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Abstract. Deep learning (DL) methods were used to develop an algorithm to automatically detect weather
fronts in fields of atmospheric surface variables. An algorithm (DL-FRONT) for the automatic detection of
fronts was developed by training a two-dimensional convolutional neural network (2-D CNN) with 5 years
(2003–2007) of manually analyzed fronts and surface fields of five atmospheric variables: temperature, specific
humidity, mean sea level pressure, and the two components of the wind vector. An analysis of the period 2008–
2015 indicates that DL-FRONT detects nearly 90 % of the manually analyzed fronts over North America and
adjacent coastal ocean areas. An analysis of fronts associated with extreme precipitation events shows that the
detection rate may be substantially higher for important weather-producing fronts. Since DL-FRONT was trained
on a North American dataset, its extensibility to other parts of the globe has not been tested, but the basic frontal
structure of extratropical cyclones has been applied to global daily weather maps for decades. On that basis,
we expect that DL-FRONT will detect most fronts, and certainly most fronts with significant weather. However,
where complex terrain plays a role in frontal orientation or other characteristics, it might be less successful.

1 Introduction

Fronts are defined as the interface or transition zone between
two air masses of different density (American Meteorolog-
ical Society, 2018). Almost invariably, these air masses are
characterized by contrasting temperature, pressure, moisture,
and wind fields. The canonical structure of an extratropical
cyclone (ETC) is distinguished by fronts demarcating the dif-
ferent air masses that provide the potential energy for such
systems.

Fronts are centrally important because they are usually
formed by lower tropospheric horizontal convergence and
associated upward vertical motion arising from large-scale
dynamical pressure forces in the atmosphere. The upward
vertical motion is associated with a variety of significant
weather events, including severe thunderstorms and a wide
spectrum of precipitation types and amounts. Thus, front lo-
cations are also areas of enhanced probability of significant
weather. Kunkel et al. (2012) found that in the US more than
half of extreme precipitation events exceeding the threshold

for a 1-in-5-year average recurrence interval occurred in the
vicinity of fronts.

Manual front identification by weather map analysis is
a labor-intensive process. This provides a strong motiva-
tion for developing accurate automated approaches for op-
erational applications. When considering the analysis of cli-
mate model simulations, such as the Coupled Model Inter-
comparison Project Phase 5 (CMIP5) and upcoming Phase
6 (CMIP6) suites, manual analysis is not feasible because
of the large number of simulated days (requiring analysis of
hundreds of thousands of individual days or hours). Auto-
mated approaches are essential. The immediate motivation
for this work was the need to evaluate frontal occurrences in
CMIP5 climate model simulations with a specific interest in
extreme precipitation events related to fronts.

Fronts are elongated in one dimension. Thus, the simple
representation of a front often used by meteorologists is a
curved line. As such, the development of automated meth-
ods differs from those of certain other important phenom-
ena such as ETC centers and tropical cyclones, where a point
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minimum in pressure is a suitable simplification of location.
Several automated methods have been developed to identify
fronts with varying degrees of success. In this paper we de-
scribe a novel approach using a deep learning neural network
(DLNN). Section 2 is a discussion of previously published
automated algorithms. Section 3 is a description of our al-
gorithm. Section 4 is a presentation of the training results
and the results of comparing fronts detected using the algo-
rithm with fronts that were manually identified by National
Weather Service (NWS) meteorologists as part of their op-
erational forecasting activities. Section 5 describes climato-
logical information derived from the application of the algo-
rithm. In Sect. 6 we discuss the effective use of the algorithm.

2 Previous work

Previous efforts to develop automated front detection al-
gorithms have generally calculated horizontal fields of the
Laplacian of a surface parameter. Fronts are associated with
high values of the Laplacian, i.e., areas where the param-
eter gradient is changing rapidly in space. In most cases,
the parameter includes a thermal element, but not always.
Hewson (1998) used the wet bulb potential temperature, θw,
which incorporates atmospheric water vapor content along
with temperature. Berry et al. (2011) and Catto et al. (2012)
also used θw. Jenkner et al. (2010) and Schemm et al. (2015)
used equivalent potential temperature, θe, which incorporates
atmospheric water vapor differently. It is not clear on first
principles whether there would be substantial differences be-
tween θw and θe in frontal detection. Since atmospheric water
vapor content is usually directly correlated with temperature
(e.g., higher absolute moisture associated with higher tem-
perature) in the vast majority of atmospheric conditions at
the surface, the use of potential temperature metrics that in-
corporate moisture will lead to higher numeric differences
between cold and warm air masses. By contrast, Simmonds
et al. (2012), Schemm et al. (2015), and Huang et al. (2017)
examined the use of surface wind as the sole variable. They
found this approach to be successful, although such an ap-
proach would be more vulnerable to labeling areas with no
density gradients as fronts. Parfitt et al. (2017) defined a pa-
rameter as the product of the relative vorticity (ζ ) and poten-
tial temperature (θ ). In this case, the identification of a front
is more stringent, requiring both a wind shift and a tempera-
ture change.

In each of these previous studies, it was necessary to
choose a single parameter, which can be a combination of
individual state variables, on which to perform the analy-
sis. The parameter can be chosen/constructed to best reflect
a physical understanding of the characteristics of fronts, but
there is no obvious flexible way to incorporate other atmo-
spheric fields to improve performance. Wong et al. (2008)
used a genetic algorithm to identify a set of weather sys-
tem types; this approach in principal can incorporate a large

set of fields, although as they applied it, a limited choice of
variables is still necessary to identify a feature as a partic-
ular type of meteorological system. Also, the performance
of an algorithm was typically evaluated based on qualitative
comparisons of the objectively identified fronts with manu-
ally drawn fronts, usually for a small number of situations.
Quantitative performance metrics were not provided in any
of these studies.

