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Abstract. A method to predict lightning by postprocessing numerical weather prediction (NWP) output is de-
veloped for the region of the European Eastern Alps. Cloud-to-ground (CG) flashes – detected by the ground-
based Austrian Lightning Detection & Information System (ALDIS) network – are counted on the 18× 18 km2

grid of the 51-member NWP ensemble of the European Centre for Medium-Range Weather Forecasts (ECMWF).
These counts serve as the target quantity in count data regression models for the occurrence of lightning events
and flash counts of CG. The probability of lightning occurrence is modelled by a Bernoulli distribution. The flash
counts are modelled with a hurdle approach where the Bernoulli distribution is combined with a zero-truncated
negative binomial. In the statistical models the parameters of the distributions are described by additive pre-
dictors, which are assembled using potentially nonlinear functions of NWP covariates. Measures of location
and spread of 100 direct and derived NWP covariates provide a pool of candidates for the nonlinear terms. A
combination of stability selection and gradient boosting identifies the nine (three) most influential terms for the
parameters of the Bernoulli (zero-truncated negative binomial) distribution, most of which turn out to be associ-
ated with either convective available potential energy (CAPE) or convective precipitation. Markov chain Monte
Carlo (MCMC) sampling estimates the final model to provide credible inference of effects, scores, and predic-
tions. The selection of terms and MCMC sampling are applied for data of the year 2016, and out-of-sample
performance is evaluated for 2017. The occurrence model outperforms a reference climatology – based on 7
years of data – up to a forecast horizon of 5 days. The flash count model is calibrated and also outperforms
climatology for exceedance probabilities, quantiles, and full predictive distributions.

1 Introduction

Lightning in Alpine regions is associated with events such as
convection, thunderstorms, extreme precipitation, high wind
gusts, flash floods, and debris flows. In order to predict the
probability of lightning events (i.e. thunderstorms), numeri-
cal weather prediction (NWP) output is often postprocessed
by logistic regression (Schmeits et al., 2008; Gijben et al.,
2017; Bates et al., 2018; Simon et al., 2018) in which light-
ning detection data serve as a proxy for the occurrence of
thunderstorms. However, these studies present methods to
predict only whether a thunderstorm might take place or not.

The objective of the present work is to extend this ap-
proach by modelling the intensity of thunderstorms with a
model for the time and space variations of lightning counts.

From a statistical perspective this means that not a Bernoulli
distribution, which is determined only by the occurrence
probability, has to be employed, but a parametric count data
distribution. Classically, count data are modelled by a Pois-
son distribution (Cameron and Trivedi, 2013). However, in
practical work data often have excess zeros and/or have a
variance larger than their mean, which is called overdis-
persion1 in the count data literature (Cameron and Trivedi,
2013).

Figure 1 illustrates such excess zeros and overdispersion.
The synoptic weak pressure gradient situation on 18 July

1Note that this technical term differs from overdispersion used
for a predictive distribution that is too wide in the context of verify-
ing probabilistic weather forecasts (Gneiting et al., 2007).
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2017 allowed local heating to trigger a number of single-cell
storms. Very high lightning flash rate intensities exceeding
40 cloud-to-ground (CG) flashes were observed in 29 boxes
(3.2 % of the whole domain) along the main Alpine ridge
between 12:00 and 18:00 UTC. However, a large number of
boxes (82.2 %) remained devoid of CG lightning.

Overdispersed data can be handled by applying a nega-
tive binomial distribution (Cameron and Trivedi, 2013). Ex-
cess zeros can be accounted for by splitting the distribution
into a binary hurdle and a part for positive counts (Mullahy,
1986). The hurdle can be modelled e.g. by logistic regression
and the positive counts by a zero-truncated version of the
Poisson or negative binomial distribution. Another benefit of
the hurdle approach is that the binary hurdle part can serve
as a stand-alone model for the occurrence of thunderstorms.
Thus, the predictions resulting from the binary hurdle part
can be compared directly to the outcome of previous studies
that focus on binary response variables (e.g. Schmeits et al.,
2008; Simon et al., 2018). The combined model predicts a
full probability distribution of lightning counts, which allows
one to derive various quantities such as probabilities for the
occurrence of thunderstorms and also quantiles and the ex-
ceedance of predefined lightning count thresholds (Fig. 1).

Input variables for the statistical models come from a
physically based NWP model and capture convection only
incompletely. Convection permitting or resolving models
with horizontal meshes of 1–3 km are capable of reproduc-
ing bulk properties of heat and water vapour (Langhans
et al., 2012). In contrast, global NWP systems with a coarser
resolution simulate convection with parametric submodels,
which may be perturbed stochastically (Buizza et al., 1999).
By generating ensembles of a numerical forecast one aims
at accounting for uncertainties of small-scale events such as
convection.

In this study a set of direct and derived NWP variables
from the (global) ECMWF ensemble is employed as covari-
ates for a statistical lightning prediction model. Many differ-
ent output variables of an NWP ensemble system are poten-
tially good candidates for lightning prediction, e.g. convec-
tive available potential energy (CAPE) or convective precip-
itation. However, next to these potential good candidates any
additional variable could improve the prediction even by a
small contribution. Moreover, the effect of individual vari-
ables might act nonlinearly on the target quantity (lightning
counts).

In order to account for nonlinear dependencies we employ
additive predictors linked to the parameters of the hurdle
model. Each additive predictor potentially consists of sev-
eral nonlinear terms which are summed up. This statistical
framework is often referred to as distributional regression
(Fahrmeir et al., 2013; Klein et al., 2015; Wood, 2017) or
generalized additive models for location, scale and shape
(Rigby and Stasinopoulos, 2005; Umlauf et al., 2018). The
selection of a sparse sufficient set of nonlinear terms from
the numerous covariates provided by the NWP ensemble is

performed using gradient boosting with stability selection.
This concept has been used successfully in several studies
(e.g. Simon et al., 2018; Thomas et al., 2018).

