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Abstract. Projections of coastal storm surge hazard are a basic requirement for effective management of coastal
risks. A common approach for estimating hazards posed by extreme sea levels is to use a statistical model,
which may use a time series of a climate variable as a covariate to modulate the statistical model and account
for potentially nonstationary storm surge behavior (e.g., North Atlantic Oscillation index). Previous works using
nonstationary statistical approaches to assess coastal flood hazard have demonstrated the importance of account-
ing for many key modeling uncertainties. However, many assessments have typically relied on a single climate
covariate, which may leave out important processes and lead to potential biases in the projected flood hazards.
Here, I employ a recently developed approach to integrate stationary and nonstationary statistical models, and
characterize the effects of choice of covariate time series on projected flood hazard. Furthermore, I expand upon
this approach by developing a nonstationary storm surge statistical model that makes use of multiple covariate
time series, namely, global mean temperature, sea level, the North Atlantic Oscillation index and time. Using
Norfolk, Virginia, as a case study, I show that a storm surge model that accounts for additional processes raises
the projected 100-year storm surge return level by up to 23 cm relative to a stationary model or one that employs
a single covariate time series. I find that the total model posterior probability associated with each candidate
covariate, as well as a stationary model, is about 20 %. These results shed light on how including a wider range
of physical process information and considering nonstationary behavior can better enable modeling efforts to
inform coastal risk management.

1 Introduction

Reliable estimates of storm surge return levels are critical for
effective management of flood risks (Nicholls and Cazenave,
2010). Extreme value statistical modeling offers an avenue
for estimating these return levels (Coles, 2001). In this ap-
proach, a statistical model is used to describe the distribu-
tion of extreme sea levels. Modeling uncertainties, however,
include whether or not the chosen statistical model appro-
priately characterizes the sea levels and whether or not the
distribution changes over time – that is, nonstationarity (Lee
et al., 2017). Process-based modeling offers a mechanisti-
cally motivated alternative to statistical modeling (e.g., Fis-
chbach et al., 2017; Johnson et al., 2013; Orton et al., 2016)
and carries its own distinct set of modeling uncertainties. Re-

cent efforts to manage coastal flood risk have relied heavily
on statistical modeling (e.g., Lempert et al., 2012; Lopeman
et al., 2015; Moftakhari et al., 2017; Oddo et al., 2017). In
particular, environmental extremes can often carry high risks
in terms of widespread damages and economic losses (e.g.,
Oddo et al., 2017), but extremes are by definition rare, im-
posing strict limitations on the available data. Extreme value
statistical models offer an avenue for estimating extremes,
with relatively fewer parameters to constrain as compared to
processed-based models. The importance of statistical mod-
eling in managing coastal risk motivates the focus of the
present study on characterizing some of the relevant uncer-
tainties in extreme value statistical modeling of flood haz-
ards.
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Common extreme value distributions for modeling coastal
storm surges include generalized extreme value (GEV) mod-
els (e.g., Grinsted et al., 2013; Karamouz et al., 2017; Wong
and Keller, 2017) and a hybrid Poisson process and gener-
alized Pareto distribution (PP/GPD) model (e.g., Arns et al.,
2013; Buchanan et al., 2017; Bulteau et al., 2015; Cid et al.,
2016; Hunter et al., 2017; Marcos et al., 2015; Tebaldi et
al., 2012; Wahl et al., 2017; Wong et al., 2018). Approaches
based on the joint probability method (for example) are an-
other alternative to analyze extreme sea levels, although the
focus of the present study is restricted to extreme value dis-
tributions (Haigh et al., 2010b; McMillan et al., 2011; Pugh
and Vassie, 1978; Tawn and Vassie, 1989). The GEV distri-
bution is the limiting distribution of a convergent sequence
of independent and identically distributed sample maxima
(Coles, 2001). In extreme sea level analyses, data are fre-
quently binned into sample blocks, and a GEV distribution is
assumed as the distribution of the appropriately detrended
and processed sample block maxima (where this process-
ing serves to achieve independent and identically distributed
sample block maxima). Depending on block sizes (typically
annual or monthly), this approach may lead to a rather lim-
ited set of data for analysis. By contrast, the PP/GPD model-
ing approach can yield a richer set of data by making use of
all extreme sea level events above a specified threshold (e.g.,
Arns et al., 2013; Knighton et al., 2017). Additionally, pre-
vious studies have demonstrated the difficulties in making
robust modeling and processing choices using a GEV and
block maxima approach (Ceres et al., 2017; Lee et al., 2017).
These relative strengths and weaknesses of the GEV versus
PP/GPD approaches motivate the present study to focus on
constraining uncertainties within the PP/GPD model.