It should be noted that Sanders and Hoffman (2002) draw
a distinction between the fronts that are analyzed on sur-
face weather maps and baroclinic zones, showing that the
former are often not characterized by a density difference.
Sanders (2005) argues that it is not acceptable to label such
areas as fronts since density differences are required to pro-
duce key dynamical characteristics of ETCs. However, the
drawing of fronts where there are wind shifts and/or pres-
sure troughs, but no temperature difference, remains com-
mon practice among national meteorological services be-
cause of the accompanying weather changes, e.g., winds, sky
conditions.

3 Methods

3.1 Deep learning neural network (DLNN)

In operational meteorological analysis, fronts are identified
visually based on the approximate spatial coincidence of a
number of quasi-linear localized features: a trough (relative
minimum) in air pressure in combination with gradients in
air temperature and/or humidity and a shift in wind direction
(Stull, 2015). Fronts are categorized as cold, warm, station-
ary, or occluded, with each type exhibiting somewhat differ-
ent characteristics. The DLNN described herein is designed
to mimic the visual fronts recognition task performed by me-
teorologists.

The goal for the DLNN front detection algorithm (DL-
FRONT) differs from that in many visual recognition prob-
lems. Front detection does not involve identification of
whole-image characteristics or distinct, bounded regions. In-
stead, the goal is to estimate the likelihood that each cell in
a geospatial data grid lies within a frontal zone of a particu-
lar category – cold, warm, stationary, occluded, or none. The
“none” category allows the algorithm to positively identify
cells that do not appear to lie within any front region. These
results are then used to identify paths along which there is
a maximum likelihood that a front of a particular type is
present in order to produce front lines similar to those drawn
by meteorologists.

As explained by Goodfellow et al. (2016), “deep learning”
(DL) refers to machine learning algorithms that use multiple
layers of non-linear transformations to derive features from
input fields. Each successive layer learns to transform the
output from one or more previous layers into ever more ab-
stract, conceptual representations of the original inputs. The
outputs of a layer are called feature maps in recognition of
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their conceptual character. Most of these DL algorithms are
composed of artificial neural networks (NNs), with 2-D con-
volutional neural networks (CNNs) in common use for learn-
ing to detect features in image arrays. Our network uses a
technique known as supervised learning, where a “labeled”
dataset containing the desired network outputs for each input
is compared with the network outputs, and the differences
between them are used to modify the non-linear transforma-
tions in the different layers (Deng and Yu, 2014).

Our DL-FRONT network is built using five different types
of layers, which are described below. They are: 2-D convolu-
tion layers, rectified linear unit (ReLU) layers, 2-D dropout
layers, 2-D zero-padding layers, and a softmax layer. A net-
work layer operates on a data grid composed of a set of 2-D
spatial arrays (dimensions indicated by the indices i and j in
the equations that follow), where each spatial array in the set
contains values for a different measurement type or feature
(indicated by the indices k and/or l). This third dimension is
the “feature” dimension in the discussion below.

The 2-D convolution layer is a core component of most 2-
D CNNs. Spatial filters are convolved with an input data grid
to produce an output data grid as shown in Eq. (1).

Ok = bk +
∑L

l=1
f ◦klIl (1)

The kth feature map of the output data grid, Ok , is produced
by summing the convolutions of a set of filter kernels, fkl ,
with the feature maps, Il , of the input data grid and adding a
bias, bk , to each cell of the result. Each filter kernel, fkl , is
an M ×N grid of convolution weights. The number of input
feature maps, L, is not usually mentioned when describing
2-D convolution layers, so a layer is described as having an
M ×N kernel and K filters.

The ReLU layer and the softmax layer are examples of
activation layers. An activation layer produces an output by
applying a nonlinear function to an input, and it is critical to
the function of any NN. A NN without nonlinear activation
layers would be limited to producing linear superpositions
of its inputs. The introduction of nonlinearity makes it pos-
sible for a NN to approximate any continuous real function
of multiple variables (Kolmogorov, 1957) (Cybenko, 1989).
Neilsen (2015) describes how activation functions allow the
different elements, or neurons, within a NN to interact with
one another to produce arbitrary functions of the inputs.

The ReLU layer function in Eq. (2) is piecewise contin-
uous. It produces nonlinearity by setting the output to zero
when the input value is negative and setting the output value
to the input value when the input value is positive. The ReLU
layer applies this function element-wise to the input data
grid.

Okij =

{
0,Ikij < 0
Ikij ,Ikij ≥ 0 (2)

The softmax layer function in Eq. (3), unlike the ReLU layer
function, is applied to each feature vector in an input data

grid, I , producing an output data grid, O, of the same di-
mensions.

Okij =
eIkij∑L
l=1e

Ilij
(3)

The softmax function transforms the elements of a feature
vector from activation intensities into probability estimates
for each feature. It scales the elements of each feature vec-
tor to a range of zero to one, increases the dynamic range
between the largest and smallest values, and makes the el-
ements sum to a value of 1. The softmax layer is typically
used as the last layer in a network when the desired output is
category labels instead of continuous function values.

The 2-D dropout layer is used to help prevent overfitting
(Hinton et al., 2012). An overfit network will show high ac-
curacy on the training set, but it will perform poorly on data
it has not seen during training. The 2-D dropout layer func-
tion transforms an input data grid into an output data grid
by setting a fraction of the feature maps to zero. The feature
maps to set to zero are chosen at random in each training it-
eration. The feature maps that have been set to zero make no
contribution to the next layer, which forces the network as a
whole to find a more general solution that is robust to miss-
ing information. Dropout layers make it more difficult for the
network to encode an exact response to each training input
and are only functional during network training. No feature
maps are set to zero when the network is not being trained.