The final model resulting from the selection procedure is
still complex. Different approaches for identifying the non-
linear terms have been proposed, such as penalized max-
imum likelihood (Wood, 2017), gradient boosting (Mayr
et al., 2012), or Markov chain Monte Carlo (MCMC) sam-
pling based on a Bayesian formulation of the problem
(Brezger and Lang, 2006). In this study we follow the
Bayesian approach, which ensures stable estimation and
valid credible intervals for the regression coefficients of our
complex model of the present count data distribution (Klein
et al., 2015). The MCMC samples allow inferential conclu-
sions to be drawn about the effects and the predictive perfor-
mance.

Our statistical approach to modelling flash counts
(Sect. 2.1) by postprocessing numerical weather prediction
output (Sect. 2.2) can be summarized as follows: a paramet-
ric distribution for the count data is specified, in which the
parameters are linked to additive predictors that contain po-
tentially nonlinear functions of the covariates (Sect. 3.1). Sta-
bility selection combined with gradient boosting selects the
most influential terms (Sect. 3.2). The selected model is esti-
mated using MCMC sampling (Sect. 3.3), which allows one
to draw inferential conclusions about nonlinear terms and
out-of-sample predictions (Sect. 4). Finally, in Sect. 5, we
build a connection to previous studies, discuss the transfer-
ability of the method, and summarize the study.

2 Data

This section describes the lightning detection data (Sect. 2.1)
and the numerical weather prediction ensemble data
(Sect. 2.2). The data are collected for the region of the Eu-
ropean Eastern Alps (Fig. 2), which is exposed to thunder-
storms and severe lightning events during summer (Schulz
et al., 2005; Simon et al., 2017).

2.1 Lightning detection data

Lighting data are from the Austrian Lightning Detection &
Information System (ALDIS) network (Schulz et al., 2005),
for the summer months May–August of the period 2010–
2017. The raw ALDIS data are aggregated on a 18× 18 km2

grid for afternoons (12:00–18:00 UTC). One count refers
to one cloud-to-ground flash, which might contain several
strokes. We focus on CG flashes, as clustering of CG strokes
to an associated flash is more robust than for IC strokes.

The gridded lightning counts aggregated on this scale dur-
ing MJJA contain a large amount of zeros (88.05 %). Of
the 11.95 % active grid boxes roughly a quarter (24.27 %)
contain only a single flash, while approximately a third
(34.41 %) contain 10 or more flashes (Table 1). The sample
mean and the sample variance of the full data are 1.8 and
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Figure 1. A sample prediction case (18 July 2017) for the lightning count model with a lead time of 1 day. (a) Number of observed flashes
from 12:00 to 18:00 UTC in a 18× 18 km2 grid box. (b) Predicted probabilities for the occurrence of lightning events (no. of flashes> 0).
(c) Predicted 90 % quantiles. (d) Predicted probabilities for exceeding a threshold of 10 flashes in a grid box.

Figure 2. Topography of the European Eastern Alps (from SRTM,
Farr et al., 2007). Lightning flashes are counted in white grid boxes
of 18× 18 km2.

136.3, respectively – and 15.05 and 941.06 when calculated
over the positive counts, i.e. boxes in which lightning oc-
curred. Thus, the data are heavily skewed with the variance
much larger than the mean, which is called overdispersion in
the count data literature (Cameron and Trivedi, 2013).

For the given aggregation scale the region (Fig. 2) is de-
scribed by 910 grid boxes. The season from May to Au-
gust consists of 123 days, which leads to a sample size of
910× 123= 111930 for each year.

2.2 Numerical weather prediction data

Covariates are derived from the ensemble prediction system
of the European Centre for Medium-Range Weather Fore-
casts (ECMWF ENS). Since March 2016 the ECMWF ENS
has had a horizontal grid size of approximately 18 km. The
temporal resolution of the data is 3-hourly. The summers of
2016 and 2017 serve as the training and evaluation periods,
respectively. Moreover, five forecast horizons are considered,
where day 1 refers to lead times of 12–18 h of the ensemble
initialized at 00:00 UTC. Analogously, day 2, day 3, day 4,
and day 5 refer to lead times of 36–42, 60–66, 84–90, and
108–114 h, respectively. All model variables are interpolated
bilinearly to the same grid as the lightning data (Fig. 2).

Additional variables are derived by computing vertical dif-
ferences – i.e. a proxy for mid-layer stability, the layer thick-
ness between 700 and 500 hPa, and the difference of vertical
wind for the same two pressure levels. Furthermore we took
the square root of highly skewed variables such as convec-
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Table 1. Unconditional and conditional (given positive counts) probabilities (%) of 18×18 km2 grid boxes for the counts of lightning flashes
y = 0, . . ., 9.

y 0 1 2 3 4 5 6 7 8 9 > 9

Pr(y) 88.05 2.90 1.36 0.92 0.68 0.54 0.44 0.38 0.33 0.29 4.11
Pr(y |y > 0) 24.27 11.37 7.68 5.65 4.48 3.71 3.21 2.78 2.44 34.41

tive precipitation and convective available potential energy
(CAPE) in order to reduce skewness before employing the
statistical model. A full list of direct and derived variables
is given in Table 2. Although these variables already cover
a wide range of atmospheric processes, the list could still be
extended, which will be discussed at the end of this paper.

For all variables, except for the accumulated fields, the
temporal mean over the afternoon, the difference between the
values for 18:00 and 12:00 UTC, and anomalies of the three
afternoon values from the temporal mean are computed.

Finally, two statistics are computed over the ensemble
space, namely the median and the interquartile range (IQR)
as measures for location and spread, respectively, of the co-
variates over the ensemble.

Hereafter the notation of the covariates is as follows. For
accumulated fields the name of the variable as listed in Ta-
ble 2 and its applied statistic over the ensemble are sepa-
rated by a period. For all other variables the computation ap-
plied over the time dimension (mean, difference, or anomaly)
is placed in the middle and separated by periods. For in-
stance, to derive t2m.12.median the 2 m temperature is av-
eraged over 12:00, 15:00, and 18:00 UTC for each member
of the ECMWF ensemble. This average is subtracted for the
value at 12:00 UTC to compute the anomaly. Finally, the me-
dian over all 12:00 UTC anomalies is computed over the en-
semble space.

