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Abstract. A new probabilistic post-processing method for wind vectors is presented in a distributional regres-
sion framework employing the bivariate Gaussian distribution. In contrast to previous studies, all parameters of
the distribution are simultaneously modeled, namely the location and scale parameters for both wind components
and also the correlation coefficient between them employing flexible regression splines. To capture a possible
mismatch between the predicted and observed wind direction, ensemble forecasts of both wind components
are included using flexible two-dimensional smooth functions. This encompasses a smooth rotation of the wind
direction conditional on the season and the forecasted ensemble wind direction.

The performance of the new method is tested for stations located in plains, in mountain foreland, and within
an alpine valley, employing ECMWF ensemble forecasts as explanatory variables for all distribution parameters.
The rotation-allowing model shows distinct improvements in terms of predictive skill for all sites compared to
a baseline model that post-processes each wind component separately. Moreover, different correlation specifica-
tions are tested, and small improvements compared to the model setup with no estimated correlation could be
found for stations located in alpine valleys.

1 Introduction

Accurate forecasts of wind speed and direction are of great
importance for decision-making processes and risk manage-
ment in today’s society and will likely become more impor-
tant in the future. This is not only because of the rapid change
in climate and the resulting increase in severe storms (e.g.,
Kunkel et al., 2012; Vose et al., 2013), but is also due to the
change in the society itself and its technical revolution. As
an example, the European Union is aiming to increase the
amount of wind energy by 2030 to 35 %, which would be
more than double the capacity installed at the end of 2016
(WindEurope, 2017). In the field of aviation and air traffic
control for instance, more flexible landing procedures with
a so-called time-based separation are currently being tested
at Heathrow Airport and are planned to go operational in
the near future (EuropeanCommission, 2018). In both cases,
wind (power) forecasts are of fundamental importance; prob-
abilistic wind forecasts are in particular advisable as they per-

mit optimal risk assessment and decision making (Gneiting,
2008).

Probabilistic weather forecasts are usually issued in the
form of ensemble predictions. To account for the under-
lying uncertainty in the atmosphere, numerical ensemble
prediction systems (EPSs) provide a set of weather fore-
casts using slightly perturbed initial conditions and differ-
ent model parameterizations (Palmer, 2002). Despite recent
advances in the development of EPSs, the resulting fore-
casts still often show displacement errors and usually cap-
ture only part of the forecast uncertainty, especially when
comparing EPS forecasts and point measurements (Buizza
et al., 2005; Gneiting and Katzfuss, 2014). This often re-
sults from structural model deficiencies and insufficient res-
olution or unresolved topographical features. To remove sys-
tematic biases and to provide corrected variance informa-
tion, statistical post-processing methods are often employed.
For wind, various ensemble post-processing methods have
been proposed over the last decade, mainly focusing on
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wind speed. For a single location, parametric examples are
non-homogeneous regression (Thorarinsdottir and Gneiting,
2010; Lerch and Thorarinsdottir, 2013; Baran and Lerch,
2015, 2016), kernel dressing methods with similarities to
Bayesian model averaging (Sloughter et al., 2010; Courtney
et al., 2013; Baran, 2014), and extended logistic regression
(Messner et al., 2014a, b). A non-parametric approach based
on quantile regression forests was applied by Taillardat et al.
(2016). On a regular grid, ensemble post-processing based on
non-homogeneous regression was performed by Scheuerer
and Möller (2015).

To account for the circular characteristics of wind or uti-
lizing information of wind speed and direction, an intuitive
post-processing approach is to model a bivariate process for
the zonal and meridional wind components. Gneiting et al.
(2008) suggested using a bivariate Gaussian response dis-
tribution for the wind components, an idea that was imple-
mented by Pinson (2012). He estimates a dilation and trans-
lation factor for the individual ensemble members utilizing
the empirical correlation structure of the EPS. This proce-
dure can be seen as a variant of the ensemble copula cou-
pling (ECC) method introduced by Schefzik et al. (2013).
With the ECC, both wind components are calibrated with
univariate approaches and a discrete sample drawn from each
univariate predictive distribution is rearranged in the rank or-
der structure of the raw ensemble. The method introduced by
Schuhen et al. (2012) also fits a bivariate Gaussian distribu-
tion for the wind components; however, in their approach the
post-processed probabilistic forecast consists of a fully spec-
ified predictive distribution instead of a discrete ensemble.
As their analyses show that the observed correlation between
the two wind components mainly depends on wind direction,
they model the correlation parameter in the bivariate Gaus-
sian distribution as a trigonometric function of the ensem-
ble mean wind direction. An extra group is formed for cases
with low wind speeds unconditionally on their wind direc-
tion. The estimation of the correlation parameter is done of-
fline in a pre-processing step for a separate year, either for all
stations combined or for each station individually. However,
according to Schuhen et al. (2012), the fitting can be critical
for individual stations since wind sectors may only contain a
few data points.

For stations in complex terrain, a possible drawback of the
bivariate post-processing approach of Schuhen et al. (2012)
is that the model cannot correct for a systematic distortion in
the wind directions due to discrepancies between the model
and real topography. Especially when the respective valley
orientations differ, a meridional wind component might be
partially rotated into a zonal wind component and vice versa.
Pinson (2012) employs both forecasted wind components
for the calibration of the zonal or meridional wind com-
ponent, which is partly able to correct for systematic dis-
tortions in wind directions in a linear manner. In the field
of post-processing deterministic weather forecasts, this ap-
proach was already suggested by Glahn and Lowry (1972).

Alternatively to bivariate calibration methods, wind di-
rection can also be employed in univariate settings. In a
post-processing approach for wind speed, Eide et al. (2017)
suggest utilizing the potentially nonlinear information of
the wind direction by a generalized additive model (GAM;
Hastie and Tibshirani, 1986). GAMs were first applied in the
meteorological context by Vislocky and Fritsch (1995) and
provide a powerful statistical model framework which can
capture potential nonlinear relationships between the covari-
ates and the response by smooth functions or splines. Eide
et al. (2017) employ wind direction as an additional covari-
ate for the estimation of wind speed, by accounting for its
cyclic and potential nonlinear characteristics utilizing thin-
plate regression splines.

