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Abstract. Low-visibility conditions enforce special procedures that reduce the operational flight capacity at air-
ports. Accurate and probabilistic forecasts of these capacity-reducing low-visibility procedure (lvp) states help
the air traffic management in optimizing flight planning and regulation. In this paper, we investigate nowcasts,
medium-range forecasts, and the predictability limit of the lvp states at Vienna International Airport. The fore-
casts are generated with boosting trees, which outperform persistence, climatology, direct output of numerical
weather prediction (NWP) models, and ordered logistic regression. The boosting trees consist of an ensemble
of decision trees grown iteratively on information from previous trees. Their input is observations at Vienna
International Airport as well as output of a high resolution and an ensemble NWP model. Observations have the
highest impact for nowcasts up to a lead time of + 2 h. Afterwards, a mix of observations and NWP forecast
variables generates the most accurate predictions. With lead times longer than +7 h, NWP output dominates
until the predictability limit is reached at +12 d. For lead times longer than +2 d, output from an ensemble of
NWP models improves the forecast more than using a deterministic but finer resolved NWP model. The most
important predictors for lead times up to +18 h are observations of lvp and dew point depression as well as
NWP dew point depression. At longer lead times, dew point depression and evaporation from the NWP models
are most important.

1 Introduction

Low-visibility conditions require special procedures to en-
sure flight safety at airports. These procedures slow down the
air traffic and result in a reduction of the operational airport
capacity, leading to mean economic loss for airports and air-
lines. In this study, we generate predictions of low visibility
at thresholds that directly connect to the capacity-reducing
procedures at Vienna International Airport. Accurate now-
casts of these low-visibility thresholds can help in reorga-
nizing flight plans and reducing the economic losses. These
forecasts, however, are not only important for flight plan re-
organizations. They also have an impact on long-term flight
planning to avoid expensive short-term reorganizations. This
paper therefore focuses on nowcasts with lead times from+1
to +18 h and on medium-range forecasts with up to a +14 d
lead time. Additionally, we are interested in the predictability

limit, which is achieved when the improvement in the fore-
casts over the climatology vanishes.

Generally, low-visibility forecasts are generated with two
different approaches (Gultepe et al., 2007). The first one is
physical modeling and uses relevant physical equations to
produce predictions in a defined model area. The second ap-
proach, statistical modeling, computes relations between the
forecast variable and possible predictor variables from past
data. Predictions are produced by applying the relationships
to new data. An advantage of this approach is low compu-
tational cost and the possibility to directly forecast special
quantities, such as visibility classes responsible for capacity
reductions.

Statistically based visibility forecasts were investigated
first by Bocchieri and Glahn (1972) using a multiple lin-
ear regression approach to forecast ceiling continuously and
at several thresholds. The predictor variables of their fore-
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casting model were the output of a numerical weather pre-
diction (NWP) model. Based on this model approach, Vis-
locky and Fritsch (1997) produced forecasts of multiple
binary thresholds of ceiling and visibility. By adding ob-
servations to the model predictors, they enhanced the per-
formance at short lead times. This forecasting system was
improved by Leyton and Fritsch (2003, 2004) by increas-
ing the density and frequency of the surface observations.
Ghirardelli and Glahn (2010) used multiple linear regression
to generate an operational prediction system for several vis-
ibility and ceiling thresholds for multiple locations and lead
times. A comparison of various statistical methods to fore-
cast the same information as Ghirardelli and Glahn (2010),
however in one combined variable, was conducted by Her-
man and Schumacher (2016). They compared K-nearest
neighbor, gradient boosting, random forest, and support vec-
tor machine methods and found that no specific algorithm
performs best overall. Further statistical methods used for
visibility forecasts are decision trees (Dutta and Chaudhuri,
2015), Bayesian model averaging (Roquelaure et al., 2009),
and neural networks (Marzban et al., 2007).

The operationally relevant visibility information for flight
management is the low-visibility procedure (lvp) state, a
combination of visibility and ceiling, which directly connects
to capacity reductions at airports. It was forecasted first by
Kneringer et al. (2019) and Dietz et al. (2019), who used
ordered logistic regression and decision-tree-based models
for observation-based nowcasts up to a+2 h lead time. Their
forecasts are most relevant for short-term regulations. In or-
der to conduct flight plan reorganizations, the air traffic man-
agement requires forecasts with lead times up to +18 h, and
even longer forecasts are required for long-term flight plan-
ning. A scientifically interesting and yet unresolved question
is when the predictability of lvp ends and the forecasts are no
better than a climatological forecast.

The focus of this paper is therefore on determining the skill
and most important model predictors for lvp nowcasts up to
a lead time of +18 h and for medium-range forecasts from
+1 d up to the – as of yet unknown – predictability limit.
We generate forecasts with boosting trees, which Dietz et al.
(2019) showed to perform the best at the shortest lead times,
and compare their predictions to predictions of ordered lo-
gistic regression models, persistence, and climatology to an-
alyze the benefits of the various models for lvp forecasts of
different forecast horizons. The model predictors are based
on current observations and output of NWP models and are
valid for Vienna International Airport between September
and March at 06:00 UTC. During this time, the lvp occur-
rence probability and the arrival rate are highest (Kneringer
et al., 2019). The paper is organized as follows: Sect. 2 de-
scribes the data sources, the response, and the predictor vari-
ables used in this study. Afterwards, the statistical methods
are explained and the results are analyzed and discussed.