The zero-padding layer transfers an input data grid to an
output data grid that has the same size in the feature dimen-
sion but is larger by some number of rows and columns of
cells in the spatial dimensions. The unfilled cells in the out-
put data grid contain values of zero. The input data grid is
usually centered within the output data grid. A zero-padding
layer is often used to counteract the spatial shrinking effect
produced by a 2-D convolution layer, which produces an out-
put data grid that is M − 1 rows and N − 1 columns smaller
than its input, where M and N are the spatial dimensions of
the 2-D convolution filter. The zero-valued elements make no
contribution to the next layer.

The DL-FRONT 2-D CNN is trained by iteratively opti-
mizing the values of the weights and biases in the convo-
lution filters to minimize the difference between a labeled
dataset and a “predicted” dataset produced by the network
from a corresponding input dataset. The difference is mea-
sured using a cost, or loss, function. We use the categorical
cross-entropy loss function (Eq. 4) for training the network,
which has the form

H (p,t)=−
∑I

i=1

∑C

c=1
wc log(pic) tic, (4)

where H (pt) is the magnitude of the loss, p is a set of cat-
egory vectors taken from the network output, t is a corre-
sponding set of category vectors from the labeled dataset, w
is a per-category weight, I is the number of vectors, and C
is the number of categories. Each predicted and label vec-
tor has five elements, one for each of the five possible cold,
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warm, stationary, occluded, and none categories. Each label
vector is assigned one and only one category by giving the
appropriate element a value of 1 and the others a value of
0. The elements of each predicted vector contain values be-
tween 0 and 1, inclusive, which are the estimated category
likelihoods for that cell. The lower the likelihood value in
the predicted vector for the category marked as correct in the
label vector, the larger the contribution to the loss. The per-
category weights are used to adjust the relative significance
of the contributions from the different categories. Approxi-
mately 88 % of our data grid cells have no front present, so
the loss function is at risk of being dominated by the con-
tribution of the none category. Reducing the weight for the
none category relative to the weights for the other categories
will make the loss function less sensitive to that category.
Similarly, increasing the weight for a seldom-seen category
will make the loss function more sensitive to that category.

The Adam adaptive moment estimation technique
(Kingma and Ba, 2015) is the loss minimization strategy used
when training the network. Adam is a form of stochastic gra-
dient descent (SGD) that has been shown to perform well in
a variety of networks. As with most SGD techniques, Adam
has a primary initial learning rate parameter. The learning
rate sets the initial magnitude range of the changes to the
network weights and biases.

We implemented the DL-FRONT network in Python us-
ing numpy (van der Walt et al., 2011) and the Keras deep
learning library (Chollet, 2015) on both Tensorflow (Abadi et
al., 2015) and The Theano Development Team et al. (2016)
(Bergstra, 2010) computational backends. The training appli-
cation made use of the scikit-learn package (Pedregosa et al.,
2011) to provide k-fold cross-validation and hyperparame-
ter search. The “outer” network parameters such as learning
rate, number of layers, etc. are referred to as hyperparame-
ters. A significant part of the time spent developing a NN is
devoted to optimizing the hyperparameters.

We initially chose a network based on 2-D convolution
layers with 5× 5 kernels because of the structural similar-
ity we saw between a layer of this sort and a finite-difference
second-order spatial derivative function. The visual front de-
tection task described at the beginning of this section, if ex-
pressed mathematically, can be thought of as synthesizing
the results of various spatial derivatives of the different input
measurements at each point in the data grid.

We experimented with the basic architecture with a series
of hyperparameter searches using training runs of 100–200
epochs over a 1-year batch of data. An epoch is one full pass
through the training data. The experiments used the scikit-
learn GridSearchCV function to perform multiple training
runs, each with a different combination of learning rate, cat-
egory weights, number of 2-D convolution layers, sizes of
layer kernels, and numbers of filters in layer kernels. The hy-
perparameter combination from these experiments that pro-
duced the best validation accuracy and loss was chosen for
training for 1200 epochs over 5 years of data. The details of

Figure 1. Schematic of the DL-FRONT 2-D CNN architecture. The
five category input data grid on the left contains the five input sur-
face meteorological 2-D fields (temperature, humidity, pressure, u-
component of wind, v-component of wind). The five-category out-
put data grid on the right contains five 2-D likelihood estimates
for the five front categories (cold, warm, stationary, occluded, and
none).

these experiments are outside the scope of this paper. The
amount of time required to do an exhaustive search of all
hyperparameter combinations and ranges makes such a task
impractical. The highest accuracy and lowest loss in training
and validation out of the experiments we performed was with
the network described below.

Figure 1 shows a schematic of the resulting DL-FRONT 2-
D CNN architecture. At the far left of the figure is the input
data grid, which is composed of five “feature maps” of 2-
D meteorological fields (as compared to three feature maps
of 2-D color fields for an RGB image) on a 1◦ geospatial
grid. These meteorological fields are 3-hourly instantaneous
values of air temperature at 2 m, specific humidity at 2 m, air
pressure reduced to mean sea level, the east–west (u) compo-
nent of wind velocity at 10 m, and the north–south (v) com-
ponent of wind velocity at 10 m. The meteorological fields
were obtained from the Modern-Era Retrospective Analy-
sis for Research and Applications, Version 2 (MERRA-2;
Gelaro et al., 2017) and were sampled on a 1◦ latitude–
longitude grid over a domain of 10–77◦ N and 171–31◦W.
We obtained 37 984 sets of grids for the time span 2003–
2015.

The first network layer is a composite of a 2-D zero-
padding layer, a 2-D convolution layer with a 5×5 kernel and
80 filters, a ReLU activation layer, and a 50 % 2-D dropout
layer. The output of this layer is a data grid that has the same
spatial extent and 80 abstract feature maps. The next two lay-
ers have the same basic structure, producing output data grids
with 80 feature maps that have the same spatial extent as the
original input data grid.

The fourth network layer is different from the other three.
This layer is a composite of a 2-D zero-padding layer, a 2-
D convolution layer with a 5× 5 kernel and 5 filters, and
a softmax activation layer. The output is a data grid with 5
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categories (cold, warm, stationary, occluded, and none) that
has the same spatial extent as the original input data grid.