Recent works have demonstrated the importance of ac-
counting for nonstationarity in extreme sea levels (Vous-
doukas et al., 2018; Wong et al., 2018). To address the ques-
tion of how the distribution of extreme sea levels is changing
over time, many previous studies have employed nonstation-
ary statistical models for storm surge return levels. The typi-
cal approach is to fit a spatiotemporal statistical model (e.g.,
Menéndez and Woodworth, 2010) or to allow some climate
index or variable to serve as a covariate that modulates the
statistical model parameters (e.g., Ceres et al., 2017; Cid et
al., 2016; Grinsted et al., 2013; Haigh et al., 2010a; Lee et
al., 2017; Wong et al., 2018). The present study follows and
expands upon the modeling approach of Wong et al. (2018)
by incorporating nonstationarity into the PP/GPD statistical
model and providing a comparison of the projected return
levels and a quantification of model goodness of fit under
varying degrees of nonstationarity.

Relatively few studies, however, have examined the use
of multiple covariates or compared the use of several candi-
date covariates for a particular model application (Grinsted et
al., 2013). The present study tackles this issue by consider-
ing several potential covariates for extreme value models that
have been used previously: global mean surface temperature

(Ceres et al., 2017; Grinsted et al., 2013; Lee et al., 2017),
global mean sea level (Arns et al., 2013; Vousdoukas et al.,
2018), the North Atlantic Oscillation (NAO) index (Haigh et
al., 2010a; Wong et al., 2018) and time (i.e., a linear change)
(Grinsted et al., 2013). To avoid potential representation un-
certainties as much as possible, the attention of the present
study is restricted to the Sewells Point tide-gauge site in Nor-
folk, Virginia, USA (NOAA, 2017b), which is within the re-
gion of study of Grinsted et al. (2013).

The present study employs a Bayesian model averag-
ing (BMA) approach to integrate and compare various mod-
eling choices for potential climate covariates for the statisti-
cal model for extreme sea levels (Wong et al., 2018). The use
of BMA permits a quantification of model posterior proba-
bility associated with each of the four candidate covariates
and illuminates important areas for future modeling efforts.
BMA also enables the generation of a new model that incor-
porates information from all of the candidate covariates and
model nonstationarity structures. The main contribution of
this work is to demonstrate the ability of the BMA approach
to incorporate multiple covariate time series into flood hazard
projections and to examine the impacts of different choices of
covariate time series. The candidate covariates used here are
by no means an exhaustive treatment of the problem domain
but rather serve as a proof of concept for further exploration
and to provide a characterization of the structural uncertain-
ties inherent in modeling nonstationary extreme sea levels.

To summarize, the main questions addressed by the
present study are as follows:

1. Which covariates that have been used in previous works
to modulate extreme value statistical models for storm
surges are favored by the BMA weighting?

2. How do these structural uncertainties affect our projec-
tions of storm surge return levels?

The remainder of this work is composed as follows. Section 2
describes the extreme value statistical model used here, the
data sets and processing methods employed, the model cali-
bration approach, and the experimental design for projecting
flood hazards. Section 3 presents a comparison of modeling
results under the assumptions of the above four candidate co-
variates, as well as when all four are integrated using BMA.
Section 4 interprets the results and discusses the implications
for future study, and Sect. 5 provides a concluding summary
of the present findings.

