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Abstract. Extreme temperature and precipitation events occurring in Australia in recent decades have caused
significant socio-economic and environmental impacts, and thus determining the factors contributing to these
extremes is an active area of research. Many recently occurring record-breaking temperature and rainfall events
have now been examined from an extreme event attribution (EEA) perspective. This paper describes a set of stud-
ies that have examined the causes of extreme climate events using various general circulation models (GCMs),
presenting a comprehensive methodology for GCM-based attribution of extremes of temperature and precipi-
tation observed on large spatial and temporal scales in Australia. First, we review how Coupled Model Inter-
comparison Project Phase 5 (CMIP5) models have been used to examine the changing odds of observed ex-
tremes. Second, we review how a large perturbed initial condition ensemble of a single climate model (CESM)
has been used to quantitatively examine the changing characteristics of Australian heat extremes. For each ap-
proach, methodological details and applications are provided and limitations highlighted. The conclusions of this
methodological review discuss the limitations and uncertainties associated with this approach and identify key
unexplored applications of GCM-based attribution of extremes. Ideally, this information will be useful for the
application of the described extreme event attribution approaches elsewhere.

1 Introduction

1.1 Australian weather and climate extremes

Since around the year 2000, many high-impact extreme and
record-breaking temperature and precipitation events have
occurred over Australian regions (Bureau of Meteorology,
2013a, b, c, 2016a). During 2001–2010, the Murray–Darling
Basin (MDB) region, in south-eastern Australia, experienced
an extreme dry period that had severe environmental and
socio-economic consequences (Van Dijk et al., 2013). The
Millennium Drought in the MDB (defined here as the pe-
riod from 2001 to 2010) was the longest uninterrupted se-
ries of years since at least 1900 with below median observed
rainfall. The persistent heavy rainfall of 2010–2012 (Bureau
of Meteorology, 2012) ended the drought of the preceding

decade but resulted in severe flooding in northern and east-
ern Australia. This led to billions of dollars of flood dam-
age, the evacuation of thousands and 33 deaths (Queens-
land Floods Commission of Inquiry, 2012). Furthermore, fol-
lowing the consecutive strong La Niña events of 2010 to
2012, a period of well above-average temperatures occurred
across Australia (Bureau of Meteorology, 2014). In the pe-
riod since, record-breaking extremes were observed on sub-
daily to multi-year timescales and on spatial scales ranging
from single stations to Australia-wide (Bureau of Meteorol-
ogy, 2016b). Many of these events were the most extreme
since high-quality national records began in 1910.

Australia has a highly variable climate that is influenced
by several large-scale climate modes such as El Niño–
Southern Oscillation (ENSO), the Interdecadal Pacific Os-
cillation (IPO), the Indian Ocean Dipole (IOD), the South-
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ern Annular Mode (SAM), the Subtropical Ridge (STR), and
the Madden Julian Oscillation (MJO) (King et al., 2014; Ma-
her and Sherwood, 2014; Min et al., 2013). These large-scale
modes may also interact with local- and regional-scale pro-
cesses, such as soil moisture feedbacks, to impact the sever-
ity, duration or likelihood of extreme events such as heat-
waves (Perkins et al., 2015). Anthropogenic climate change
is also a key influence in the observed characteristics of some
extreme weather and climate events (Herring et al., 2018).
Understanding the influences of both these anthropogenic
forcings and/or natural climatic variability on recent tem-
perature and rainfall extremes affecting Australia, as well as
elsewhere, has become an active research avenue.

1.2 Extreme event attribution

Extreme event attribution (EEA) studies focus on under-
standing a particular observed extreme weather or climate
event. These studies typically combine observational and
model data to determine whether various factors (e.g. anthro-
pogenic greenhouse gas composition changes) contributed
to a specific observed aspect of an observed extreme event,
such as its intensity, magnitude or frequency. Likelihood-
based EEA approaches compare the probability of occur-
rence of an extreme event in the current climate with the oc-
currence in a counterfactual climate without anthropogenic
climate change. There are a number of different methods pos-
sible for applying the risk-based EEA approach, including
using observations, regional climate models, or coupled or
atmosphere-only general circulation models (GCMs).

Numerous previous studies have made quantitative assess-
ments of the influences of anthropogenic forcings on the like-
lihood of an observed event using fraction of attributable risk
(FAR) values. A FAR value is usually defined as

FAR= 1−
PNAT

PALL
, (1)

where PNAT denotes the probability of an event occurring in a
reference state and PALL under a parallel forced state (Stone
and Allen, 2005). The probability of a defined event occur-
ring may, for example, be calculated in a large model ensem-
ble of climate models and then compared to the equivalent
event probability in a parallel counterfactual model experi-
ment, such as where only natural climate forcings (e.g. vol-
canic aerosols and solar irradiance) are imposed. The FAR
value provides a quantification of the change in probability
of the defined event occurring that can be attributed to a par-
ticular cause, specifically the difference between the model
experiments (i.e. anthropogenic climate forcings). The FAR
approach has been widely implemented in event attribution
studies (see Herring et al., 2014, 2016, 2015), though the de-
tails of its calculation vary.

This paper contributes to a series that outlines different
methodological approaches to examining and applying event
attribution approaches to observed extremes. Many extreme

weather and climate events occurring in Australia have now
been examined from an event attribution perspective using a
cognate methodology. Broadly, this methodology is a quan-
titative event attribution approach using GCMs and some
Earth system models (ESMs), which is outlined in detail
here. As a large number of studies have now been con-
ducted focused on Australian weather and climate extremes
(see Lewis et al., 2017b), we detail the methodological ap-
proaches used in these analyses. In this paper, the climate
models and attribution approaches that have been applied to
Australia’s observed extremes are described and compared
with a level of methodological detail not provided previously.
The specific purpose of this contribution to this EEA-focused
series is (i) to provide detailed information about model-
based EEA studies applied to Australia and hence (ii) to
provide guidance for others aiming to interpret these previ-
ously published results or ideally apply the described EEA
approaches elsewhere.