In this study, we directly model the zonal and meridional
wind components, employing the bivariate Gaussian distri-
bution as suggested by Gneiting et al. (2008) and performed
by Pinson (2012) and Schuhen et al. (2012). However, we
capture all distribution parameters, namely the location and
scale parameters for both wind components, and also the cor-
relation coefficient between them in a single flexible model.
In the estimation of the two-dimensional location and scale
parameters the information value of both ensemble wind
components is utilized to allow for a smooth rotation of the
forecasted wind direction accounting for unresolved topo-
graphical features. To consider the correlation characteris-
tics detected in Schuhen et al. (2012) and to allow for possi-
ble nonlinear effects, such as, e.g., suggested by Eide et al.
(2017), we model the correlation as a function of wind speed
and direction utilizing cyclic regression splines. To account
for potential time-varying effects, all linear predictors use a
time-adaptive intercept and time-adaptive slope coefficients
based on cyclic smooth splines.

The paper is structured as follows: Sect. 2 introduces the
employed statistical models. The underlying data of this
study are shortly described in Sect. 3. Within Sect. 4, first
a model comparison and validation are presented for two
weather stations with different site characteristics, followed
by aggregated scores for station sites located in plains, in
mountain foreland, and within an alpine valley. The article
ends with a brief discussion and a conclusion given in Sect. 5.

2 Methods

In Sect. 2.1, the bivariate Gaussian distribution is reviewed
and briefly presented in a distributional regression frame-
work. Subsequently, three broad model classes are intro-
duced, all of which are based on a time-adaptive training
scheme but employ different specifications for the location,
scale, and correlation parameters of the bivariate distribu-
tion. First, the baseline model is presented in Sect. 2.2 that
serves as a benchmark and simply combines two univari-
ate heteroscedastic regression models that post-process each
wind component separately. Second, the baseline model is
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extended in Sect. 2.3 by always adding both EPS wind com-
ponents as regressors using smooth splines and thus allowing
for potential misspecifications in the EPS wind direction. Fi-
nally, Sect. 2.4 also considers models with estimated corre-
lation coefficients based on various regression specifications.
Table 1 provides a synoptic summary of all bivariate Gaus-
sian model specifications tested within this study.

2.1 Distributional regression for a bivariate Gaussian
response

The zonal and meridional components of the horizontal wind
vector are represented by a bivariate Gaussian distribution.
Its likelihood function L is given by

L(µ,6|y)=

1√
(2π )2|6|

exp
(
−

1
2

(y−µ)>6−1(y−µ)
)
, (1)

where y = (y1,y2)> are bivariate observations and µ=

(µ1,µ2)> are the distributional location parameters with
µ? ∈ R; the subscript asterisk acts as a placeholder for the
zonal and meridional wind components from here on. The
covariance matrix is defined as

6 =

(
σ 2

1 ρσ1σ2
ρσ1σ2 σ 2

2

)
, (2)

with correlation parameter ρ ∈ [−1,1] and scale parameters
σ? > 0. In the framework of distributional regression, link
functions provide the relationship between unrestricted lin-
ear predictors and the respective distribution parameters by
ensuring their appropriate co-domain. For the bivariate Gaus-
sian distribution, the location parameters µ?, the scale pa-
rameters σ?, and the correlation parameter ρ are linked to
their additive predictors by an identity, logarithm and rhogit
link, respectively (Klein et al., 2014).

To be able to utilize the information of cyclic covariates,
such as, e.g., wind direction in addition to linear covariates,
we follow Eide et al. (2017) and fit a GAM but utilize cubic
smooth functions with cyclic constraints for all cyclic covari-
ates (Wood, 2017; see Appendix A1). In the context of distri-
butional regression, additive models with smooth effects are
typically referred to as “generalized additive models for lo-
cation, scale and shape” (GAMLSS, Rigby and Stasinopou-
los, 2005). In this study, we utilize GAMLSS in a Bayesian
framework, which allows us to examine the estimated effects
based on Markov chain Monte Carlo (MCMC) simulations
and ensures stable estimation of the regression coefficients.
The key steps involved in the estimation can be summarized
as follows. The parameters of the bivariate Gaussian distribu-
tion are linked to the set of additive predictors containing po-
tentially nonlinear transformations of the covariates accord-
ing to the model specifications described later on in this sec-
tion. The model fitting is performed by a derivative-based
MCMC sampling using iteratively weighted least squares

(IWLS, Gamerman, 1997) proposals. Hence, the estimated
effects are based on 1000 independent realizations of the re-
gression coefficients drawn from the Markov chains and for
subsequent predictions the means of these samples are used
as point estimators for the regression coefficients. A com-
prehensive summary of the method is given in Umlauf et al.
(2018).

2.2 Baseline model (BLM-0)

The baseline model (BLM-0) combines two univariate het-
eroscedastic regression models that post-process each wind
component separately with correlation fixed at zero. Hence,
for the location and scale part, it uses its direct counterparts
of the EPS as covariates, namely EPS-forecasted zonal wind
information (vec1) to model the zonal component of the bi-
variate response and EPS-forecasted meridional wind infor-
mation (vec2) to model the meridional component:

µ? = α?0+ f?0(doy)︸ ︷︷ ︸
intercept

+ (α?1+ f?1(doy))︸ ︷︷ ︸
slope coefficient

· vec?,mean,

log(σ?)= β?0+ g?0(doy)︸ ︷︷ ︸
intercept

+ (β?1+ g?1(doy))︸ ︷︷ ︸
slope coefficient

· vec?,log.sd, (3)

where α• and β• are regression coefficients, and f•(doy) and
g•(doy) employ cyclic regression splines conditional on the
day of the year (doy). The subscripts mean and log.sd re-
fer to the mean and log standard deviation of the ensem-
ble wind components, respectively. We follow Gebetsberger
et al. (2017) and use the logarithm transformation for the
standard deviation of the ensemble members to ensure posi-
tivity, which is preferable for the estimation process.

Equation (3) specifies a time-adaptive training scheme
(with further details in Appendix A2), where the linear pre-
dictors consist of a global intercept and slope coefficient
plus a seasonally varying deviation. Thus, the intercept and
slope coefficients can smoothly evolve over the year in case
the bias or the covariate’s skill varies seasonally. If there
is no seasonal variation, the nonlinear effects become zero
and Eq. (3) simplifies to a regression model with a constant
intercept and slope coefficient (µ? = α?0+α?1 · vec?,mean;
log(σ?)= β?0+β?1 · vec?,log.sd).