We found through our experiments that, compared to no
weighting, setting the category weight for the none category
to 0.35 and the other weights to 1.0 improved the network
accuracy for the other four categories without reducing the
performance for the none category. Inverse weighting based
on category frequency produced results that were worse than
that for no weighting. We also found that learning rates in
the range of 0.00005 to 0.0005 produced nearly identical
network loss and accuracy. The final learning rate chosen
was 0.0001.

3.2 Front polyline extraction

The output of the DL-FRONT 2-D CNN is a set of spatial
grids that are, in essence, maps of likelihood of the presence
of the five different front categories (cold, warm, stationary,
occluded, and none). In order to use these results in follow-
on studies, we needed to obtain polylines describing the lo-
cations of the front boundaries. We developed an application
using numpy (van der Walt et al., 2011) and scikit-image (van
der Walt et al., 2014) that traces out “ridgelines” of the like-
lihood fields for the different front types and reduces them to
a set of latitude–longitude polylines labeled by front type.

The extraction of front polylines from a front likelihood
data grid was initiated by creating a “one-hot” version of the
data grid and an “any front” likelihood data grid. The one-
hot data grid is of the same dimensions as the front likeli-
hood data grid where each category vector in the data grid is
altered to set the largest likelihood value to 1 and the other
likelihood values to 0. This assigns a single front type (or “no
front”) to each cell of the data grid. The 2-D “any front” like-
lihood data grid has the same spatial dimensions as the front
likelihood data grid. The value for a cell in the “any front”
data grid is the maximum likelihood value from the cold,
warm, stationary, and occluded front elements of the corre-
sponding category vector. Cells where the maximum likeli-
hood in the corresponding category vector is for “no front”
are set to 0. The “any front” likelihood data grid describes
networks of fronts which are often connected and is used in
the steps that follow because it helps ensure continuity in
cases where the front category may change along a contin-
uous boundary. For example, it is not uncommon for a front
boundary to oscillate between cold and stationary.

Next, the divergence of the “any front” data grid at each
cell in the grid is calculated using multiple applications of the
numpy gradient function. All values in the divergence data
grid greater than −0.005 are then set to zero, and a “mask”
data grid is created that has a value of 1 wherever the mod-
ified divergence data grid is non-zero. The resulting diver-
gence data grid has narrower features than the original data
grid and tends to have sharp minima lines running down the
centers of the front boundary regions.

The scikit-image medial_axis function from the morphol-
ogy module is applied to produce a data grid of skeletonized
front networks. The skeletonized front networks have the
same structure as seen in the mask data grid, but they have
been reduced to a width of one cell.

At this point, the one-hot data grid is used to segment the
skeletonized front networks and divergence data grids, pro-
ducing a pair of 3-D data grids with a category dimension.
Each skeletonized front network cell and divergence value is
now, in effect, labeled as belonging to a particular front type.

Each front type is processed in turn. For a given front
type we use the scikit-image label function from the mea-
sure module to identify each separate contiguous piece of
the skeletonized front network. For each piece just found we
find the endpoints of the segment and then find the set of
least-cost paths between those endpoints in the segmented
divergence data grid using scikit-image minimum cost path
(MCP) functions from the graph module. The result in each
instance is a raster representation of a polyline. We then con-
vert the raster to a polyline with the minimum number of
vertices needed to reproduce the raster. Finally, the latitude
and longitude values for the vertices are obtained to produce
latitude–longitude polylines.

Once this process is completed for the front likelihood data
grid for a single time step, we have a set of front boundary
polylines for each front in that data grid. We write the poly-
lines for each time step into a separate JSON file, identifying
the time and organizing by front type. We now have a dataset
similar to the original form of our labeled dataset, which is
described in Sect. 3.3.

3.3 Labeled dataset

Our labeled dataset was extracted from an archive of NWS
Coded Surface Bulletin (CSB) messages (National Weather
Service, 2019). Each CSB message contains lists of latitudes
and longitudes that specify the locations of pressure centers,
fronts, and troughs identified by NWS meteorologists as part
of the 3-hourly operational North American surface analysis
they perform at the Weather Prediction Center (WPC). Each
front or trough is represented by a polyline. We obtained
a nearly complete archive of 37 709 CSBs for 2003–2015
from the WPC and produced a data grid for each time step
by drawing the front lines into latitude–longitude grids that
matched the resolution and spatial extents of the MERRA-2
input data grids with one grid per front category. Each front
was drawn with a transverse extent of 3◦ (3 grid cells) to ac-
count for the fact that a front is not a zero-width line, and
to add tolerances for possible transverse differences in posi-
tion between the CSB polylines and front signatures in the
MERRA-2 dataset. The training, validation, and evaluation
described in the Results section were restricted to a region
around North America (Fig. 2) where the rate of front cross-
ings recorded by the CSBs was at least 40 per year in order
to account for the focal nature of the WPC surface analyses.
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Figure 2. The mask applied to the data grids during training and
evaluation. The area in dark red is the envelope of the areas where
the CSB dataset shows that there are more than 40 front boundary
crossings on average in each spatial grid cell each year over the
2003–2015 time span of the CSB dataset.

Initial algorithm development was done using the North
American Regional Reanalysis (NARR; Mesinger et al.,
2006) data with a resolution of∼ 32 km on a Lambert confor-
mal conic coordinate reference system (CRS) grid centered
on North America. Because fronts are inherently character-
ized by large spatial gradients normal to the front, our initial
hypothesis was that the best results would be achieved with
the highest available spatial resolution data. However, tests
indicated that better results were obtained by using a sub-
set of grid points at a coarser resolution of ∼ 96 km (three
NARR grid cells). We speculate that the analysis of a larger
spatial region is better able to detect the differences between
the two air masses demarcated by a front, particularly when
state variables change gradually across a frontal boundary.
In such cases, the natural spatial heterogeneity may mask the
frontal signal at the 96 km (three NARR grid cells) spatial
scale. We then trained with the MERRA-2 dataset, and found
that the validation accuracy and loss when training were bet-
ter than what we found with the NARR dataset. As a result,
we switched to using MERRA-2. We continued to use the
NARR projected CRS grid for some later analyses because
the grid is centered on North America where the CSB data
coincide and the grid cells vary less in area.

