distri-
bution, and found decreasing trends in the length of wet in-
tervals. A similar strategy was used in a study to estimate
the number of rain-on-snow events over Svalbard (Hansen
et al., 2014), although the statistic was a count of occurrences
rather than the duration of intervals. The statistics of counts
and duration (e.g. a streak of dry days) follow different types
of distributions, where the former is expected to behave more
like a Poisson process (Poisson distribution) and the latter is
expected to follow the geometric distribution (Wilks, 1995).
Furrer et al. (2010) pioneered the use of statistical theory for
heatwaves and proposed a statistical framework to model the
frequency, duration, and intensity of heatwaves. Making use
of the expected characteristics of stochastic processes, they
used a Poisson distribution to describe the frequency (num-
ber) of events, the geometric distribution to estimate the num-
ber of consecutive days (duration), and a generalised Pareto
distribution to quantify their intensity. They applied the sta-
tistical framework to analyse trends in heatwave statistics
in three temperature records from Phoenix (Arizona, USA),
Fort Collins (Colorado, USA), and Paris (France). Keellings
and Waylen (2014) analysed the variability of heatwaves over
Florida, both in space and time, and reported both that there
is considerable spatial variability in heatwave characteris-
tics and that heatwaves have become increasingly frequent
and intense throughout Florida. They made use of extreme-
value analysis to quantify the heatwave intensity, the Pois-

son distribution to describe the number of heatwaves, and
the geometric distribution to estimate their duration. Wang
et al. (2015) used the statistical framework proposed by Fur-
rer et al. (2010) and bias-corrected temperatures from a 30-
member ensemble of global climate models for the projec-
tion of heatwave statistics in China. Global climate models,
however, are not designed to represent local climate char-
acteristics accurately, and it is therefore common to down-
scale the model output in order to get a description that
is representative of the regional and local features (Storch
et al., 1993; Wilby and Wigley, 1997; Schubert, 1998; Ben-
estad, 2016). However, there have not been many studies
on changes in the probability of future heatwaves based on
the downscaling of large multi-model ensembles in general,
and particularly not in India, where good-quality open-access
data are scarce. Furthermore, we are not aware of any previ-
ous attempts to downscale the duration statistics by means of
empirical-statistical downscaling (ESD). While the statistics
for frequency or duration is more straightforward, as their re-
spective distributions rely on single-parameter distributions
related to the mean number or duration, extreme-value dis-
tributions are trickier since they involve several parameters
with a less clear connection to large-scale conditions.

Here we apply the methodology for downscaling dura-
tion statistics to examine critical temperatures for growing
wheat in India, which vary between the different phenologi-
cal stages. The mean duration of hot spells with temperature
above a critical threshold has an important effect on agricul-
ture, especially if the statistics of duration follow a geometric
distribution for which the mean is directly connected to the
parameter that sets the shape of the pdf. The probability of
lasting hot spells with a duration exceeding a given threshold
in the current climate can be inferred from statistical proper-
ties found in the observations. An important question is how
global warming will lead to more long-lasting hot spells with
a detrimental effect on the wheat crops. A novel aspect of the
strategy presented in this paper is the downscaling of proba-
bilities directly, rather than downscaling a physical variable
and then using it to estimate the parameters for the pdf.

1.2 Consequences of temperature on agriculture

Wheat is one of the major crops in India, and the largest
wheat growing regions are in the Indo-Gangetic Plain (IGP)
– particularly in the north-western states Uttar Pradesh, Pun-
jab, Haryana, and Rajasthan (Lobell et al., 2012b) – and in
the central state Madhya Pradesh (Directorate of Economics
and Statistics, 2017) in addition to Bihar in the north-east. In
these states, wheat is grown over the winter season, sown be-
tween mid-November (north-west) and mid-December (cen-
tral), and harvested in late March to mid-April. While this
period is typical for the variety known as winter wheat,
the main variety that is grown during this period is spring
wheat. Wheat goes through three distinct growing and mat-
uration phases, from the vegetative phase from germination
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and seedling development (1); through a reproductive phase
with branching, elongation, and heading (2); to a flowering,
grain setting and filling, and maturation phase (3).

Wheat is differentially temperature sensitive across its var-
ious development stages and through different mechanisms,
and effects on growth or yield are gradual and variety spe-
cific. Porter and Gawith (1999) summarised from many stud-
ies non-lethal temperatures for wheat in the range of 18 to
47 ◦C, but this covers a broad range of world cultivars across
several growing stages. Wheat and any other plants grow and
develop within thermal limits called cardinal temperatures.
These limits characterise a Gaussian curve with the extreme
points and a narrow range of temperatures where the morpho-
physiological (relating to, or concerned with, biological in-
terrelationships between form and function) events are maxi-
mal, and hence termed the optimum temperature range “top”.
After this range, the minimum basal temperatures “Tmin” and
maximum “Tmax” are found, after which growth and morpho-
physiological activity are paralysed by deficiency and excess
of energy, respectively.

It is generally accepted that optimal temperatures for
wheat are in the range 17–23 ◦C over the entire growing sea-
son, with a Tmin of 0 ◦C and Tmax of 37 ◦C, beyond which
growth stops Porter and Gawith (1999).