2.3 Rotation-allowing model without correlation (RAM-0)

In the second model, labeled the rotation-allowing
model (RAM-0), we extend the BLM-0 setup by em-
ploying the zonal and meridional wind information of the
ensemble for the linear predictors of all location and scale
parameters. That means we use the ensemble information of
both the zonal and meridional wind components for the two
components of the response (cf. Glahn and Lowry, 1972). In
case of a perfect EPS the zonal wind predictions are non-
informative covariates for the meridional wind component
and vice versa. However, if, e.g., the model topography is
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Table 1. Overview of bivariate Gaussian model specifications. For the “baseline model” (BLM-0; see Sect. 2.2) and the “rotation-allowing
model” (RAM-0; see Sect. 2.3) no correlation is employed, i.e., fixed at zero. For all tested correlation specifications, the RAM-0 setup is
employed for the location and scale part (see Sect. 2.4). In all setups for each distribution parameter, a seasonally varying intercept effect
is estimated. For BLM-0, a seasonally varying slope coefficient is fitted for the two wind components in the location and scale parts. For
the RAM-0 setup, the slope coefficients are additionally dependent on the wind direction. In the RAM-ADV correlation model, the wind
speed is modeled conditional on the wind direction. The equal sign expresses “the response is set to” and the tilde signals “the response is
modeled by” the term(s) on the right-hand side of the equation. The symbol “–" –” implies that the same configuration as in the line above
is employed.

Name Location part Scale part Correlation part

BLM-0 µ? ∼ vec?,mean σ? ∼ vec?,log.sd ρ = 0
RAM-0 µ? ∼ vec1,mean,vec2,mean σ? ∼ vec1,log.sd,vec2,log.sd ρ = 0
RAM-EMP –" – –" – ρ = vec?,corr
RAM-IC –" – –" – ρ ∼ 1
RAM-DIR –" – –" – ρ ∼ dirmean
RAM-ADV –" – –" – ρ ∼ dirmean, spdmean

not sufficiently resolved or in the case of local shadowing
effects, both EPS wind components may contain valuable
information for the zonal and meridional wind components
of the response. Especially in a mountain valley, when the
model and real valley orientation differs, both wind compo-
nents of the ensemble can potentially contain information
about both location and scale parameters, respectively. Thus,
we propose to employ seasonally varying effects depending
on the ensemble wind direction, which allows the model to
rotate the forecasted wind direction if necessary. To do so,
we obtain a two-dimensional smooth function represented
by a tensor product spline with a respective cyclic constraint
for the day of the year (doy) and for the mean ensemble
wind direction (dirmean):

µ? = α?0+ f?0(doy)

+
(
α?1+ f?1(doy) · f?2 (dirmean)

)
· vec1,mean

+
(
α?2+ f?3(doy) · f?4 (dirmean)

)
· vec2,mean,

log(σ?)= β?0+ g?0(doy)
+
(
β?1+ g?1(doy) · g?2 (dirmean)

)
· vec1,log.sd

+
(
β?2+ g?3(doy) · g?4 (dirmean)

)
· vec2,log.sd, (4)

where, as before, α• and β• are regression coefficients, and
f• and g• employ cyclic regression splines. From a more
physical perspective, the two-dimensional smooth effects ro-
tate the ensemble wind components conditional on the day
of the year and the ensemble wind direction.

2.4 Rotation-allowing models with correlation

By explicitly modeling the correlation, we further extend the
RAM-0 setup within this section. For the estimation of the
correlation structure different model specifications are tested.
The most advanced specification, RAM-ADV, assumes that
the correlation mainly depends on the mean ensemble wind
direction (dirmean) and speed (spdmean) by modeling a linear

interaction between these two covariates:

rhogit(ρ)= γ0+h0(doy)+h1(dirmean)

+ (γ1+h2(dirmean)) · spdmean, (5)

with rhogit(ρ)= ρ/
√

(1− ρ2); γ0 is the global intercept
and h0(doy) the seasonally varying intercept. The effect
h1(dirmean) estimates the dependence of the correlation given
the wind direction and (γ1+h2(dirmean)) · spdmean employs a
varying effect of wind speed conditional on the wind direc-
tion. The estimation of the underlying correlation structure is
in accordance with results of Schuhen et al. (2012), who em-
ploy wind direction and an offset of wind speed as informa-
tive covariates in the estimation of the correlation parameter.

Other implementations tested for the correlation parameter
are an intercept-only model (RAM-IC), a model with a cyclic
effect solely depending on wind direction (RAM-DIR), the
RAM-0 independent-component model (Sect. 2.3), and a
model using the empirical correlation (corr) of the raw en-
semble (RAM-EMP). A synoptic table of all models tested
in this study is given in Table 1.

3 Data

3.1 Observational data

The validation and comparison of the different model spec-
ifications are performed for 15 measurement sites located
across Austria, Germany, and Switzerland. The sites are cho-
sen to investigate the influence of different underlying to-
pographies or varying discrepancies between the real and
model topography on the post-processing. The stations are
divided into three groups representing sites located in plains,
mountain foreland, and within an alpine valley. An overview
of the stations is given in Fig. 1. The results for stations
Hamburg and Innsbruck, which are labeled in Fig. 1, are dis-
cussed in more detail in Sect. 4. At all meteorological sites,
wind speed and direction measurements are reported for the
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Figure 1. Overview of the study area with selected stations classi-
fied as plain, foreland, and alpine station sites. The labeled stations
with a white background, Hamburg and Innsbruck, are discussed in
detail in Sect. 4. Elevation data are obtained from the SRTM-30 m
digital elevation model (NASA JPL, 2013).

10 m height level. The data are 10 min averages for the period
26 January 2010 to 7 March 2016, yielding a total of 2233 d.

3.2 Ensemble prediction system

Covariates are derived from the global 50-member EPS of
the European Centre for Medium-Range Weather Forecasts
(ECMWF). These EPS forecasts have a horizontal resolution
of approximately 30 km (T639) for the time between January
2010 and March 2016 and are bilinearly interpolated to the
measurement sites. Covariates employed in this study are the
zonal and meridional wind components as well as the de-
rived quantities wind speed and direction valid at 10 m above
ground. For all these variables, two statistics are computed
over the 50 perturbed ensemble members, namely the mean
and the logarithm of the standard deviation (log.sd). Addi-
tionally, the Pearson sample correlation coefficient (corr) is
computed from the raw ensemble members to capture the
correlation between the two wind components. Forecasts are
taken from the EPS run initialized at 00:00 UTC for forecast
steps ranging from +12 to +72 h ahead at a 12-hourly tem-
poral resolution. Figure 2 shows the empirical wind distribu-
tions of the observed and predicted winds for Innsbruck and
Hamburg for forecast steps +12 and +24 h corresponding to
12:00 and 00:00 UTC.

4 Results

This section presents the results of the statistical post-
processing models. The structure is as follows. First, the esti-
mated effects of the baseline model, BLM-0 (Sect. 4.1), and

the rotation-allowing model, RAM-0 (Sect. 4.2), are shown
for two stations representative of one alpine valley site and
of a measurement site in the plains. For both models a con-
stant correlation of zero is employed, and their predictive per-
formance is discussed in Sect. 4.3. Afterwards, model com-
parison (Sect. 4.4) and validation (Sect. 4.5) of the different
correlation specifications are given for the two representative
stations. In Sect. 4.6, the overall performance of the model
setups is evaluated for three groups of stations classified as
topographically plain, mountain foreland, and alpine valley
sites.