3.4 Front crossing rate determination

Frontal boundary crossing rates (the frequency of days on
which fronts pass a point location) were used as practi-
cal metrics for determining how well DL-FRONT performs
in comparison to the CSB labeled dataset. Comparisons of
monthly or seasonal front crossing rates over a spatial grid
are much less subject to minor differences in front location
than comparisons of polylines at individual time steps. These
comparisons can also be used to analyze any variations in re-
sults that depend on geographic location or time. The rates

were calculated for each front type and for the aggregate case
of all front types.

The monthly front crossing rate for a given front type and
month was calculated by selecting the appropriate front poly-
lines from the 3-hourly time steps for the month and accu-
mulating front crossing counts in a spatial grid with cells
of approximately 96 km in size (three NARR grid cells). At
each time step, we determined which grid cells were in-
tersected by the selected front polylines and incremented
counts for those grid cells. To keep slow-moving or sta-
tionary frontal boundaries from exaggerating the counts,
we implemented a 24 h blanking period. When the count
in a grid cell was incremented in a time step, any fol-
lowing intersections for that grid cell were ignored for the
next seven 3-hourly timesteps, the counts thus representing
“front days”. Once the month of counts was accumulated,
the rate in crossings per day for each grid cell was deter-
mined by dividing the count by the number of time steps
used and multiplying by 8. We calculated “all fronts” rates
by selecting the front polylines for all types in each time
step. We followed the same overall process to calculate sea-
sonal rates as well, using the standard meteorological seasons
of December–January–February, March–April–May, June–
July–August, and September–October–November.

By studying initial results using the CSB front polylines,
we determined that grid cells were regularly skipped when
the polylines from successive time steps were rasterized with
a width of one grid cell. The rate at which frontal boundaries
move transverse to their length is often high enough that two
sets of width-one rasterized polylines from adjacent 3 h time
steps do not cover adjacent grid cells. This led to coverage
gaps when accumulating the front crossings for a single day
where it was clear that the fronts should be sweeping out
contiguous regions. These gaps produced spatial striping in
the monthly and seasonal front crossing rate data grids, with
repeated bands of lower rate values visible in various loca-
tions across the data grid. We found that if we rasterized our
polylines with a width of three grid cells the spatial striping
effect disappeared. The 24 h blanking period in our counting
algorithm prevents overcounting if fronts are moving slowly
enough that the wider rasterized polylines overlap.

4 Results

4.1 Training

The final DL-FRONT network was trained with 14 353 input
and labeled data grid pairs (the number of time steps over the
period with available CSB data) covering the years 2003–
2007 using 3-fold cross-validation. Each of the three folds
used 9568 (two-thirds of total) data grid pairs randomly cho-
sen from the full set and randomly ordered in time. Training
stopped when the loss did not improve for 100 epochs (passes
through the training dataset), leading to training that lasted
1141, 1142, and 1136 epochs, respectively. Figure 3 shows
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Figure 3. The training loss (a) and training accuracy (b) for each
training epoch of the DL-FRONT NN over three cross-validation
folds.

loss and accuracy results of the training. The training and ac-
curacy curves indicate that the network training appears to be
converging on solutions that are not overfit to data and have
an overall categorical accuracy of near 90 % (percentage of
CSB fronts identified by DL-FRONT). Fold 3 produced the
lowest loss and highest accuracy so those weights were se-
lected as the final result. We used the final result network to
generate 37 984 3-hourly front likelihood data grids covering
the entire 2003–2015 time span.

A sample output of the DL-FRONT algorithm and the cor-
responding CSB front locations for 1 August 2009 at noon
UTC (a period not used in training) is shown in Fig. 4. The
DL-FRONT results are very similar to the CSB fronts in
terms of the general locations. There are spatial discrepan-
cies that are sometimes large enough that the front locations
do not overlap, and there are several discrepancies regard-
ing the type of front. The DL-FRONT results are missing a
Pacific coast cold front and a western mountains stationary
front from the CSB observations. DL-FRONT identifies ad-
ditional fronts in the Pacific Ocean and on Baffin Island in

Figure 4. Side-by-side comparison of CSB (a) and DL-FRONT
(b) front boundaries for 1 August 2009 12:00:00. The CSB fronts
were drawn three grid cells wide. The intensities of the colors for
the different front types in the DL-FRONT image represents the
likelihood value (from 0.0 to 1.0) associated with each grid cell.

the Arctic; these are beyond the areas regularly analyzed for
fronts by the National Weather Service shown in Fig. 2.

4.2 Metrics

The trained network was evaluated by calculating the met-
rics discussed below for both the 2003–2007 training data
and the 2008–2015 validation data. We combined the results
for the four different front types to produce a two-category
front/no-front dataset and produced metrics for the same two
date ranges. The same region mask used for training was used
when calculating the metrics.

4.2.1 Actual and predicted grid cell counts

The percentage of grid cells in the five different types is
shown in Table 1 for the CSB and DL-FRONT. In the CSB,
the percentage of grid cells categorized as front is in the range
of 12.3 %–12.6 % for the training and validation periods. The
DL-FRONTS algorithm identifies fronts in 11.7 %–11.9 % of
the grid cells. Thus, there is a slight undercount but little dif-
ference between the training and validation periods. The per-
centage of the different frontal types is similar between the
CSB and DL-FRONT except for warm fronts, which are un-
dercounted by DL-FRONT. Table 1 also shows that there is
a major asymmetry between the front type categories, with
∼ 88 % of the grid cells falling into the no-front category.