In India, there are many varieties of wheat grown across
the states, differing in their sensitivity to temperatures and
other parameters, and there are also breeding programmes
for heat tolerance (Mishra et al., 2014; Saxena et al., 2016).
Across its various growth stages, the national recommenda-
tions for wheat growth (Directorate of wheat development,
2015) state a daily average between 20 and 25 ◦C as optimal
temperature. Critical minimum temperatures are around 3.5–
5.5 ◦C, and the maximum around 35 ◦C. Temperatures above
the optimum (25 ◦C) lead to decreased grain yields, and tem-
peratures above 30 ◦C at maturity (around mid-March) lead
to forced maturity and yield loss. Warming is already affect-
ing wheat yields across the world, and for each degree in-
crease in global mean temperature, there is a reduction in
global wheat grain production of about 6 % (Asseng et al.,
2015).

For some wheat varieties, the first and second growing
phases benefit from cold exposure known as vernalisation,
which improves yield by shortening the duration to flower-
ing, and thus leave more time to grain formation and filling
before high temperatures set in (Sharma et al., 2012). Ver-
nalisation is not critical to yield per se, and the duration and
temperature requirements (chill-degree days) differ for dif-
ferent winter wheat types (McMaster et al., 2008).

For all Indian wheat varieties, the main challenge is the
high temperatures in the final growing phase, late in the sea-
son from February to April (Lobell et al., 2012a; Asseng
et al., 2011). The most temperature-susceptible reproductive
stages are the period priors to flowering and during flower-
ing and fertilisation (Luo, 2011b). Extremely high tempera-
tures drastically affect wheat during the reproductive phase,

particularly during pollination, but there is no evidence of
the temperature effect on the leaf area and the production of
vegetative biomass. The harmful effect on the reproduction
and grain filling under high temperatures conditions intensi-
fies with dry events during the spring or summer (Hatfield
and Prueger, 2015; Barlow et al., 2015), which is the period
where the phases of reproduction and grain filling occur pref-
erentially (Luo, 2011a).

There does not seem to be a consensus between studies
on the exact critical temperature limits, and the effects of
increasing temperature on yield appear to be gradual. Signs
of thermal shock proteins have been found in several wheat
varieties in the vegetative and reproductive phase, suggest-
ing that they were able to extend their tolerance limits to
high temperatures through genetic breeding (Krishnan et al.,
1989; Xue et al., 2013). Three days of 30 ◦C showed a reduc-
tion of grain set by almost 70 % (Saini and Aspinall, 1982),
and temperature regimes of 36 and 31 ◦C (day and night, re-
spectively) for 2 days resulted in 55 %–85 % grain sterility
(Tashiro and Wardlaw, 1990). Tiwari et al. (2017) suggested
30 ◦C as an upper limit (daily maximum temperature Tmax)
around the flowering period as short periods (4 days) above
this limit impact yield. Lobell et al. (2012b) similarly found
that temperatures above 30 ◦C slow grain filling, damaging
the plant. Other studies (e.g. Rao et al., 2015) have suggested
higher critical temperatures: an exposure to daily Tmax above
36 ◦C and Tmin 31 ◦C during the period immediately before
flowering (January) may result in sterility and reduced yield.
Simulated yield studies show possible reductions of about
10 %–15 % by the end of the century if 40 ◦C is exceeded for
only 1 day (Koehler et al., 2013).

Several studies (Rao et al., 2015; Duncan et al., 2015)
have found that wheat is becoming more sensitive to increas-
ing minimum temperatures and that a continuous exposure
to a daily minimum temperature (Tmin) exceeding 12 ◦C for
6 days and Tmax exceeding 34◦C for 7 days past flowering
(February) constrains yields (Rao et al., 2015).

In summary, the period February–April is most critical,
with all temperatures above optimal decreasing wheat yield.
Studies on the more sensitive varieties suggest a daily max-
imum in February of 30 ◦C as a limit above which yield
is reduced. However, to simplify the analysis, the threshold
for maximum temperature before limiting wheat crop yields
was set to 35 ◦C for 5 consecutive days based on published
research (Saini and Aspinall, 1982; Tashiro and Wardlaw,
1990). Based on this information, our objective was to es-
timate the likelihood for long-lasting future heatwaves with
detrimental consequences for Indian wheat production. We
explored a new methodology within downscaling, making
use of large multi-model ensembles to get an ad hoc rep-
resentation of uncertainties associated with interannual-to-
decadal variability and model differences.
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2 Method & data

2.1 Method

The probability of long-lasting heatwaves (with Tmax ≥

35 ◦C lasting 5 days or more) was estimated through a chain
of dependencies, starting from (1) different emission scenar-
ios and continuing to (2) different climate sensitivities to the
global response simulated by global climate models, (3) the
local mean temperature, (4) the mean duration of heatwaves,
and (5) the probability of duration longer than some critical
length. Here, we present a strategy for the last three. We also
took into account the first two by using simulations with dif-
ferent global climate models and emission scenarios.

2.1.1 Hypotheses

Our main working hypothesisH1 was that the seasonal mean
hot spell duration LH exhibits a predictable and universal
dependency on the seasonal mean daily maximum temper-
ature Tmax. In other words, the link between the mean values
of the two distributions for daily maximum temperature and
the hot spell duration was analysed, rather than the link be-
tween the mean and extreme statistics. We also looked at a
subsidiary hypothesis H2: that the length of the hot spells
follows a geometric distribution in terms of number of days
with Pr(LH = k)= (1−p)(k−1)p (k = 1, 2, 3,. . . ) for which
the mean duration is the inverse of the probability of a hot
day LH = 1/p. If these two hypotheses can be verified, then
it may be possible to make use of projections for seasonal
mean temperature to estimate changes in the hot spell dura-
tion statistics. Such calculations may provide useful infor-
mation for decision-making concerning agriculture, wheat
crops, and which cultivars may be needed in the future.