The model estimation is performed on data of the first
4 years, leaving an out-of-sample validation data set ranging
from 24 February 2014 to 7 March 2016.

4.1 Baseline model (BLM-0)

For BLM-0, the cyclic seasonal effects for stations Hamburg
and Innsbruck are shown in Fig. 3 as solid and dashed lines
with the respective 95 % credible intervals. The estimated ef-
fects are on the scale of the additive predictor, i.e., on the lin-
ear scale for the location parameters µ? and on the log scale
for the scale parameters σ?. Each of the four distribution pa-
rameters is described by a (potentially) seasonally varying
effect for the intercept (panels a, c, e and g) and the slope
coefficient (panels b, d, f and h) as specified in Eq. (3).

For Hamburg, for both location parameters µ?, the inter-
cept effect is almost zero (Fig. 3a, c) and the effect for the
slope coefficient is close to one (Fig. 3b, d) with very little
seasonal variability. This means apparently no bias correc-
tion is necessary and the ensemble mean wind components
are mapped almost one-to-one to the location parameters.
Similarly, barely any seasonal variation exists for the scale
parameters σ? (Fig. 3e–h); however, here the intercept and
slope coefficients actually post-process the EPS variances
of the wind components (rather than a one-to-one mapping
only), leading to an increase in the scale parameters com-
pared to the under-dispersed ensemble. The 95 % credible in-
tervals indicate a higher uncertainty of the estimated scale pa-
rameters compared to the location parameters. In summary,
the EPS performance for Hamburg is almost constant over
the year, and no time-adaptive training scheme seems to be
necessary.

By contrast, for Innsbruck the estimated effects show a dis-
tinct annual cycle for the location parameters µ?, which indi-
cates a varying information content of the predictor variables
vec?,mean and the need for some adaptive training scheme.
For the location parameter µ1, the intercept is rather large
during winter (Fig. 3a), while, at the same time, the slope co-
efficient (Fig. 3b) is close to zero due to an apparently low
skill of the EPS. For the location parameter µ2 (Fig. 3c, d),
the higher slope coefficients during spring and autumn sug-
gest a higher information content of the raw EPS in the tran-
sitional seasons than for the rest of the year. For the scale
parameters (Fig. 3e–h), the estimated effects show high vari-
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Figure 2. Empirical wind distributions of observations (OBS) and mean ensemble forecasts (ENS) for Innsbruck and Hamburg. The proba-
bility of occurrence is color-coded and the wind speed is represented by contour lines (m s−1). The forecast steps +12 and +24 h, valid at
12:00 and 00:00 UTC, are shown for the validation period from 24 February 2014 to 7 March 2016.

ability; this indicates a seasonally varying skill of the EPS
variance information. In summary, for the weather station in
Innsbruck, the information content of the ensemble wind pre-
dictions seems to be rather low. This is in accordance with the
clearly different pattern of observations and EPS forecasts
shown in Fig. 2.

4.2 Rotation-allowing model without correlation (RAM-0)

Figure 4 shows the estimated mean effects of the RAM-0
setup in comparison with BLM-0 on the wind direction at
Innsbruck and Hamburg for the forecast steps+12 and+24 h
valid at 12:00 and 00:00 UTC, respectively. The marginal
effects are non-centered and shown for the mean covari-
ates within 10◦ wind sectors conditional on the day of the
year. The BLM-0 model for Innsbruck shows a distinct sea-
sonal dependency of the post-processed wind direction for
both times of the day (Fig. 4a, c). During winter at 12:00
and 00:00 UTC, mainly down-valley winds (approximately
280◦) are predicted, whereas over the rest of the year, the
EPS mainly forecasts up-valley wind directions. This pat-
tern is more pronounced during night (00:00 UTC) and has
less variability in summer. In general, the BLM-0 setup
seems to mainly capture the climatological mean wind di-
rection; this leads to little variations between the different
wind directions issued by the EPS. In contrast, the rotation-
allowing RAM-0 setup has the flexibility to post-process the
wind directions conditional on the forecasted EPS wind di-
rection, which is apparent for the Innsbruck station at both
12:00 and 00:00 UTC: for 12:00 UTC the seasonal depen-
dency leads to either up-valley or down-valley wind con-
ditional on the ensemble wind direction and on the day of
the year (Fig. 4b), whereas at 00:00 UTC almost no seasonal
variation exists and the predicted wind direction solely de-
pends on the issued ensemble wind forecasts (Fig. 4d). At
Hamburg, a completely different picture can be seen: almost

no post-processing conditional on the ensemble wind direc-
tion or the day of the year is visible for both time steps and
model setups (Fig. 4e–f). In other words, the predicted en-
semble wind direction fits the observed wind direction quite
well, and only little statistical correction is needed.

4.3 Predictive performance – models without correlation

To investigate the predictive performance of the two com-
peting setups, Fig. 5 shows the discretized logarithmic score
based on the bivariate Gaussian distribution (LS; see Ap-
pendix B) and the energy score (ES; see Appendix B) for
the forecast steps from +12 to +72 h at a 12-hourly tempo-
ral resolution. In addition, skill scores are shown with the
raw EPS as a reference or comparing the different setups to
each other. Both multivariate scores are proper scores (Gneit-
ing and Raftery, 2007) and evaluate the full predictive distri-
bution returned by the statistical models. The scores for the
different forecast horizons show an overall better predictive
performance at Hamburg than at Innsbruck. For both stations,
the forecasts valid at 00:00 UTC have more skill than those
for 12:00 UTC, with higher diurnal variations at Innsbruck.
In terms of the ES, the improvements of the BLM-0 model
over the raw EPS are about 29 % for Innsbruck and 8 % for
Hamburg (Fig. 5e, f). In terms of the LS (Fig. 5b, c), the
skill scores are higher, with improvements of approximately
87 % and 33 % for Innsbruck and Hamburg, respectively. The
predictive performance gain for the more flexible rotation-
allowing RAM-0 setup compared to the BLM-0 specification
is around 7 % for Innsbruck and 2 % for Hamburg in terms
of the ES (Fig. 5e, f). The LS shows slightly less pronounced
relative improvements for the more flexible setup (4 % and
1 %; Fig. 5b, c). The distinct improvements in the scores for
RAM-0 are as expected for Innsbruck due to a more flexi-
ble utilization of the ensemble information. For plain areas
like Hamburg, we assume the better performance is based on
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Figure 3. Cyclic seasonal intercept and slope effects according to Eq. (3) employing a constant correlation of zero for weather stations
Innsbruck (dashed) and Hamburg (solid) at forecast step +12 h (valid at 12:00 UTC). The effects for the location parameters µ? (a–d) and
scale parameters σ? (e–h) are shown on the linear and log scales, respectively. The shading represents the 95 % credible intervals based on
MCMC sampling.

an enhanced adjustment of the location parameters as both
wind components are included in the linear predictors and is
not due to the smooth rotation (cf. Fig. 4).