4.2.2 Categorical accuracy

The categorical accuracy is a measure of the fraction of in-
stances where the neural network predicted category matches
the actual category for some set of samples. This is the sum
of the diagonal elements of the confusion matrix (see below)
divided by the total number of cells. The results for the full
output and front/no-front output for the two time ranges are
shown in Table 2. The results appear to indicate that there is
no appreciable reduction in neural network performance with
the validation dataset compared to the training dataset.

The large asymmetry between the no-front category and
the other categories reduces the utility of this metric, since a
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Table 1. Counts of CSB and DL-FRONT grid cells within the region mask over the training and validation time ranges and fraction of grid
cells occupied by different front types.

2003–2007 2008–2015 2003–2015

Total 65 679 328 106 877 056 172 556 384

Cold
CSB 3.71 % 3.94 % 3.85 %
DL-FRONT 3.81 % 3.75 % 3.77 %

Warm
CSB 1.65 % 1.82 % 1.75 %
DL-FRONT 1.16 % 1.17 % 1.16 %

Stationary
CSB 5.34 % 5.23 % 5.27 %
DL-FRONT 5.31 % 5.20 % 5.24 %

Occluded
CSB 1.59 % 1.60 % 1.60 %
DL-FRONT 1.61 % 1.58 % 1.59 %

Any
CSB 12.29 % 12.58 % 12.47 %
DL-FRONT 11.89 % 11.70 % 11.77 %

None
CSB 87.713 % 87.42 % 87.53 %
DL-FRONT 88.11 % 88.30 % 88.23 %

Table 2. Categorical accuracy values over the training and valida-
tion time ranges for the case where all categories are considered
independent and the simplified front/no-front case.

Year range All categories Front/no-front

2008–2015 88.00 % 89.85 %
2003–2007 88.53 % 90.15 %

network that identified all grid cells as falling in the no-front
category would achieve a categorical accuracy of ∼ 87.7 %
(the same values seen in the “None” column in Table 1).
Comparison of the per-category counts in Table 1 shows that
this is not the case.

4.2.3 Confusion matrices

Confusion matrix statistics were collected for both date
ranges for the full results and the simplified front/no-front
results. Table 3a and b show the full results presented as
fractions of total cells for each front category and both date
ranges. Table 4a and b show the front/no-front results as frac-
tions of total cells for both date ranges.

The confusion matrices confirm the results found in Ta-
bles 1 and 2. The most prominent type of confusion is identi-
fying a cell which is an actual front cell as no-front. This oc-
curs at a similar frequency as the correct identification of an
actual front cell. While this level of misidentification seems
high, further analysis indicates that many of these erroneous
classifications are due to differences in the location of fronts
rather than not detecting the front. In addition, in those cases
in which an actual front cell is identified as a front but of the
wrong type, the mistyping is found in two clusters: confu-

sion between stationary fronts and warm fronts and between
stationary fronts and cold fronts.

4.2.4 Receiver operating characteristic (ROC) and
precision–recall curves

The receiver operating characteristic (ROC) curve is a plot of
the true positive rate (TPR) as a function of the false positive
rate (FPR) as the threshold for a network output to qualify as
positive is varied. The TPR is the number of correctly pre-
dicted positives divided by the number of actual positives,
and the FPR is the number of incorrectly predicted positives
divided by the number of actual negatives. ROC curves were
developed for binary solutions, ones where there are only two
categories, so the curves displayed here were produced using
the simplified front/no-front categories.

Figure 5a shows the ROC curve for the DL-FRONT net-
work for both the 2003–2007 training and 2008–2015 val-
idation periods. The curves were produced by multiplying
the no-front category likelihood values by a factor that var-
ied from 0 to large enough that all grid cells were labeled
as no-front. The multiplying factor is displayed next to the
corresponding points on the curves.

An ideal ROC curve would rise with near infinite slope
from the origin to a true positive value of 1 as the threshold
is reduced from infinite (which causes all cells to be marked
as no-front) to any finite value, then changing immediately
to a slope of zero and remaining at a true positive rate value
of 1 as the threshold is reduced to zero (which causes all
cells to be marked as front). Such a curve has an area under
the curve (AUC) of 1. The closer an ROC curve comes to
that ideal, the better the overall performance of the network.
A network producing random results would have an ROC
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Table 3. (a) The confusion matrix as percentages of total grid cells for all front categories over the 2008–2015 validation time range. (b) The
confusion matrix as percentages of total grid cells for all front categories over the 2003–2007 training time range.

(a) Predicted

Cold Warm Stationary Occluded None

Cold 1.87 % 0.03 % 0.43 % 0.07 % 1.54 %
Warm 0.11 % 0.50 % 0.28 % 0.12 % 0.80 %

Actual Stationary 0.38 % 0.15 % 2.11 % 0.06 % 2.53 %
Occluded 0.10 % 0.04 % 0.06 % 0.74 % 0.64 %
None 1.29 % 0.44 % 2.31 % 0.59 % 82.79 %

(b) Predicted

Cold Warm Stationary Occluded None

Cold 1.86 % 0.03 % 0.34 % 0.07 % 1.41 %
Warm 0.09 % 0.51 % 0.23 % 0.11 % 0.72 %

Actual Stationary 0.38 % 0.12 % 2.42 % 0.06 % 2.37 %
Occluded 0.11 % 0.04 % 0.06 % 0.75 % 0.63 %
None 1.37 % 0.45 % 2.27 % 0.63 % 82.99 %

Table 4. (a) The confusion matrix as percentages of total grid cells
for the simplified front/no-front categories over the 2008–2015 val-
idation time range. (b) The confusion matrix as percentages of total
grid cells for the simplified front/no-front categories over the 2003–
2007 training time range.