One obstacle to such analyses was the poor data availabil-
ity and quality over India, which restricted our ability to ex-
tract representative numbers for the hot events and connect
these to climate model projections. We made use of addi-
tional information concerning mean temperatures and spell
length statistics to support the analysis, which included us-
ing “high-quality” European data from the European Climate
Assessment and Dataset (ECA&D; Klein Tank et al., 2002)
and synthetic data prescribed with a normal distribution. We
assumed that the relationship between the mean spell dura-
tion LH and the seasonal mean daily maximum temperature
Tmax is a universal trait that is valid in both India and Europe
(hypothesis H1) if the statistics for daily seasonal tempera-
ture anomalies can be approximated by a normal distribution
with an approximately invariant variance σ 2. This assump-
tion was tested over Europe by comparing the geographical
distribution in winter mean temperature with mean cold spell
(freezing temperatures) lengths as well as the corresponding
summer mean temperature and mean warm spell length (days
with daily maximum temperatures above 20 ◦C; see Supple-
ment). A general linear model (GLM) was used to calibrate

an approximate relation between the seasonal mean temper-
ature and the seasonal mean spell duration (Dobson, 1990;
McCullagh and Nelder, 1989); the results of this analysis are
presented in Fig. 1. The test was also applied to the temporal
domain for long time series by comparing interannual varia-
tions in winter and summer mean temperature and the corre-
sponding mean spell lengths. To support the analysis based
on the observed temperature with synthetic data, we used a
Monte Carlo simulation which by design was set to be Gaus-
sian AR(1) noise with a autocorrelation of 0.7 to match the
observations (similar to 0.8 as reported by Benestad et al.
(2016) for daily mean temperatures; see Fig. 1).

Given a dependency between the mean temperature and
the mean spell duration (H1), the next step was to test
whether the spell lengths followed a geometric distribution
(H2). For this purpose, a quantile–quantile plot was used to
compare the statistics of spell duration to the geometric dis-
tribution.

We present two types of probability estimates here:
(1) Pr(nH ≥ 1|LH > 5,Tmax > 35 ◦C), the probability of at
least one heatwave event lasting more than 5 days during
a season, and (2) Pr(LH > 5d), the probability of a heat-
wave lasting longer than 5 days. The latter probability es-
timates are based on the two hypotheses H1 and H2. This
is the same mathematical framework for analysing the fre-
quency of events and their duration as in Furrer et al. (2010),
Keellings and Waylen (2014), and Wang et al. (2015), al-
though we did not need the statistics of the intensity for heat-
waves and, hence, did not need the general extreme-value
theory to model the intensity.

The probability of at least one event in a season (proba-
bility type 1) was estimated based on a statistical model as-
suming the Poisson distribution conditioned by the seasonal
mean maximum temperature. Rather than using a GLM cali-
brated on individual events for each season, we used an ordi-
nary linear regression (OLR) to predict the mean number of
events nh5 based on the seasonal mean maximum tempera-
ture for the entire record at each location. The reason for this
choice was that the mean estimate was approximately nor-
mally distributed and that this aggregation reduced the effect
of outlying seasons. The OLR also gave results that were in
closer agreements with the observed frequencies.

To estimate the probability of a 5-day or longer heatwave
(probability type 2), the projections of seasonal mean maxi-
mum temperature were used together with a GLM calibrated
on daily maximum temperature data to infer changes in the
mean hot spell duration length (Tmax > 35 ◦C). The historical
distribution of hot spell duration for the individual events ap-
proximately followed the geometric distribution, which has
one parameter describing the pdf: the mean LH = 1/p. The
geometric distribution was then used to estimate probabilities
Pr(LH > 5d), given estimates for the mean duration LH. We
estimated the seasonal mean duration through a GLM and the
seasonal mean temperature.
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Figure 1. Comparison between winter (a) and summer (b) mean daily maximum temperature (x axis) and the mean duration of cold (a)
or warm (b) spells in Europe based on ECA&D. Grey dots show comparable results to a set of Monte Carlo simulations carried out with
Gaussian red noise, and red lines indicate best fits based on GLM with a negative binomial (dashed lines) and a Poisson-type GLM (solid
lines). The GLMs fit were statistical significant at the 1 % level for both cases (see Supplement).

2.1.2 Temperature projections

We used ESD to make future projections for the February–
April mean daily maximum temperature for a set of loca-
tions in India (see the Supplement for map) with multi-
model ensembles as in Benestad et al. (2016): 108 runs of
the intermediate-emission scenario Representative Concen-
tration Pathway (RCP)4.5, 81 runs of the high-emission sce-
nario RCP8.5, and 65 runs of the low-emission scenario
RCP2.6. Using large multi-model ensembles gave more ro-
bust results and alleviated limitations caused by small sample
sizes and “the law of small numbers” (Kahneman, 2012) due
to larger sampling fluctuations with smaller samples (Ben-
estad et al., 2017b). A principal component analysis (PCA)
was used to represent the local temperature (predictands) in
order to enhance the signal-to-noise ratio (Benestad et al.,
2015a), and the ESD model involved a stepwise multiple
linear regression where the predictand was represented by
PCAs describing the February–April mean maximum tem-
perature Tmax. The predictors were common empirical or-
thogonal functions (Benestad, 2001) estimated from com-
bined temperature anomalies from the ERA-40 reanalysis
(Simmons and Gibson, 2000) and respective general circu-
lation models (GCMs). One ESD model was calibrated for
each of the five leading PCAs of Tmax, which together ac-
counted for 100 % of the variance. The skill of the down-
scaling was validated in terms of the correlation of a 5-fold
cross-validation (Gutiérrez et al., 2018) and as an ensemble
as a whole (Benestad et al., 2016). To obtain a starting point
for estimating the probabilities, we used the median q50 of
the multi-model ensemble as the threshold for Pr(X > x),
equivalent to a 1-in-2-year event (Pr(X > q50)= 0.5).