2 Data

Six years of data (November 2011–November 2017) are
available to produce and evaluate forecasts, which result
in 1177 observations when considering the cold season
(October–March) at 06:00 UTC only. The forecasts are de-
veloped for one specific touchdown point at Vienna Interna-
tional Airport and consist of observations at Vienna Interna-
tional Airport and NWP model output. All observations used
are measured close to the examined touchdown point.

The NWP model data used for forecast generation are
from the atmospheric high-resolution (HRES) model and the
ensemble prediction system (ENS) of the European Cen-
tre for Medium-Range Weather Forecasts (ECMWF). The
HRES model provides forecasts with hourly output until a
lead time of +90 h. Afterwards, the output is 3-hourly re-
solved until +144 h and 6-hourly resolved up to the max-
imum lead time of +240 h. This model is initialized daily
at 00:00 and 12:00 UTC and provides one forecast for each
lead time with a horizontal model resolution of 0.1◦× 0.1◦

in the latitude–longitude direction, conforming to grid boxes
of approximately 9 km×9 km. During the training period the
model was improved several times (changes in the horizontal
and vertical model grid and the data assimilation scheme). A
bilinear interpolation from the four closest grid points to the
validation point, however, reduces the impact of model grid
changes.

The ENS provides forecasts up to a +15 d (+360 h) lead
time with 3-hourly output up to +144 h and 6-hourly out-
put afterwards. Instead of only one forecast with each out-
put, the ENS provides 50 forecasts (members) at each lead
time. Each of the members is computed with slightly changed
initial conditions, resulting in a different prediction. We use
the mean and standard deviation of the ensemble as predic-
tors for the models instead of information on all 50 members
individually, which would result in an overly large, highly
correlated predictor setup (Wilks and Hamill, 2007; Hamill
et al., 2008; Herman and Schumacher, 2016). The ENS is ini-
tialized daily at 00:00 and 12:00 UTC on a global grid with
a 0.2◦× 0.2◦ spatial resolution, conforming to grid boxes of
approximately 18 km×18 km. Similarly to the HRES model,
the ENS was improved several times during the model train-
ing period. The utilization of a bilinear interpolation again
reduces the impact of model grid changes due to the output
quality.

2.1 Forecast variable

The response is the lvp state, which is an ordered categorical
variable that comes into effect when certain horizontal and/or
vertical visibility thresholds are crossed at airports. The hor-
izontal visibility thresholds are determined by observations
of the runway visual range (rvr), defined as the distance over
which the pilot of an aircraft on the centerline of the runway
can see the runway surface markings or the lights delineating
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Table 1. Definition of the lvp states with their thresholds in runway
visual range (rvr) and ceiling (cei), their climatological occurrence
probability, and their maximum operational capacity utilization for
Vienna International Airport. The climatological occurrence prob-
ability is computed during the cold seasons (October–March) from
November 2011 to November 2017 at 06:00 UTC.

lvp state rvr cei Occurrence Capacity

0 89.7 % 100 %
1 < 1200 m or < 90 m 1.7 % 75 %
2 < 600 m or < 60 m 7.1 % 60 %
3 < 350 m 1.5 % 40 %

the runway or identifying its centerline (International Civil
Aviation Organization, 2005). The vertical visibility thresh-
olds are determined by ceiling (cei) observations. Ceiling is
the base altitude of a cloud deck covering at least five okta of
the sky.

The number of lvp states and their threshold values vary
with the location, size, and technical equipment of the air-
port. Vienna International Airport has four different lvp
states. Table 1 states their thresholds, related capacity reduc-
tions, and climatological occurrences. Since no restrictions
(lvp0) occur in about 90 % of the cold season (October–
March) and lvp2 is 4 times more frequent than the less re-
strictive state lvp1 and the maximum restrictive state lvp3,
forecasts are challenging.

2.2 Predictor variables

The model predictors consist of observations and output of
NWP simulations. The observations used are the predictors
that Kneringer et al. (2019) found as having the highest im-
pact on nowcasts (see Table 2a). Horizontal visibility (vis)
and rvr, which are both used as predictors, differ in the in-
clusion of background luminance and runway light quality,
as well as the truncation at 2000 m for rvr (Federal Aviation
Administration, 2006). Ceiling (cei) is postprocessed from
ceilometer outputs (Dietz et al., 2019). The lvp state is com-
puted by thresholds of cei and rvr as described in Sect. 2.1.
The dew point depression (dpd) and temperature difference
between 2 m and 5 cm a.g.l. (dts) are computed from temper-
ature sensors in a close distance. The climatological informa-
tion used as predictor is the solar zenith angle (sza) in order
to capture the annual cycle.

The NWP model outputs used as predictors (Table 2b) are
selected based on physical mechanisms of fog and cloud for-
mulation and the results of Herman and Schumacher (2016).
Each variable is internally derived by the ECMWF from the
physical model equations using various physical and statis-
tical relationships. Additionally, the dew point depression
(dpdmodel) and temperature difference between 2 m and the
surface (dtsmodel) are computed from the NWP model output
2 m temperature, dew point, and surface temperature.

