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Abstract. An important goal of climate research is to determine the causal contribution of human activity to
observed changes in the climate system. Methodologically speaking, most climatic causal studies to date have
been formulating attribution as a linear regression inference problem. Under this formulation, the inference is
often obtained by using the generalized least squares (GLS) estimator after projecting the data on the r leading
eigenvectors of the covariance associated with internal variability, which are evaluated from numerical climate
models. In this paper, we revisit the problem of obtaining a GLS estimator adapted to this particular situation,
in which only the leading eigenvectors of the noise’s covariance are assumed to be known. After noting that
the eigenvectors associated with the lowest eigenvalues are in general more valuable for inference purposes, we
introduce an alternative estimator. Our proposed estimator is shown to outperform the conventional estimator,
when using a simulation test bed that represents the 20th century temperature evolution.

1 Introduction

1.1 Context

An important goal of climate research is to determine the
causes of past global warming in general and the responsibil-
ity of human activity in particular (Hegerl et al., 2007); this
question has thus emerged as a research topic known as de-
tection and attribution (D&A). From a methodological stand-
point, D&A studies are usually based on linear regression
methods, often referred to in this particular context as opti-
mal fingerprinting, whereby an observed climate change is
regarded as a linear combination of several externally forced
signals added to internal climate variability (Hasselmann,
1979; Bell, 1986; North et al., 1982; Allen and Tett, 1999;
Hegerl and Zwiers, 2011). On the one hand, the latter sig-
nals consist of spatial, temporal or space–time patterns of
response to external forcings as anticipated by one or sev-
eral climate models. Internal climate variability, on the other
hand, is usually represented by a centred multivariate Gaus-
sian noise. Its covariance 6, which is also estimated from
model simulations, thus describes the detailed space–time
features of internal variability. In particular, its eigenvectors

can often be interpreted as the modes of variability, whose
relative magnitudes are reflected by the associated eigenval-
ues.

Denoting y the n-dimensional vector of observed climate
change, x= (x1, . . .,xp) the n×p matrix concatenating the p
externally forced signals and ν the internal climate variability
noise, the regression equation is as follows:

y = xβ + ν. (1)

The results of the inference on the vector of regression co-
efficients β, and the magnitude of its confidence intervals,
determine whether the external signals “are present in the ob-
servations” (Hegerl and Zwiers, 2011) and whether or not the
observed change is attributable to each forcing.

Under the assumption that 6 is known, the above infer-
ence problem can be solved using the standard generalized
least squares (GLS) setting (e.g. Amemiya, 1985). Under this
framework, the expression of the best linear unbiased estima-
tor (BLUE) and its variance are given by the following:

β̂ = (x′6−1x)−1(x′6−1y), Var(β̂)= (x′6−1x)−1. (2)

The GLS estimator of Eq. (2) can be obtained as the or-
dinary least squares (OLS) estimator for the linearly trans-
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formed regression equation:

Ty = Txβ +Tν, (3)

where the n×n transformation matrix T is such that the com-
ponents of the transformed noise Tν are independent and
identically distributed (IID). This condition yields T6T′ = I
and an admissible choice for T is thus as follows:

T= V1−
1
2 V′, (4)

where 1= diag(λ1, . . .,λn) with λ1 ≥ . . .≥ λn > 0 is the
matrix of eigenvalues of 6 and V= (v1, . . .,vn) is its ma-
trix of column eigenvectors, i.e. 6 = V1V′. In Eq. (3), the
data are thus projected on the eigenvectors of the covariance
matrix scaled by the inverse square root of their eigenvalues.

In most applications, the covariance 6 is not known and
Eq. (2) cannot be implemented. This has given rise to many
theoretical developments (e.g. Poloni and Sbrana, 2014;
Naderahmadian et al., 2015) which often rely on further as-
sumptions regarding the covariance 6, in order to allow for
its estimation simultaneously with β. In the applicative con-
text of D&A considered here, the situation may be viewed
as an in-between between known and unknown 6 because
we have access to an ensemble of unforced climate model
simulations. This ensemble can be used to extract valuable
information about 6. However, the resulting knowledge of
6 is imperfect for two reasons. First, the size of the ensem-
ble is often very small, typically a few dozens, because of
the high cost of numerical experiments requiring intensive
computational resources. For the range of dimensions n usu-
ally considered, typically a few hundreds or thousands, the
empirical covariance S may thus be non-invertible. Second,
climate model simulations are known to inadequately rep-
resent the modes of internal variability at the smaller scale.
Those smaller scale modes have lower magnitude and are
expected to be associated with eigenvectors with low eigen-
values. Furthermore, the latter eigenvectors with low eigen-
values are also poorly sampled by construction and therefore
are difficult to estimate reliably (North et al., 1982). For these
two reasons, it is often assumed that only a small number r
of leading eigenvectors of 6, which are denoted (v1, . . .,vr )
and r is typically on the order of 10, can be estimated from
the control runs with enough reliability. Accordingly, it is as-
sumed that the remaining n− r eigenvectors and eigenvalues
are unknown.