2 Methods

2.1 Data

The tide-gauge station selected for this study is Sewells Point
(Norfolk), Virginia, United States (NOAA, 2017b). Norfolk
was selected for two reasons. First, the Norfolk tide-gauge
record is long and nearly continuous (89 years). Second, Nor-
folk is within the southeastern region of the United States
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considered by Grinsted et al. (2013), so the application of
global mean surface temperature as a covariate for changes
in storm surge statistical characterization is reasonable. This
assumption should be examined more closely if the results of
the present work are to be interpreted outside this region. It is
important to make clear that the assumption of a model struc-
ture in which storm surge parameters covary with some time-
series ϕ does not imply the assumption of any direct causal
relationship. Rather, the use of a covariate ϕ to modulate the
storm surge is meant to take advantage of dependence rela-
tionships in the covariate time series and storm surge. For
example, an unknown mechanism could lead to changes in
both global mean temperature as well as storm surge return
levels. The fact that temperature does not directly cause the
change in storm surge does not mean that temperature is not
a useful indicator of changes in storm surge. That is why this
work has chosen the term “covariate” for these time series.
I consider four candidate covariate time series, ϕ(t): time,
global mean sea level, global mean temperature and the win-
ter mean NAO index.

The time covariate is simply the identity function. For ex-
ample, ϕ(1928) = 1928 for the year y1= 1928. The nonsta-
tionary model assuming a time covariate corresponds to the
linear trend model considered by Grinsted et al. (2013).

For the NAO index covariate time series, I use the his-
torical monthly NAO index data from Jones et al. (1997),
and as projections I use the MPI-ECHAM5 sea level pres-
sure projection under the Special Report on Emission Sce-
narios (SRES) A1B as part of the ENSEMBLES project
(https://www.ensembles-eu.org, last access 26 March 2018;
Roeckner et al., 2003). As forcing to the nonstationary mod-
els, I calculate the winter mean (DJF) NAO index following
Stephenson et al. (2006).

For the temperature time series, I use historical annual
global mean surface temperature data from the National
Centers for Environmental Information data portal (NOAA,
2017a), and as projections I use the CNRM-CM5 simula-
tion (member 1) under Representative Concentration Path-
way 8.5 (RCP8.5) as part of the CMIP5 multi-model ensem-
ble (http://cmip-pcmdi.llnl.gov/cmip5/, last access: 7 July
2017). The time series are provided as anomalies relative to
their 20th century mean.

For the sea level time series, I use the global mean sea
level data set of Church and White (2011) as historical
data. For projecting future flood hazard, I use the simulation
from Wong and Keller (2017) yielding the ensemble median
global mean sea level in 2100 under RCP8.5.

Each of the covariate data records and the tide-gauge cal-
ibration data record are trimmed to 1928–2013 (86 years),
because this is the time period for which all of the historical
time series are available. I normalize all of the covariate time
series so that the range between the minimum and maximum
for the historical period is 0 to 1; the projection period (to
2065) may lie outside of the 0 to 1 range. Thus, all candi-
date models are calibrated to the same set of observational

data, and the covariate time series are all on the same scale,
making for a cleaner comparison.

2.2 Extreme value model

First, to detrend the raw hourly tide-gauge sea level time se-
ries, I subtract a moving window 1-year average (e.g., Arns
et al., 2013; Wahl et al., 2017). Next, I compute the time se-
ries of detrended daily maximum sea levels. I use a PP/GPD
statistical modeling approach, which requires selection of a
threshold, above which all data are considered as part of
an extreme sea level event. In an effort to maintain inde-
pendence in the final data set for analysis, these events are
declustered such that only the maximal event among multi-
ple events within a given timescale is retained in the final
data set. Following many previous studies, I use a declus-
tering timescale of 3 days and a constant threshold match-
ing the 99th percentile of the time series of detrended daily
maximum sea levels (e.g., Wahl et al., 2017). The interested
reader is directed to Wong et al. (2018) for further details on
these methods and to Wong et al. (2018), Wahl et al. (2017)
and Arns et al. (2013) for deeper discussion of the associated
modeling uncertainties.

The probability density function (pdf, f ) for the GPD is
given by

f (x(t)|µ (t) ,σ (t) ,ξ (t))

=
1
σ (t)

(
1+ ξ (t)

x (t)−µ(t)
σ (t)

)−(1+1/ξ (t))

, (1)

where µ(t) is the threshold for the GPD model (which does
not depend on time t here), σ (t) is the GPD scale parame-
ter (m), ξ (t) is the GPD shape parameter (unitless) and x(t)
is sea level height at time t (processed as described above).
Note that f only has support when x(t)≥ µ(t), i.e., for ex-
ceedances of the threshold µ. A Poisson process is assumed
to govern the frequency of threshold exceedances:

g(n(t)|λ (t))=
(λ (t)1t)n(t)

n (t) !
exp(−λ (t)1t) , (2)

where n(t) is the number of exceedances in time interval t to
t +1t and λ(t) is the Poisson rate parameter (exceedances
day−1).