3 Methods

This section establishes a statistical count data model
for lightning prediction based on NWP outputs from the
ECMWF ensemble. The building blocks of this distributional
regression model (Fahrmeir et al., 2013; Klein et al., 2015;
Wood, 2017; Umlauf et al., 2018) are as follows.

– Covariates: direct and derived variables from the NWP
data (Sect. 2.2).

– Terms: linear or smooth nonlinear functions or interac-
tion surfaces based on the covariates.

– Additive predictors: sum of one or more terms to be used
for prediction of a distribution parameter.

– Probability distribution: a parametric distribution for
the lightning counts whose parameters are linked to the
additive predictors above.

As the resulting model can become quite complex, espe-
cially if all available covariates were considered simultane-
ously, it is vital to use some form of regularized estimation
of the model along with a selection of the relevant terms or
covariates. Here, gradient boosting in combination with sta-
bility selection is employed for objectively selecting the most
influential terms of the additive predictors (Sect. 3.2). The
functional forms of the terms selected for the final model
are estimated using Markov chain Monte Carlo sampling
(Sect. 3.3), which also allows one to draw inferential con-
clusions about the nonlinear terms and verification scores.

A similar synthesis of methods has been applied previ-
ously in Simon et al. (2018) to predict the occurrence proba-
bility of thunderstorms, i.e. using only a single additive pre-
dictor. Here, a novel extension is presented to a count data
distribution with three model parameters and thus three addi-
tive predictors. Specifically, a two-part hurdle model is con-
sidered (Sect. 3.1) that combines the following components.

– Binary hurdle for the occurrence probability, thus ad-
dressing the large amount of zeros in the data (i.e. boxes
without lightning).

– Truncated counts for the distribution of lightning counts
(given that lightning occurs) comprising a location pa-
rameter and a dispersion parameter to account for the
strong overdisperion in the lightning data.

3.1 Count data regression

To account for the large amount of zeros and the
strong overdispersion present in the lightning counts y ∈
{0,1,2, . . .}, a hurdle model (Mullahy, 1986) is employed.
The hurdle model consists of two parts: one part explicitly
models the probability of the occurrence of lightning events;
i.e. at least one lightning flash is observed with a grid box.
The second part models the number of flashes given that a
lightning event takes place.

Hereafter, the two parts of the hurdle model are denoted as
binary hurdle part and truncated count part. A Bernoulli dis-
tribution for the probability π of lightning (non-zero) events
constitutes the binary hurdle part. The actual counts are mod-
elled using a zero-truncated negative binomial distribution,
which handles overdispersion and is determined by two pa-
rameters for location µ > 0 and dispersion θ > 0. The zero-
truncated negative binomial builds on the negative binomial
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Table 2. An overview of the base covariates from the ECMWF-EPS forecast. The asterisk (∗) indicates accumulated variables. Covariates
derived from this base set are discussed in the data section (Sect. 2).

Abbreviation Description

d2m Dew point temperature at 2 m.
e∗ Evaporation.
layth Layer thickness: (z500 − z700) /9.81 m s−2.
mls Proxy for mid-layer stability: t500− t700+ 13 K,

where 13 K mimics a humid adiabatic profile
between 700 and 500 hPa.

r Relative humidity at 700 and 500 hPa.
slhf∗ Surface latent heat flux.
sqrt_cape Square root of convective available potential energy.
sqrt_cp∗ Square root of convective precipitation.
ssr∗ Surface net solar radiation.
str∗ Surface net thermal radiation.
t700, t500 Temperature at 700 and 500 Pa.
t2m Temperature at 2 m.
tcc Total cloud cover.
u700, u500 Components of horizontal wind at 700 and 500 hPa.
v700, v500
vgw Vertical gradient of vertical wind: w500−w700.
w700, w500 Pressure vertical velocity at 500 and 700 hPa.
z700, z500 Geopotential at 500 and 700 hPa.

with the probability mass at zero redistributed towards posi-
tive counts (cf. Appendix A).

The hurdle model has the density

f (y |π,µ,θ )=
{

1−π y = 0
π · fZTNB (y |µ,θ ) y ∈ {1,2, . . .}, (1)

where fZTNB is the density of the zero-truncated negative bi-
nomial.

When taking the logarithm of Eq. (1) to obtain the associ-
ated log-likelihood, a sum emerges where the first summand
depends solely on π , i.e. the binary hurdle part, and the sec-
ond summand depends on µ and θ , i.e. the truncated count
part (cf. Appendix A). As a consequence the two parts of
the hurdle model can be maximized independently, i.e. with
separate estimation, term selection, and prediction.

For the binary hurdle part the probability π for non-zero
events is conditioned on (NWP) covariates by an additive
predictor ηπ ,

logit(π )= ηπ = β0,π + f1,π (doy)+ f2,π (lon, lat)︸ ︷︷ ︸
baseline climatology

+ f3,π (x3)+ ·· ·+ fp,π (xp), (2)

where the logit function maps the probability π to the real
line. Within the additive predictor, on the right-hand side of
Eq. (2), f?(·) are functions that are modelled by P-splines in
order to account for potentially nonlinear relationships be-
tween the response and the covariates doy, lon, lat, and xj
(Wood, 2017). f1(doy) accounts for an annual cycle, where

the day of the year doy serves as a covariate. f2(lon, lat) is
a spatial effect depending on geographical location, i.e. lon-
gitude lon and latitude lat. The covariates x3, . . ., xp are the
direct and derived parameters from the ECMWF ensemble
(Sect. 2.2).

Not all functions f1, . . .,fp are included in the final
model, but the relevant terms are selected using gradient
boosting combined with stability selection (Sect. 3.2). The
resulting final model is estimated using Markov chain Monte
Carlo sampling (Sect. 3.3).