Under this assumption, the inference on β must there-
fore be obtained based on these r leading eigenvectors only.
The conventional approach presently used in D&A studies
to tackle this problem follows from a simple and straightfor-
ward idea: adapting Eq. (4) to this situation by restricting the
image of the transformation matrix T to the subspace gener-
ated by the r leading eigenvectors, thus leading to a truncated
transformation having the following expression:

Tr = Vr1
−

1
2

r V′r , (5)

where 1r = diag(λ1, . . .,λr ) and Vr = (v1, . . .,vr ). A new
estimator thus follows by similarly applying the OLS esti-
mator to the transformed data (Trx,Try):

β̂r = (x′6−1
r x)−1(x′6−1

r y), (6)

where 6−1
r = Vr1−1

r V′r is the pseudo-inverse of Vr1rV′r .
Finally, from a mere terminology standpoint, applying the
truncated transformation Tr to the data is often referred to
in D&A as “projecting” the data onto the subspace spanned
by the leading eigenvectors. However, Tr is in fact not a pro-
jection from a mathematical standpoint insofar as T2

r 6= Tr
hence we prefer to use the word “transformation”.

1.2 Objectives

The solution recalled above in Eq. (6) is easy to use and may
seem to be a natural choice. It emerged as a popular approach
in D&A arguably for these reasons. Nevertheless, this ap-
proach has two important limitations. Firstly, as pointed out
by Hegerl et al. (1996), the leading eigenvectors sometimes
fail to capture the signals x. Indeed, the leading eigenvectors
capture variability well, but not necessarily the signal, merely
because the corresponding physical processes may differ and
be associated with different patterns. Secondly, by construc-
tion, the subspace spanned by the leading eigenvectors max-
imizes the amplitude of the noise, thereby minimizing the
ratio of signal to noise and affecting the performance of the
inference on β.

The first objective of this article is to highlight in detail
these two limitations: both will be formalized and discussed
immediately below in Sect. 2. Its second objective is to cir-
cumvent these limitations by building a new estimator of β
that performs better than the conventional estimator β̂r of
Eq. (6) while still making the same assumptions and using
the same data. Most importantly, the central assumption here
is that only the r leading eigenvectors of 6 can be estimated
with enough accuracy from the control runs. Furthermore,
we assume that r is given and is small compared to n (e.g. r
is on the order of 10), and that N control runs are available
to estimate the r leading eigenvectors with N ≥ r .

Section 2 highlights the limitations of the conventional es-
timator β̂r . Section 3 introduces our proposed estimator β̂∗r .
Section 4 evaluates the benefit of our approach based on a
realistic test bed, and illustrates it on actual observations of
surface temperature. Section 5 concludes the paper.

2 Limitations of the conventional estimator

2.1 General considerations

It is useful to start this discussion by returning for a mo-
ment to the case where 6 is assumed to be fully known,
i.e. its n eigenvectors are all known perfectly, as well as their
eigenvalues. Under this assumption, let us evaluate the ben-
efit of a given eigenvector vk , k = 1, . . .,n, for the inference
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of β. For this purpose, we propose to compare the variance
Var(β̂)= (x′6−1x)−1 of the BLUE estimator of Eq. (2) ob-
tained by using the transformation matrix T= V1−

1
2 V′, to

the variance of the estimator β̂−k obtained by using the trans-

formation matrix T−k = V−k1
−

1
2
−k V′

−k where V−k and 1−k
exclude the kth eigenvector and the kth eigenvalue respec-
tively. From Eq. (2), these variances can be rewritten after
some algebra:

Var(β̂)= (
n∑
i=1

x′viv′ix/λi)
−1Var(β̂−k)

= (
∑

i=1,...,n i 6=k
x′viv′ix/λi)

−1. (7)

The Sherman–Morrison–Woodbury formula is a well
known formula in linear algebra, which shows that the in-
verse of a rank-one correction of some matrix, can be con-
veniently computed by doing a rank one correction to the
inverse of the original matrix. By applying the Sherman–
Morrison–Woodbury formula to Eq. (7), we obtain the fol-
lowing:

Var(β̂−k)= Var(β̂)+
Var(β̂−k)x′vkv′kxVar(β̂−k)

λk + v
′

kxVar(β̂−k)x′vk
. (8)

Unsurprisingly, an immediate implication of Eq. (8) is that
removing any eigenvector vk results in an increase of the
variance of the estimator. Indeed, the matrix in the second
term of the right-hand side of Eq. (8) is positive definite; it
can thus be interpreted as the cost in variance increase of ex-
cluding vk or conversely as the benefit in variance reduction
of including vk . Moreover, the most valuable eigenvectors
for inferring β in the above-defined sense are those combin-
ing a small eigenvalue (low λk) and a good alignment with
the signals x (high x′vk). Accordingly, for any eigenvector
vk , its benefit is a decreasing function of λk , everything else
being constant.