2 Model descriptions

The Australian-focused studies detailed in our paper use dif-
fering EEA model frameworks that we call either multi-
model or single-model ensembles, with the applications, ad-
vantages and limitations of each discussed throughout. The
multi-model ensemble is constituted by many different cli-
mate models, each with a small number of contributing en-
semble members or realizations. The single-model ensemble
is alternatively constituted by a large number of ensemble
members of one model only that differ in terms of model
physics or initial conditions in order to sample internal cli-
mate variability. Each model framework provides a different
level of conditioning, which provides a methodological fo-
cus on specific aspects of weather and climate such as sea
surface conditions. This degree of conditioning is important
for interpreting attribution statements (National Academies
of Sciences, Engineering, and Medicine, 2016) and is dis-
cussed throughout.

2.1 Multi-model ensemble (CMIP5) description

In the first examples, attribution statements on observed ex-
tremes were made by analysing models participating in the
Coupled Model Intercomparison Project Phase 5 (CMIP5)
(Taylor et al., 2012). CMIP5 provides a framework for co-
ordinated and standardized climate change experiments, in-
cluding detection and attribution experiments. More than 50
models, from over 20 international groups, participated in
CMIP5 by contributing data, although the number of mod-
els and realizations varies depending on experiments. Exper-
iments are tiered by importance and participation for each
experiment is voluntary. All the models are fully coupled
(atmosphere–ocean GCMs and ESMs) and of varying hori-
zontal and vertical resolutions, and are run under standard-
ized time-evolving forcings (e.g. time-varying concentra-

Adv. Stat. Clim. Meteorol. Oceanogr., 5, 133–146, 2019 www.adv-stat-clim-meteorol-oceanogr.net/5/133/2019/



S. C. Lewis et al.: Approaches to attribution of extreme temperature and precipitation events 135

tions of various atmospheric constituents such as greenhouse
gases).

Multiple CMIP5 experiments can be used together to anal-
yse changes in the characteristics of observed weather and
climate extremes that are associated with various forcings.
These experiments are

– historical, 1850–2005, using time-evolving atmospheric
compositions due to observed anthropogenic and vol-
canic influences, solar forcings and emissions of short-
lived species from natural and anthropogenic aerosols.

– historicalNat, 1850–2005, using time-evolving volcanic
influences and solar forcings.

– piControl. Control runs provided for each model which
are long, freely evolving climate simulations with
greenhouse gas concentrations appropriate for circa
1850 that permit the analysis of a large number of model
years.

– rcp8.5. Representative Concentration Pathway (RCP)
simulations of 2006–2100. RCPs are scenarios that as-
sume particular policies are implemented to achieve
greenhouse gas emissions targets. These scenarios in-
clude a range of future projections for future popula-
tions and technological responses (Moss et al., 2010).
For instance, in the rcp8.5 future scenario, the radia-
tive forcing increases before reaching a level of about
8.5 W m−2 at the end of the century.

We note that the use of multiple CMIP5 models does not con-
dition to aspects of the observed state of the climate (such
as sea surface temperatures) that prevailed during the event
in question. Simulated SSTs in a given year in CMIP5 re-
alizations do not relate directly to those observed. This un-
conditional approach using CMIP5 is described as the most
comprehensive and easy to interpret (National Academies of
Sciences, Engineering, and Medicine, 2016, p. 51), as all as-
pects of weather and climate are considered and analysis is
not limited to particular climatic situations. Coupled model
ensembles may be used with a degree of conditioning on cli-
mate modes by subsetting climate model years characterized
by a given mode of variability (e.g. the NINO3.4 index could
be calculated in models to discriminate between phases of the
El Niño–Southern Oscillation). This approach has been used
in EEA studies, but the conditioning is still, by necessity, less
restricted than for atmosphere-only simulations (discussed
further in Sect. 2.3).

2.2 Single-model ensemble (CESM) description

We next describe a single-model ensemble for EEA, which
samples the influence of internal variability in the attribu-
tion of climate extremes to human influence. In recent years,
this approach has been demonstrated using two versions of

the Community Earth System Model (CESM). The first ver-
sion is a 21-member ensemble of CESM-CAM4, run at ap-
proximately 2◦ resolution (Fischer et al., 2013). The second,
newer version is the 40-member CESM-LENS ensemble, run
at 1◦ resolution (Kay et al., 2015). Of course, the methods
and examples described below could (and should) be repli-
cated for other climate models with similar resources (see
descriptions in Kirchmeier-Young et al., 2017, for example).
This would allow for an estimate of the influence of internal
variability, combined with at least some structural differences
across individual climate models, to be made systematically
for events.

The specifics of the multi-member CESM ensemble dif-
fer slightly compared to CMIP5. Firstly, instead of a his-
toricalNat simulation, a long control is used to represent the
counterfactual world. Here, greenhouse gas forcings are held
to pre-industrial levels, and the model freely evolves under
these constraints for the length of the simulation. Secondly,
all realizations forced by historical and anthropogenic emis-
sions are identical, except in a tiny atmospheric perturbation
in the atmospheric temperature initial conditions of each sim-
ulation. This is enough to trigger completely different real-
izations of internal variability over the length of the simula-
tion. The start of each realization is forced by historical con-
ditions, and the rcp8.5 scenario from the start of 2006. The
older version of CESM employed in attribution studies has
a control run of 982 years and 21 anthropogenically forced
realizations that commence in 1950. This compares to the
newer version with a control run of 1800 years and 35 an-
thropogenically forced realizations that commence in 1920.
The CESM ensemble provides an unconditional attribution
framing.