For the truncated count part the parameters µ and θ are
linked to covariates by additive predictors analogously to the
right-hand side of Eq. (2). To ensure positive values for µ
and θ , the logarithm serves as a link function:

log(µ)= ηµ = β0,µ+ f1, µ(doy)+ f2, µ(lon, lat)︸ ︷︷ ︸
baseline climatology

+ f3, µ(x3)+ . . .+ fp,µ(xp), (3)
log(θ )= ηθ = β0,θ + f1, θ (doy)+ f2,θ (lon, lat)︸ ︷︷ ︸

baseline climatology

+ f3, θ (x3)+ . . .+ fp, θ (xp). (4)

The two additive predictors for log(µ) and log(θ ) can encom-
pass different nonlinear terms. The selection of terms is con-
ducted in a joint gradient boosting algorithm, which either
selects a term to log(µ) or log(θ ) in each iteration (Sect. 3.2).
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3.2 Stability selection with gradient boosting

The selection of the most important nonlinear terms within
the predictors associated with the parameters π , µ, and θ is
performed using gradient boosting combined with stability
selection. Gradient boosting is an iterative gradient descent
algorithm, where the term which minimizes the residual sum
of squares when fitted to the gradient of the log-likelihood
is slightly updated in each iteration. The estimates converge
to the maximum likelihood estimates when the number of
iterations approaches infinity. Early stopping of the iterations
ends in regularized estimates of the terms, and also serves as
a selection procedure when individual terms are equal to 0 at
the final iteration.

The selection of terms for logit(π ) (binary hurdle part),
and for log(µ) and log(θ ) (truncated count part), is performed
separately. Hence the binary hurdle part is determined by ex-
actly one parameter (π ); the additive predictor for logit(π )
is updated in each iteration. Within the truncated count part,
which is determined by two parameters (µ and θ ), either the
additive predictor of log(µ) or log(θ ) is updated in each it-
eration, depending on which update contributes more to the
log-likelihood. This updating scheme, called noncyclic in the
boosting literature (Mayr et al., 2012), is presented in Ap-
pendix B.

If gradient boosting is applied as a stand-alone method the
number of iterations – and thus the degree of regularization –
can be determined by means of information criteria or cross-
validation. Here the main purpose of gradient boosting is to
select important terms fj . It is desirable to avoid the selec-
tion of numerous non-informative terms. Stability selection
is a convenient resampling method for controlling the num-
ber of selected non-informative terms by gradient boosting
(Meinshausen and Bühlmann, 2010; Hofner et al., 2015).

Rather than applying the boosting algorithm to all obser-
vations, stability selection is based on drawing a subsample
half the size of the training data, running the boosting al-
gorithm until a predefined number of terms – 12 and 8 for
the binary hurdle and the truncated counts, respectively –
is selected. This procedure is repeated many times. After-
wards the relative selection frequencies per nonlinear term
are computed. Finally, the terms which were selected in more
than, say, 90 % of such subsamples are included in the final
model (cf. the algorithm in Hofner et al., 2015). The number
of terms being selected before stopping the boosting algo-
rithm and the cut-off selection frequency are chosen in order
to establish an upper bound of unity for falsely selected terms
(Hofner et al., 2015; Simon et al., 2018).

3.3 Markov chain Monte Carlo sampling

The final model is of a complex form as it contains several
nonlinear terms, and thus determining confidence intervals
based on asymptotic assumptions might fail. Markov chain

Monte Carlo (MCMC) sampling offers an attractive tool to
provide valid credible intervals.

To be able to apply this technique to models with addi-
tive predictors, the posterior distribution has to be formulated
(Brezger and Lang, 2006). The potentially nonlinear func-
tions f∗(·) in Eqs. (2), (3) and (4) are modelled by P-spline
basis functions (Wood, 2017), which transfers the nonlinear
function to a linear regression problem. A multivariate nor-
mal distribution serves as prior for the coefficients associated
with one function, where the variances of the multivariate
normal distributions account for the degree of regularization,
which is equivalent to the inverse smoothing parameter in the
frequentist approach. Inverse gamma distributions serve as
prior densities for these variances. Thus, within the Bayesian
framework the degree of regularization is estimated simulta-
neously during MCMC sampling (Umlauf et al., 2018).

MCMC samples of the posterior distribution can be ef-
ficiently generated by approximating a full-conditional dis-
tribution using a second order Taylor series expansion of
the log-posterior centred at the last state (Gamerman, 1997;
Fahrmeir et al., 2013; Umlauf et al., 2018). Moreover, in
most situations the structure of the sampling scheme reduces
to an iteratively weighted least squares (IWLS) updating step
for which highly efficient algorithms are available (Lang
et al., 2014).

The statistical models encompassing ECMWF covariates,
selected by gradient boosting with stability selection, and
the climatological baseline models are estimated by MCMC
sampling; 1000 independent realizations of the regression
coefficients are drawn from the Markov chains, which en-
ables inference of the effects, predictions, and out-of-sample
scores.

4 Results

In this section we present the results of the selection proce-
dure of nonlinear terms for both the binary hurdle part and
the truncated count part. Afterwards, we evaluate the per-
formance of the binary hurdle part as an separate model for
the occurrence of lightning events, and the combined hurdle
model (Eq. 1) as a model for the intensity of lightning events.

4.1 Model selection

4.1.1 Binary hurdle part

The selection of nonlinear terms for the binary hurdle part,
i.e. the additive predictor for π , for a lead time of 1 day is
visualized in Fig. 3. The gradient boosting algorithm is ap-
plied to 100 distinct random subsamples, each half the size of
the whole training data until 12 terms are selected. The bars
in Fig. 3 indicate the relative frequencies for the terms being
selected in the 100 boosting runs.

Nine terms are selected in this case, five of which can be
associated either with convective precipitation (cp) or con-
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Figure 3. Results of the stability selection procedure for the binary
hurdle part of the hurdle model for day 1. The variable names on
the y axis serve as a placeholder for the associated nonlinear effect.
The vertical dotted line marks the threshold of 90 % above which
terms are added to the final model.

vective available potential energy (cape). Neither the sea-
sonal term f1(doy) nor the spatial term f2(lon, lat) is se-
lected, which indicates that temporal and spatial variability
is well explained by effects depending only on the ECMWF
ensemble covariates.