Following previous works, nonstationarity is incorporated
into the PP/GPD parameters as
λ (t)= λ0+ λ1ϕ (t) ,
σ (t)= exp[σ0+ σ1ϕ (t)],
ξ (t)= ξ0+ ξ1ϕ (t) ,

(3)

where λ0, λ1, σ0, σ1, ξ0 and ξ1 are all unknown constant pa-
rameters and ϕ(t) is a time-series covariate that modulates
the behavior of the storm surge PP/GPD distribution (Grin-
sted et al., 2013; Wong et al., 2018). As in these previous
works, I assume that the parameters are stationary within a
calendar year.
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Assuming that each element of the processed data set x
is independent and given a full set of model parameters θ =
(λ0,λ1,σ0,σ1,ξ0,ξ1), the joint likelihood function is

L (x|θ )=
N∏
i=1

[
g (n (yi) |λ (yi))

·

n(yi )∏
j=1

f
(
xj (yi) |µ (yi) ,σ (yi) ,ξ (yi)

)]
, (4)

where yi denotes the year indexed by i, xj (yi) is the j th
threshold exceedance in year yi , n(yi) is the total number
of exceedances in year yi and there are N total years of data.
The product over exceedances in year yi in this equation is
replaced by one for any year with no exceedances.

Note that if λ1 = σ1 = ξ1 = 0, the PP/GPD parameters
λ(t), σ (t) and ξ (t) are constant, yielding a stationary statis-
tical model. This model is denoted “ST”. If the frequency
of threshold exceedances is permitted to be nonstationary,
then σ1 = ξ1 = 0, but λ1 is not necessarily equal to zero.
This model permits one parameter, λ, to be nonstationary,
and it is denoted “NS1.” Similar models are constructed by
permitting both λ and σ to be nonstationary while holding
ξ1 = 0 (NS2) and permitting all three parameters to be non-
stationary (NS3). I consider these four potential model struc-
tures for each of the four candidate covariates ϕ(t) (time, sea
level, temperature and the NAO index; see Sect. 2.1). This
yields a set of 13 total candidate models; model ST is the
same for all covariates. For each of the 13 candidate mod-
els, I use ensembles of PP/GPD parameters, calibrated using
observational data and forced using time series for the appro-
priate covariate, to estimate the 100-year storm surge return
level for Norfolk in 2065 (the surge height corresponding to a
100-year return period). Projections for other return periods
are available in Appendix A, following this work.

2.3 Model calibration

I calibrate the model parameters using a Bayesian parame-
ter calibration approach (e.g., Higdon et al., 2004). As prior
information p(θ ) for the model parameters, I select 27 tide-
gauge sites with at least 90 years of data available from the
University of Hawaii Sea Level Center data portal (Caldwell
et al., 2015). I process each of these 27 tide-gauge data sets
and the Norfolk data that are the focus of this study as de-
scribed in Sect. 2.2. Then, I fit maximum likelihood param-
eter estimates for each of the 13 candidate model structures.
For each model structure and for each parameter, I fit either
a normal or gamma prior distribution to the set of 28 max-
imum likelihood parameter estimates, based on whether the
parameter support is infinite (in the case of λ1, σ1, ξ0 and ξ1)
or half-infinite (in the case of λ0 and σ0).

The essence of the Bayesian calibration approach is to use
Bayes’ theorem to combine the prior information p(θ ) with
the likelihood function L(x|θ ) (Eq. 4) as the posterior distri-

bution of the model parameters θ , given the data x:

p (θ |x)∝ L (x|θ )p(θ ). (5)

I use a robust adaptive Metropolis–Hastings algorithm to
generate Markov chains whose stationary distribution is this
posterior distribution (Vihola, 2012), for each of the 13 dis-
tinct model structures (level of nonstationarity and param-
eter covariate time-series combinations). For each distinct
model structure, I initialize each Markov chain at maximum
likelihood parameter estimates and iterate the Metropolis–
Hastings algorithm 100 000 times, for 10 parallel Markov
chains (Hastings, 1970; Metropolis et al., 1953). I use Gel-
man and Rubin diagnostics to assess convergence and re-
move a burn-in period of 10 000 iterates (Gelman and Rubin,
1992). From the remaining set of 900 000 Markov chain iter-
ates (pooling all 10 parallel chains), I draw a thinned sample
of 10 000 sets of parameters for each of the distinct model
structures to serve as the final ensembles for analysis.