We used the mathematical framework described in the pre-
vious section to analyse the probability of events and their

duration. To obtain projections of the probability of one or
more heatwaves (Tmax > 35 ◦C exceeding 5 days) in a sea-
son (probability type 1), we used the established dependency
(OLR) between the seasonal mean maximum temperature
and the mean number of events over the entire data record,
and applied it to the downscaled February–April mean daily
maximum temperatures. Similarly, the projections of sea-
sonal mean maximum temperature were used together with
a GLM calibrated on seasonal mean daily maximum temper-
ature data and mean heatwave length on a season-to-season
basis (i.e. aggregated from small samples) to infer changes
in the mean hot spell duration length and the probability of a
hot event lasting more than 5 days (probability type 2).

To produce maps of probabilities, the results were grid-
ded using the same kriging method as in Benestad et al.
(2016). The method was based on the LatticeKrig pack-
age (Nychka, 2014), taking a “fixed-rank kriging” approach
with a large number of basis functions to provide spatial es-
timates that were comparable to standard families of covari-
ance functions. We used elevation as a co-variable in the grid-
ding. The gridding was only included in the final stage of the
analysis, as the regression analysis and the downscaling were
first applied to station records or PCAs to compute the vari-
ous statistics.

In summary, this downscaling study brings in several novel
aspects, including utilising large multi-model ensembles of
GCM simulations, downscaling essential statistical charac-
teristics of heatwave durations, and producing outlooks for
the probability of future heatwaves lasting more than 5 days.
These results were based on PCA of the local temperatures,
which enhances the signal and can make the results more
robust for a situation where the data are both scarce and con-
sidered to be of questionable quality.
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2.2 Data

The daily maximum temperature Tmax from India was ob-
tained from the Global Historical Climate Network (GHCN)
data set (Menne et al., 2012a, b) through the R package esd
(Benestad et al., 2015b). The analysis was applied to aggre-
gated statistics, the mean daily maximum temperature over a
season Tmax, rather than daily values. We only analysed the
season important for wheat, in this case February–April, but
the method described here could also be suitable for other
choices. The station data were weeded to exclude locations
with short data records (only keeping more than 10 290 valid
daily temperatures in the interval 1970–2015), resulting in
35 station records (see map in the Supplement). To support
the analysis for India and test the veracity of the identified
links between the mean and the spell duration statistics, we
also included data from the ECA&D data set (Klein Tank
et al., 2002). The ECA&D data included 656 stations in Eu-
rope with more than 1000 days above 20 ◦C (used to define a
warm day in summer) or below 0 ◦C (used to identify a cold
day in winter) and represented a significantly greater volume
of data than the temperature records for India obtained from
GHCN.

More details about the data, processing, and analysis are
provided in the Appendix and the Supplement, which provide
results from an R Markdown script, available from figshare
(Benestad, 2018) together with necessary data. The R Mark-
down script provides complete instructions for repeating the
analysis presented here, and much of the data processing and
handling were carried out with the R package esd (Benestad
et al., 2015b) (version 1.7072).

3 Results

An evaluation of the downscaled results for the February–
April mean maximum temperature Tmax suggested high skill
for the leading PCA in terms of the cross-validation, with
correlations in the range 0.79–0.87 (Supplement). When the
downscaled results for the PCAs were used to recover the
format of the original temperature records, an evaluation of
the RCP4.5 ensemble indicated good skill for Tmax over the
wheat growing IGP region, but low skills in the south (Sup-
plement). The skill of downscaling was low for the stations
in southern India, as both the trends in the downscaled re-
sults and the range of interannual variability were lower than
seen in the observations over the common overlapping pe-
riod (1970–2015). The differences in skill can be explained
from the leading PCA, which had strongest weights for the
locations with high skill and weakest weights where the skill
was low.

An evaluation of the OLR used to estimate the mean num-
ber of heatwaves for the different sites suggested a statis-
tically significant dependency on the seasonal mean daily
maximum temperature at the 1 % level, with an R2 of 0.2
(Supplement). There was a great deal of scatter about the fit-

Figure 2. A comparison between interannual and geographical
variations in the mean duration LH of hot (Tmax > 35 ◦C) spell
length from Indian temperature records and the February–April
mean daily maximum temperature Tmax. The red line marks results
from a GLM model assuming a negative binomial process. Each
data point represents the paired (LH, Tmax) for the 35 different lo-
cations and for each year during 1970–2015 (i.e. 1505 data points).
The fit accounted for 10 % of the variance and was statistically sig-
nificant on the 1 % level (see Supplement).

ted line, which suggests that there may be other important
factors or that the data have variable quality.