The selected effects build the (reduced) additive predic-
tor in Eq. (2); 1000 samples of the coefficients for this fi-
nal model are drawn using MCMC sampling (Sect. 3.3). The
mean effects and associated credible intervals (Fig. 4) are
computed from these samples. All effects show a smooth and
most a monotonic behaviour. The effect of the median of the
square root of convective precipitation (sqrt_cp.median) is
close to linearity (Fig. 4d).

The IQR ensemble statistic appears more often than the
median statistic. All the terms associated with the IQR first
increase and flatten after some point (Fig. 4b, c, e, g, h, i).
Thus, a larger spread of variables such as convective pre-
cipitation, CAPE, vertical velocity and layer thickness in the
ensemble favours the occurrence of lightning. One meteoro-
logical interpretation of this result is that when the synop-
tic situation does not preclude convection, thunderstorms oc-
cur in some of the NWP ensemble members but at different
times during the 12:00–18:00 UTC period, which increases
the spread of variables in the ensemble.

4.1.2 Truncated count part

The count data part of the hurdle model takes only grid boxes
with values greater than zero. Thus the sample size of the

training data decreases from 111 930 to 14 099. On this sub-
set of the data the stability selection with gradient boosting
is applied in order to find the most relevant effects for the ad-
ditive predictors of the parameters µ and θ (Eqs. 3 and 4) of
the zero-truncated negative binomial. The gradient boosting
was run 100 times, each time until eight terms were selected.
The result of this procedure is shown in Fig. 5 for the trun-
cated count part with a forecast horizon of 1 day. Three terms
are selected for the parameter µ, which is the expectation of
the underlying negative binomial distribution, and none for
the dispersion parameter θ . Thus, only an intercept β0 is es-
timated within the final model of log(θ ).

The estimated effects from the MCMC sampling are pre-
sented in Fig. 6 on the log scale. The effect with the largest
range is the median (over the ensemble) of the mean (over
the afternoon) of the square root of cape, which increases
monotonically but nonlinearly. The spread (IQR over the en-
semble) of the 18:00 UTC anomaly of the vertical veloc-
ity at 500 hPa (w500) is associated with a nearly linear ef-
fect and its larger spread leads to a larger µ. The median
of the 12:00 UTC anomaly of total cloud cover (tcc) reveals
a nearly linear effect with a negative slope. The estimated
value for θ is 0.199 (0.179, 0.220), which reflects the strong
overdispersion of the data.

4.2 Performance

4.2.1 Occurrence of lightning events

For the evaluation of the predictive performance for the oc-
currence of lightning events only the probability π is consid-
ered. The models with ECMWF ensemble covariates have
been estimated on data from 2016 and the data from 2017
are used for an out-of-sample assessment of the performance
of the models. The predictions are compared against a clima-
tology, which accounts for seasonal and spatial variations by
nonlinear terms (Eq. 2) and is estimated with data from 2010
to 2016. First we present the global scores – averaged over
all grid boxes – and afterwards the spatial distribution of skill
is analysed.

The Brier score (BS) and area under curve (AUC) derived
from the receiver operating characteristics (ROC) theory are
applied as verification measures. Both scores and their asso-
ciated skill scores reveal that the postprocessed ECMWF pre-
dictions outperform the climatologies up to a forecast hori-
zon of 5 days (Table 3). Inference is based on the samples
from the MCMC sampling.

Further, the Brier skill score (BSS) is investigated over
space for a lead time of 5 days (Fig. 7). A 7-year climatol-
ogy encompassing a spatial and seasonal effect (Eq. 2) serves
as a reference forecast. The highest skill can be found in the
southern half of the same domain as well as in the north-
eastern region. Inference based on MCMC samples reveals
significant positive skill along the main Alpine ridge. In or-
der to account for multiple testing, due to testing each indi-
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Figure 4. Effects and 95 % credible intervals of the occurrence model for day 1 fitted using MCMC sampling. The effects are displayed on
the logit scale. The number in the bottom right corner of each panel gives the absolute range of the effect, i.e. the difference between the
maximum and the minimum. The shading at the bottom of each panel indicates the density distribution of the corresponding covariate. The
x axes are cropped at the 1 % and 99 % percentiles of the respective covariate to enhance graphical representation.

vidual box, we apply the correction for controlling the false
discovery rate (Benjamini and Hochberg, 1995) which is ro-
bust to spatial dependence within the field of the test (Wilks,
2016). A control level of 5 % was chosen, which leads to a
threshold of 3.4 % for rejecting a local null hypothesis (see
Eq. 3 in Wilks, 2016).

4.2.2 Intensity of lightning events

The evaluation of the predictive performance with respect
to the intensity of lightning events takes the hurdle model
(Eq. 1) into account. We investigate the global performance
of the forecasts, firstly, by averaging scores over all grid
boxes, secondly, by visualizing rootograms for a graphical

portrayal of calibration, and, thirdly, by looking at the spatial
distribution of skill scores.

For every day a probability mass is predicted for every
possible outcome y ∈ {0,1,2, . . .}, which are evaluated (Ta-
ble 4) with the ranked probability score (RPS, Epstein, 1969)
and log-likelihood of the hurdle negative binomial distribu-
tion, i.e. the combination of the Bernoulli and zero-truncated
negative binomial distribution. The predictions are compared
against a reference climatology in which each parameter –
π , µ, and θ – is modelled by a seasonal effect and a spatial
effect. The models based on the ECMWF covariates outper-
form the climatology up to a forecast horizon of 5 days.

Marginal calibration of the predicted distributions is as-
sessed by the use of rootograms (Fig. 8). Rootograms com-
pare the observed frequencies for every possible outcome

Adv. Stat. Clim. Meteorol. Oceanogr., 5, 1–16, 2019 www.adv-stat-clim-meteorol-oceanogr.net/5/1/2019/
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Table 3. Out-of-sample performance of the occurrence model; 95 % credible intervals based on MCMC samples are given in parentheses.