Some of the statistical models use a combination of obser-
vations and NWP output as predictors. Observations are at
points or along lines and as such have larger variability than
grid values of NWP output. Also the NWP errors are larger
due to model uncertainty and representation error (see Jan-
jic et al., 2018). While observation and NWP representation
error remain unchanged with forecast horizon, the increase
in model error with an increasing forecasting time is handled
by fitting separate statistical models for each forecast step.

3 Statistical framework

Dietz et al. (2019) and Kneringer et al. (2019) considered
tree-based models and parametric ordinal regression mod-
els to forecast low-visibility conditions with lead times up
to +2 h. Here, the forecast horizon is pushed further out to
+14 d by assessing and comparing the performance of tree-
based models and parametric ordinal models as well as per-
sistence and climatology. Special emphasis is given to boost-
ing trees that Dietz et al. (2019) showed as performing best
among other tree-based models and having comparable or
slightly better performance than the ordinal models for the
short lead times up to +2 h. The characteristics and proper-
ties of the models used for forecast generation and validation
are described in the following.

3.1 Forecasting methods

To forecast the lvp state, we require models that are able to
deal with ordered response variables. Ordered logistic regres-
sion (OLR), which projects the response by combining multi-
ple linear features of the predictor variables, is a well-known
statistical method for predicting ordered response variables.
Another possibility is decision-tree-based ensemble model-
ing consisting of multiple merged decision trees. Decision-
tree-based ensemble models allow interactions and – in con-
trast to the parametric OLR models – nonlinear effects.

3.1.1 Boosting trees

Tree-based boosting is an ensemble method that often
achieves rather accurate forecasts based on relatively sim-
ple base learners. More specifically, the approach develops
the final model iteratively by repeatedly fitting a base learner
to the model gradients from the previous iteration. Typically,
the base learner is a simple statistical model with low com-
putational cost, such as decision trees.

Classical decision trees partition the predictor space into
several regions, depending on the correlations between the
response and the predictor variables, and fit a constant model
to each terminal region. They are particularly appealing as
base learners in boosting because they can naturally capture
nonlinear patterns and interactions, handle predictors with
different scales (continuous, ordinal, and nominal), and are
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Table 2. Observations, climatological information (a), and NWP model output (b) used as predictors for the statistical models. The particular
predictors from the ENS consist of the mean and standard deviation of all members.

(a) Variable Unit Description (b) Variable Unit Description

lvp (0, 1, 2, 3) Low-visibility procedure state bld (Jm−2) Boundary layer dissipation
rvr (m) Runway visual range blh (m) Boundary layer height
vis (m) Visibility dpdmodel (◦C) Dew point depression
cei (m) Ceiling dtsmodel (◦C) Temperature difference to surface
dpd (◦C) Dew point depression at 2 m a.g.l. cdir (Jm−2) Clear sky direct solar radiation
dts (◦C) Temperature difference from 2 to 5 cm a.g.l. e (m w.e.)∗ Evaporation
sza (◦) Solar zenith angle lcc (0–1) Low cloud cover

shf (Jm−2) Sensible heat flux
tp (m) Total precipitation

∗ Meter of water equivalent.

invariant under monotone transformations of predictor vari-
ables (Bühlmann and Hothorn, 2007).

In this investigation, we employ the component-wise
gradient boosting algorithm suggested by Bühlmann and
Hothorn (2007) and extended by Schmid et al. (2011). The
ordinal response variable lvp is modeled by the proportional
odds model of Agresti (2003), and predictor variables are
captured by the conditional inference trees of Hothorn et al.
(2006) as base learners. In the case of lvp forecasts at Vienna
International Airport, the proportional odds model is defined
as

P (lvpi ≤ k)=
1

1+ exp(f (Xi)− θk)
, (1)

k = 0, . . .,3, whereXi = (Xi1, . . .,Xip) denotes the predictor
variable vector with p predictors and i = 1, . . .,n observa-
tions. In the proportional odds model, the prediction function
f = f (X) and the threshold values θk are estimated simulta-
neously (with θ3 =∞).

To estimate the prediction function f ∗ and the threshold
values θ∗ := (θ∗0 ,θ

∗

1 ,θ
∗

2 ), the negative log likelihood of the
proportional odds model is minimized over f and θ (shown
in Appendix A). The boosting implementation of Schmid
et al. (2011) for tree-based boosting of lvp states can be de-
scribed as follows:

1. Set m= 0 and initialize the prediction function f̂ [m] by
a decision tree and the threshold parameters θ̂ [m]0 , θ̂ [m]1 ,
and θ̂ [m]2 by offset values.

2. Increase m by 1 and compute the derivative of the log
likelihood, ∂`

∂f
. Evaluate ∂`

∂f
at f̂ [m−1](Xi), i = 1, . . .,n

and θ̂ [m−1]
=
(
θ̂
[m−1]
0 , θ̂

[m−1]
1 , θ̂

[m−1]
2

)
, leading to the

gradient vector

U [m] =
(
U
[m]
i

)
i=1,...,n

:

=

(
∂

∂f
`
(

lvpi, f̂
[m−1](Xi), θ̂ [m−1]

))
i=1,...,n

. (2)

3. Fit the gradient vector U [m] to the predictor variables
by using a decision tree and set Û [m] equal to the fitted
values of the tree.