A similar conclusion can be reached by using a different
approach. Consider this time the transformation T∗ = x′6−1.
Since T∗ is a p×n matrix, the data dimension is thus drasti-
cally reduced from n to p in the transformed Eq. (3). Further-
more, noting that the noise components T∗ν have covariance
T∗6T∗′, and applying the GLS estimator to the transformed
data (T∗y,T∗x), we obtain an estimator β̂∗ which has the
following expression:

β̂∗ = (x′T∗(T∗6T∗′)−1T∗′x)−1(x′T∗(T∗6T∗′)−1T∗′y). (9)

After some algebra, the above expression of β̂∗ simplifies
to the following:

β̂∗ = (x′6−1x)−1(x′6−1y), (10)

which is exactly the expression of the estimator of Eq. (2).
Therefore, remarkably, the BLUE estimator obtained from

the full data (y,x) is entirely recovered from the transformed
data (T∗y,T∗x) when using the subspace spanned by T∗.
The latter subspace can thus be considered as optimal, in the
sense that it reduces the data dimension to its bare minimum
p while still preserving all the available information for in-
ferring β. The p directions of the subspace spanned by T∗ are
denoted (u∗1, . . .,u

∗
p). They have the following expression:

u∗k =

n∑
i=1

v′ixk

λi
vi . (11)

Consistently with Eq. (8), Eq. (11) shows that for each
k = 1, . . .,p, the optimal direction u∗k emphasizes the eigen-
vectors that best trade off the smallest possible eigenvalue
(i.e. small noise) with the best possible alignment between
the eigenvector and the signal xk (i.e. strong signal). It is
interesting to notice that the foremost importance of small
eigenvalues, which is underlined here, is also quite obvious
in the formulation of optimal detection proposed by North
and Stevens (1998). However, the importance of small eigen-
values was lost later on, as truncation on leading eigenvectors
became a popular practice.

In light of these considerations, the two main limita-
tions of the conventional estimator β̂r of Eq. (6), mentioned
in Sect. 1, appear more clearly. Firstly, in agreement with
Hegerl et al. (1996), there is no guarantee that the leading
eigenvectors will align well with the signals at stake. Sec-
ondly, the leading eigenvectors are by definition those with
the largest eigenvalues. Therefore, a straightforward trunca-
tion onto the leading eigenvectors, such as the one used in β̂r ,
maximizes the noise instead of minimizing it. While the first
limitation may be an important pitfall in some cases, it will
not be an issue whenever the signals align well with the lead-
ing eigenvectors, which nothing prevents in general. In con-
trast, the second limitation always manifests whenever β̂r is
used and is thus arguably a more serious problem of the con-
ventional approach. In the present paper, we thus choose to
focus restrictively on this second limitation, and to not ad-
dress the first one.

2.2 Illustration

In order to illustrate the second issue more concretely, we use
surface temperature data from Ribes and Terray (2012), de-
scribed in more detail in Section 4. The signals x considered
here consist of the responses to anthropogenic and natural
forcings, with p = 2 and n= 275. Both x and the covariance
6 are obtained from climate model simulations. The r lead-
ing eigenvectors Vr = (v1, . . .,vr ) are obtained from 6 and
are assumed to be known. The proportion of the noise’s to-
tal variance retained by projecting the data on Vr is denoted
σ 2

n (r) while the proportion of the signal’s total variance as-
sociated with the same projection is denoted σ 2

s (r). Since the
projection matrix associated with projecting on the subspace
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Figure 1. (a) Proportion of the total variance of the projected anthropogenic signal V′rx1 (thick blue line) and of the projected noise V′rν
(thick black line) as functions of r; uniform increase r/n (light black line). (b) Signal-to-noise ratio of the projected data when using the
projection subspace Vr consisting of the r leading eigenvectors (thick green line) and when using the orthogonal subspace V⊥r (thick red
line) as functions of r . Both values are normalized to the signal-to-noise ratio of the full data.

Vr is equal to VrVr ′, we have the following:

σ 2
n (r)= E

(
V̂ar(VrV′rν)

)
/E
(
V̂ar(ν)

)
= E(ν′VrV′rν)/E(ν′ν)=

r∑
i=1

λi/

n∑
i=1

λi, (12)

σ 2
s (r)= E

(
V̂ar(VrV′rxi)

)
/E
(
V̂ar(xi)

)
= x′iVrV

′
rxi/x

′

ixi for i = 1, . . .,p, (13)

where for any vector z, V̂ar(z) denotes the empirical variance
of z. Figure 1a plots σ 2

n (r) and σ 2
s (r) computed from Eq. (12)

applied to the above-mentioned data. For simplicity, σ 2
s (r)

is shown only for the anthropogenic signal x1. As expected
from the expression of σ 2

n (r) given in Eq. (12), it can be seen
from this plot that σ 2

n (r) increases with r much faster than
r/n, since by definition the leading eigenvectors concentrate
most of the noise’s variance. In contrast, σ 2

s (r) increases with
r roughly like r/n: this shows that, in this example, the signal
projects nearly uniformly on each eigenvector. For instance,
when r = 20, Vr involves 7 % of the n eigenvectors, and ac-
cordingly, projecting on Vr retains 8 % of the signal’s total
variance. In contrast, as much as 55 % of the noise’s total
variance is retained by projecting on Vr . Consequently, the
signal-to-noise ratio of the projected data (see Fig. 1b) is re-
duced by a factor of 7 compared to the signal-to-noise ratio
of the full data. Hence, it is fair to say that, in this case, the
projection on the leading eigenvectors is greatly suboptimal,
insofar as it drastically reduces the signal-to-noise ratio.