2.3 Other model ensembles

We refer later to CMIP5 comparisons with results that are
also derived from other model frameworks, which we de-
scribe here. First, we describe the Attribution of extreme
weather and Climate Events (ACE) framework (Stott et al.,
2016). Unlike the coupled ocean–atmosphere CMIP5 exper-
iments, these are atmosphere-only model simulations driven
by prescribed sea surface temperatures (SSTs). This model
approach uses two large ensembles of simulations over the
extreme event period: one ensemble simulates the actual cli-
mate, including all known external forcings (anthropogenic
forcings are long-lived greenhouse gases, aerosols, tropo-
spheric and stratospheric ozone and land-use changes, and
natural forcings are from volcanic aerosols and solar irradi-
ance). The second ensemble provides various possible rep-
resentations of a “natural” climate without or with only mi-
nor human influences. In these experiments, an estimate of
the anthropogenic contribution to observed SST conditions
is calculated and removed. Both ensembles are comprised
of members that are run with slightly different (perturbed)
initial conditions. In these ACE experiments, the prescribed
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SSTs imposed mean that the attribution statement is condi-
tioned on the current climate state.

We also refer to HAPPI (Half a Degree Additional warm-
ing, Prognosis, and Projected Impacts) simulations (Mitchell
et al., 2017). These are decade long simulations of various
scenarios, including the present day (2006–20015) driven by
observed SSTs and sea ice, and a historicalNat simulation
and stabilized at higher warming thresholds (1.5 and 2 ◦C
warmer than pre-industrial). Again, each ensemble member
within an experiment suite differs from others based on ini-
tial weather conditions.

3 Specifics of EEA approaches

We next discuss the specifics of how these model datasets
have been used in previous studies to determine attribution
statements of observed Australian extremes, though note that
other methodological approaches are also suitable for EEA
using these models. We first detail a set of CMIP5-based at-
tribution analyses focused on quantifying changes in the risk
of Australian seasonal-scale events that were the most ex-
treme in the observational record. Second, we discuss single-
model attribution approaches. The suitability and application
of these methods to other events and regions are discussed in
Sect. 5.

3.1 Multi-model ensemble (CMIP5)

3.1.1 Model evaluation

Different CMIP5 models were included in ensembles used to
analyse observed Australian extremes, based on data avail-
ability at the time of publication and the ability of models to
capture critical aspects of observed climate. In the CMIP5-
based attribution examples discussed in Sect. 4, a subset of
available models was used that ideally facilitates the determi-
nation of meaningful attribution statements about causes of
changes in the odds of an event. That is, models ideally cap-
ture the right mechanisms, with realistic frequency and char-
acteristics, necessary to reproduce the event under consider-
ation (Christidis et al., 2013a), and a sufficiently large en-
semble of numerous models was available for analysis. Sev-
eral approaches have been applied for assessing the validity
of model simulations for Australian seasonal-scale extremes,
although note that there are numerous evaluation procedures
we do not discuss here.

In one example examining Australia-wide summer tem-
peratures (Lewis and Karoly, 2013a), models were selected
based on their skill in capturing interannual variability in
Australian summer temperatures. First, a time series of
Australia areal-average observed summer temperatures was
calculated from the Australian Water Availability Project
(AWAP) gridded dataset from 1910 to the present (Jones
et al., 2009). Using a bootstrap resampling procedure with
replacement, 2000 time series were synthesized from 10-

year blocks of observed data. For each synthetic time series,
a standard deviation was calculated and a spread of stan-
dard deviations determined. This resampling procedure was
then applied to all available CMIP5 historical simulations to
calculate simulated standard deviations of Australian sum-
mer temperatures for model years 1911–2005 (the period of
modelled–observed overlap). In instances where models con-
tributed more than one realization to a CMIP5 experiment
(e.g. r1i1p1, r2i1p1), data were assessed collectively for all
available realizations. Next, this study compared observed
and simulated data using a Perkins skill score (Perkins et al.,
2007). The Perkins score is defined as

Skill score=
n∑
1

min(Zo,Zm), (2)

where n is the number of bins used to calculate the PDF, Zo is
the frequency of observed values, and Zm is the frequency of
simulated values in a given bin. This skill score measures the
common area between modelled and observed distributions
(see Fig. 1). For each model, skill scores below 0.5 indicated
physically unrealistic instances, where models capture less
than 50 % of variations in Australian average annual mean
temperature.

Further Australia EEA studies used a two-sided
Kolmogorov–Smirnov test (KS) to compare modelled
distributions of variables with observed ones. For example,
a study of the consecutive record-breaking spring tempera-
tures experienced in Australian in 2013/2014 used KS tests
to compare temperatures in CMIP5 historical simulations
from various models to observed Australian annual average
temperatures. Only models where the distributions (esti-
mated using a kernel density function) were statistically
indistinguishable (p = 0.05) were used for analysis.

These CMIP5 model selection steps were modified in sub-
sequent Australia EEA studies, based on the event analysed.
Analysis of the 2010–2012 eastern Australian extreme rain-
fall required that models capture several elements of ob-
served climate variability (Lewis and Karoly, 2014a). Here,
a larger set of evaluation criteria was applied to CMIP5 mod-
els to investigate this extreme event with a more complex cli-
matological context than previous studies focused on large-
scale long-duration temperature extremes (see Fig. 2). In this
case, CMIP5 models were selected for analysis based on
(1) their representation of monthly surface air temperature
variability in the NINO3.4 region, (2) their representation of
Australian rainfall variability and (3) rainfall amount associ-
ated with ENSO conditions (e.g. teleconnected relationship).
This study considered simulated values to be physically re-
alistic where values were in the 5th–95th percentile window
of observed values determined using a bootstrap resampling
method, whereby 10 000 time series of 80-year length were
generated from observed anomalies. Models were only in-
cluded where they are realistic compared to observation for
all three criteria.
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Figure 1. Conceptual representation of approaches to evaluating
CMIP5 models, showing a visual comparison of a high (a) and
low (b) Perkins skill scores, and identical hypothetical observed and
simulated distributions of temperature anomalies (c).