(a) Predicted

Front None

Actual
Front 7.06 % 5.52 %
None 4.63 % 82.79 %

(b) Predicted

Front None

Actual
Front 7.16 % 5.13 %
None 4.72 % 82.99 %

curve like the blue dashed line in Fig. 5a, with the number of
false positives matching the number of true positives for all
threshold values.

The ROC curves (Fig. 5a) again confirm that the perfor-
mance of the network on the validation dataset is quite simi-
lar to the performance on the training dataset. They also show
that the native performance of the network (threshold value
of 1.0) lies on the conservative side of the ROC curves, with
a true positive rate that is relatively high while maintaining
a small false positive rate. The AUC value of 0.90 is consid-
ered to indicate good system performance.

Precision–recall curves are another way to characterize the
performance of binary machine learning solutions. In this
case, the precision (the number of correctly predicted posi-
tives divided by the number of predicted positives) is plotted
against the recall (the number of correctly predicted positives

divided by the number of actual positives) as the threshold for
marking a grid cell as positive is varied. The precision for the
infinite threshold case cannot be measured, as the denomina-
tor will go to zero, so the precision for the largest practical
threshold is typically reused for the infinite threshold case.
An ideal precision–recall curve would have a precision value
of 1 for all recall values. Precision–recall curves are consid-
ered to be less biased by large asymmetry between the cat-
egories, as opposed to ROC curves, which tend to present
overly optimistic views of system performance when the cat-
egories are asymmetric.

Figure 5b shows the precision–recall curves for the vali-
dation and training datasets for the simplified front/no-front
categories. The dashed blue line indicates the “no skill” ran-
dom performance curve. If the categories were symmetric,
the “no skill” level would be at a precision of 0.5. The curves
are, again, almost identical, and the native network solution
(threshold of 1) is in the region of the curve that maximizes
both precision and recall. The network appears to be per-
forming well.

5 Climatological analysis

The polyline extraction application was run to obtain front
polylines from the full DL-FRONT front likelihoods dataset.
The result was a front polyline dataset covering the same
2003–2015 time span as the CSB dataset. The CSB and DL-
FRONT polylines were then used to calculate corresponding
sets of monthly front crossing rates on the NARR Lambert
Conformal Conic CRS 96 km× 96 km spatial grid. Monthly
and seasonal front crossing rates were calculated for both
datasets for each front type and for the simplified front/no-
front case. The front crossing rates were used to calculate
monthly and seasonal climatologies using the entire 13-year
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Figure 5. Receiver operating characteristic curves (a) and
precision–recall curves (b) for the simplified front/no-front cate-
gories over the 2008–2015 validation and 2003–2007 training time
ranges.

span. Figure 6 shows maps of the CSB and DL-FRONT
MERRA-2 seasonal front/no-front rate climatologies for a
rectangular region of interest (ROI) centered over the con-
tiguous United States (CONUS). The use of this region min-
imizes edge effects produced by the uneven spatial coverage
of the CSB dataset. The regions of zero rate in the southwest
and southeast corners of the maps are the result of applying
the mask shown in Fig. 2. The maps show a large degree
of similarity between the seasonal front crossing rates calcu-
lated using the human-created and DLNN-generated fronts.

Figure 7 shows scatter plots comparing the values shown
in each pair of maps in Fig. 6. Each scatter plot displays
the one-to-one correlation line, a line displaying the mean
of the differences between the paired DL-FRONT and CSB
front crossing rate values, and a pair of lines that delin-
eate ±2 standard deviations of the differences. The Pear-
son’s correlation coefficient for each distribution is greater
than 0.94 in every case, indicating a high degree of corre-
lation. While most paired grid point values are within 10 %
of each other, some pairs differ by considerably more. The

Figure 6. Maps of seasonal front crossing rate climatologies (2003–
2015) for the CSB and DL-FRONT datasets.

±2 standard deviation limits, which encompass 98 % of DL-
FRONT MERRA-2 grid point climatology values, are ∼ 0.5
front crossings every week, compared to CSB climatology
values centered around 2–3 fronts every week, indicating that
some grid point pairs differ by about 20 % or more.

Kunkel et al. (2012) performed an analysis of the meteo-
rological causes of daily extreme precipitation events at in-
dividual stations. One of their categories was fronts. Trained
meteorologists categorized each event visually from a set of
weather maps. They found that about half of all events oc-
curred near fronts. In that study (led by the second author of
this paper), the distance from event to front was not quanti-
fied because the judgments were all made visually. However,
we estimate that an event within 300 km of a front would
have usually been classified as a frontal event. There were
3191 frontal events for the period of overlap between that
study and the MERRA-2 DL-FRONT data generated here:
1980–2013. For each of the 3191 events, the distance to the
nearest MERRA-2 event was determined. Figure 8 shows the
cumulative distribution function of the distances to fronts.
Approximately 97 % of the events are within 200 km of a
MERRA-2 front. The results are very similar for all seasons.
While these results are not purely quantitative because of the
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Figure 7. Scatter plots comparing the DL-FRONT and CSB sea-
sonal front rate climatologies over the CONUS-centered ROI.

“expert judgment” nature of the Kunkel et al. (2012) study,
they do suggest that DL-FRONT is effective at identifying
the “weather-producing” fronts.

Figure 9 compares the results of taking spatial averages of
the CSB and DL-FRONT MERRA-2 monthly front/no-front
rate climatologies over the CONUS ROI of Fig. 6. The spa-
tial averages track each other quite closely, with the values
always falling within ±1 standard deviation of each other.

Temporal variability was assessed by averaging the
monthly front/no-front crossing rates over the entire CONUS
ROI. Monthly crossing rates were expressed as anomalies
from the monthly climatology values. A comparison of the
time series of monthly crossing rates (Fig. 10) indicates good
agreement with an r value of 0.70 (p < 0.01). Both time se-
ries have relatively low values during 2008–2010 with higher
values on either side of that time period. However, the CSB
time series has a statistically significant (p < 0.01) upward
trend while the MERRA-2 trend is essentially zero. Since
2012, the CSB has been higher than MERRA-2 in most
months. The reasons for this are not known and beyond the
scope of this study.