2.4 Bayesian model averaging

In the context of using statistical modeling for estimating
flood hazards, there has been some debate over how best to
use the limited available information to constrain projections.
More complex model structures can incorporate potentially
nonstationary behavior (i.e., models NS1-3), but the addi-
tional parameters for estimation come at the cost of require-
ments of more data (Wong et al., 2018). Some works have
focused on the timescale on which nonstationary behavior
may be detected (Ceres et al., 2017), and others have focused
on the ability of modern calibration methods to identify cor-
rect storm surge statistical model structure (Lee et al., 2017).
Methods such as processing and pooling tide-gauge data into
a surge index permit a much richer set of data with which
to constrain additional parameters (Grinsted et al., 2013), but
the “best” way to reliably process data and make projections
remains unclear (Lee et al., 2017). Indeed, Lee et al. (2017)
demonstrated that even the surge index methodology of Grin-
sted et al. (2013), which assimilates data from six tide-gauge
stations, likely cannot appropriately identify a fully nonsta-
tionary (NS3) model with a global mean temperature covari-
ate. In summary, there is a large amount of model structural
uncertainty surrounding model choice (Lee et al., 2017) and
the model covariate time series (Grinsted et al., 2013).

Bayesian model averaging (BMA; Hoeting et al., 1999)
offers an avenue for handling these concerns by combining
information across candidate models, and weighting the es-
timates from each model by the degree to which that model
is persuasive relative to the others. Using BMA, each candi-
date modelMk is assigned a weight that is its posterior model
probability, p(Mk|x). Each modelMk yields an estimated re-
turn level in year yi , RL(yi |Mk). The BMA estimate of the
return level can then be written as an average of the return
levels as estimated by each candidate model, weighted by
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each model’s BMA weight:

RL(yi |x)=
m∑
k=1

RL (yi |Mk) p(Mk|x), (6)

where m is the total number of models under consideration.
The BMA weights for each model Mk are given by Bayes’
theorem and the law of total probability as

p (Mk|x)=
p (x|Mk)p(Mk)
m∑
j=1

p
(
x|Mj

)
p(Mj )

. (7)

The prior distribution over the candidate models is assumed
to be uniform (p(Mi)= p(Mj ) for all i, j ). The probabilities
p(x|Mk) are estimated using bridge sampling and the poste-
rior ensembles from the Markov chain Monte Carlo analysis
(Meng and Wing, 1996).

For each of the four covariate time series, in addition to the
ensembles of 100-year storm surge returns levels for each of
the four candidate models, I produce a BMA ensemble of
100-year return levels as outlined above. In a final experi-
ment, I pool all 13 distinct model structures to create a BMA
ensemble in consideration of all levels of nonstationarity and
covariate time series. This BMA-weighted ensemble consti-
tutes a new model structure that takes into account more
mechanisms for modulating storm surge behavior – time,
temperature, sea level and the NAO index. This experiment
has two aims:

1. to assess the degree to which the Norfolk data set in-
forms our choice of covariate time series and

2. to quantify the impacts of single-model or single-
covariate choice in the projection of flood hazards.