3.1.2 FAR calculation and uncertainty assessment

Australian EEA studies using CMIP5 models have employed
FAR values as a means to quantify the change in proba-
bility of an observed event that can be assigned to anthro-
pogenic climate forcings (e.g. greenhouse gases) (see Lewis
and Karoly, 2013, 2014b). The calculation of a FAR value
first requires that an event be precisely defined and a thresh-
old of exceedance determined. Various studies have defined
extreme events differently from the examples highlighted
here and have also demonstrated that attribution statements

can be sensitive to the spatio-temporal scales used to define
the event (Angélil et al., 2014; Cattiaux and Ribes, 2018; Uhe
et al., 2016). Hence, each application of this EEA approach
must consider event definitions and the potential sensitivity
of FAR values to definitions.

Seasonal-scale Australia temperature analyses defined a
threshold of the second most extreme entry in the observed
record (Lewis and Karoly, 2013a, 2014b). This temperature
anomaly (1T2) was then used rather than the most extreme
anomaly (1T1) to avoid selection bias of using this pre-
cise value and to provide an inherently conservative analysis.
Other CMIP5-based analyses have used a suite of thresholds
to determine FAR values. When examining the record heavy
2010–2012 precipitation across eastern Australia, Lewis and
Karoly (2014a) calculated FAR values based on exceed-
ing a series of thresholds defined by the observed precip-
itation mean (“average”), 1 standard deviation above nor-
mal (“heavy”) and 2 standard deviations above normal (“ex-
treme”).

FAR values compare the probability of an event exceed-
ing the pre-defined threshold (e.g. 1T2) in each processed
CMIP5 experiment. In these studies, the CMIP5-derived
FAR was calculated using Eq. (1), with either the histor-
ical simulations (most recent years 1976–2005) or rcp8.5
simulations (years 2006–2020) as the forced (“ALL”) state,
and either the historicalNat or piControl simulations as
the reference (“NAT”) state. In the Australia studies high-
lighted in Sect. 4, FAR values were reported for various
CMIP5 experiment comparisons. The 2013 record annual
and spring temperature study by Lewis and Karoly (2014b)
provided FAR values determined by comparing CMIP5 his-
torical years 1976–2005 with historicalNat/piControl com-
bined data, in addition to FAR values determined by compar-
ing these same naturally forced reference simulations with
rcp8.5 years 2006–2020. This comparison demonstrated the
change in FAR values (i.e. risk of extremes attributable to
anthropogenic forcings) through time.

The probabilities in Eq. (1) are determined through sev-
eral possible approaches. The count-based estimate simply
determines the number of times the defined threshold was ex-
ceeded, relative to the total sample size. Alternatively, prob-
abilities can be calculated as the area under the fitted distri-
bution exceeding the event threshold, compared to the entire
distribution (Lewis and Karoly, 2013b). Distributions can be
fitted using a kernel density function or a fitted generalized
extreme value (GEV) model which is suited to examining
rare events.

Studies also attempt to assess uncertainty in FAR calcula-
tions. For each experiment, only a single FAR value is ob-
tained for each realization of each model. A bootstrap re-
sampling procedure was applied in this set of CMIP5-based
studies to evaluate the uncertainty associated with FAR es-
timated. In determining the FAR values associated with the
2012/2013 Australian summer temperatures, each distribu-
tion of temperature was bootstrap resampled 10 000 times
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Figure 2. Schematic of the three-step CMIP5 model evaluation used for examining influences on heavy rainfall of 2010–2012. Left-hand
side shows flowchart evaluation steps (for the NINO3.4 index and south-eastern Australian (SEA) rainfall in December–February (DJF))
and the number of models suitable, and right-hand side demonstrates evaluation of model realizations against observations for the metrics
considered.

(using in each iteration sub-samples of all years from only
50 % of available model simulations) and a distribution of
FAR values was then calculated (Lewis and Karoly, 2013b).
This calculated distribution of 10 000 FAR values repre-
sents the uncertainty associated with using different models
and provides a basis for communicating FAR ranges. This
2012/2013 study, for example, reported both the median and
10th percentile FAR values, meaning they are exceeded by
90 % of the values in the bootstrapped FAR distributions.
These are described respectively as “best estimate” and “very
likely” values. By providing both the best estimate (median)
and very likely (10th percentile) values, an estimate of the
uncertainty in FAR values is conveyed.

3.2 Single-model ensemble (CESM)

Perkins et al. (2014) used the 21-member version of CESM
to determine the anthropogenic signal behind heatwave in-
tensity and frequency during the 2012/2013 Australian sum-
mer. The total number of heatwave days (heatwave fre-

quency), as well as the hottest heatwave day (heatwave in-
tensity) (see Perkins and Alexander, 2013), were computed
using the excess heat factor heatwave metric (Nairn and
Fawcett, 2013). This metric was used since it underpins op-
erational heatwave forecasts in Australia. Areally averaged
heatwave frequency and intensity for the 2012/2013 austral
summer were extracted from AWAP (Jones et al., 2009). The
frequency of each metric was compared via the forced and
controlled simulations, as outlined above. Over the period
1984–2012, heatwave intensity increased by 2-fold, and fre-
quency by 3-fold, relative to the counterfactual climate.

The calculations of FAR using a multi-member single-
model ensemble are similar to those described for CMIP5.
That is, evaluations based on the similarity between the ob-
served and model distributions, such as the Kolmogorov–
Smirnov test, are employed, however for each individual re-
alization against the observations. Since Australian climate
extremes occurring after 2005 have been analysed by this ap-
proach, the historical and rcp8.5 realizations were spliced to-
gether. Previous attribution studies using CESM have found
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no significant difference between each CESM realization and
the observational dataset that includes the extreme event of
interest (Perkins-Kirkpatrick et al., 2019a; Perkins et al.,
2014; Perkins and Gibson, 2015). A more detailed evalua-
tion of the weather systems that drive Australian heatwaves
is provided by Perkins and Gibson (2015), with the model
performing adequately across all 21 members.

