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Abstract. This paper describes results of an experiment that perturbed the initial conditions for the ocean’s
temperature field of the Community Earth System Model (CESM) with a well defined design. The resulting
30-member ensemble of CESM simulations, each of 10 years in length, is used to create an emulator (a nonlin-
ear regression relating the initial conditions to various outcomes) from the simulators. Through the use of the
emulator to expand the output distribution space, we estimate the spatial uncertainties at 10 years for surface
air temperature, 25 m ocean temperature, precipitation, and rain. Outside the tropics, basin averages for the un-
certainty in the ocean temperature field range between 0.48 ◦C (Indian Ocean) and 0.87 ◦C (North Pacific) (2
standard deviation). The tropical Pacific uncertainty is the largest due to different phasings of the ENSO signal.
Over land areas, the regional temperature uncertainty varies from 1.03 ◦C (South America) to 10.82 ◦C (Europe)
(2 standard deviation). Similarly, the regional average uncertainty in precipitation varies from 0.001 cm day−1

over Antarctica to 0.163 cm day−1 over Australia with a global average of 0.075 cm day−1. In general, both tem-
perature and precipitation uncertainties are larger over land than over the ocean. A maximum covariance analysis
is used to examine how ocean temperatures affect both surface air temperatures and precipitation over land. The
analysis shows that the tropical Pacific influences the temperature over North America, but the North Amer-
ica surface temperature is also moderated by the state of the North Pacific outside the tropics. It also indicates
which regions show a high degree of variance between the simulations in the ensemble and are, therefore, less
predictable. The calculated uncertainties are also compared to an estimate of internal variability within CESM.
Finally, the importance of feedback processes on the solution of the simulation over the 10 years of the exper-
iment is quantified. These estimates of uncertainty do not take into consideration the anthropogenic effect on
warming of the atmosphere and ocean.

1 Introduction and background

Uncertainty in climate models occurs due to various sources.
Multimodel and single-model ensembles of varying size can
give a rough estimate of the uncertainty in some quantity of
interest or outcome in a 10-year period, the point in time at
which the influences from the initial conditions are thought
to reach a minimum (e.g., Branstator and Teng, 2012). Previ-
ous studies using fully coupled ocean–atmosphere–land cou-
pled general circulation models (GCMs), such as Pohlmann
et al. (2013), Smith et al. (2007), Yeager et al. (2012), Deser
et al. (2012), Kay et al. (2015), Troccoli and Palmer (2007),

Sriver et al. (2015), and Kröger et al. (2012), vary initial con-
ditions in a variety of ways. The ensemble sizes are small
(10 or less) in most of these studies, making it difficult to
estimate a probability density function (pdf) for any model
outcome. In some experiments (e.g., Yeager et al., 2012), all
ensemble members are initialized with the same ocean, and
it is the variation in the atmosphere and land components
that uniquely determines an ensemble member. For example,
Yeager et al. (2012) use 10 different days and/or differing
hindcast runs for January of a specific year to initialize the
atmospheric component for the 10-member ensemble, while
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Troccoli and Palmer (2007) use two different expressions of
greenhouse gases (GHGs) for their 6-member ensemble. The
one study (Kröger et al., 2012) that does modify the ocean’s
initial conditions only has three realizations of the outcomes.
There are several larger member ensembles (Sriver et al.,
2015) which vary the initial conditions of all the GCM com-
ponents. Such a study makes it impossible to separate out the
effects of one component’s influence on the outcomes over
the others. Kay et al. (2015) and Deser et al. (2012) vary
only the atmospheric component. However, they all provide
useful insight into the internal variability of a GCM.