Let us now consider the quantities σ 2∗
n (r) and σ 2∗

n (r) de-
fined as above, but projecting this time on the subspace or-

thogonal to Vr . By construction,

σ 2∗
n (r)= 1− σ 2

n (r),
σ 2∗

s (r)= 1− σ 2
s (r).

(14)

As a direct consequence, for r = 20, the projection on
the subspace orthogonal to Vr captures 92 %= 100 %–8 %
of the total variance of the signal, while the variance of
the projected noise is only 20 %= 100 %–80 % of the total.
Therefore, the signal-to-noise ratio of the projected data (see
Fig. 1b) is this time magnified by a factor of 2 compared to
the signal-to-noise ratio of the full data, and by a factor of
14 when comparing to the signal-to-noise ratio of the data
projected on Vr . It can thus be seen that projecting the data
on the orthogonal to Vr greatly magnifies the signal-to-noise
ratio by filtering out a large fraction of the noise, while retain-
ing most of the signal. These characteristics arguably make it
a much more relevant projection subspace for the purpose of
estimating β than the subspace of the leading eigenvectors.
We further elaborate on this idea in Sect. 3.

3 An orthogonal estimator

3.1 Description

With these preliminary considerations in hand, we return to
the situation of direct interest here: inferring β when only the
r leading eigenvectors are available. In an attempt to improve
the conventional estimator β̂r , we propose the following new
estimator:

β̂∗r = (x′x− x′VrV′rx)−1(x′y− x′VrV′ry). (15)
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Like the conventional estimator β̂r , the proposed estima-
tor β̂∗r only uses the data (y,x) and the r leading eigenvectors
Vr = (v1, . . .,vr ). Its formulation stems from the above con-
siderations regarding the suboptimality of the subspace Tr
of Eq. (5) spanned by the leading eigenvectors, as we now
highlight.

Let us denote V⊥r a n× (n− r) matrix consisting of n− r
orthonormal column vectors spanning the subspace orthogo-
nal to (v1, . . .,vr ). In other words, we have the following by
construction:

VrV′r +V⊥r V⊥r
′
= I,

V⊥r
′V⊥r = I.

(16)

Note that infinitely many matrices V⊥r satisfy Eq. (16),
and that it is straightforward to construct one such matrix
from the r leading eigenvectors (v1, . . .,vr ), for instance by
using the Gram–Schmidt algorithm. Furthermore, it is also
important to note that, since V⊥r is orthogonal to Vr , it
spans the same subspace as the subspace spanned by the
n− r eigenvectors (vr+1, . . .,vn) associated with the small-
est eigenvalues, because the latter are also orthogonal to
(v1, . . .,vr ) by definition. Therefore, it is not necessary to
have knowledge of these n− r eigenvectors (vr+1, . . .,vn) in
order to be able to project the data onto the latter subspace:
only the knowledge of (v1, . . .,vr ) is required for that pur-
pose. Thus, with the knowledge of the r leading eigenvec-
tors only, we are able to project the data onto the orthogo-
nal subspace spanned by V⊥r using the transformation matrix
T⊥r = V⊥r V⊥r

′
= I−VrV′r , thus obtaining (T⊥r y,T⊥r x). The

estimator proposed in Eq. (15) consists of using the OLS es-
timator corresponding to these transformed data:

β̂∗r = (x′V⊥r V⊥r
′x)−1(x′V⊥r V⊥r

′
y)

= (x′x− x′VrV′rx)−1(x′y− x′VrV′ry). (17)

It is interesting to note that the orthogonal projection sub-
space V⊥r does not actually need to be obtained to derive β̂∗r
because only V⊥r V⊥r

′ matters for this purpose, and this matrix
happens to be directly known from Vr through the orthogo-
nality Eq. (16). This yields the right-most term of Eq. (17),
which corresponds to the expression of β̂∗r given above in
Eq. (15).