After evaluation, bootstrapping with replacement is per-
formed 10 000 times to create new samples of the counterfac-
tual and factual simulations, each of which are 50 % the size
of the original. This allows for uncertainties in model sam-
pling. For each bootstrapped iteration, the observed extreme
of interest is isolated and its frequency compared in the con-
trol and forced samples, resulting in a distribution of 10 000
FAR values. As a conservative measure, the 10th percentile
FAR value is reported. This allows for 90 % confidence that
the true FAR value based on CESM is at least as big as this
value.

It is notable that small atmospheric perturbations initi-
ate substantial differences in the resolving climate variabil-
ity (see Fig. 3), and, therefore, within the extremes them-
selves. For example, Fischer et al. (2013) demonstrated that
the spatially aggregated distribution of changes in numerous
extremes in CESM is comparable to that in CMIP5. Ranges
in regional heatwave trends also significantly vary across
CESM realizations (Perkins and Fischer, 2013). The rep-
resentation of synoptic systems, which ultimately drive ex-
treme events over short timescales, also demonstrates strik-
ing differences among CESM realizations (Schaller et al.,
2018). Thus, using just one or a few realizations from a given
model may not be an accurate estimate of how an extreme
event is represented or changing within that model. Inter-
nal variability, and the physical mechanisms it induces, can
dampen or enhance the actual climate signal of that model
for the extreme event of interest, particularly when FAR is
estimated for decadal-based time slices. Employing a large
number of realizations for a single model therefore compre-
hensively samples the influence of internal variability and
provides a robust FAR estimate for that individual model.

4 Examples of application to Australian extremes

We next detail examples that have employed the methods de-
scribed above to examine observed weather and climate ex-
tremes in Australia.

4.1 Multi-model ensemble (CMIP5) and combined
approaches

4.1.1 2012/2013 Australian summer temperatures

The first study employing CMIP5 detection and attribution
experiments to quantitatively assess the relative influence
of different climatic forcings on an observed extreme was
focused on the record hot Australia-wide 2012/2013 sum-

Figure 3. Example of the different realizations of ENSO, as de-
fined by the NINO3.4 index, in a version of CESM. For compari-
son, a subset of only 5 of 35 available realizations is shown using
different colours which demonstrate vastly different ENSO condi-
tions in realizations differing based on perturbed initial atmospheric
conditions.

mer (Lewis and Karoly, 2013a). The Australia-wide mean
temperatures from December 2012 to February 2013 were
the hottest in the observed high-quality record (extending
to 1910), with average conditions exceeding the observed
1911–1940 mean by 1.32 ◦C. This study compared the proba-
bility of extremes such as 2012/2013 in historical and rcp8.5
experiments with historicalNat and piControl experiments,
using the threshold of the second highest mean (Tmean), max-
imum (Tmax) and minimum (Tmin) summer temperatures ob-
served.

By using FAR values to compare the likelihood of extreme
Australia-wide summer temperatures between the CMIP5
experiments, this analysis showed that it was very likely
(> 90 % confidence) there was at least a 2.5 times increase
in the odds of extreme heat (Tmean) due to human influences
using simulations to 2005 (with a best estimate FAR value
of 0.72) and a 5-fold increase in this risk using simulations
for 2006–2020 (with a best estimate FAR value of 0.87). The
observed event is expected to occur 1-in-16 years without
anthropogenic influences, in 1-in-6 years in the historical ex-
periment and 1-in-2 years in the rcp8.5 experiment.

4.1.2 2016 Great Barrier Reef bleaching

Quantitative attribution using CMIP5 models also con-
tributed to a later study analysing factors affecting Great Bar-
rier Reef (GBR) bleaching (Lewis and Mallela, 2018). In
2016, the GBR endured a significant bleaching event: 93 %
of the northern, 700 km stretch of coral was bleached, and by
June, > 60 % of this coral had been killed in association with
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heat stress. As coral bleaching is intimately connected to heat
stress, amongst other risk factors, this 2018 attribution study
attempted to determine the change in likelihood of anoma-
lous heat in the Coral Sea region that houses the GBR. As
coral heat stress is accumulated through both the magnitude
and duration of temperatures above a threshold, several sea
surface temperature metrics were investigated, including im-
mediate heat stress, antecedent heat stress and degree heating
weeks (DHWs).

For each metric, probabilities of exceedance were com-
pared in CMIP5 detection and attribution experiments. Re-
sults varied depending on the metric. There was a significant
increase in the likelihood of extreme January–March temper-
ature anomalies when anthropogenic forcings are included
(median FAR= 0.85; 10th percentile FAR= 0.80). More no-
tably, the 2016 observed conditions for combined antecedent
and coincident SST anomalies (DJF, together with March–
May conditions) do not occur in CMIP5 simulations with-
out anthropogenic forcings (FAR= 1). While this study ex-
amined a suite of climatic, environmental and biotic factors,
the CMIP5-based attribution permitted the statement to be
made that “Anthropogenic greenhouse gases likely increased
the risk of the extreme Great Barrier Reef bleaching event
through anomalously high sea surface temperature and the
accumulation of thermal stress”.

4.1.3 2010–2012 Australian heavy rainfall

The extreme heavy precipitation of 2010–2012 occurring
over Australia was also examined from an attribution per-
spective (Lewis and Karoly, 2014a). Over this period, east-
ern Australia experienced its heaviest ever 2-year accumu-
lated rainfall. Rainfall records were broken on daily through
to seasonal timescales for large spatial regions. The heavy
rainfall and disastrous accompanying flooding were coinci-
dent with two strong, consecutive La Niña events, which
are typically associated with enhanced rainfall in the eastern
Australian rainfall. Using five CMIP5 climate models, King
et al. (2013) examined the anthropogenic influence on rain-
fall totals and maximum consecutive 5 d rainfall (Rx5day)
across south-eastern Australia in 2012. This analysis deter-
mined that there was little robust change in the risk of ex-
treme rainfall events between the 1861–1890 and 1976–2005
periods. Overall, the magnitude of cool sea surface tempera-
tures in the NINO3.4 region was found to have a greater ef-
fect on Rx5day compared to the magnitude of anomalously
warm local SSTs.