3 Results

3.1 Integrating across model structures

The BMA weights for the stationary model (ST) and each of
the three nonstationary models (NS1–3) are robust across the
changes in the covariate time series employed to modulate
the storm surge model parameters (Fig. 1). The ST model
receives about 55 % weight, the NS1 model (where the Pois-
son rate parameter λ is nonstationary) receives about 25 %
weight, the NS2 model (where both λ and σ are nonstation-
ary) receives about 15 % weight, and the fully nonstationary
NS3 model receives about 5 % weight. While the stationary
model consistently has the highest model posterior probabil-
ity, the fact that the nonstationary models have appreciable
weight associated with them is a clear signal that these pro-
cesses should not be ignored. In light of these results, it be-
comes rather unclear which is the “correct” model choice and
which covariate is the most appropriate. The latter question
will be addressed in Sect. 3.3 and 3.4. The former question is

Figure 1. Bar plots showing the Bayesian model averaging weight
for each of the four candidate models (ST, NS1, NS2 and NS3)
using the following as a covariate: (a) time, (b) temperature, (c) sea
level and (d) NAO index.

addressed using BMA to combine the information across all
of the candidate model structures, for each covariate individ-
ually. In this way, BMA permits the use of model structures
which may have large uncertainties but are still useful to in-
form risk management strategies.

3.2 Return levels for individual models

When BMA is used to combine all four candidate ST and
nonstationary models for each candidate covariate, the en-
semble median projected 100-year return level in 2065 in-
creases by between 4 and 23 cm, depending on the covariate
used (Fig. 2). Interestingly, the use of BMA with a global
mean temperature or sea level covariate widens the uncer-
tainty range relative to the stationary model (Fig. 2b, c),
whereas the BMA-weighted ensembles using time or the
NAO index as a covariate tighten the uncertainty range. This
is likely attributable to the larger signal in sea level or tem-
perature projections, relative to time or the NAO index. By
considering nonstationarity in the PP/GPD shape parame-
ter, model NS3 consistently displays the widest uncertainty
range for 100-year return level and a lower posterior median
than a stationary model. This indicates the large uncertainty
associated with the GPD shape parameter.
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Figure 2. Empirical probability density functions for the 100-year storm surge return level (meters) at Norfolk, Virginia, as estimated using
one of the four candidate model structures and using the Bayesian model averaging ensemble. Shown are nonstationary models where the
statistical model parameters covary with (a) time, (b) global mean surface temperature, (c) global mean sea level and (d) winter mean NAO
index. The bar plots provide the 5 %–95 % credible range (lightest shading), the interquartile range (moderate shading) and the ensemble
medians (dark vertical line), for both the stationary model (green) and Bayesian model averaging ensemble (gray).

Figure 3. Bar plot showing the Bayesian model averaging weights
for each of the 13 distinct candidate model structures, when all are
simultaneously considered.

3.3 Integrating time-series information and across
model structures

When all 13 distinct model structures are simultaneously
considered in the BMA weighting, the models’ BMA

weights display a clear trend in favor of less-complex struc-
tures (Fig. 3). If one wishes to use these results to select a
single model for projecting storm surge hazard, then, based
on BMA weights, a stationary model would be the appropri-
ate choice. In light of the results of Sect. 3.1, it is not surpris-
ing that the fully nonstationary models (NS3) are the poorest
choices as measured by BMA weight. The models are as-
sumed to all have uniform prior probability of 1/13 (about
0.077). Therefore, these results indicate stronger evidence
for the use of the stationary and NS1 models for modulating
storm surges, and weaker evidence for incorporating nonsta-
tionarity in, for example, the GPD shape parameter (NS3).

One interpretation of these results is that a stationary
model (ST) receives about 23 % of the total model poste-
rior probability, which is much more than the next largest
BMA weight (about 10 %), so a stationary model is the “cor-
rect” choice. But an alternative and interesting question is
raised: how important is each covariate, in consideration of
all three nonstationary model structures (NS1-3)? A quantifi-
cation of the total model posterior probability for each can-
didate covariate time series is given by adding up the BMA
weights associated with each covariate’s nonstationary mod-
els (Table 1). A stationary model still has the highest total
BMA weight (0.23) but is followed closely by a simple linear
change in PP/GPD parameters (0.21) as well as temperature,
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Table 1. Total BMA weight associated with each candidate covari-
ate’s nonstationary models and a stationary model (ST) for the full
set of 13 candidate models, all considered simultaneously in the
BMA weighting.

Covariate BMA weight

Time 0.210
Temperature 0.187
Sea level 0.187
NAO index 0.188
None (stationary model) 0.228

sea level and the NAO index (0.19). Taking this view, the fact
that a stationary model has an underwhelming 23 % of the to-
tal model weight highlights the importance of accounting for
the other 77 %, attributable to nonstationarity.