However, the choice of applying the OLS estimator to the
projected data as implied by Eq. (17), rather than applying
the GLS estimator, may seem surprising at first. The rationale
for this choice is the following. Since we only assume knowl-
edge of the r leading eigenvectors, the projection subspace
V⊥r is thus by construction unknown from the standpoint of
the covariance of the projected noise. In other words, while
the projected noise T⊥r ν in the projected regression equation
remains Gaussian centred, we do not know anything about
its covariance. Thus, we use by default the assumption that
T⊥r ν is IID with unknown variance σ 2, which is a common-
place assumption used in regression analysis when nothing

is known about the noise’s covariance. An immediate impli-
cation of this assumption is that the associated log likelihood
is the following:

−2log `(β,σ 2)= n logσ 2
+

1
σ 2 (y− xβ)′V⊥r V⊥r

′
(y− xβ). (18)

The complete likelihood of Eq. (18) can be concentrated in
β by maximizing out σ 2 to obtain the concentrated likelihood
`c(β):

−2log `c(β)= n log
{

(y− xβ)′V⊥r V⊥r
′
(y− xβ)

}
= n log

{
(y− xβ)′(I−VrVr ′)(y− xβ)

}
. (19)

Our proposed OLS estimator β̂∗r results from the maxi-
mization of the above likelihood. The above considerations
also have some implications with respect to the uncertainty
analysis on the proposed estimator β̂∗r . Indeed, in the present
context, it is straightforward to obtain confidence intervals
around β̂∗r based on the ratio of likelihoods `c(β)/`c(β̂∗r ),
following a classic approach in statistics that is often used
in D&A (e.g. Hannart et al., 2014).

It is important to underline that the latter approach to un-
certainty quantification relies on the assumption that the pro-
jected noise T⊥r ν is IID. Since the unknown true covariance
of T⊥r ν is in fact equal to 6⊥r = V⊥r 1

⊥
r V⊥r

′, this assumption
is incorrect and hence the resulting confidence intervals are
prone to be incorrect as well. An initial assessment under test
bed conditions described in Section 4 suggested that the pro-
posed approach is conservative in the sense that it leads to an
overestimation of uncertainty (not shown). However, a more
detailed assessment of the performance of this uncertainty
quantification procedure is needed, but is beyond the scope
of the present paper.

3.2 Extension to total least squares

The signals x are estimated as the empirical averages of sev-
eral ensembles of finite size m, which introduces sampling
uncertainty. In order to account for the latter, it is common-
place in D&A to reformulate the linear regression model of
Eq. (1) as an error-in-variables (EIV) model (Allen and Stott,
2003):

y = x∗β + ν,
x= x∗+ ε, (20)

where x∗ is now an unobserved latent variable, x is the en-
semble average estimator of the true responses x∗ and ε is a
Gaussian centred noise term with covariance 6/m.

It is straightforward to generalize the approach exposed in
Sect. 2.3 to this error-in-variables regression model. Like-
wise, the data (y,x), the latent variable x∗, and the noise
terms ν and ε are projected on the orthogonal subspace using
V⊥r . The projected residuals are then also assumed IID with
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unknown variance σ 2. This yields the following complete
likelihood:

−2log `(β,x∗,σ 2)= n(p+ 1) logσ 2
+

1
σ 2 (y− x∗β)′V⊥r V⊥r

′

(y− x∗β)+
m

σ 2 Tr
{

(x− x∗)′V⊥r V⊥r
′
(x− x∗)

}
,

(21)

which can be concentrated in β by maximizing out σ 2 and
x∗ to obtain the concentrated likelihood `c(β):

−2log `c(β)= n(p+ 1) log{
(y− xβ)′(I−VrVr ′)(y− xβ)

1+ 1
m
β ′β

}
. (22)

The so-called total least squares (TLS) estimator results
from the maximization of the above concentrated likelihood
in β, and is available under a closed form expression:

β̂∗r =−

√
m

zp+1
z, (23)

where z= (z1, . . .,zp)′ is a p-dimensional vector and zp+1 is
a scalar, such that (z1, . . .,zp+1)′ is the eigenvector associated
with the smallest eigenvalue of the positive definite matrix
S= [
√
mx y]′ (I−VrVr ′) [

√
mx y] of size p+ 1. The esti-

mator of Eq. (23) is a generalization of the OLS estimator of
Eq. (17), the latter is indeed a special case of the former for
m=+∞. Furthermore, in the particular case p = 1 which is
often referred to as the Deming regression, the estimator of
Eq. (23) takes the following expression:

β̂∗r =

√
(mSxx − Syy)2+ 4mS2

xy − (mSxx − Syy)

2Sxy
, (24)

where Sxx = x′(I−VrVr ′)x, Syy = y′(I−VrVr ′)y and Sxy =
x′(I−VrVr ′)y. Next, following the same approach as in
Sect. 2.3, it would be tempting to derive confidence intervals
around β̂∗r based on the ratio of likelihoods `c(β)/`c(β̂∗r ).
While this approach performs reasonably well in the con-
text of EIV regression with known variance (Hannart et al.,
2014), it is known to be problematic in the present context of
EIV regression with unknown variance (Casella and Berger,
2008; Sect. 12.2). In this case, more suitable alternatives are
available, e.g. an estimator of the variance of β̂∗r for p = 1 is
given by Fuller (1987) Sect. 1.3; it has the following expres-
sion:

V̂ (β̂∗r )=
1

n− r

(
β̂∗r
Sxx

Sxy
− 1

)(
mβ̂∗r

Sxx

Sxy
+ β̂∗2r

)
, (25)

from which confidence intervals can be obtained. When
p> 1 the above variance estimator is applied successively
to each component i of β̂∗r (i = 1, . . .,p) by replacing y with
y−

∑
k 6=i β̂

∗

r,k xk in Eq. (25). It is worthwhile noting that var-
ious approaches are available in the literature to tackle the

general problem of deriving confidence intervals for β under
the present EIV regression model with unknown variance.
While it would be worthwhile to investigate and to compare
their performance in practice in a D&A context, such inves-
tigation is beyond the scope of this paper.