A further study by Lewis and Karoly (2014a) examined
this period of record heavy precipitation using CMIP5 mod-
els in combination with two sets of simulations conducted as
part of the ACE initiative, in which ensembles of simulations
are produced representing the recent climate with, and then
without, the effects of human influences. This study explored
the heavy rainfall in several defined Australia regions on
multiple seasonal to multi-year timescales, and results were

broadly in agreement with King et al. (2013). The approach
used aimed to determine the robustness of FAR values for the
2010–2012 heavy Australia rainfall to changes in the attribu-
tion framework. Results showed that attribution statements
for the rainfall events were variable, with FAR values sensi-
tive to the attribution parameters considered, including event
thresholds, regions and seasons. Furthermore, estimates of
the attributable change in rainfall risk depended on the model
datasets considered. This study argued that consideration of
model outputs from several datasets (e.g. CMIP5 and ACE)
was useful for establishing robust attribution statements for
extreme rainfall events.

4.2 Single-model ensemble (CESM) and combined
approaches

4.2.1 2014 Australian May heatwave

Analysis of the 2014 Australian May heatwave demonstrated
a 23-fold increase in experiencing an event of similar con-
current length and magnitude over the period 1995–2020
(Perkins and Gibson, 2015). This study was focused on a
19 d heatwave during 8–26 May 2014, areally averaged for
Australia, that had a magnitude of +2.52 ◦C above 1961–
1990 May temperatures. The event was compared between
the control and forced CESM simulations (see Fischer et al.,
2013) using the methods described above. The 23-fold in-
crease (FAR= 0.96) over 1995–2020 is almost double the
12-fold increase (FAR= 0.92) detected for the earlier period
1975–1994.

4.2.2 2017/2018 Tasman Sea marine heatwave

In analysing the 2017/2018 Tasman Sea marine heatwave,
the 35-member ensemble of CESM was used in conjunc-
tion with CMIP5 to compare the two approaches (Perkins-
Kirkpatrick et al., 2019a). This was to address whether dif-
ferent amounts of anthropogenic warming were detected via
the two ensembles. During November 2017–January 2018,
sea surface temperatures (SSTs) were 1.7 ◦C higher over the
greater Tasman Sea compared to 1961–1990. The occurrence
rates in percentages were computed for the current (2008–
2027) and future (2041–2060) periods. This approach was
used since the methods described above would have resulted
in FAR assessments of 1, as this particular event never oc-
curred in the counterfactual world. Interestingly, it was found
that the event magnitude was so rare that it did not occur un-
til approximately 2035 in CESM. Within the future climates,
a signal of a 56 % occurrence rate was higher in CESM than
the 41 % occurrence rate in CMIP5. Moreover, the human
influence behind the initiating atmospheric pressure system
was also analysed. During November 2017, mean sea level
pressure just off south-eastern Australia was 5.2 hPa stronger
than the 1961–1990 monthly average. A small anthropogenic
signal was found in the CESM ensemble (an increase of
3 % in future climates), though not CMIP5. Thus, combining
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the results across the two approaches, it was concluded that
while climate change rendered the 2017/2018 Tasman Sea
marine heatwave virtually impossible in the absence of an-
thropogenic climate change, natural climate variability was
an important influence on the physical mechanism which ini-
tiated the event.

4.3 Expansion to future extremes under varying levels
of global mean warming

When the Paris Agreement was drafted in December 2015,
with the aim of limiting global warming to well below 2 ◦C
above pre-industrial levels and with a preferential aim of
1.5 ◦C global warming (UNFCCC, 2016), there was little
understanding of the characteristics of the climate at 1.5 ◦C
global warming. The extension of the existing event attribu-
tion framework to future 1.5 and 2 ◦C global warming levels
helped to expand our knowledge of these climates and how
contemporary extremes would change in frequency in these
climates. The subsequent studies were well utilized in policy
documents, including the United Nations Intergovernmental
Panel on Climate Change (IPCC) Special Report on 1.5 ◦C
published in October 2018.

Here we briefly discuss the “time-slicing” techniques used
to analyse extremes in future warmer worlds using a multi-
model ensemble such as CMIP5. The CMIP5 ensemble,
and in particular the simulations run under different rep-
resentative concentration pathways, are designed to inves-
tigate transient climate change projections under plausible
greenhouse gas emissions scenarios. Careful application of
a “time-slicing method” (James et al., 2017) allows for anal-
ysis of 1.5 and 2 ◦C climates in transient states, which are
quite likely to be the outcome in the real world given emis-
sions trajectories and existing emissions reduction pledges.

In the CMIP5 models, a pre-industrial climate baseline
may be defined from a choice of experiments including the
control simulations or historical simulations with anthro-
pogenic influences removed. Subsequently, time slices from
individual climate model projections can be extracted (see
Fig. 4 for a schematic). For example, King et al. (2017)
extracted all model years within decades where the global-
average temperature was 1.3–1.7 ◦C above the equivalent
model natural baseline and defined this as their 1.5 ◦C world.
Similarly, the 2 ◦C world was defined as years within decades
where the global average temperature was 1.8–2.2 ◦C above
the equivalent model natural baseline. When extracting the
years within the 1.5 and 2 ◦C worlds, there are choices that
can be made around

1. the use of all RCPs or just a subset of scenarios,

2. the definition of a model pre-industrial baseline,

3. and the temperature range and length of the averaging
window.

Figure 4. Schematic illustrating the time-slice method. Global-
average annual temperature anomalies (relative to 1901–2005 his-
toricalNat average) are shown for ACCESS1.3 rcp8.5 and rcp4.5
for 2006–2100. The boxes show the years which are extracted from
each RCP to construct the 1.5 ◦C global warming world (dark blue)
and the 2 ◦C world (light blue). The overlap window between the
RCPs is indicated with a darker colour.