3.4 Accounting for more processes raises projected
return levels

The BMA model that considers all of the covariate time se-
ries and levels of (non)stationarity has a median projected
2065 storm surge 100-year return level of 2.36 m (5 %–95 %
credible range of 2.14 to 3.07 m; Fig. 4). This more detailed
model has a higher central estimate (2.36 m) of flood haz-
ard than all of the single-covariate models’ BMA ensem-
bles except for sea level (2.17 m for the NAO index, 2.21 m
for time, 2.29 m for temperature and 2.37 m for sea level).
When considering the set of multi-model, single-covariate
BMA ensembles (Fig. 4, dashed colored lines) and the multi-
model, multi-covariate BMA ensemble (Fig. 4, solid black
line), there is a substantial amount of uncertainty in these
projections of flood hazard attributable to model structure, in
particular, with regard to the choice of covariate time series.

4 Discussion

This study has presented and expanded upon an approach to
integrate multiple streams of information to modulate storm
surge statistical behavior (covariate time series) and to ac-
count for the fact that the “correct” model choice is almost
always unknown. This approach improves the current status
of storm surge statistical modeling by accounting for more
processes (multiple covariates and model structures), thereby
raising the upper tail of flood hazard (by up to 23 cm for
Norfolk) while constraining these additional processes using
BMA. These methods will be useful, for example, in rectify-
ing disagreement between previous assessments using non-
stationary statistical models for storm surges (e.g., Grinsted
et al., 2013; Lee et al., 2017). The results presented here are
consistent with those of Wong et al. (2018), who employed a
single covariate BMA model based on the NAO index. Both
studies demonstrate that the neglect of model structural un-

Figure 4. Empirical probability density functions for the 100-year
storm surge return level (meters) at Norfolk, Virginia, as estimated
using Bayesian model averaging with one of the four candidate co-
variates and using the overall Bayesian model averaging ensemble
with all 13 distinct candidate model structures. The bar plots pro-
vide the 5 %–95 % credible range (lightest shading), the interquar-
tile range (moderate shading) and the ensemble medians (dark ver-
tical line). The shaded bar plots follow the same order as the legend.

certainties surrounding model choices leads to the underesti-
mation of flood hazard.

These results are in agreement with the work of Lee et
al. (2017) and highlight the importance of carefully consider-
ing the balance of model complexity against data availability.
Including more complex physical mechanisms into model
structures (i.e., nonstationary storm surges) is often impor-
tant for decision-making, but additional model processes and
parameters require more data to constrain them (Wong et al.,
2018). If a single-model choice is to be made, then a sta-
tionary model may be the natural choice (Table 1). How-
ever, this work provides guidance on incorporating nonsta-
tionary processes to a degree informed by the model poste-
rior probabilities, in light of the available data. Importantly,
the (non)stationary model BMA weights were robust against
the changes in the covariate time series used to modulate
the storm surge model parameters (Fig. 1). By contrast, the
largest uncertainty arises in the projections of flood hazard
to 2065, depending on which covariate time series is used
(Figs. 2 and 4). The primary contribution of this work is to
present an approach to integrate across these covariate time
series and overcome this issue of uncertainty in the “cor-
rect” covariate time series to use (Fig. 3). Using the sta-
tionary model leads to a distribution of the 100-year flood
level with a median of 2.13 m and upper tail (95th percentile)
of 2.58 m. Using the full multi-model, multi-covariate BMA
model, however, substantially raises both the projected cen-
ter (2.36 m) and upper tail (3.07 m) of the distribution of
100-year flood hazard in 2065, relative to using a stationary
model. For Norfolk and the surrounding area, a difference of
about 23 cm in the estimated return level can lead to millions
of dollars in potential damages (Fugro Consultants, 2016).
Thus, the present work also serves to demonstrate the po-
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tential risks associated with the selection of a single model
structure.

Of course, some caveats accompany this analysis. The co-
variate time series are all deterministic model input. In par-
ticular, the temperature and sea level time series do not in-
clude the sizable uncertainties in projections of these time
series, which in turn depend largely on deeply uncertain fu-
ture emission pathways. The accounting and propagation of
uncertainty and correlation in the covariate time series would
be an interesting avenue for future study, but this is beyond
the scope of this work. For example, temperature may drive
changes in both sea levels and the NAO index, so future
works might consider disentangling the effects of the mul-
tiple covariate time series. Furthermore, this study only con-
siders derivatives of PP/GPD model structures and does not
address the deep uncertainty surrounding the choice of sta-
tistical model (Wahl et al., 2017).