In order to trust the results and analysis presented for the
duration of the heatwaves, we also needed to test the un-
derlying assumptions about the statistical nature of the data
(H1 and H2). The first assumption was that the tempera-
ture is approximately normally distributed and that there is
a systematic dependency between the mean duration of hot
episodes and the mean temperature (H1). We tested this de-
pendency by looking at the best available data (ECA&D data
from European stations), assuming that the way LH depends
on Tmax is a universal property for daily temperatures on
Earth that is close to the dependency found for data with a
normal distribution. Figure 1 shows one set of test results
for the relationship between the mean seasonal temperature
and mean duration of cold spells in winter and warm spells
(with Tmax > 20 ◦C) in summer over Europe. The observa-
tional data (red symbols) are shown together with results
from an analysis repeated with synthetic normally distributed
data (grey). The results of this test confirmed the systematic
dependency of the mean spell duration on the seasonal mean
temperature. The results from a similar test on data from In-
dia were consistent with these results, albeit with a smaller
statistical sample and a substantial scatter (Fig. 2). The fitted

Adv. Stat. Clim. Meteorol. Oceanogr., 4, 37–52, 2018 www.adv-stat-clim-meteorol-oceanogr.net/4/37/2018/



R. E. Benestad et al.: Probability of long heatwaves 43

Table 1. Estimated probability (expressed in %) for an episode with temperatures exceeding 35 ◦C over more than 5 consecutive days in
February–April. The observed frequency was based on the individual observational record and length of time series, and it is not exactly
equivalent to the estimated probability for 2010. The location names in bold font mark stations within the IGP region.

Observed Predicted RCP4.5 RCP2.6 RCP8.5
frequency 2010 2050 2100 2050 2100 2050 2100

PBO ANANT 60 83 83 84 83 83 84 85
MACHILIPA 63 70 72 73 71 71 73 76
NELLORE 79 77 78 78 78 78 78 79
GAUHATI 9 48 51 53 50 49 53 59
DIBRUGARH 2 20 26 28 24 22 27 36
PATNA 84 67 71 74 70 69 74 81
AHMADABAD 63 78 81 83 80 80 83 88
VERAVAL 12 61 65 68 64 64 67 74
BHUJ-RUDR 67 77 79 80 78 78 80 84
SURAT 100 77 79 80 78 78 80 83
HISSAR 60 62 68 72 66 66 71 81
GADAG 74 77 78 78 78 78 78 80
KOZHIKODE 16 70 72 72 71 71 72 75
THIRUVANA 2 70 70 71 70 70 71 72
JAGDALPUR 77 76 77 78 77 77 78 81
PENDRA RO 70 68 73 77 72 72 77 86
GWALIOR 49 68 73 76 72 72 75 84
INDORE 65 75 78 79 77 76 79 84
JABALPUR 53 71 74 77 73 73 76 82
BHOPAL 53 72 76 78 75 75 78 84
BOMBAY 21 67 70 71 69 68 71 76
NAGPUR SO 65 79 81 83 81 81 83 87
POONA 88 78 79 80 79 79 80 83
SHOLAPUR 60 84 85 86 84 84 85 88
BHUBANE 95 77 80 82 79 79 81 86
BIKANER 74 69 75 78 73 72 76 85
JAIPUR 58 66 72 75 70 70 74 84
JODHPUR 58 73 77 80 76 76 79 87
CUDDALO 51 66 67 68 67 67 68 70
MADRAS 91 72 72 73 72 72 73 74
TIRUCHCHI 79 78 78 78 78 78 78 78
AGARTALA 42 62 65 67 64 64 67 73
NEW DELHI 67 57 65 69 62 62 68 80
LUCKNOW 65 68 73 76 72 71 75 84
CALCUTTA 88 70 73 75 72 72 74 81

curve could account for 10 % of the variance according to an
analysis of variance, and the results were statistical signifi-
cant at the 1 % level.

The second assumption was that the spell duration statis-
tics had a geometric distribution (H2). Figure 3 shows a
comparison between the spell duration statistics based on
the European ECA&D data and the geometric distribution
as a quantile–quantile plot. The results suggested that the
assumption of a geometric distribution was reasonable for
short-to-moderate duration but not for durations longer than
a single season (90 days). For the case of summer, the du-
ration statistics exhibited a high bias for durations greater
than 30 days. The tests of the underlying assumptions sug-
gested that they were reasonable for both warm and cold sea-

sons at least in Europe. A comparison between histograms of
heatwave durations in India and fitted geometric distributions
based on LH suggested a reasonable match (Supplement).
The evaluation of hypotheses H1 and H2 provided support
for making projections of the probabilities based on the ESD
of Tmax from large multi-model ensembles. A summary of
the results of the probability projections are found in Tables 1
and 2. The estimated probability of at least one heatwave in
a February–April season predicted for the present day (2010)
was in a reasonable agreement with the observed frequency
of events for most stations, but there were some exceptions
where the modelled estimates were substantially higher than
the observed frequency (first two columns in Table 1). How-
ever, none of these exceptions affected the stations in the IGP
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Figure 3. Quantile–quantile plot between the cold (a) and warm (b) spell length and the fitted geometric distribution for the selected ECA&D
stations.

region (bold font in Table 1.) The sites with a mismatch be-
tween the observed frequency and estimated probability will
be discussed further later on.

The projected probability of a hot event (Tmax > 35 ◦C)
turning into a heatwave (LH > 5 days) for 2010 was crudely
compared with the observed number of heatwaves divided
by the total number of events with Tmax > 35 ◦C (first two
columns in Table 2). For most stations in the IGP region
(shown in bold font), the observed frequencies were higher
than the probabilities predicted for the present. Table 2 also
contains many southern states that do not produce any wheat
but were included to enlarge the sample size to get an im-
proved estimate of the heatwave duration statistics regardless
of their effects on the wheat crops. The results presented in
Table 2 also suggest that the estimated Pr(LH > 5) was in the
range of 8 %–20 % for 2010 and will increase to 9 %–23 %
in 2100 assuming the high-emission scenario RCP8.5.