4. Update the predictor function f̂ [m]→ f̂ [m−1]
+ νÛ [m],

with 0< ν ≤ 1 as the shrinkage parameter for model
growth.

5. Recompute the sum of the negative log likelihood∑n
i=1− `(lvpi,f (Xi),θ ) with f (Xi) as f̂ [m](Xi) and

minimize it over θ . Set θ [m] equal to the estimated θ∗.

6. Iterate steps 2–5 until a stopping criterion for m is
reached.

The exact steps of the working algorithm are discussed sep-
arately by Bühlmann and Hothorn (2007) and Schmid et al.
(2011). The main body of the algorithm is the iterative adding
of the true gradient of the log likelihood to the current esti-
mate of the predictor f ∗, leading to a continuous likelihood
maximization of the boosting tree model. The stopping crite-
rion for the algorithm is the number of maximum iterations
m.

An additional benefit of boosting decision trees is the au-
tomatic selection of the predictors with the highest impact
on the response, which is based on the automatic selection
of split variables in the decision trees. Moreover, the number
of terminal nodes can be used to specify the interactivity of
the predictors in the trees. The combination of the additive
structure of the boosting algorithm and the nonparametric
structure of the trees makes boosting trees into a powerful
alternative for predicting ordered response variables.

The described algorithm is implemented in the R package
mboost (Hothorn et al., 2017). The number of trees for each
model is determined by the minimized out-of-sample error.
Therefore, the model score is computed for each iteration for
up to a maximum number of 5000 iterations. The particular
model for the iteration with the minimum score is then se-
lected. The number of iterations differs for different training
samples and for different lead times.
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Reference models

The benefits of the boosting tree forecasts can be assessed by
reference models. In this study, we apply several references,
since their competitiveness changes with different lead time
ranges.

Persistence

A widely used benchmark reference for short lead times
is the persistence model (e.g., Vislocky and Fritsch, 1997),
which assumes that the lvp state does not change between
forecast initialization and validation. The persistence model
predicts the current lvp state with a probability of 100 % and
the remaining categories with 0 % for all lead times.

Climatology

At the long end of the forecast horizon, climatology is a com-
petitive reference model. Climatology always predicts the
distribution of the response in the training sample.

Ordered logistic regression (OLR)

For the comparison of the boosting tree performances to
other statistical models, we use OLR, a well-known model
for ordinal responses. Kneringer et al. (2019) developed an
OLR model for lvp nowcasts with lead times up to +2 h that
outperforms persistence, climatology, and predictions from
human forecasters at Vienna International Airport. We sup-
port the OLR model with the same predictors as with the
boosting trees. The predictions of OLR should be the most
challenging ones for the boosting trees.

Direct model output

Another reference is direct output of the ECMWF NWP
model, which has included visibility since May 2015 and
ceiling since November 2016. Thus, the predicted lvp state
can be computed directly from the NWP model output for
one cold season (2016–2017). For the HRES model, only
deterministic lvp state forecasts can be computed because
the model consists of one member only. The ENS model,
however, consists of 50 members, and therefore probabilistic
forecasts can be derived by merging the predictions of all 50
members.

3.2 Model verification

The performance of probabilistic forecasts of ordered re-
sponse variables, such as lvp, can be assessed by the ranked
probability score (RPS; Epstein, 1969; Murphy, 1971; Wilks,
2011). The RPS of single forecast–observation pair i for lvp
state predictions at Vienna International Airport is computed

by the squared differences between the cumulative probabil-
ities of the forecast and observation for each category:

RPSi =
1
3

3∑
s=0

[ s∑
k=0

(
P (lvpi = k)−1(lvpi = k)

)]2

, (3)

where 1(·) denotes the indicator function. The RPS notation
used is normalized and yields an easier interpretation of the
results, since the values of the normalized RPS are always
between 0 and 1 instead of 0 and the number of response
categories (the normalization factor of the RPS for lvp pre-
dictions at Vienna International Airport is 3 because of the
four lvp categories). Lower RPS values indicate better per-
formance.

To determine the performance of a particular model, all
scores from the individual forecast–observation pairs are av-
eraged. For comparison of the model score relative to a ref-
erence model, the ranked probability skill score (RPSS) is
used:

RPSS= 1−
RPS

RPSreference
. (4)

The model RPS is computed out of sample by a season-wise
cross-validation approach with error bootstrapping. The data
set is divided into six blocks, each of which contains data
from one cold season. Afterwards, the models are fitted on
five blocks and validated on the remaining one until each
block is used once for model validation.

Bootstrapping is used to assess model uncertainty. We gen-
erate 1000 data samples, each with randomly drawn out-of-
sample scores from the six cross-validation blocks with re-
placement. The size of each sample is identical to the overall
number of forecast–observation pairs. After bootstrapping,
the mean RPS is computed for each sample. The distribution
of these mean scores describes the model uncertainty.