4.4 Rotation-allowing models with correlation

After investigating the two competing location or scale se-
tups, we now focus on an extension of the RAM-0 model
by explicitly estimating the underlying correlation structure.
Different model specifications for the correlation parameter
ρ are tested employing the same linear predictors for µ? and
σ? (see Table 1).

Figure 6 shows correlation parameters predicted by differ-
ent models for the forecast step +12 h for the full validation
period. For comparison, the underlying correlation structure
of the raw EPS is also shown. The latter is distributed simi-

larly for Innsbruck and Hamburg and has almost the shape of
a Gaussian distribution (Fig. 6a, e). The RAM-IC intercept-
only model, with a varying intercept over the year, estimates
correlations between −0.27 and 0.48 for Innsbruck (Fig. 6b)
and values near zero without clear seasonal variations for
Hamburg (Fig. 6f). At both stations, the models with varying
effects conditional on the wind direction have similarly dis-
tributed correlation parameters with a slightly larger range of
predicted values for the RAM-ADV model (Fig. 6d, f) than
for the RAM-DIR setup (Fig. 6c, g). The predicted correla-
tion parameters are on average larger for Innsbruck than for
Hamburg.
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Figure 4. Estimated mean effects for the derived post-processed wind direction at Innsbruck (a–d) and Hamburg (e–h) for the forecast steps
+12 and +24 h (valid at 12:00 and 00:00 UTC). The colored lines show marginal effects for the post-processed wind direction conditional
on mean values within 10◦ wide wind sectors given the training data set. The effects are non-centered and are calculated conditional on the
day of the year according to model setups BLM-0 (a, c, e, g; Eq. 3) and RAM-0 (b, d, f, h; Eq. 4).

Figure 5. Predictive performance in terms of the logarithmic score (LS) and the energy score (ES) based on the full predictive bivariate
distribution for the out-of-sample validation period. The two specifications BLM-0 (Eq. 3) and RAM-0 (Eq. 4) are compared. (a, d) Evolution
over time for the forecast steps from +12 to +72 h at a 12-hourly temporal resolution. The solid lines represent the mean values per forecast
step, the shading the respective 95 % confidence intervals based on boot-strapped mean values. To unify the orientation of both scores, the
negative LS is shown (i.e., smaller is better). (b, c, e, f) Aggregated skill scores over the forecast steps, comparing the specifications BLM-0
and RAM-0 either against the raw ensemble (RAW) or against each other. Skill scores are in percent; positive values indicate improvements
over the reference.
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Figure 6. Distribution of the correlation parameters for the underlying dependence structure of the raw ensemble and for the fitted correlation
according to the models specified in Table 1. The distributions are shown for Innsbruck (a–d) and Hamburg (e–h) at the forecast step +12 h
for the out-of-sample validation period.

4.5 Predictive performance – models with correlation

Figure 7 shows the verification of bivariate wind speed pre-
dictions with an explicitly estimated correlation parameter
for Innsbruck and Hamburg; the scores are aggregated over
the forecast steps +12 to +72 h at a 12-hourly temporal res-
olution. As in Fig. 5, the predictive performance is validated
in terms of the LS and the ES, based on the full predic-
tive bivariate distributions. However, for comparing differ-
ent predictive distributions with different correlation struc-
tures, the ES’ discriminatory ability is limited as it mainly
focuses on the location part and hardly discriminates between
different correlation structures (Pinson and Tastu, 2013). In
Fig. 7, skill scores are shown for the different correlation
models with the RAM-0 post-processed model as a refer-
ence. The RAM-EMP model, employing the empirical cor-
relation of the raw EPS, performs slightly worse than the
reference model for both stations and both scores. This in-
dicates that the raw dependence structure of the EPS has
rather low skill. However, for all other models which explic-
itly model the correlation, only little additional improvement
in terms of the LS and the ES is found. At Innsbruck, the
RAM-IC intercept-only model performs best in terms of the
ES (Fig. 7c). Regarding the LS, minor benefits are present
for the most flexible model setup, RAM-ADV (Fig. 7a). For
Hamburg, a similar picture is depicted in terms of the LS
(Fig. 7b). For the ES (Fig. 7d), the RAM-IC model performs
slightly worse than the reference model, and the RAM-ADV
model setup performs best.

To validate the calibration of the post-processed predic-
tions, multivariate rank histograms (Gneiting, 2008) are ex-
emplarily shown for the model with no correlation RAM-0

Figure 7. Skill scores aggregated over all forecast steps from +12
to +72 h at a 12-hourly temporal resolution based on the full pre-
dictive bivariate distribution for the out-of-sample validation period
for Innsbruck (a, c) and Hamburg (b, d). Each box-whisker con-
tains boot-strapped mean values per forecast step. The scores are
shown for the different correlation models specified in Table 1, with
the univariate post-processed model assuming a constant correla-
tion of zero (RAM-0) as a reference. The lighter gray color for the
RAM-EMP model indicates that it uses the correlation structure of
the raw ensemble without further correlation. Skill scores are in per-
cent; positive values indicate improvements over the reference.

and for the model with the most flexible regression splines
in comparison to the raw EPS (Fig. 8). Although the lat-
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Figure 8. Multivariate rank histograms for raw and post-processed ensemble forecasts according to the correlation model setups RAM-0 and
RAM-ADV. The results are shown for Innsbruck (a–c) and Hamburg (d–f) at the forecast step+12 h for the out-of-sample validation period.
For purposes of presentation, three ranks of the raw EPS are combined in a single bar. To stabilize the randomness of ties in the calculation
of the multivariate ranks, the median of 20 independent repetitions is plotted.

ter is valid for the grid cell rather than for a single loca-
tion, both model setups tested are clearly better calibrated
than the highly under-dispersive raw ensemble. However,
for Innsbruck the multivariate rank histograms of the post-
processed forecasts are slightly over-dispersive (Fig. 8b, c)
and for Hamburg slightly negatively skewed (Fig. 8e, f). The
RAM-ADV flexible model setup shows no significant differ-
ence compared to the model with assumed zero correlation
(RAM-0).