Summarizing, the proposed solution here to deal with the
case of error in variables thus consists of using Eq. (23) to
derive an estimate of β and Eq. (25) to derive a confidence
interval.

3.3 Continuity considerations

The motivation of this subsection is merely to provide a more
in-depth mathematical grounding to the proposed estimator,
beyond the general considerations of Sect. 2.1. This subsec-
tion can safely be skipped without affecting the understand-
ing of the remainder of this article, in so far as it does not
provide any additional results or properties regarding the es-
timator itself.

The idea here is that, in addition to the general considera-
tions of Sect. 2.1, the proposed estimator β̂∗r can also be jus-
tified by following a continuity extension argument. For any
given x and y, let us consider the BLUE estimator of Eq. (2)
as a function of the known covariance 6. For this purpose,
we define the function f on the set of positive definite matri-
ces of dimension n, denoted S+∗n (R), as follows:

f : S+∗n (R)→ Rp,
f (A)= (x′A−1x)−1(x′A−1y),

(26)

so that we have β̂ = f (6).
In the present context, we assumed that 6 is unknown but

that 6r = Vr1rV′r is known. While it is tempting to apply
f in 6r , unfortunately 6r is not positive definite so that f
is not defined in 6r . Hence, an estimate of β cannot be ob-
tained by straightforwardly applying the function f in 6r .
Nevertheless, 6r belongs to the set of positive semi-definite
matrices, denoted S+n (R), which has the following interest-
ing topological property:

S+n (R)= S+∗n (R), (27)

where for any subsetE, the notationE used above in Eq. (27)
denotes the adherence of E. Equation (27) thus implies that
S+∗n (R) is dense in S+n (R), which means that for any posi-
tive semi-definite matrix A there exists a sequence of positive
definite matrices converging to A. Equation (27) therefore
suggests the possibility to define a function f which contin-
uously extends f to the set of positive semi-definite matrices.
For this purpose, let us consider the matrix A+εI with ε > 0.
It is immediate to show that for any A ∈ S+n (R) and for any
arbitrarily small but positive ε, we have A+ εI ∈ S+∗n (R).
Taking advantage of this remark, we define f by f (A)=
limε→0+f (A+ εI). With this definition, f can be obtained
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Figure 2. (a) Scatter plot of one realization of the raw data (y,x) using the simulation test bed of Section 4: the observation vector y is
plotted on the vertical axis and the first column vector x1 of the matrix x is plotted on the horizontal axis. (b) Same as (a) for the transformed

data Ty and Tx using the optimal transformation matrix T= V1−
1
2 V′. (c) Same as (b) when using the truncated transformation matrix

Tr = Vr1
−

1
2

r V′r on the leading eigenvectors, with r = 20. (d) Same as (b) when using the proposed transformation matrix T⊥r = V⊥r V⊥r
′

with r = 20.

under a closed form expression:

f : S+n (R)→ Rp,
f (A)= (x′x− x′VAV′Ax)−1(x′y− x′VAV′Ay).

(28)

The proof of Eq. (28) is detailed in Appendix A. The pro-
posed estimator β̂∗r of Eq. (15) is therefore obtained by ap-
plying the extended function f defined above, to the known,
positive semi-definite matrix 6r :

β̂∗r = f (6r )= (x′x− x′VrV′rx)−1(x′y− x′VrV′ry). (29)

4 Simulations and illustration

4.1 Data

We illustrate the method by applying it to surface tempera-
ture data and climate model simulations over the 1901–2000
period and over the entire surface of the Earth. For this pur-
pose, we use the data described and studied in Ribes and
Terray (2012). The temperature observations are based on
the HadCRUT3 merged land–sea temperature data set (Bro-
han et al., 2006). The simulated temperature data used to
estimate the response patterns are provided by results from
the CMIP5 archive arising from simulations performed with