A previous experiment that examines the uncertainty in
submodel (e.g., models of mixing) process parameter val-
ues (Tokmakian and Challenor, 2014) tests and shows the
usefulness of emulators as a method to expand the sampling
space for the determination of uncertainty. A companion pa-
per to this one, Tokmakian and Challenor (2019), examines
the initial-condition uncertainty using an ocean-only model
and related emulators, 10 years in the future, without consid-
ering feedbacks between the ocean and atmosphere. The re-
sults from this companion study show that after 10 years, the
uncertainty in the near-surface temperature is on the order of
±0.4 ◦C, with 95 % of the spatial areas having an uncertainty
of less than ±0.9 ◦C. In general, there is low uncertainty in
the tropical regions and higher uncertainty in areas such as
the Antarctic circumpolar current and western boundary cur-
rents, where there is high variability. The initial ocean state
becomes less and less important in an ocean-only model as
time proceeds, especially in the near-surface region of the
ocean. The result is consistent with many studies, extending
back to Stammer et al. (1996) and Tokmakian (1996), that
show that surface fields of an ocean simulation are driven
largely by the forcing of the atmosphere at the ocean’s sur-
face and, with no feedback, the initial conditions’ influence
on the solution decays in time. Stammer et al. (1996) and
Tokmakian (1996), however, do not quantify the uncertainty.
When there is no reaction of the ocean back to the atmo-
sphere, its realism is dependent on the atmospheric forc-
ing product used. Any perturbation in the initial fields de-
cays with time, but as the study of Tokmakian and Challenor
(2019) shows, a small, residual uncertainty remains.

In this paper, we take the next step using our set of ex-
periments and examine how uncertainty in the ocean’s initial
conditions contributes to the uncertainty in various prognos-
tic and diagnostic quantities (metric) of a coupled climate
model. This model includes the feedbacks that occur between
the ocean and atmosphere. We ignore anthropogenic effects.
This is deliberate. This paper determines the uncertainty in
10-year predictions with a model in the absence of any an-
thropogenic effect as a baseline. This baseline is needed for
future work with anthropogenic forcing included. Having the
baseline is essential for seeing how additional uncertainty is
introduced into the system by the anthropogenic component.
The approach in this paper is to take a relatively small en-
semble (30 members) and apply a statistical methodology

to achieve a reasonable probability distribution of the un-
certainty for a chosen metric. That is, for any given metric,
we first determine a posterior probability distribution for an
outcome, at a given time, using a 30-member GCM ensem-
ble and robust statistical methods. In a separate but related
analysis, we then examine the temporal evolution of the met-
ric across the ensemble to ascertain where the uncertainty,
arising from the initial-condition perturbation, produces pre-
dictable patterns of variability or more chaotic behavior. The
two analyses have separate but related mathematical frame-
works.

In a mathematical framework, first consider an ensemble
of simulations with some outcome, y, at a time t , and where
the outcome for each ensemble member (i) is defined as fol-
lows:

yi = ytruth+ εinitial,i + εnumerical,i, (1)

where yi is the estimate of the metric given by one member
of a forward model ensemble with some set of initial con-
ditions, xi . We assume that if a very large ensemble (many
thousands) of simulations of the GCM could be conducted
with different initial conditions, then the mean of those many
simulations would converge on ytruth (assuming no bias in the
model). The ε terms are random variables representing dif-
ferent sources of uncertainty: εinitial identifies the uncertainty
related to the initial condition and the focus of this research.

In addition, there is another source of uncertainty that
needs to be addressed, εnumerical, which is the uncertainty due
to the numerical scheme and model structure, including the
uncertainty due to missing dynamics. A GCM with a differ-
ent structure and/or different process dynamics may have a
different εnumerical that results in a different temporal variabil-
ity with different amplitudes or phasing. Because the same
GCM is being used for all ensemble members, the uncer-
tainty εnumerical is the same for each ensemble member. Even
when the same model is run on different computers (Hong
et al., 2013), the outcomes are the same.

The initial-condition uncertainty over all possible initial
conditions is defined as follows:

2σic = 2

√√√√ 1
N

N∑
i=1

(εinitial,i − εinitial)2, (2)

where N is the number of all possible initial conditions and
εinitial is the mean of all εinitial,i .

The second mathematical framework describes the ensem-
ble variability, temporally. For any one ensemble member i,
then

yt =
1
T

∑T

t=1
yt + yt,seasonal+ yt,trend+ yt,internal

and, rearranging,

yt,internal = yt −
1
T

∑T

t=1
yt − yt,seasonal− yt,trend.