Brier score Brier skill score

Clim. 0.106 (0.106, 0.106)
Day 1 0.079 (0.079, 0.080) 0.26 (0.25, 0.26)
Day 2 0.084 (0.083, 0.085) 0.21 (0.20, 0.22)
Day 3 0.089 (0.089, 0.089) 0.16 (0.16, 0.17)
Day 4 0.089 (0.089, 0.090) 0.16 (0.15, 0.16)
Day 5 0.093 (0.092, 0.094) 0.12 (0.11, 0.13)

Area under curve Area under curve skill score

Clim. 0.622 (0.620, 0.624)
Day 1 0.893 (0.892, 0.894) 0.72 (0.71, 0.72)
Day 2 0.872 (0.871, 0.873) 0.66 (0.66, 0.66)
Day 3 0.853 (0.852, 0.854) 0.61 (0.61, 0.62)
Day 4 0.845 (0.843, 0.847) 0.59 (0.58, 0.60)
Day 5 0.815 (0.813, 0.817) 0.51 (0.51, 0.52)

Table 4. Out-of-sample performance of the intensity model; 95 % credible intervals based on MCMC samples are given in parentheses.

Ranked probability score Ranked probability skill score

Clim. 1.58 (1.58, 1.58)
Day 1 1.36 (1.36, 1.37) 0.137 (0.134, 0.139)
Day 2 1.41 (1.40, 1.42) 0.108 (0.102, 0.112)
Day 3 1.46 (1.46, 1.47) 0.074 (0.068, 0.079)
Day 4 1.47 (1.46, 1.47) 0.072 (0.066, 0.076)
Day 5 1.49 (1.49, 1.50) 0.056 (0.052, 0.059)

Log-likelihood Log-likelihood skill score

Clim. −87457 (−87498, −87413)
Day 1 −73798 (−74204, −73641) 0.156 (0.152, 0.158)
Day 2 −75960 (−76373, −75740) 0.131 (0.127, 0.134)
Day 3 −77698 (−79944, −77374) 0.112 (0.086, 0.115)
Day 4 −78363 (−78808, −78128) 0.104 (0.099, 0.107)
Day 5 −80533 (−81287, −80013) 0.079 (0.071, 0.085)

{0,1,2, . . .} with the expected frequencies – the sum of the
predicted densities over all samples – on the square root scale
(Kleiber and Zeileis, 2016). In a hanging rootogram bars in-
dicating the square root of the observed frequencies hang
from a curve showing the square root of expected frequen-
cies.

The rootogram for day 1 reveals that the amount of
zero counts is underestimated and that counts in the range
from 1 to approx. 10 are overestimated. For higher counts
the rootogram reveals good calibration of the model. The
rootogram for the model with a forecast horizon of 5 days
shows slightly better calibration for counts in the lower
range. Although the bottom end of the bar for zero counts
is closer to the x axis, the 95 % credible intervals from the
MCMC sampling reveal that the model also underestimates
the amount of zeros.

Finally, we investigate the spatial distribution of different
skill scores for a lead time of 5 days (Fig. 9). From the hurdle

model a probability forecast for exceeding 10 flashes per grid
box, a prediction of the 90 % quantile, and the full probabil-
ity distribution as prediction per se are derived. A 7-year cli-
matology encompassing spatial and seasonal effects for the
three parameters – π ,µ, and θ – of the hurdle model serves as
the reference forecast. The three spatial distributions of skill
reveal the same pattern as the skill score of the occurrence
model (Fig. 7), with the highest skill in the north-eastern cor-
ner of the domain and in the southern half which includes the
main Alpine ridge. The inferential conclusion about whether
skill is significantly positive in a box is based on the MCMC
samples. Again, the correction for multiple testing is applied
with a control level of 5 % (Wilks, 2016), which leads to
thresholds of 2.6 %, 2.8 %, and 3.0 % for rejecting a local
null hypothesis in the cases of the Brier, quantile, and ranked
probability skill scores, respectively.
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Figure 5. As Fig. 3 but for the truncated count part of the hurdle
model for day 1. The grey value indicates whether the term is as-
signed to the predictor of µ or θ . (Note: in this case no terms are
selected for the predictor of θ .)

5 Discussion

This section connects the present work to previous stud-
ies (Sect. 5.1) and discusses how the proposed methods
can be transferred to further applications (Sect. 5.2), for
which increasing the number of input variables can be cru-
cial (Sect. 5.3). At the end of this section we summarize and
conclude the study (Sect. 5.4).

5.1 Connection to other studies

We discuss the relation of the present work to two other stud-
ies: firstly, a work with meteorological background on the
prediction of thunderstorm occurrence in the Eastern Alps
(Simon et al., 2018). Secondly, a work from the statistical lit-
erature which focuses on gradient boosting for distributional
regression and which presents a case study with a count data
variable as response (Thomas et al., 2018).

Simon et al. (2018) postprocess the deterministic high-
resolution (HRES) ECMWF forecast from 2010 to 2015 to
predict the probability of the occurrence of thunderstorms.
The methodology – stability selection with gradient boost-
ing, and MCMC sampling – is similar to the methods ap-
plied in this study. However, the binomial model used by
Simon et al. (2018) is less complex, and less computation-
ally expensive. As counts are not considered by Simon et al.
(2018), only the results of the binary hurdle are compared
with their results: during 2010–2015 the native resolution of
the ECMWF HRES was 16×16 km2 and thus comparable to

the resolution of the target variable in this study. Although
the framework was different – a longer training period of
4 years and only deterministic NWP forecasts – the resulting
out-of-sample scores are comparable: Brier skill score ranges
from approx. 0.25 to approx. 0.12 throughout the forecast
horizons of 1 to 5 days. The AUC ranges from 0.88 to 0.79.
Also, the spatial patterns of the skill match with patterns pre-
sented by Simon et al. (2018). This finding suggests than the
short training period of the present study covers a sufficient
variety of atmospheric processes leading to lightning, which
enables the statistical model to learn these processes.

Thomas et al. (2018) apply a hurdle model with a zero-
truncated negative binomial in their study about abundance
of wintering sea ducks. The abundance of sea ducks is quan-
tified on a grid which leads to a response quantity with simi-
lar properties to the present lightning counts: 75 % zeros and
overdispersion. They also separate the hurdle model for the
selection of terms by gradient boosting with stability selec-
tion. However, in Thomas et al. (2018)’s study, terms for the
dispersion parameter θ have also been selected, which could
also be a consequence of less regularization within the indi-
vidual boosting runs.