4.6 Evaluation for all sites

After the previous model comparison at two weather stations,
Fig. 9 shows aggregated skill scores for groups of the respec-
tive five stations classified as topographically plain, mountain
foreland, and alpine valley sites (see Fig. 1). For the location
or scale models, two comparisons are shown: the BLM-0
model is compared to the raw EPS as a reference (Fig. 9a,
d), and the more flexible rotation-allowing setup, RAM-0, is
compared to BLM-0 (Fig. 9b, e). For the correlation specifi-
cation, the most flexible model, RAM-ADV, is compared to
the RAM-0 correlation model employing a constant correla-
tion of zero (Fig. 9c, f).

The post-processing employed by the simplest model,
BLM-0, already shows a distinct improvement over the raw
EPS with the largest values for alpine valley sites. In terms
of the ES, the skill scores range between mean values of
10 % for the plain sites and 45 % for the alpine valley sites
(Fig. 9d). A similar picture with an overall larger magnitude
is shown for LS (Fig. 9a). In the comparison of the two dif-
ferent setups for the location or scale part (Fig. 9b, e), the
more flexible setup is better regarding both scores for all sta-

tion types; the largest improvements are found for stations
located in the foreland, followed by stations within alpine
valleys. The validation of the correlation models (Fig. 9c, f)
shows that the flexible estimation of the correlation depen-
dence structure is clearly superior only for station sites within
an alpine valley.

5 Discussion and conclusion

In this study, we model the zonal and meridional wind com-
ponents employing the bivariate Gaussian distribution in a
distributional regression framework. In contrast to previous
studies all distribution parameters, namely the location and
scale parameters for both wind components but also the cor-
relation coefficient between them, are estimated simultane-
ously. The overall performance of the models is evaluated
for three groups of station types classified as topographically
plain, mountain foreland, and alpine valley sites.

Section 5.1 discusses the benefits of the rotation-allowing
model setup, RAM-0, over the baseline model, BLM-0. In
Sect. 5.2, the different correlation models are discussed re-
garding the potential reason why the improvement of the pre-
dictive performance obtained with the more flexible correla-
tion model is relatively small. At the end, in Sect. 5.3, a rec-
ommendation is given for which statistical model should be
used in matters of simplicity and performance.

5.1 Rotation-allowing model setup

The rotation-allowing model (RAM-0) utilizes the zonal and
meridional ensemble wind forecasts for both components of
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Figure 9. Aggregated skill scores (LS: a–c, ES: d–f) for groups of respective five weather stations which are located in the plain, in the
mountain foreland near the Alps, or within an alpine valley. Each box-whisker contains boot-strapped mean values of the forecast steps from
+12 to +72 h at a 12-hourly temporal resolution for all included stations. The scores are based on the full predictive bivariate distribution
for the out-of-sample validation period. Compared are the BLM-0 model with the raw EPS as a reference, setup RAM-0 with setup BLM-0
as a reference, and the RAM-ADV correlation specification with the RAM-0 correlation model as a reference. Skill scores are in percent;
positive values indicate improvements over the reference.

the two-dimensional location and scale parameters. This al-
lows the statistical model to adjust for potential misspecifi-
cations in the ensemble wind direction by a smooth rotation
conditional on the day of the year and the forecasted wind di-
rection. For stations in complex terrain, this may be particu-
larly advantageous due to unresolved topographical features.

The estimated effects confirm a distinct wind rotation for
the valley site (Innsbruck), while for the station in the plain
(Hamburg) barely any adjustments of the forecasted wind di-
rection are needed (see Fig. 4). In terms of predictive per-
formance, the more flexible model, RAM-0, outperforms the
baseline model, BLM-0, for almost all times and stations (see
Fig. 9b, e). However, the increase in predictive skill is simi-
lar for all three station types. This indicates that – even if no
or only little rotation is needed – additional covariates usu-
ally yield a better adjustment of the distribution parameters
and therefore an increased predictive skill. Furthermore, the
results indicate that EPS wind forecasts in complex terrain
are not solely tilted due to unresolved valley topographies,
but show little skill on average. Thus, for alpine valley sites
the rotation-allowing model mainly captures climatological
properties conditional on the forecasted EPS wind direction.
In accordance with this analysis, larger improvements can be
found for stations located in the mountain foreland where the

EPS has a higher information content and a certain rotation
might be necessary.

These findings are supported by an additional compar-
ison against the model inspired by Pinson (2012), which
only uses a linear transformation of both wind components
for the location parameters. The results show that a more
flexible rotation-allowing specification is required to capture
strong wind distortions; the full comparison is shown in Ap-
pendix C2.

5.2 Correlation specifications

Several different model specifications for the correlation pa-
rameter have been tested, among others a flexible setup em-
ploying wind direction and speed as potential covariates for
the correlation parameter by nonlinear smooth effects follow-
ing the idea of Schuhen et al. (2012). The estimated correla-
tion parameters seem to be reasonable, and show, on average,
larger values for Innsbruck than for Hamburg (see Fig. 6 for
forecast step +12 h). In terms of predictive skill, all mod-
els tested show only minor improvements compared to the
models with zero correlation. The improvements are highest
for stations located inside alpine valleys, with a mean im-
provement of 1 % in terms of ES and 5 % in terms of LS skill
scores (see Fig. 9c, f). The relatively small benefits due to the
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Figure 10. Two exemplary forecasts showing the respective observation (black cross), the climatological estimate (gray dashed line), the
EPS member forecasts (gray points) and their empirical density (brown line), and the estimated bivariate distributions for the setups RAM-0
and RAM-ADV, without (green line) and with (blue line) modeled correlation, respectively. The climatological estimate uses the mean,
the standard deviation, and the correlation of the observed wind components as bivariate distribution parameters. The lines show the 95 %
percentiles of the respective bivariate distribution, the small crosses the ellipsoid centers or the location parameters. The shown observations
and forecasts are valid at Innsbruck (a) and Hamburg (b) for 25 March 2014 12:00 UTC (forecast step+12 h). The forecasts are characteristic
for (a) a valley station and (b) a station in the plain within our study.

explicit estimation of the correlation are confirmed by the re-
sults of an additionally tested model based on Schuhen et al.
(2012) (Appendix C1).