3.3 Variable importance measurement

To provide useful information on the working process of the
models and to determine their most important inputs, a vari-
able importance measure is required. We use permutation
accuracy importance, which Strobl et al. (2009) showed as
being a reasonable measure for tree-based models. In per-
mutation importance, the forecast performance of the origi-
nal validation sample is computed and compared to the per-
formance of the same validation sample, however with per-
muted values in one predictor variable (e.g., Breiman, 2001).
To compute the permutation importance, the out-of-sample
performance of the original validation sample is computed
in the first step. After predictions from the original sample,
one predictor variable of the original sample is permuted ran-
domly, and new predictions – again with the same model
– are generated from this modified sample. When permut-
ing one predictor variable, the association with the response
breaks and the prediction accuracy of the sample with the
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permuted predictor decreases. The stronger the decrease in
forecast performance, the higher the impact of the permuted
predictor. The loss in forecast performance is measured by
the increase in the RPS. The procedure of permuting the val-
ues of one predictor variable and computing the performance
of this modified sample is repeated for each predictor.

Moreover, to extract meaningful information on the most
important predictors, permutation importance is conducted
on each cross-validated sample. Afterwards, the results from
the different samples are averaged to show the mean impact
of each predictor on the forecast.

4 Results

4.1 Nowcasts (+1 to +18 h)

This section is about lvp state forecasts with lead times from
+1 to+18 h. The predictors for the statistical models are ob-
servations and output of the ECMWF HRES model – both
separately and combined. The performances of the boost-
ing trees with the different predictor setups are compared
amongst others and to the references OLR, persistence, and
climatology. Moreover, the predictors with the highest im-
pact on the forecasts are examined and analyzed for their ef-
fects.

4.1.1 Model performance

The performance of the boosting trees with different predic-
tor setups and the references persistence and climatology is
given in Fig. 1a for the lead times +1 to +18 h. Boosting
trees based on observations outperform persistence and cli-
matology at each lead time. As expected, the difference in
forecast performance between persistence and observation-
based boosting tree predictions is smallest at the shortest
lead times and increases with longer lead times. A longer
distance between forecast initialization and validation leads
to a higher probability of changing lvp states and therefore
to a worsening of the persistence. Similarly, the relations of
current observations and future lvp decrease with longer lead
times and the observation-based models converge to clima-
tology, however much slower than the persistence.

The boosting trees based on the HRES output also out-
perform climatology up to a +18 h lead time. Their perfor-
mance is constant for the lead times +1 to +6 h because
of identical HRES information. In this investigation, we as-
sume that NWP model output is available immediately after
model initialization. The HRES model is initialized daily at
00:00 and 12:00 UTC. The closest output available for the
06:00 UTC forecast with a lead time of +1 h is from the
00:00 UTC initialization with a lead time of +6 h. This in-
formation is used for the lead times from +1 to +6 h. The
same applies for the lead times from +7 to +18 h (with out-
put from the 12:00 UTC model initialization, respectively).
Similarly to the observation-based models, the performance

of HRES-based models decreases with longer lead times,
however much slower than with observation-based models.
Persistence performs better than HRES-based boosting trees
only up to a lead time of +2 h. Between the lead times +3
and+7 h the performance of the HRES-based models caught
up to the observation-based ones. Observation-based boost-
ing trees therefore perform on average better until a lead time
of +5 h.

The best performing boosting trees are the ones with the
combined predictor setup. With nowcasts of up to a+2 h lead
time, they perform almost identically to observation-based
models. During the lead times from +5 to +7 h they outper-
form both other models. Primarily, they perform similarly to
observation-based models and converge slowly to the perfor-
mance of the HRES-based boosting trees.

To analyze the performance of the boosting trees relative
to other statistical models, we compare them to OLR. Fig-
ure 1b shows the RPSS comparison between the boosting
trees and the OLR for the particular predictor setups. Boost-
ing trees outperform OLR at most lead times. The biggest
difference in forecast performance between both models is
for the combined predictor setup (observations and NWP),
where the boosting trees perform on average about 10 % bet-
ter than OLR at short lead times. With increasing lead times,
the difference in forecast performance between both models
decreases, since the predictive power of the input variables
becomes weaker.

When using only observations or HRES model output as
predictors, the boosting trees perform again better than OLR,
however with a lower improvement compared to the com-
bined predictor setup. The reason for the higher improvement
in boosting trees with the combined predictor setup is the in-
tegrated variable selection algorithm of the decision trees in
the boosting model. Hence, only predictors that improve the
predictive performance of the model are selected for fore-
cast generation. In contrast, all available predictors are used
for the forecast generation with standard OLR, as augment-
ing this model with automatic variable selection techniques
would either be computationally intensive (e.g., stepwise or
subset selection) or necessitate switching to another estima-
tion technique (e.g., lasso instead of standard maximum like-
lihood).