There is one more important difference between the
present study and the work by Thomas et al. (2018), namely
the way in which the final model is estimated. After the
selection procedure, their final model is fitted by gradient
boosting. The optimal amount of regularization – tuning the
number of iterations – is found by maximizing the out-of-
bootstrap log-likelihood. In the present study the final model
is estimated using MCMC sampling. Thus regularization is
performed for each individual term by a prior distribution. A
major advantage of this Bayesian approach is that inferential
conclusions for effects, scores, and predictions can be drawn
from the MCMC samples.

5.2 Transfer of method

The postprocessing method presented in this study can be
easily transferred to other types of lightning, e.g. total light-
ning, or other regions of the world. The key to this trans-
ferability is the objective selection scheme, i.e. stability se-
lection combined with gradient boosting, which enables us
to adapt the predictors to the new application. Further, im-
plementations of the selection and MCMC sampling scheme
proposed in this study are made available in the bamlss flex-
ible regression toolbox (Bayesian additive models for loca-
tion, scale, and shape (and beyond), Umlauf et al., 2018),
which is an add-on package for the R software environment
(R Core Team, 2018). Thus, users can easily test the pro-
posed method on the data of their application.

The method could also be applied to a larger domain, for
instance an entire continent. In the case of Europe this would
lead to an increase in the area and thus in the data by at least
1 order of magnitude. The amount of data would further in-
crease when the pool of candidate terms for the additive pre-
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Figure 6. As Fig. 4 but for the intensity model for day 1. All effects are assigned to the predictor of µ and are displayed on the log scale.

Figure 7. Spatial distribution of Brier skill scores for a lead time
of 5 days evaluating the occurrence of lightning events (no. of
flashes> 0). Blueish colours indicate significantly positive values.

dictors is extended. Thus, transferring the method to a larger
domain is likely to offer some challenges in data handling
and efficiency of the optimization schemes.

5.3 Increasing the number of input variables

The variables that initially enter the selection procedure al-
ready cover a wide range of atmospheric processes. However,
there are many variables that are promising for further im-
proving the predictive performance of the final model. Most
interesting would be to investigate the influence of param-
eterized lightning variables in the ECMWF output (Lopez,
2016) introduced in mid-2018 (Lopez, 2018). Further can-
didates are cloud properties (graupel, supercooled water, ice
crystals) related to charge separation (e.g. Saunders, 2008).

In addition to variables from a NWP, observations from
previous time steps could also add predictive skill. From an
operational perspective, adding the lagged response increases
the technical effort, as not only do data from a NWP have to

be gathered, but the supply of the lightning observation for
forecast production also has to be guaranteed.

The candidate pool can be further extended by variables
that describe the orography in more detail, such as altitude,
slope, and the orientation of the slope. This extension would
especially give deeper insights into the climatological effects.
At the scale of 18×18 km2 we found no benefit of including
orography-related covariates. However, at finer spatial scales
orography-related covariates might have more influence (Si-
mon et al., 2017).

5.4 Summary

To conclude, we summarize the methods and the key findings
of this study. We propose a framework to predict the proba-
bility of occurrence and the intensity of lightning events (or
thunderstorms) in the European Eastern Alps. A hurdle ap-
proach – with a Bernoulli hurdle and a zero-truncated neg-
ative binomial as count part – is chosen to account for ex-
cess zeros and overdispersion in the lightning count data.
Covariates for nonlinear terms in additive predictors are de-
rived from the ECMWF ensemble prediction system. An ob-
jective selection procedure – gradient boosting with stability
selection – reduces the set of numerous terms. The final mod-
els are estimated using MCMC sampling in order to provide
valid credible intervals for effects, predictions, and out-of-
sample scores.

Both the occurrence and intensity models outperform a cli-
matology up to a forecast horizon of 5 days. The predictive
skill is greater over complex terrain of the Eastern Alps than
over regions with fewer orographic features. This pattern can
be associated with persistent forcing in regions with complex
terrain such as orographic lifting, thermally induced circula-
tions (plains–mountains, slope winds, valley winds), and lee
effects (Houze, 2012).

Code availability. The statistical modelling was carried out using
the R software environment (R Core Team, 2018). The bamlss add-
on package (Umlauf et al., 2018) offers a flexible toolbox for distri-
butional regression models. It allows one to perform gradient boost-
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Figure 8. Hanging rootograms for the intensity models with a forecast horizon of 1 and 5 days. The curve shows the expected frequencies
and bars the observed frequencies on the square root scale. The small vertical lines bisecting the bottom ends of the bars show the 95 %
credible intervals from MCMC sampling of the difference between expected and observed frequencies.

Figure 9. Spatial distribution of skill scores for a lead time of 5 days. Blueish colours indicate significantly positive values. (a) Brier skill
score for exceeding 10 flashes per grid box. (b) Quantile skill score for the 90 % quantile. (c) Ranked probability skill score for the full
predictive distribution.

ing via the boost() model fitting engine function and to simulate
MCMC samples of the posterior distribution with the GMCMC()
engine function. The countreg package (Zeileis et al., 2008) pro-
vides score functions and the hessian of the zero-truncated negative
binomial distribution and the high-level rootogram() plotting func-
tion.

Data availability. ALDIS data are available on request from
ALDIS (aldis@ove.at) – fees may be charged.
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Appendix A: The negative binomial hurdle
distribution

In this Appendix we derive the density and the log-likelihood
of the hurdle model (Eq. 1). Hurdle models consist of two
parts: a binary hurdle part – modelling the probability of zero
vs. non-zero events – and a truncated count part – modelling
the distribution of positive counts.

Hurdle models for counts were introduced by Mullahy
(1986). A comprehensive overview of modelling count data
is given by Cameron and Trivedi (2013). Zeileis et al. (2008)
present an implementation of regression models for count
data in the R software environment.