This study also focuses on a single tide-gauge station
(Sewells Point in Norfolk, Virginia). This choice was made
in light of the deep uncertainty surrounding how best to pro-
cess and combine information across stations into a surge
index (Lee et al., 2017) and because the Norfolk site is
within the region studied by Grinsted et al. (2013), so the
application of global mean surface temperature as a covari-
ate is a reasonable extension of those authors’ work. Ex-
tending these results to regions outside the southeastern part
of the United States, however, is an important area for fu-
ture study. A key strength of the fully nonstationary multi-
covariate BMA model is that the methods presented here can
be applied to any site, and the model posterior probabilities
will allow the data to inform the weight placed on the dif-
ferent (non)stationary models and covariates, in light of the
local tide-gauge information. As demonstrated by Grinsted
et al. (2013), the use of local temperature or other covariate
information may also lead to better constraint on storm surge
return levels but also presents challenges for process models
to reproduce potentially complex spatial patterns.

The present study is not intended to be the final word
on model selection or projecting storm surge return levels.
Rather, this work is intended to present a new approach for
generating a model that accounts for more processes and
modeling uncertainties and demonstrating its application to
an important area for flood risk management. This study only
presents a handful of many potentially useful covariates for
storm surge statistical modeling (e.g., Grinsted et al., 2013).
Future work should build on the methods presented here and
can incorporate other mechanisms known to be important lo-
cal climate drivers for specific applications.

5 Conclusions

This study has presented a case study for Norfolk, Virginia,
that demonstrates the use of BMA to integrate flood hazard
information across models of varying complexity (stationary
versus nonstationary) and modulating model parameters us-
ing multiple covariate time series. This work finds that for the
Norfolk site, all of the candidate covariates yield similar de-
grees of confidence in the (non)stationary model structures,
and the overall BMA model that employs all four candidate
covariates projects a higher flood hazard in 2065. These re-
sults provide guidance on how best to incorporate nonstation-
ary processes into flood hazard projections, and a framework
to integrate other locally important climate variables, to bet-
ter inform coastal risk management practices.

Code availability. All codes are freely available from https://
github.com/tonyewong/covariates.

Data availability. All data and modeling and analysis codes
are freely available from https://github.com/tonyewong/covariates
(https://doi.org/10.5281/zenodo.1718069).
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Appendix A

Table A1. CMIP5 models employed in the present study.

Modeling center (or group) Institute ID Model name

Centre National de Recherches Météorologiques/ CNRM-CERFACS CNRM-CM5
Centre Européen de Recherche et Formation
Avanceé en Calcul Scientifique

Table A2. Quantiles of the estimated storm surge return levels (meters) for Norfolk (Sewells Point) in 2065 using the full nonstationary
multi-covariate BMA model.

Return period
(years) 2.5 % 5 % 25 % 50 % 75 % 95 % 97.5 %

2 1.23 1.24 1.27 1.29 1.31 1.35 1.37
5 1.42 1.43 1.46 1.49 1.53 1.60 1.62
10 1.57 1.58 1.63 1.67 1.72 1.82 1.86
20 1.72 1.74 1.80 1.85 1.92 2.08 2.18
50 1.94 1.97 2.05 2.13 2.23 2.55 2.85
100 2.12 2.14 2.26 2.36 2.50 3.07 3.71
200 2.30 2.33 2.48 2.61 2.81 3.86 5.27
500 2.55 2.60 2.80 2.99 3.29 5.65 9.37
1000 2.76 2.82 3.07 3.31 3.72 8.12 16.24

Figure A1. Storm surge return periods (years) and associated return levels (meters) in 2065 for Norfolk, using the full nonstationary multi-
covariate BMA model. The solid line indicates the ensemble median, the darkest shaded region denotes the 25th–75th percentile range, the
medium shaded region denotes the 5th–95th percentile range and the lightest shaded region denotes the 2.5th–97.5th percentile range.
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