The high variability in the RPSS analysis indicates the
high complexity of predicting lvp states. Generally, fog can
arise and dissipate with small atmospheric changes, leading
to big challenges in forecasting this parameter numerically
(Gultepe et al., 2007). At Vienna International Airport, se-
vere lvp events (lvp1, lvp2, and lvp3) occur for only 10 %
of the time. This low occurrence probability and fast transi-
tions between particular states challenge the forecasts addi-
tionally. Moreover, with cross validation, the number of se-
vere lvp events in the particular training samples can differ
strongly, leading to varying performances for the particular
cross-validated models and in an increased model variability.
The overall decrease in forecast performance with time seen
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Figure 1. Forecast performance of boosting tree models and the references OLR, persistence, and climatology. The statistical models are
based on observations (OBS), NWP model output of the deterministic HRES ECMWF model (HRES), and their combination (OBS+HRES).
The forecast validation time is always 06:00 UTC. Models with a lead time of+1 h (+2 h, . . . ) are initialized at 05:00 UTC (04:00 UTC, . . . ).
The lines show the median performances, and the related boxes show the 25th to 75th percentiles with the 5th to 95th percentiles as whiskers.
(a) RPS of each individual model. (b) RPSS of the boosting trees with OLR as reference. Boosting trees based on observations have the OLR
based on observations as reference (the same applies for the HRES model and the combined predictor setup). The RPSS numbers show the
percentage of improvement in the boosting tree performance over OLR.

in the increase in RPS in Fig. 1a is halted at the +4 h fore-
cast step (10:00 UTC), when the climatological frequency of
LVP events decreases strongly (see Kneringer et al., 2019).
The complexity of the forecasting problem can also be seen
at the end of the climatological LVP minimum at +9 and
+11 h (15:00 and 17:00 UTC), when the improvement in the
tree-based methods over OLR in Fig. 1b suddenly drops.

Predictions of the models with the combined predictor
setup are best overall; however, they also have the highest
variability. Their forecasts are affected by many predictors
and lead to stronger varying forecasts for the particular mod-
els due to the varying weights of the predictors. To provide

information on the most important predictors with different
lead times, variable importance analysis is applied.

4.1.2 Impact of predictors

The predictors with the highest impact on the forecast are an-
alyzed with permutation importance applied to the boosting
trees with the combined predictor setup (Sect. 3.3). Figure 2
shows the predictors with the highest impact on forecasts for
the lead times +1, +6, and +12 h.

Forecasts with a lead time of+1 h mainly rely on observa-
tions. The most important input is the lvp state observation
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Figure 2. Predictors of Table 2 with the highest impact on boosting trees with the combined predictor setup for lead times of +1, +6,
and +12 h. The tan color indicates observation-based predictors, and the blue color indicates HRES-based ones. The x axis is logarithmic
and shows the mean percentage decrease in forecast performance when the true values of the particular predictor are replaced with random
information. The error bars show the 25th to 75th percentiles of the performance decrease for the particular predictors.

at forecast initialization, which would worsen the model per-
formance by 107 % on average if its value is random. Other
important observations are dpd, rvr, and vis, while the so-
lar zenith angle (sza) and the remaining predictors contribute
only little information. The importance of these inputs, how-
ever, varies by the same magnitude as their average, indi-
cating the high complexity of predicting lvp states. Models
with slightly different training samples can generate strong
varying weights for their input variables. Nevertheless, the
results of permutation importance for a +1 h lead time show
the strong dependence of the short-term forecasts on obser-
vations and confirm the results in Fig. 1a, where the perfor-
mance of the “best” models (combined predictor setup) is
nearly identically to observation-based models.

The impact of observations decreases strongly for now-
casts with lead times from +3 to +7 h. Dew point depres-
sion from the NWP model (dpdmodel) and from the obser-
vations as well as lvp observations have the highest impact
at +6 h forecasts. Further variables, albeit with smaller im-
pact and higher variability, are observations of visibility and
evaporation (e) from the NWP model output. In some of the
cross-validated models, these two inputs have no impact on
the predictions, while in others their impact is large.

As the forecasting horizon increases from +8 to +18 h,
the influence of dew point depression from the NWP model
increases, whereas other predictors only have small impact.
Random lvp states at forecast initialization, for example,
would decrease the performance by less than 5 % for predic-
tions with a+12 h lead time. The performance of the models
with the combined predictor setup is similar to the perfor-
mance of the HRES-based models. The strong influence of
NWP model-based dew point depression on the forecast per-
formance confirms this finding.

4.2 Medium-range forecasts and predictability limit

The performance of models with the combined predictor
setup converges to HRES-based models at lead times longer
than +7 h (Fig. 1a). Therefore, we only use predictors based
on the NWP model for the generation of medium-range fore-

casts and the investigation of the predictability limit. The
predictors used include deterministic information from the
HRES model and the means and standard deviations from
the ENS.

4.2.1 Model performance

Figure 3 shows the performance of boosting trees based on
outputs of the HRES model and ENS for medium-range fore-
casts with lead times from +0 to +14 d. The predictions
consist of output of the 00:00 UTC NWP model run, and
the forecast validation time is again 06:00 UTC. Lead times
of +0, +1, +2 d, etc., correspond to +6, +30, +54 h, etc.
The maximum output length of the HRES model is +240 h.
HRES-based model forecasts can be generated therefore only
up to a +9 d lead time. The ENS, on the other hand, allows
forecasts up to a +14 d lead time. We compare the perfor-
mance of the statistical models only to the references cli-
matology and raw NWP model output, since boosting trees
again perform better than OLR (see Appendix B).