In the present study a Bernoulli distribution serves as the
binary hurdle, and a zero-truncated negative binomial distri-
bution as the truncated count part. The Bernoulli distribution
has the density

fBE (z |π )= (1−π )1−z
·πz, z ∈ {0,1}, (A1)

which is determined by the probability π .
To derive the truncated count part, we start with the neg-

ative binomial (type 2) distribution (Cameron and Trivedi,
2013), with the density

fNB (z |µ,θ )=
0(θ + z)
0(θ ) · z!

·
µz · θθ

(µ+ θ )θ+z
,z ∈ {0,1,2, . . .}, (A2)

where µ > 0 is the expectation of the distribution, E(z)= µ,
and θ > 0 modifies the variance, VAR(z)= µ+µ2/θ , in or-
der to account for the overdispersion in the gridded lightning
observations. Small values of θ refer to strong overdisper-
sion. When θ approaches infinity the negative binomial dis-
tribution converges towards the Poisson distribution, and the
variance converges to µ which equals the expectation.

For truncating the negative binomial the probability mass
at zero is redistributed towards positive values leading to the
density of the zero-truncated negative binomial,

fZTNB (y |µ,θ )=
fNB (y |µ,θ )

1− fNB (0 |µ,θ )
,y ∈ {1,2, . . .}. (A3)

The Bernoulli distribution (Eq. A1) and the zero-truncated
negative binomial (Eq. A3) are combined to obtain the hurdle
model (Eq. 1). From the density of the hurdle model we can
derive the log-likelihood function (which serves as objective
function during optimization),

` (π,µ,θ |y)= I{0}(y) · log(1−π )+ (1− I{0}(y)) · logπ︸ ︷︷ ︸˜̀BHP(π | y)

+ (1− I{0}(y)) · log(fZTNB(y |µ,θ )),︸ ︷︷ ︸˜̀TCP(µ,θ | y)

(A4)

where I{0}(y) is an indicator function which takes the value
one if y equals zero, and zero otherwise. The log-likelihood
is a function of the parameters π , µ, and θ . However, it can

be separated additively into a function of π , ˜̀BHP(π |y), and
a function of µ and θ , ˜̀TCP(µ,θ |y). Thus, during optimiza-
tion the optima for the two functions can be obtained inde-
pendently from each other.

In particular, ˜̀BHP and ˜̀TCP are equivalent to the log-
likelihood of the Bernoulli distribution (Eq. A1) and the zero-
truncated negative binomial (Eq. A3), respectively.

The gradients of ` w.r.t. the parameters π , µ, and θ are as
follows:

∂`

∂π
=
(
1− I{0}(y)

)
·

1
π
− I{0}(y) ·

1
1−π

, (A5)

∂`

∂µ
=
(
1− I{0}(y)

)
·

 y
µ
−
y+ θ

µ+ θ
−

(
θ

µ+ θ

)θ+1

·

(
1−

(
θ

µ+ θ

)θ)−1
 , (A6)

∂`

∂θ
=
(
1− I{0}(y)

)
·

[
ψ0(y+ θ )−ψ0(θ )+ log(θ )

+ 1− log(µ+ θ )−
y+ θ

µ+ θ
+

(
θ

µ+ θ

)θ
·

(
1−

(
θ

µ+ θ

)θ)−1

·

(
log

θ

µ+ θ
+ 1−

θ

µ+ θ

)]
, (A7)

where ψ0(·) is the digamma function.

Appendix B: Noncyclic gradient boosting

In this Appendix we illustrate the algorithm implemented
for noncyclic gradient boosting tailored to the zero-truncated
negative binomial distribution, i.e. the truncated count part of
the hurdle model. The log-likelihood of the truncated count
part ˜̀TCP is a function of two parameters µ and θ with two
associated additive predictors ηµ and ηθ , respectively. The
additive predictors consist of terms f∗(x∗), which are nonlin-
ear functions f (·) of the covariates x (Eqs. 3 and 4).

The selection of influential terms is performed using non-
cyclic gradient boosting which is an iterative procedure,
where in each iteration only the best fitting term is slightly
updated. Generic versions of the algorithm can be found in
Mayr et al. (2012) and Thomas et al. (2018). Here we illus-
trate the noncyclical gradient boosting algorithm tailored to
the zero-truncated negative binomial:

1. Initially all terms in the two predictors ηµ and ηθ are
set to zero, i.e. f∗(x∗)= 0. Only the intercepts β0, µ and
β0, θ are included.
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2. Evaluate the negative gradients of the log-likelihood˜̀TCP w.r.t. the predictors by employing the chain rule,

−
∂˜̀TCP

∂ηµ
=−

∂˜̀TCP

∂µ
·
∂µ

∂ηµ

with
∂µ

∂ηµ
=
∂ exp(ηµ)
∂ηµ

= exp(ηµ)= µ, (B1)

−
∂˜̀TCP

∂ηθ
=−

∂˜̀TCP

∂θ
·
∂θ

∂ηθ

with
∂θ

∂ηθ
=
∂ exp(ηθ )
∂ηθ

= exp(ηθ )= θ, (B2)

for every observation, leading to a vectors of gradi-
ents. The derivations w.r.t. the parameters are given in
Eqs. (A6) and (A7).

3. Fit low-degree-of-freedom splines for each term f∗(x∗)
to the gradient vectors using penalized least squares es-
timation (Wood, 2017).

4. For each predictor the coefficients of the best fitting
term – w.r.t. the residual sum of squares – are updated
by a proportion ν, e.g. ν = 0.1, leading to an auxiliary
predictor,

η̃µ = ηµ+ ν · fj (xj ) and η̃θ = ηθ + ν · fk(xk), (B3)

and the intercepts within the auxiliary predictors are up-
dated.

5. Every iteration is concluded by replacing the predictor
whose auxiliary predictor leads to the largest improve-
ment of the log-likelihood,

if ˜̀TCP
(
exp(̃ηµ),exp(ηθ )

)
> ˜̀TCP

(
exp(ηµ),exp(̃ηθ )

)
set ηµ = η̃µ else set ηθ = η̃θ . (B4)

6. Repeat steps 2–5 for a predefined number of iterations
kmax or until a predefined number q of terms has been
selected.
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