the CNRM-CM5 model of Météo France under NAT and
ANT experiments. For both experiments, the size of the en-
sembles is m= 6. However, estimates of internal variabil-
ity are based on intra-ensemble variability from 10 CMIP5
models (CNRM-CM5, CanESM2, HadGEM2-ES, GISS-E2-
R, GISS-E2-H, CSIRO-Mk3-6-0, IPSL-CM5A-LR, BCC-
CSM1-1, NorESM1-M, FGOALS-g2) under NAT and ANT
experiments as well as pre-industrial simulations from both
the CMIP3 and CMIP5 archives, leading to a large ensemble
of 374 members. Standard pre-processing is applied to all ob-
served and simulated data. Data are first interpolated on the
5◦× 5◦ observational grid and then the spatio-temporal ob-
servational mask is applied. The dimension of the data set is
then further reduced by computing decadal means and pro-
jecting the resulting spatial patterns onto spherical harmon-
ics with resolution T4 to obtain vectors of size n= 275 (see
Ribes et al., 2012 for more details about ensembles and pre-
processing). The ANT and NAT individual responses (p = 2)
are estimated by averaging the corresponding two ensembles
to obtain the matrix of regressors x. The covariance matrix6
is estimated as the empirical covariance of the large ensem-
ble of control runs.
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Figure 3. Performance results on simulated data: MSE of several estimators of β (vertical axis) as functions of the number of eigenvectors
r (horizontal axis) assumed to be reliably estimable from control runs: conventional estimator β̂r computed based on estimated eigenvectors
(thick green line) with N = 30, and based on the true eigenvectors (light green line); proposed orthogonal estimator β̂∗r computed based on
estimated eigenvectors (thick red line) with N = 30, and based on the true eigenvectors (light red line); GLS estimator computed based on
the true value of the covariance 6 (thick blue line).

4.2 Performance on simulated data

This section evaluates the performance of the estimators de-
scribed above, by applying it to simulated values of y ob-
tained from the linear regression equation y = xβ + ν as-
sumed by the model of Eq. (1), where the noise ν is simulated
from a multivariate Gaussian distribution with covariance 6
and where β = (1,1)′ is used. This setting thus assumes that
x is known exactly, therefore it does not include the EIV sit-
uation prevailing in Eq. (20) and in Sect. 3.3 where x is mea-
sured with an error.

The use of simulated rather than real data aims at veri-
fying that our proposed estimator performs correctly, and at
comparing its performance with the conventional procedure,
a goal which requires the actual values of β to be known.
A sample of N = 30 control runs was also simulated from a
multivariate Gaussian distribution with covariance6, and the
r leading eigenvectors and eigenvalues were estimated from
these control runs.

Figure 2 shows scatter plots of one realization of the data
(x,y) under this test bed, for the raw data (x,y) as well as for
the transformed data (Tx,Ty), when using the three main
transformations considered above: the optimal transforma-
tion T= V1−

1
2 V′ which assumes a fully known covariance

6; the truncated transformation matrix Tr = Vr1
−

1
2

r V′r on
the r leading eigenvectors, with r = 20, and the proposed
projection matrix T⊥r = V⊥r V⊥r

′ on the orthogonal to the r
leading eigenvectors, again with r = 20. Figure 2 allows the
behavior of these transformations to be visualized. Firstly,
the benefit of the optimal transformation T= V1−

1
2 V′ ap-

pears clearly, as it greatly enhances the signal. Secondly, it is
also apparent that the standard truncated transformation us-
ing the r leading eigenvectors fails to enhance the signal, ac-
tually leading to a cloud of points which is more noisy than
the original raw data. In contrast, the proposed transforma-
tion on the orthogonal to the r leading eigenvectors accu-

rately captures part of the signal enhancement produced by
the optimal transformation.

The conventional estimator β̂r and the proposed estimator
β̂∗r of Eq. (15) were both derived based on the r leading es-
timators estimated from the N control runs. Then, these two
estimators were derived again, this time using the true values
of the r leading eigenvectors, for comparison. Finally, the
GLS estimator of Equation (1) was derived based on the true
value of the covariance 6. The performance of each five es-
timators of β thus obtained was evaluated based on average
mean squared error (MSE)

∑J
j=1(β̂j−β)′(β̂j−β)/N , where

j = 1, . . .,J denotes the simulation number and J = 1e4.
These calculations were repeated for several values of r rang-
ing from 5 to 30. Results are plotted in Fig. 3. They show
an important gap in MSE between the proposed estimator
and the conventional approach with the former exceeding
the latter by a factor of 1000 for r = 5, decreasing to 80 for
r = 30. This gap suggests a substantial benefit of using β̂∗r
and strongly emphasizes the relevance of this approach com-
pared to the conventional one.

When comparing the performance of β̂∗r using estimated
vs. actual values of the r leading eigenvectors, a slight bene-
fit of using actual values is found. This benefit increases with
r , as eigenvectors with lower eigenvalues tend to be more
difficult to estimate. In contrast, when comparing the perfor-
mance of β̂r using estimated vs. actual values of the r leading
eigenvectors, a slight benefit of using the estimated values is
found. This superiority of the estimated, and thus incorrect,
values may seem surprising at first, but is in fact natural and
in line with our main point. Indeed, it can be explained by
the fact that the estimated leading eigenvectors V̂r match to
a large extent with Vr but also span to some extent the true
orthogonal subspace V⊥r , which, according to our main point
here, is much more suited for estimating β. Unsurprisingly,
the estimator based on the estimated leading eigenvectors V̂r
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Figure 4. Illustration of temperature data with r = 20. (a) Regression coefficients βANT and βNAT estimated using the conventional estimator
β̂r : value of the estimate (green dots) and 95 % confidence interval (thick black lines). (b) Same as (a) under the proposed estimator β̂∗r .

thus performs better than its counterpart based on actual val-
ues.