For (1), if the difference that is being inferred between the 1.5
and 2 ◦C worlds is strongly influenced by the rate of global
warming (e.g. sea level rise), then the results will differ be-
tween scenarios and they should not be combined. In the case
of Australian temperature and precipitation means and ex-
tremes there was little evidence of a difference due to the rate
of global warming through 1.5 and 2 ◦C (King et al., 2017).
For (2) it has been shown that the use of different approx-
imations for pre-industrial baselines (e.g. late 19th century
observations/historical simulations or historicalNat simula-
tions for the 20th century) can make a difference of as much
as 0.1–0.2 ◦C between baselines (Hawkins et al., 2017) and,
therefore, in the estimate of anthropogenic warming to date
(Haustein et al., 2017). This choice will influence the timing
within the projections when the global-average temperature
will have warmed by 1.5 or 2 ◦C. For (3), the use of shorter
averaging windows and/or narrower temperature ranges to
define the warmer worlds will decrease sample sizes. Given
the aim is to best simulate the world at 1.5 ◦C anthropogenic
warming, some leeway must be given here to incorporate
natural interannual and interdecadal variability that can re-
sult in departures in global-average surface temperature of as
much as 0.2 ◦C in individual years due to phenomena such as
ENSO and the Interdecadal Pacific Oscillation.

This framework for analysis was then applied in King et
al. (2017) to examine Australian extremes under the Paris
Agreement global warming limits. They extended existing
attribution analyses for events like the record hot “Angry
summer” of 2012/2013 (Lewis and Karoly, 2013) to exam-
ine their likelihoods under future warming scenarios. Con-
sistent with Lewis and Karoly (2013), King et al. (2017)
found a large increase in the likelihood of hot Australian
summers exceeding the previous record, from ∼ 3 % chance
per year in a pre-industrial climate to∼ 44 % chance per year
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in the current world. In future, the probability of having sum-
mer temperatures that are considered extreme contemporar-
ily rises further, to the point that they become commonplace
and cooler than average. In a 1.5 ◦C world, the likelihood
of hot Australian summer temperatures is ∼ 57 % and in a
2 ◦C world it is ∼ 77 %. This result supports the statement
that there is a substantial benefit to limiting global warming
for Australia in terms of reduced frequency of heat extremes.
The analysis was extended to other contemporarily extreme
events, such as the hot sea temperatures in the Coral Sea as-
sociated with Great Barrier Reef coral bleaching in 2016 and
the heavy rainfall in Queensland in December 2010.

This framework illustrates the utility of the CMIP5 en-
semble and event attribution methodology beyond exam-
ining extreme events only in the current climate context.
Analysis of the 1.5 and 2 ◦C warmer worlds results in an
important contribution to our understanding of these pos-
sible future climates and their implications. We also note
that other model setups have been used to examine specif-
ically the changing nature of climate extremes in warmer
worlds, including atmosphere-only multi-model ensembles
(HAPPI) (Mitchell et al., 2017) and single coupled model
ensembles (BRACE) (Sanderson et al., 2017). Whilst CMIP5
transient future simulations have general use for examining
possible future climates, these are arguably of less utility in
analysing the precise implications of specific global warm-
ing targets (hence the development of frameworks such as
HAPPI). These warming target-based model datasets have
recently also been applied to Australian extremes (e.g. Lewis
et al., 2017a).

5 Ideal applications and specific limitations

5.1 Multi-model ensemble (CMIP5)

The CMIP5-based event attribution methodology described
above is useful for estimating the roles of anthropogenic
and natural climate influences in extreme events. By mak-
ing comparisons between model simulations representing the
current climate and that of a counterfactual world without
anthropogenic influences, the effect humans have had on
extreme events may be quantified. Overall, the presented
method is limited in its applications for several key reasons.

First, the CMIP5-based approaches are best suited to
large spatio-temporal events (sub-continental to continen-
tal spatial-scale extreme events on daily to multi-year
timescales), rather than short-duration or small-scale events
that likely require large ensemble sizes and/or finer hori-
zontal resolution. Second, the CMIP5 method is useful in
sampling the anthropogenic attributable signal across vary-
ing climate model configurations. This means that differ-
ences in model physics, parameterization schemes, the sim-
ulation/exclusion of certain physical mechanisms that drive
extreme events, as well as climate model sensitivity, are ac-
counted for when quantifying FAR values. However, most

models employed using this method are represented by just
one or at most a few realizations of the same experiment (e.g.
historical, historicalNat, rcp8.5). Therefore, the influence of
internal variability is unlikely fully accounted for, especially
at the individual model level.

5.2 Single-model ensemble (CESM)

Using a large ensemble of a single model in attribution as-
sessments should not currently be seen as a substitute to other
approaches, particularly when this type of ensemble is lim-
ited to, at best, a handful of individual models. Rather, this
approach is complementary to existing methods, by includ-
ing a robust anthropogenic estimate from plausible realiza-
tions of fully coupled internal climate variability. For this
to be effective, evaluation of the model must be performed
so its simulation of observed conditions is verified. Indeed,
should enough individual models provide multi-member en-
sembles similar to CESM, future versions of this approach,
when performed over an ensemble of these models, could re-
place the current CMIP5-style approach. Since relatively few
realizations of each model are provided in CMIP5, the effect
of internal variability of each model on resulting FAR as-
sessments is not necessarily adequately accounted for. This
needs to be taken into consideration as the FAR methodology
evolves in the future, and we note that an increasing number
of large ensembles are becoming available for analysis (see
Kirchmeier-Young et al., 2019; Maher et al., 2019; Parker et
al., 2017).