Figure 4 shows for one selected location (Patna; row six
in the table) (a) the probability of one or more heatwaves in
a season and (b) the probability that a hot event lasts more
than 5 days, based on the ensemble median of the down-
scaled projections for three different emission scenarios. Fig-
ure 5 presents the projected probabilities for 2100 assum-
ing emission scenario RCP4.5 (the fourth columns in Ta-
bles 1 and 2) for all stations in India. According to the re-
sults presented in Fig. 4a, continuing global warming will
imply an increased probability of long-lasting heatwaves in
Patna, and Fig. 4b indicates that the likelihood for future 5-
day heatwaves will depend on the future emissions, where
the probability may increase by almost as much as a third
from present-day values for the high-emission scenario: the
probability of a 5-day or longer heatwave is approximately
15 % at the present time, but it is expected to increase to 19 %
in 2100 in a continued high-emission scenario (RCP 8.5). For
the intermediate-emission scenario RCP4.5, the results sug-

gest an increase from 15 % to 17 % probability and an in-
crease which is about half of that associated with RCP8.5.
Hence, lower-emission scenarios give smaller increases. The
maps presented in Fig. 5 suggest greater probabilities for
heatwaves in the central parts of India. The variable skill of
downscaling at different locations implies that the results are
less accurate for some parts of India, namely the far eastern
and southern parts.

4 Discussion

A number of studies suggest a more pronounced change in
climatic extremes compared to changes in the mean (Mearns
et al., 1984; Katz and Brown, 1992; Colombo et al., 1999;
Meehl et al., 2000). The shape of the pdf for temperature
may change with a shift in the mean µ, and the relation-
ship between the mean and the shape of the pdf was tested
on the actual temperature data used herein. A scatter plot
between seasonal mean and seasonal standard deviation σ
showed that it tends to decrease with increasing mean val-
ues (Supplement). Hence, since the mean often is not a good
predictor for extreme values, we used the mean temperature
to estimate the mean of another pdf; in this case, the sea-
sonal mean daily maximum temperature was used to estimate
the mean number of events and mean duration of heatwaves:
n5 d = f (Tmax) and LH = g(Tmax).

The analysis of the mean number of heatwaves lasting
more than 5 days n5 d and the mean duration of heatwaves
had some caveats, and an assessment of the conformity of
n5 d to the normal distribution suggested divergence towards
the tail of the distribution. One plausible reason for the de-
viation was that the mean was taken from small samples of
Poisson-distributed data, whereas the mean was expected to
converge to the normal distribution with large sample size.
The divergence from the normal distribution may also have
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Table 2. Estimated probability (expressed in %) for duration greater than 5 consecutive days with temperatures exceeding 35 ◦C during
February–April. The observed frequency was based on the number of February–April heatwaves lasting more than 5 days divided by the
total number of heatwaves in February–April. The location names in bold font mark stations within the IGP region.

Observed Predicted RCP4.5 RCP2.6 RCP8.5
frequency 2010 2050 2100 2050 2100 2050 2100

PBO ANANT 32 20 20 21 20 20 21 21
MACHILIPA 21 15 16 16 16 16 16 17
NELLORE 34 18 18 18 18 18 18 18
GAUHATI 5 11 12 12 11 11 12 13
DIBRUGARH 14 8 8 9 8 8 9 9
PATNA 42 15 16 17 16 15 17 19
AHMADABAD 30 18 19 20 19 19 20 23
VERAVAL 3 13 14 15 14 14 15 17
BHUJ-RUDR 30 18 19 19 18 18 19 21
SURAT 36 18 18 19 18 18 19 20
HISSAR 32 14 15 16 15 14 16 19
GADAG 45 18 18 18 18 18 18 19
KOZHIKODE 13 16 16 16 16 16 16 17
THIRUVANA 1 15 16 16 16 16 16 16
JAGDALPUR 45 17 18 18 18 18 18 19
PENDRA RO 32 15 17 18 16 16 18 21
GWALIOR 23 15 17 17 16 16 17 21
INDORE 27 17 18 18 18 17 19 21
JABALPUR 27 16 17 17 16 16 17 20
BHOPAL 29 16 17 18 17 17 18 21
BOMBAY 4 15 15 16 15 15 16 17
NAGPUR SO 37 18 19 20 19 19 20 22
POONA 40 18 19 19 18 18 19 20
SHOLAPUR 35 20 21 21 21 21 21 23
BHUBANE 38 18 19 20 19 19 19 22
BIKANER 38 15 17 18 16 16 18 21
JAIPUR 38 14 16 17 16 15 17 21
JODHPUR 38 16 18 19 17 17 19 22
CUDDALO 22 14 15 15 15 15 15 16
MADRAS 30 16 16 16 16 16 16 17
TIRUCHCHI 40 18 18 18 18 18 18 18
AGARTALA 22 14 14 15 14 14 15 16
NEW DELHI 33 12 14 15 14 14 15 19
LUCKNOW 41 15 16 17 16 16 17 21
CALCUTTA 34 15 16 17 16 16 17 19

been a result of variable data quality. Nevertheless, using the
mean duration and the mean number of events could justify
using OLMs instead of GLMs since aggregated variables are
expected to be closer to being normally distributed than the
underlying data.

A more traditional approach is to downscale the tempera-
ture day by day, for instance through the means of regional
climate models (RCMs), and then apply extreme-value the-
ory to the model results. RCMs will not give a direct an-
swer, as they have biases and suffer from other shortcom-
ings. Hence, RCM-based studies also come with a set of un-
certainties. However, there is a great benefit in having more
than one approach as different strategies for estimating the

results have different strengths and weaknesses independent
of each other.