4.3 Illustration on real data

The method is finally illustrated by applying it to actual ob-
servations of surface temperature y, with the same regressors
x and covariance 6 as described above. The observed tem-
perature data y is based on the HadCRUT3 merged land–sea
temperature data set (Brohan et al., 2006). The method is ap-
plied for r = 20. Further, we use a number of control runs
N that is small compared to n, which is a common situa-
tion, even though we have access under the present test bed
to 374 control runs. Thus, N = 30 control runs are randomly
selected from the 374 control runs available and the eigen-
vectors are estimated from these 30 runs. For the inference
of β and confidence intervals, we use the solution described
in Sect. 3.2 which consists of using Eq. (23) to derive an es-
timate of β and Eq. (25) to derive a confidence interval. Re-
sults are shown in Fig. 4. For the scaling factor corresponding
to anthropogenic forcings, both methods yield an estimate
which is close to 1 and significantly positive. However, the
level of uncertainty obtained with the proposed estimator is
3 times smaller than when using the conventional method.
An even wider uncertainty gap is observed for the coefficient
corresponding to natural forcings. In this case, the confidence
interval includes zero under the conventional approach, but it
does not under the proposed orthogonal approach. However,
as already stated in Sect. 3, a caveat in the latter result is
that the uncertainty quantification procedure used here has
not been evaluated in detail, and thus we do not know for
sure that the obtained uncertainty estimate is well calibrated.

5 Conclusions

We have introduced a new estimator of the vector β of lin-
ear regression coefficients, adapted to the context where only
the r leading eigenvectors of the noise’s covariance 6 are

known, which is an assumption often relevant in climate
change attribution studies. General considerations have first
shown that when the covariance is known, its most relevant
eigenvectors for projection are those trading off the small-
est possible eigenvalue with the best possible alignment to
the signal. The optimal direction is thus associated in general
with the smallest eigenvalues, not with the highest ones. Our
proposed estimator builds upon this finding and is based on
projecting the data on a subspace which is orthogonal to the
r leading eigenvectors.

When applied on a simulation test bed that is realistic with
respect to D&A applications, we find that the proposed esti-
mator outperforms the conventional estimator by several or-
ders of magnitude for small values of r . Our proposal is thus
prone to significantly affect D&A results by decreasing the
estimated level of uncertainty.

Substantial further work is needed to evaluate the perfor-
mance of the proposed uncertainty quantification, in partic-
ular in an EIV context. Such an evaluation was beyond the
scope of the present work. Its primary focus was to demon-
strate that the choice of the leading eigenvectors as a projec-
tion subspace is a vastly suboptimal one for D&A purposes;
and that projecting on a subspace which is orthogonal to the
r leading eigenvectors yields a significant improvement.

Data availability. The data used for illustration throughout this ar-
ticle was first described and studied by Ribes and Terray (2013). As
mentioned in the latter study, it can be accessed at the following url:
http://www.cnrm-game.fr/spip.php?article23&lang=en (last access:
19 December 2018).
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Appendix A: Proof of equation (28)

Let A ∈ S+(R) be a non-invertible positive matrix. Denote
1A the matrix of non-zero eigenvalues of A, VA the matrix
of eigenvectors associated with 1A and V⊥A the matrix of
eigenvectors associated with the eigenvalue zero. For ε > 0,
we have the following:

(A+ εI)−1
= (VA1AV′A+ εI)−1

= (VA1AV′A+ εV
⊥

AV⊥A
′
+ εVAV′A)−1

=

(
VA(1A+ εI)V′A+ εV

⊥

AV⊥A
′
)−1

= VA(1A+ εI)−1V′A+
1
ε
V⊥AV⊥A

′
.

(A1)

Therefore,

f (A+ εI)=
(

x′VA(1A+ εI)−1V′Ax+
1
ε

x′V⊥AV⊥A
′x
)−1

(
x′VA(1A+ εI)−1V′Ay+

1
ε

x′V⊥AV⊥A
′
y

)
=

(
x′VABεV′Ax+ x′V⊥AV⊥A

′x
)−1

(
x′VABεV′Ay+ x′V⊥AV⊥A

′
y
)
, (A2)

with Bε = ε(1A+ εI)−1. We have limε→0+ Bε = 0, hence,

limε→0+ f (A+ εI)=
(

x′V⊥AV⊥A
′x
)−1(

x′V⊥AV⊥A
′
y
)

= (x′x− x′VAV′Ax)−1(x′y− x′VAV′Ay),
(A3)

which proves Eq. (28).
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