6 Discussion and conclusions

A two-dimensional convolutional neural network (CNN) was
trained with 5 years (2003–2007) of manually analyzed
fronts to develop an algorithm (DL-FRONT) for the auto-

Figure 8. The cumulative distribution of the number of extreme
precipitation events caused by fronts from Kunkel et al. (2012) as
a function of the distance to the nearest front identified by DL-
FRONT in MERRA-2 for 1980–2013.

Figure 9. Comparison of the front/no-front CSB and DL-FRONT
MERRA-2 monthly front crossing rate climatologies spatially aver-
aged across the entire CONUS ROI.

matic detection of fronts from surface fields of five atmo-
spheric variables: temperature, specific humidity, pressure,
and the two components of the wind vector. An analysis
of the period 2003–2015 indicates that DL-FRONT detects
nearly 90 % of the manually analyzed fronts over North
America and adjacent coastal ocean areas. An analysis of
fronts associated with extreme precipitation events suggests
that the detection rate may be higher for important weather-
producing fronts. Our immediate application for this algo-
rithm is the detection of fronts that are associated with ex-
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Figure 10. Monthly time series of the domain-average frontal
crossing rate anomalies for CSB and for MERRA-2 analyzed by
DL-FRONT.

treme precipitation. The superior performance for that subset
of fronts gives us confidence that it is appropriate for appli-
cation to our project needs.

One advantage of using deep learning methods to develop
a fronts detection algorithm is that it is straightforward to add
additional fields. Training the algorithm is computationally
intensive, making it impractical to change the input fields of-
ten, but it does not require any fundamental restructuring of
the problem. An additional advantage is that this approach
can capitalize on future advances in the field of deep learn-
ing. One potential disadvantage is that the algorithm does not
explicitly incorporate a physical understanding in the form of
an equation, as most previous methods do. Thus, it is difficult
to diagnose poor performance from fundamental principles.

Since DL-FRONT was trained on a North American
dataset, its level of suitability for global applications is
untested. However, the basic frontal structure of extratropical
cyclones is global. On that basis, we expect that DL-FRONT
will detect most fronts, and certainly most fronts accompa-
nied by significant weather. However, where local topogra-
phy plays a role in frontal orientation or other characteristics,
its performance may be worse. An example of topographic
influence is the front range of the Rocky Mountains where
fronts often “hang up”. Noteworthy in this regard, our train-
ing dataset contains this region and it performs quite well in
detecting these (Fig. 6). However, in other parts of the globe
where topography affects front characteristics in other ways,
this may not be the case. Early attempts to include a static
elevation map in each input data grid did not provide any
improvement in training, so its use was abandoned.

As noted earlier, Sanders (2005) argues that the identifica-
tion of features with no horizontal density difference as fronts
is not acceptable since density differences are required to
produce key dynamical characteristics of ETCs. Since CSB
will include some unknown percentage of such fronts and

since our input fields include wind and pressure, DL-FRONT
will not exclude the detection of such boundaries.

A comparison of the results of this method with one or
more of the other methods that have been proposed and de-
veloped was beyond the scope of this project. The expand-
ing number of approaches suggests that an intercomparison
project of different algorithms would be potentially fruitful.
A barrier to such a project is the lack of a curated labeled
dataset that is global in extent. While users should be cog-
nizant of its potential limitations, the CSB could serve that
purpose for North America.

Data availability. The data used in this study can be obtained
through a few different channels. The MERRA-2 datasets used may
be obtained from the NASA Goddard Earth Sciences (GES) Data
and Information Services Center (DISC). The URL for the GES
DISC is https://disc.gsfc.nasa.gov/ (last access: April 2019; Global
Modeling and Assimilation Office, 2019). The specific subset of
MERRA-2 used is the 2d, 1-Hourly, Instantaneous, Single-Level,
Assimilation, Single-Level Diagnostics V5.12.4. We used the vari-
ables QV2M, SLP, T2M, U10M, and V10M remapped by bicubic
interpolation to a 1◦× 1◦ latitude–longitude grid.

The CSB dataset that we obtained from the NWS has been
deposited in Zenodo in three different forms. It is available in its
original ASCII form at https://doi.org/10.5281/zenodo.2642801,
in JSON format at https://doi.org/10.5281/zenodo.2646544
(Biard, 2019a), and as rasterized data grids in netCDF format
at https://doi.org/10.5281/zenodo.2651361 (Biard, 2019b). This
dataset is available under the Creative Commons Attribution-
ShareAlike 4.0 international license.

The fronts dataset produced by applying the trained DL-
FRONT NN to the MERRA-2 dataset has been deposited
in Zenodo. It is available in a number of different forms
in multiple deposits. The front likelihood data grids and
the one-hot version of the data grids in netCDF format
are available at https://doi.org/10.5281/zenodo.2641072 (Biard
and Kunkel, 2019a), the front polylines in JSON format
at https://doi.org/10.5281/zenodo.2669180 (Biard and Kunkel,
2019b), and the front polylines as rasterized data grids in
netCDF format at https://doi.org/10.5281/zenodo.2669505 (Biard
and Kunkel, 2019c). These datasets are available under the Cre-
ative Commons Attribution-NonCommercial-ShareAlike 4.0 inter-
national license.

Various front processing and analysis artifacts, such as
spreadsheets containing the values used to produce various
graphs, have also been deposited in Zenodo. They are avail-
able at https://doi.org/10.5281/zenodo.2712481 (Biard and Kunkel,
2019d). This includes a movie showing the rasterized CSB fronts
side-by-side with DL-FRONT front likelihoods for each 3-hourly
time step in the year 2009. This dataset is available under the Cre-
ative Commons Attribution-NonCommercial-ShareAlike 4.0 inter-
national license.
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