According to both Tables 1 and 2, the observed frequency
of heatwaves was substantially lower than the estimated
corresponding probability for seven sites in the far north-
eastern parts of India or near India’s western coast (Gauhati,
Dibrugarh, Veraval, Kozhikode, Thiruvananthapuram, Bom-
bay, Agartala), but for the 12 sites in interior parts of India
where wheat is grown (the IGP region) and along India’s east
coast, they indicated a good match with a 25 % difference or
smaller. All of these temperature records were deteriorated
by missing data; to produce usable spell duration statistics,
it was necessary to fill in short gaps of missing data by the
means of linear interpolation. As the proportion of missing
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Figure 4. Projected probability of (a) one or more events with daily maximum temperature above 35 ◦C lasting longer than 5 days during
the February–April season for Patna and (b) the probability that the heatwave lasts more than 5 days, given temperature above 35 ◦C. These
curves represent one of the stations presented in Tables 1 and 2. The fitted trend curves were fourth-order polynomials for different emission
scenarios (Benestad, 2003), where green represents RCP2.6, blue RCP4.5, and red RCP8.5.

values was in the range of 7 %–34 %, the observed number of
events in Tables 1 and 2 needs to be interpreted with caution.
The sites with large mismatch were missing more than 15 %
of values in their data record (Gauhati: 15.5 %; Dibrugarh:
34 %; Veraval: 19.5 %; Kozhikode: 23.5 %; Thiruvanantha-
puram: 24.6 %; Bombay: 18.4 %; Agartala: 22.6 %). A more
detailed diagnostics of the data quality and the discrepancy
between observed frequencies of heatwaves longer than 5
days and estimated likelihoods is provided in the Supple-
ment, which suggests that the poor matches coincided with
stations that carried low weights in the leading PCA. Some
discrepancies between the downscaled probability and the
observed frequency must also be expected since the former
was based on a Bayesian-type analysis whereas the latter was
based on observed counts. The bias in the estimated proba-
bility of a hot spell lasting more than 5 days compared to
estimated frequency for the observations for the IGP region
suggested that the estimates of probability type 2 may be less
skillful than those of type 1. One reason may be that quality
of the Indian data was low, which may be the reason for the
differences in the scatter plots between LH and Tmax in India
and Europe (Figs. 1b and 2 and Supplement). The hot spells
were also not quite geometrically distributed (Fig. 3), which
also could introduce an additional bias.

The question of the degree of validity of the relation-
ship LH = g(Tmax) depends on the data quality and volume.
While there was a weak link in India, there was a clear link
over Europe. Furthermore, tests applied to ideal synthetic
data indicated a connection between the two, and similar
noisy scatter at the upper (lower for cold spells) tail of the
ideal synthetic stochastic data (x ∼N (µ,σ 2)) in Fig. 1 sug-
gested that estimates for more extreme cases were subject
to increased sampling fluctuations. The noisy picture given
by the scatter plots may also suggest that there were other
unaccounted-for factors which influence the mean duration
or the mean number of heatwaves. Another question is its
validity in the future, as the connection may change if the
shape of the pdf for Tmax changes under global warming. The
agreement between the link established for the European data
and the ideal data (Fig. 1) suggests a universal trait as long as
the daily temperature is approximately normally distributed,
but a bias is likely to be present if the standard deviation di-
minishes (Supplement).

We wanted to demonstrate how this downscaling method-
ology makes the best use of the sketchy data, as the estimates
themselves are based on more robust statistical parameters
such as the mean duration LH and the PCA of the mean
temperature Tmax. These quantities may be considered to be
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Figure 5. Projected probability of (a) one or more events with daily maximum temperature above 35 ◦C lasting longer than 5 days during
the February–April season in 2100 assuming the RCP4.5 emission scenario and (b) the probability that the heat lasts longer than 5 days
given a hot day in 2100 assuming the RCP4.5 emission scenario. The map was generated by gridding estimates shown in the fourth column
in Table 1.

fairly resistant to errors as long as there are not too many
of them, and that they are both random and unbiased. Fur-
thermore, the PCA is resistant to errors in single temperature
series as long as they represent a small number of the stations
and are uncorrelated with errors at other sites. However, the
interpolation of gaps with missing data introduced new un-
certainties, and the presence of missing data also made it
tricky to get accurate estimates for the heatwave durations.
Missing data and errors introduced through interpolation rep-
resent one possible explanation for the poor match between
the observed frequency of heatwaves in Table 2 and esti-
mated likelihood for 5-day heatwaves at some of the sites.
Moreover, the sites with the largest mismatch were not in
regions where wheat crops are important, but we included
them here to maximise the signal in the PCA and to enhance
the chance of getting a good estimate of the dependency be-
tween large and small scales needed for empirical-statistical
downscaling.

The analysis presented here was based on a novel method-
ology where the probability associated with heatwave du-
ration was calculated from downscaled seasonal mean tem-
perature estimates rather than inferring it from downscaled
daily data. There has been some similar work, but none that
have involved downscaling of large multi-model ensembles

to make projections for heatwaves over India. Lana et al.
(2008) did not include downscaling and used a Weibull distri-
bution to describe the spell duration statistics rather than the
geometric distribution. We chose the latter since it is based
on the number of successive probabilities (hot days; see the
Appendix). The analysis presented by Wang et al. (2015)
was more similar to our projections of heatwave statistics
over India, but they used bias-corrected GCM results for
China rather than downscaling over India. We, on the other
hand, combined statistical modelling of heatwave statistics
with the empirical-statistical downscaling of February–April
mean daily maximum temperature involving several multi-
model ensembles.