As an illustration of the potential reasons for no more pro-
nounced enhancements by an explicit estimation of the de-
pendence structure, Fig. 10 shows exemplary forecasts for a
station located within an alpine valley (Innsbruck; Fig. 10a)
and in the plains (Hamburg; Fig. 10b). The figure shows the
raw EPS members (gray points) plus the respective observa-
tions (black crosses), climatological estimates (gray dashed
lines), and the corresponding post-processed bivariate distri-
butions without (green lines) and with (blue lines) an explic-
itly estimated correlation parameter. For the valley station,
the raw EPS has only little skill and the uncertainty of the
post-processed bivariate distributions tends towards the cli-
matological estimate. Although a distinct correlation is esti-
mated by the RAM-ADV model, the variance is still in the
same range as for the RAM-0 model. In contrast, for the sta-
tion in the plain the uncertainty of the post-processed predic-
tions is much smaller than the uncertainty of the climatolog-
ical estimate due to a higher information content of the EPS.
The estimated correlation is close to zero and the predictions
of RAM-0 and RAM-ADV look almost identical with a sim-
ilar elliptic shape as the raw EPS. This means that for lo-
cations where the ensemble provides only little information,
the post-processed uncertainty is rather large and the statis-
tical model tries to capture unexplained features by the cor-
relation parameter. For stations where the predictive skill of
the raw ensemble is already high, the statistical models get

valuable information about the expected wind situation and
are able to accurately specify the location and scale parame-
ters. Thus, the correlation of the residuals becomes less im-
portant and typically smaller. This interpretation is supported
by the probabilistic scores used in this study which show im-
provements in the RAM-ADV models mainly for alpine val-
ley sites where the skill of the raw ensemble is rather low.

5.3 Proposed model specification

The study shows that the flexible rotation-allowing models
bring significant performance benefits for stations located in
complex terrain as well as for stations in the plain. Therefore,
we propose using a similar setup employing both EPS wind
components by a smooth rotation-allowing framework. For
correlation, we have not found a clear distinction between the
different correlation models tested for stations located in the
plain and the foreland. For stations located within an alpine
valley, minor improvements could be found. Despite these
somewhat unexpected findings, this has clear advantages for
operational usage: estimating a single bivariate response dis-
tribution forcing the correlation dependence structure to zero
is the same as post-processing each wind component sepa-
rately in a univariate setup with marginal Gaussian response
distributions. A univariate post-processing approach for each
respective wind component simplifies the estimation process
in terms of complexity of the required statistical models and
reduces computational time with only little loss of predictive
skill, at least for the stations tested in this study.
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Code availability. The bivariate Gaussian model estimation is
performed in R 3.5.2 (R Core Team, 2018) based on the R pack-
age bamlss (Umlauf et al., 2018). The package provides a flexible
toolbox for distribution regression models in a Bayesian framework.
Introductory material and example code on how to set up the mod-
els as presented in this article can be found at http://bayesr.r-forge.
r-project.org (last access: 28 June 2019). The computation of the ES
is based on the R package scoringRules (Jordan et al., 2019).

www.adv-stat-clim-meteorol-oceanogr.net/5/115/2019/ Adv. Stat. Clim. Meteorol. Oceanogr., 5, 115–132, 2019

http://bayesr.r-forge.r-project.org
http://bayesr.r-forge.r-project.org


128 M. N. Lang et al.: Bivariate Gaussian models for wind vectors

Appendix A: Model specification complements

A1 Smooth functions

Generalized additive models (GAMs, Hastie and Tibshi-
rani, 1986) and generalized additive models for location,
shape, and scale (GAMLSS, Rigby and Stasinopoulos, 2005)
are generalizations of linear regression models which al-
low one to include potentially nonlinear (and even multi-
dimensional) effects in the linear predictors η. Nonlinear
terms are frequently approximated by smooth functions, also
referred to as regression splines. These regression splines are
directly linked to the model parameters as additive terms in η
and allow the statistical model to include nonlinear transfor-
mations of a specific covariate, if needed. For further details
a comprehensive introduction to GAMs is given in Wood
(2017). An example of an additive predictor η with a smooth
function is

η = α0+ f1(x2)α1 · x1︸ ︷︷ ︸
linear effect for x1

+ f1(x2)︸ ︷︷ ︸
pot. nonlinear effect for x2

, (A1)

where α• are regression coefficients, x• the covariates, and
α1 · x1 and f1(x2) a linear and a potentially nonlinear one-
dimensional effect, respectively. Generally, f1 can be any
transformation of the covariate x2 dependent on the specifi-
cation of f1. For periodic values smooth “cyclic” splines are
often applied, meaning that the function has the same value
at its upper and lower boundaries. This is similar to apply-
ing a linear combination of (several) trigonometric functions,
as, e.g., performed by Schuhen et al. (2012). In this study,
we utilize “cubic” smooth functions with cyclic constraints.
A detailed description of cyclic cubic regression splines is
given in Wood (2017, chap. 4.1.3).

A2 Time-adaptive training scheme

To account for seasonal variations of the intercept and the
linear coefficients, seasonal cyclic splines are used. If the co-
variates provide sufficient information, a time-adaptive train-
ing scheme might not be required. However, if the bias and/or
the slope coefficient are not constant throughout the year
or the covariate’s skill varies over the year, these terms are
mandatory to allow the statistical model to depict seasonal
features.

We therefore fit one statistical model over a training data
set including several years of data, but allow the coefficient
included in the linear predictor(s) η to smoothly evolve over
the year:

η = α0+ f?0(doy)︸ ︷︷ ︸
seasonally varying

intercept

+ (α1+ f1(doy))︸ ︷︷ ︸
seasonally varying
coefficient for x1

· x1+ ·· ·

+ (αn+ fn(doy))︸ ︷︷ ︸
seasonally varying
coefficient for xn

· xn. (A2)

As before, α• are the regression coefficients, x• are the co-
variates, and f•(doy) employ cyclic regression splines con-
ditional on the day of the year (doy). Within this study, we
refer to the regression coefficients α• also as global intercept
or slope coefficients to emphasize that they are unconditional
on the day of the year.

Appendix B: Skill scores used for verification

To compare the different bivariate Gaussian models of this
study, we employ skill scores. A skill score shows the im-
provements over a reference. For all measures with a perfect
score of zero, the skill score simplifies to

skill score=
scorefcst− scoreref

scoreopt− scoreref
= 1−

scorefcst

scoreref
, (B1)

where scorefcst is the forecast’s score, scoreopt = 0 refers to a
hypothetical optimal or perfect score, and scoreref is the score
for the reference (Gneiting and Raftery, 2007).

In this study we use the logarithmic score (LS, Good,
1952) and the energy score (ES, Gneiting and Raftery, 2007)
to validate the probabilistic performance of the bivariate
Gaussian predictions of the statistical post-processing mod-
els. Both multivariate scores evaluate the full predictive dis-
tribution returned by the statistical models.