The performance of the boosting trees and climatology is
shown in Fig. 3a with their uncertainties. HRES-based sta-
tistical models perform slightly better than ENS-based ones
for lead times of +0 d. From +1 d to +2 d lead time, both
models perform similarly, and after a lead time of +2 d, the
ENS-based models perform better. The biggest difference in
forecast performance occurs for the lead times from +4 to
+6 d, where ENS-based models clearly outperform HRES-
based ones, which converge much faster to climatology. The
predictability limit, where the forecasts of climatology and
the statistical models perform similarly in their median RPS,
is at a lead time of approximately +12 d.

In order to obtain more information of the benefit of the
statistical models, we compare them to the raw output of the
NWP models. The raw lvp state is computed from the vis-
ibility and ceiling of the NWP model output. Since ceiling
has been only available from November 2016 on, an out-of-
sample comparison between the forecasts of the statistical
models and the raw NWP model output is computed between
December 2016 and November 2017 (cold season only). We
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Figure 3. Medium-range forecast performance of boosting trees based on HRES and ENS information, and the reference models with their
uncertainty (boxes show the 25th to 75th percentile range, and whiskers show the 5th to 95th percentiles). (a) Median forecast performance of
the statistical models and climatology for the complete 6 years of data (cold season only). (b) Median forecast performance of the statistical
models and the references climatology and raw NWP model output (HRESraw, ENSraw) for December 2016–March 2017 and October–
November 2017 only. The lvp state from the raw ensemble is computed from the distribution of the lvp states from each member. Computing
the lvp state from only mean visibility and mean ceiling always results in lvp0. All lvp cases from the raw model output are due to low
ceiling.

therefore train the boosting trees with cold season data from
December 2011 to November 2016 and compare their per-
formance with the raw NWP model output for the remaining
period.

Figure 3b shows the median out-of-sample performance
of the statistical models, raw NWP model output, and clima-
tology with their uncertainty for cold season data between
December 2016 to November 2017. This period had a much
higher occurrence of severe lvp than climatologically ex-
pected (see Fig. 3a).

HRES-based raw output performs better than climatology
only up to +1 d. Direct output from the ENS, however, has
a benefit over climatology up to a +5 d lead time. The sta-
tistical models with input from the ensemble model have a
benefit over the raw ENS output up to the maximum avail-
able lead time of +14 d and remain better than climatology
up to +11 d. Note that all lvp cases detected in the individ-
ual ensemble members have their origin in low-ceiling cases.
The ECMWF visibility does not fall below the lvp threshold
range during the test period. Moreover, raw lvp state fore-
casts from the ensemble average visibility and ceiling always
result in lvp0. The reason is the exceeding of the lvp thresh-
olds in the variable means for the entire data set.

4.2.2 Highest-impact inputs

The most important predictors for statistically based
medium-range lvp forecasts are again analyzed with permu-
tation importance. Figure 4 shows the predictors with the
highest impact for the models based on the HRES model and
ENS for the lead times of +2 and +8 d. In case of the ENS-
based models, almost only predictors with mean information
have an impact on the forecast, while the standard deviation
contributes only little information.

Dew point depression (dpd) has highest impact for both
models with a +2 d lead time. The performance of HRES-
based models decreases by 21 % on average when observa-
tions are replaced by random values. Additional impact on
the forecast originates from the predictors boundary layer
height (blh), sensible heat flux (shf), evaporation (e), and
clear sky direct solar radiation (cdir).

When the skill of the model forecasts over climatology de-
creases, the number of predictors with an impact on the fore-
cast also decreases. In HRES-based models, only one pre-
dictor has an influence on predictions with +8 d lead times.
Moreover, the impact of this predictor decreases strongly
compared to the impacts of the predictors with the+2 d fore-
cast. The convergence of the statistical models to climatology
for longer lead times indicates low predictability of the pre-
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Figure 4. Predictors of Table 2b with the highest impact for medium-range forecasts with +2 and +8 d lead times. The x axis is logarithmic
and shows the percentage decreasing in performance when replacing the true observation of a particular predictor with random information.
The error bars show the 25th to 75th percentiles of the decrease in forecast performance for the particular predictors. (a) HRES-based models.
(b) ENS-based models.

dictors used from the NWP models, and therefore no stable
association between the NWP output and the upcoming lvp
state is found by the models. In ENS-based models, which
perform better at long lead times, more predictors have an
influence on the forecasts, and the impact of these predictors
is generally bigger.

5 Discussion and conclusion

Predictions of lvp (low-visibility procedure) states have been
developed for flight planning with different horizons using
boosting trees. The lvp state, which is the relevant variable
for flight regularization due to low visibility at airports, is
categorical and consists of multiple thresholds of horizon-
tal and vertical visibility. Former studies predict the hori-
zontal and vertical visibility separately, which then can be
combined by the air traffic management (e.g. Vislocky and
Fritsch, 1997; Marzban et al., 2007; Ghirardelli and Glahn,
2010, etc.). This approach, however, makes accurate prob-
abilistic forecasts of the lvp state impossible because of the
interdependence of both visibility variables. Direct forecasts
of the lvp states, on the other hand, allow probabilistic pre-
dictions of the information relevant for aviation. The lvp state
predictions generated in this study are produced with boost-
ing trees and are better (using the ranked probability score
as verification metric) than forecasts from persistence, cli-
matology, and ordered logistic regression models. The large
variation of the benefit of the boosting trees over ordered lo-
gistic regression indicates the high complexity and the con-
siderable challenge of generating lvp predictions due to fast
transitions between particular lvp states. The forecasts are
generated for timescales from +1 to +14 d, which are im-
portant for short-term regulation, flight plan reorganization,
and long-term flight planning.