The probabilities presented here were subject to a number
of uncertainties: (a) the unknown nature of future emissions,
(b) shortcomings in the global climate models, (c) limita-
tions of the empirical-statistical downscaling method, (d) un-
certainties associated with the connection between the mean
daily maximum temperature and the duration statistics, and
(e) errors in the observations. By including three different
emission scenarios (RCPs 2.6, 4.5, and 8.5), the analysis pro-
vided some indication of the sensitivity of the probabilities
to the nature of the emissions. Both Fig. 4 and Tables 1–
2 indicate that future emissions mattered for the likelihood
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of longer lasting heatwaves, which have negative effects on
wheat crops. Figures 1–3 present an evaluation of the connec-
tion between the mean daily maximum temperature and the
heatwave duration statistics and reveal that it is not “perfect”,
particularly for very long lasting heatwaves (> 30 days). This
connection nevertheless provides a reasonable estimate, and
the comparison between synthetic normally distributed ran-
dom data with similar autocorrelation suggested that this
connection is robust. However, the connection would be sen-
sitive to a change in the autocorrelation, although the auto-
correlation appears to be insensitive to variations in physical
conditions (Benestad et al., 2016).

It is impossible to predict the course of natural variability,
and even a single climate model may produce different pro-
jections with widely different outcomes on local and regional
scales (Deser et al., 2012). Probabilities account for such
variability, and the analysis presented here made use of the
median of the simulated temperature from large multi-model
ensembles and a Bayesian-inspired approach to account for
both natural variability and model differences. Such ensem-
bles cannot be considered to be unbiased statistical samples
(Benestad et al., 2017b) as different models have similar bi-
ases since they share many components. The model differ-
ences, however, have been found to be less pronounced than
the year-to-year variations (Benestad et al., 2016) and can for
all intents and purposes be used as an imperfect description
of the statistical spread when better information is lacking.
The estimation of future probabilities also makes the ques-
tion of statistical significance less relevant, since statistical
significance refers to the probability that a change in a ran-
dom variable is due to chance, assuming that the variable has
a stochastic nature. In this case, the estimation of a change
in probabilities is on the same level as the estimation of the
probability levels commonly used in statistical significance
tests.

5 Conclusions

We presented a case study for Indian wheat crops to test
a methodology for estimating probabilities of long-lasting
heatwaves, based on statistical modelling of streak lengths,
their dependency on the seasonal mean of daily maximum
temperature, and empirical-statistical downscaling of multi-
model ensembles. Wheat crops appear to be subject to in-
creased risks of heat stress in 2100 due to more frequent
heatwaves with daily maximum temperature exceeding 35 ◦C
that last more than 5 days.

Code and data availability. Code for reproducing this experi-
ment is provided in the Supplement as an R Markdown script
(pdf and Rmd files). The data are freely available from figshare:
https://figshare.com/articles/Heatwave_duration/5769345 (last ac-
cess: 12 October 2018).
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Appendix A: Method: details and code

The geometric distribution (Wilks, 1995) describes the prob-
ability distribution of the number X of Bernoulli trials
needed to get one success, and Pr(X) can be defined accord-
ing to

Pr(X = k)= (1−p)(k−1)p ∀ k = {1,2,3, . . .}, (A1)

where k is the number of days with heat and p = 1/LH is the
probability of heat on any given day. There are two types of
geometric distributions, and here we used the one describing
number of failures before one success. Here the notationX is
used to represent the mean value of a random daily variable
X (temperature or heatwave length) over the February–April
season. We used this equation to estimate the probability of
the occurrence of heatwaves lasting more than 5 days, given
an estimate for the mean duration of the spells: Pr(LH >

5|LH)= [1−Pr(LH ≤ 5|LH)] = [1−
∑5
k=1Pr(X = k)].

The probability based on the geometric distribution refers
to a single heatwave event, and the probability of a long-
lasting heatwave is higher with an increasing number of heat-
waves. LH depended on the mean temperature Tmax and was
modelled through GLMs that assumed a geometric or Pois-
son distribution. We also used downscaled Tmax from multi-
model ensembles to provide an ad hoc statistical distribution
for the temperature and the ensemble median to specify a
threshold for which the probability of higher temperature was
0.5.

The estimation of probabilities was based on

Pr(LH > 5|Tmax)=

Pr(LH > 5|LH(Tmax))Pr(Tmax > x), (A2)

where Pr(Tmax > x)= 1/2 was represented by the 50th per-
centile of the multi-model ensemble. In the equation above,
Pr(LH > 5|LH(Tmax)) represents the geometric distribution
defined by parameter p = 1/LH(Tmax), where LH is a func-
tion of Tmax and estimated though the GLM as shown in
Fig. 2. In some cases, there may be several long-lasting
events in a season; however, merely one is enough for nega-
tive impacts on the wheat crops.

We used a strategy described in Benestad et al. (2015a) to
fill gaps in seasonal mean aggregates of Tmax and LH, based
on the function pcafill in the esd package. Interpolated
values that were outside the original range of data were set to
those maximum or minimum values.

The analysis was carried out in the R computing environ-
ment (R Core Team, 2014), and an R Markdown script with
line-by-line instructions for the analysis carried out here is
openly available from a GitHub repository (https://github.
com/metno/esd_Rmarkdown/tree/master/CixPAG, last ac-
cess: 21 September 2017). The analysis made use of the R
package esd (Benestad et al., 2015b).
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