The calculation of the ES is based on the R package scor-
ingRules (Jordan et al., 2019). For a predictive distribution
f on Rd given through m discrete samples X1, . . .,Xm from
f with Xi = (X(1)

i , . . .,X
(d)
i ) ∈ Rd , i = 1, . . .,m, the ES can

be written as

ES(f,y)=
1
m

m∑
i=1
‖Xi−y‖−

1
2m2

m∑
i=1

m∑
j=1
‖Xi−Xj‖, (B2)

where ‖ · ‖ denotes the Euclidean norm on Rd and y =

(y(1), . . .,y(d)) ∈ Rd the multivariate observation. The calcu-
lation of the ES for all post-processed forecasts is based on
m= 1000 random draws from the bivariate Gaussian distri-
bution.

The logarithmic score is defined based on the log-density
(or log-likelihood):

LS(f,y)= log(f (y)), (B3)

where the probabilistic forecast on Rd is given by the proba-
bility density function f , and y = (y(1), . . .,y(d)) ∈ Rd is the
multivariate observation (Jordan et al., 2019). However, it is
not possible to compute skill scores based on the LS from
Eq. (B3). The reason is that the LS for a perfect prediction
is not zero but actually diverges to infinity. To mitigate this
shortcoming we follow Lindsey (1996, chap. 3.2.1) and de-
fine the likelihood based on the cumulative distribution func-
tion F on an interval of length 1 rather than the density at a
single point:

f (y)≈
F (y+1/2)−F (y−1/2)

1
, (B4)
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where1 is set to the precision of reporting y. Employing this
idea, the LS can be approximated (up to a constant) by

LS(f,y)∝ log(F (y+1/2)−F (y−1/2)). (B5)

This representation has the advantage that for a perfect fit the
LS is zero as F (y+1/2)= 1 and F (y−1/2)= 0 so that
LS= log(1− 0)= 0. Consequently, the corresponding skill
scores can be computed as shown in Eq. (B1). In this study,
we use 1/2= 0.1 m s−1; the computation of the bivariate
cumulative distribution function is based on the R package
mvtnorm (Genz and Bretz, 2009). For the discrete raw en-
semble forecasts of wind vectors, the empirical mean and co-
variance matrix of the ensemble are used to calculate the LS
as in Eq. (B5). This implicitly assumes that the raw ensemble
wind forecasts follow a bivariate Gaussian distribution.

Appendix C: Further model comparisons

To benchmark the models as presented in this study, we com-
pare our specifications to those of Schuhen et al. (2012) and
Pinson (2012).

C1 Comparison with Schuhen et al. (2012)

Schuhen et al. (2012) fit a bivariate Gaussian model for the
wind components in three phases. First, they fit the corre-
lation parameter as a trigonometric function of the ensem-
ble mean wind direction by weighted nonlinear least squares.
They estimate the regression coefficients for the correlation
parameter offline in a pre-processing step for a separate year,
either for a single site or a group of stations. The adjustment
for a suitable number of trigonometric cycles must be done
manually, which can be prone to errors according to Schuhen
et al. (2012, p. 3207). Second, univariate models are fitted
for the components of the two-dimensional location parame-
ter by standard linear regression. Third, the two-dimensional
variance parameter of the bivariate Gaussian distribution is
estimated by maximum likelihood keeping all other parame-
ters fixed. In contrast to the first phase, the estimation within
the second and third phases is performed online using a
rolling training period, either for a single site or a group of
stations.

In this study, we apply Schuhen et al. (2012) using the im-
plementation of Lerch (2019). As the focus of the current
paper is on post-processing wind vector forecasts for sta-
tions with different site characteristics, we perform the es-
timation for each station separately. We use a rolling training
period of 40 days and employ two periods for the trigonomet-
ric function in the estimation of the correlation parameter on
the training data set. Figure C1 shows the comparison to the
baseline model BLM-0, to the rotation-allowing model with-
out correlation RAM-0, and to the rotation-allowing model
with correlation RAM-ADV for the out-of-sample validation
period of this study. The predictive performance of Schuhen

et al. (2012) is overall comparable to the BLM-0 setup. Ac-
cordingly, the comparison to RAM-0 and RAM-ADV con-
firms that within this study the largest potential for improve-
ment lies in the correct specification of the location and scale
parameters of the bivariate Gaussian distribution.

C2 Comparison with the Pinson (2012)-type model

Since one of the major aspects within this study is the ro-
tation of the wind direction, we compare our models to a
model inspired by Pinson (2012), which also uses both wind
components of the raw ensemble as predictors for both com-
ponents of the bivariate location parameter. We define the
two-dimensional location and scale part according to Pinson
(2012), but employ our model framework and fix the corre-
lation to zero, i.e., by

µ? = α?0+ f?0(doy)+ (α?1+ f?1(doy)) · vec1,mean

+ (α?2+ f?2(doy)) · vec2,mean,

log(σ?)= β?0+ g?0(doy)+ (β?1+ g?1(doy))
· vec?,log.sd,

rhogit(ρ)= 0, (C1)

where, as before, α• and β• are regression coefficients and
f• and g• are cyclic regression splines. The location part em-
ploys a linear transformation of the wind components, which
is able to rotate the wind direction but in a restricted linear
manner.

Figure C2 shows the comparison of the Pinson-type model
to this study’s baseline model BLM-0, to the rotation-
allowing model without correlation RAM-0, and to the
rotation-allowing model with correlation RAM-ADV for the
out-of-sample validation period. The results show that the
Pinson-type model is apparently a mixture of the BLM-0
and RAM-0 models. Hence, for minor distortions in wind
directions, such as in the foreland, the Pinson-type model
is already sufficient and has clear benefits when compared
to the non-rotation-allowing BLM-0 model. For stations in
complex terrain, the RAM-0 model shows clear advantages
over the less flexible Pinson-type model. This indicates that
a more flexible rotation-allowing specification is required to
capture strong wind distortions, e.g., due to discrepancies be-
tween the model and real topography. The explicit estimation
of the correlation (RAM-ADV) further increases the perfor-
mance, but mainly for alpine stations (see Sect. 5.2).
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Figure C1. As Fig. 9, but an adaption of the Schuhen et al. (2012) model is compared to the baseline model BLM-0, to the rotation-allowing
model without correlation RAM-0, and to the rotation-allowing model with correlation RAM-ADV.

Figure C2. As Fig. 9, but the model specification inspired by Pinson (2012) (Eq. C1) is compared to the baseline model BLM-0, to the
rotation-allowing model without correlation RAM-0, and to the rotation-allowing model with correlation RAM-ADV.
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