Short-term regulations are defined with predictions up to
the next 2 h, which are most important for the flight con-
trollers. These forecasts are the most accurate ones and are
mainly driven by latest observations of the lvp state, dew
point depression, and visibility.

For reorganizations of flight plans, the air traffic man-
agement can use the predictions with lead times from +3
to +18 h. Within this range, the impact of observations de-
creases and NWP model output becomes more important.
Highly resolved deterministic NWP output leads to slightly
better performance than ensemble information. For forecasts
with lead times of +6 h, the NWP model output dew point
depression and the observation of the lvp state have an equal
impact. Hence, observations and NWP output have to be in-
cluded in the statistical models to generate the most accurate
predictions. The most important predictors are observations
of the lvp state, horizontal visibility, dew point depression,
air temperature difference between 2 m and the surface, and
the NWP model outputs of dew point depression and evapo-
ration.

Long-term flight planning requires medium-range fore-
casts with lead times longer than +1 d. During this time
range, the statistical models with postprocessed ensemble
information perform most accurately. The NWP outputs
with the highest benefit for the predictions are dew point
depression, evaporation, sensible heat flux, and boundary
layer height. The predictability limit of lvp is approximately
+12 d, where the benefit of the statistical forecasts over cli-
matology vanishes.

The ECMWF NWP models also provide information on
visibility and ceiling. Both variables can be used to pre-
dict lvp directly. However, these variables are not included
in the statistical models because their data archive is too
short. Comparisons between direct lvp state forecasts from
the NWP models and the boosting trees were made for one
cold season and just showed a small difference in the per-
formance between a +1 and +5 d lead time. Therefore, the
statistical models always perform somewhat better. The lvp
state climatology of the comparison period, however, differs
strongly from the climatology of the model training period,
which suggests a comparison period that is too short for valu-
able statements. Nevertheless, for future investigations of the
lvp state, NWP model output of ceiling and visibility should
be included in the statistical models to improve the fore-
cast performance. For both variables, however, information
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of each particular member should be taken into account in-
stead of mean ensemble information, since the mean visibil-
ity and/or ceiling always leads to lvp-free conditions.

In summary, we saw that probabilistic lvp forecasts based
on boosting trees have a benefit over all reference models
until a lead time of approximately +12 d. These predictions
can be used to improve flight planning at all required forecast
horizons.

Code and data availability. The complete statistical modeling is
based on the software environment R (R Development Core Team,
2019). To estimate the boosting trees, the R package mboost
(Hothorn et al., 2017) is used. The OLR models are estimated with
the R package ordinal (Christensen, 2017), while the ranked prob-
ability score is computed with the R package verification (NCAR,
2015). The numerical weather prediction data are downloaded from
the ECMWF. For observation data, a request to the Austro Control
GmbH is required (info@austrocontrol.at).
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Appendix A: Log likelihood of the proportional odds
model

For lvp state forecasts at Vienna International Airport, the log
likelihood ` of the proportional odds model is defined as

`(f,θ )=−I (lvp0) · log(1+ exp(f − θ0))
+I (lvp1) · log

(
(1+ exp(f − θ1))−1

− (1+ exp(f − θ0))−1
)

+I (lvp2) · log
(

(1+ exp(f − θ2))−1
− (1+ exp(f − θ1))−1

)
+ I (lvp3) · log

(
1− (1+ exp(f − θ2))−1

)
. (A1)

The derivative of the log likelihood ∂`
∂f

at Vienna Interna-
tional Airport is

∂`

∂f
=−I (0) · (1+ exp(θ0− f ))−1

+I (lvp1) ·
1− exp(2f − θ0− θ1)

1+ exp(f − θ0)+ exp(f − θ1)+ exp(2f − θ0− θ1)

+I (lvp2) ·
1− exp(2f − θ1− θ2)

1+ exp(f − θ1)+ exp(f − θ2)+ exp(2f − θ1− θ2)

+ I(lvp3) · (1+ exp(f − θ2))−1. (A2)

Appendix B: Comparison between boosting trees
and ordered logistic regression for long-term flight
planning ranges

Figure B1. RPSS comparison between boosting trees and ordered logistic regression for lead times from+0 to+14 d. For the boosting trees
based on HRES NWP model output, the OLR based on HRES output is used as reference (boosting trees based on ENS output have OLR
based on ENS output as reference). Higher RPSS shows better performance of the boosting trees over OLR. For forecasts with lead times
longer than +11 d, the OLR is outperformed by climatology, whereas boosting trees still perform somewhat better than climatology. Thus,
the boosting trees have high benefit over OLR at lead times longer than +11 d. The lines show the median RPSS, the boxes the 25th to 75th
percentiles, and the whiskers the 5th to 95th percentiles.
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