6 Conclusions

6.1 Recommendations for future application of
GCM-based approaches

This paper has outlined a cogent examination of recent
extreme temperature and precipitation events in Australia
from an extreme event attribution perspective using GCMs
(and some ESMs). The models used in these examples are
not conditioned to specific atmospheric or oceanic states
and hence data are available and accessible for use. The
methodologies can be applied to developing attribution state-
ments for extreme events occurring elsewhere, provided
that event-specific model evaluation is performed first. For
precipitation-related extremes in particular, we recommend
that rigorous model evaluation is necessary prior to attri-
bution and that multiple model-based approaches are com-
bined (for example, the combination of GCM- and AMIP-
based results). In some extreme event cases, conditional EEA
model frameworks that are conditioned by specific bound-
aries (SSTs or seasonal forecasts) may be more robust (Na-
tional Academies of Sciences, Engineering, and Medicine,
2016).

There are some important overall limitations of the meth-
ods we have presented here. Firstly, while these studies pro-
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vide robust evaluations of models used against observed cli-
mates, they typically employ singular analytical approaches.
That is, one set of models (CMIP5 or CESM) was used to
examine the characteristics of observed extremes for most
of the reviewed studies, which may affect the attribution
statement provided. Independent re-examination of other ex-
treme event attribution studies found that attribution state-
ments are broadly similar for extreme temperature events
upon re-evaluation, but disagree for many extreme precip-
itation events (Angélil et al., 2017). Similarly, the Lewis
and Karoly (2014a) study discussed here found that aspects
of attributing the heavy Australian rainfall over 2010–2012
to specific causes were model dependent. While the set of
studies we have reviewed provide robust evidence of an-
thropogenic influences on observed Australia temperature-
related extremes, in combination with further results (e.g.
Knutson et al., 2014; Christidis et al., 2013a), a comprehen-
sive analysis of uncertainty has not yet been undertaken. We
suggest a combination of approaches should be used in future
attribution studies.

We also note that the approaches are present-day focused
and consider only anthropogenic influences on climate events
already observed. As the world is projected to further warm
under growing greenhouse emissions, it is also helpful to
extend the extreme event attribution framework to under-
stand extremes in future, warmer climates. This was future-
focused analysis demonstrated in the time-slicing approach.
For EEA studies quantifying the human influence in tem-
perature extremes using an attribution framework, there is a
general trend towards a greater degree of confidence in the
results of temperature-related studies. For some temperature
extremes, studies have identified events that are virtually im-
possible without anthropogenic influences (FAR values of
one) (Imada et al., 2018; Knutson et al., 2018; Lewis and
Karoly, 2014b; Walsh et al., 2018; Perkins-Kirkpatrick et al.,
2019). More recent studies are increasingly presenting risk
ratio (RR) rather than FAR values, as a clearer communi-
cation of attribution statements (see discussion in National
Academies of Sciences, Engineering, and Medicine, 2016)
and in light of the rapid saturation of FAR values for some
event types (Harrington et al., 2018). Reflecting on the results
of the studies presented here and these FAR issues, we sug-
gest that further applications of the methods we have outlined
present risk ratio (RR= 1

1−FAR ) rather than FAR values.

6.2 Future directions

While these studies have provided comprehensive evidence
of the factors (anthropogenic and natural) contributing to
specific observed extremes, several unexplored research di-
rections should be noted. As the validity of all event at-
tribution statements depends on the representation of ob-
served climates and variability in models, a systematic anal-
ysis of uncertainty in attribution statements in the Aus-
tralian context would be useful for providing recommenda-

tions around robust attribution statements. While a larger
sample of independent models could make up for some
of the under-representation of internal climate variability,
emerging evidence suggests that the variability in some ex-
tremes in a multi-member ensemble for a single climate
model encompasses a considerable portion of the CMIP5 en-
semble (Fischer et al., 2013; Perkins-Kirkpatrick and Gib-
son, 2017). Thus, if multi-member ensembles were avail-
able for all coupled climate models, a truer estimate on
the influence of internal variability, in addition to the struc-
tural uncertainties motioned above, would be accounted for
in resulting attribution assessments. While currently, multi-
member ensembles of each climate model in a repository
like CMIP5 are not available, largely due to computational
and storage constraints, such a project is being undertaken as
part of US CLIVAR (Climate Variability and Predictability
Program (https://www.earthsystemgrid.org/dataset/ucar.cgd.
ccsm4.CLIVAR_LE.html, last access: 1 July 2019). We also
note that the approaches presented here estimate FAR un-
certainty using bootstrap resampling approaches. This tech-
nique, however, is noted to perform poorly in quantifying
statistical uncertainty, and comprehensive studies performed
elsewhere argue for the implementation of more sophisti-
cated statistical methods (Paciorek et al., 2018).

The temperature and precipitation-based studies high-
lighted here effectively demonstrate how anthropogenic cli-
mate change is already affecting extremes and is likely to do
so further under the Paris Agreement warming levels. How-
ever, these studies only broach this key research area, focus-
ing for the most part on large spatial- and temporal-scale ex-
tremes such as seasonal heat. Further studies exploring the
contributing factors to complex climatological events (such
as the emerging 2018 drought in New South Wales), com-
pound events (such as recent heatwaves co-occurring with
catastrophic fire weather in eastern Australia) or event im-
pacts (such as on the Great Barrier Reef ecosystem or on hu-
man health) would be scientifically valuable as well as useful
to a range of stakeholders and policy-makers. Future work at-
tributing Australia’s weather and climate extremes will target
these complex events and impacts using CMIP6, in addition
to other GCM-based datasets.

Code and data availability. We have presented no new analy-
ses here. AWAP, CMIP5 (https://cmip.llnl.gov/cmip5/data_getting_
started.html, last access: 4 December 2018), C20C (https://portal.
nersc.gov/c20c/data.html, last access: 4 December 2018), CESM
(http://www.cesm.ucar.edu/models/ccsm4.0/model_esg/, last ac-
cess: 4 December 2018) and HAPPI (http://www.happimip.org/
happi_data/, last access: 4 December 2018) data are all publicly
available datasets and available for download.
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