(3)
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yinternal is what is described as internal variability by many
(e.g., Sriver et al., 2015). yt,seasonal and yt,trend are the por-
tion of the signal due to seasonal forcing and any long-term
trend that is present. T is the total time period for the simula-
tion and t is time, making the first term on the right side the
long-term mean for the simulation. In this framework, areas
of similar patterns can be identified, but with each ensem-
ble member having distinct phasing arising from the initial-
condition perturbation. These areas of similarity may help
with identifying regions that can be used for prediction.

The paper is structured to first describe the experiment and
its components and data that are fundamental to the exper-
iment. It is followed by showing the estimation of uncer-
tainty for various outcomes (first framework, Sect. 3). To
help understand how the uncertainty manifests itself tem-
porally, Sect. 4 (second framework) explores time-varying
aspects of the ensemble and how the initial-condition per-
turbation contributes to the phasing of similar patterns. The
section also explores how one field may or may not have an
influence on other fields given its uncertainty pattern. How
the two frameworks jointly contribute to a better understand-
ing of a model’s evolution and usefulness in prediction is dis-
cussed. In addition, the question of how the estimates of un-
certainty relate to other variances or uncertainty is also dis-
cussed. Finally, the last section summarizes the findings of
the experiment described in this paper.

2 Experiment setup

The experiment is briefly described in an overview here, with
details in the following paragraphs. A schematic of the ex-
periment, Fig. 1 illustrates the sequence of events that lead
to the creation of a robust uncertainty estimate. An ensemble
(Fig. 1a) of GCM simulations is created such that only the
initial ocean conditions vary (sampled from a distribution de-
rived from reanalyses products). The experiment is designed
such that a decomposition (b) of the initial conditions will
allow for a robust statistical determination of the uncertainty
(2σic, Eq. 2) of some outcome (e). The uncertainty deter-
mination is achieved by relating the ensemble outcomes to
parameters associated with the initial field (i.e., the princi-
ple component (PC) loadings). The relationship, referred to
as an emulator, can then be used to estimate outcomes for
initial conditions not used by the complex climate model or
GCM (d). Thousands of possible outcomes from possible ini-
tial conditions can be estimated quickly and efficiently, re-
sulting in robust uncertainty estimates for a particular simu-
lator quantity. As this is a Bayesian perspective, there is no
difference between aleatoric and epistemic uncertainty.

We will also use the ensemble to quantify yinternal to under-
stand temporal relationships to the uncertainty as described
in Sect. 1 using Eq. (3).

In the following sections, we first describe the forward
or GCM simulator and the source data for the initial fields.

Figure 1. Schematic describing the sequence of events undertaken
in this study. The gray boxes and circle indicate the elements related
to the emulator creation. The letters in parentheses are used in the
text for identification.

Next, the methods used for the sampling and creation of the
initial fields and the emulator are explained. Two distinct sta-
tistical methodologies are used in this study to allow for the
robust assessment of the uncertainty. The first method creates
the distribution and sampling of initial value fields, while the
second method is used to build a posterior distribution for
some metric based on outcomes from a relatively small en-
semble of forward simulations of the deterministic model.
The posterior distribution is the basis for inferences about a
metric’s uncertainty.

2.1 Forward model

The forward model or simulator being used in this ex-
periment is the Community Earth System Model (CESM)
(Collins et al., 2006). With a horizontal resolution of approx-
imately 1◦ (110 km), the vertical structure is represented by
60 levels, with the top 20 levels covering about 5 to 200 m.
The ocean component model is POP2 (Smith and Gent,
2002), while the sea ice model is CICE (Hunke and Dukow-
icz, 2003; Bitz and Lipscomb, 1999). The atmospheric model
in CESM is the Community Atmosphere Model (CAM5
Neale et al., 2010; Gent et al., 2010; Kiehl et al., 1998;
Collins, 2001; Collins et al., 2006). Each ensemble member
is restarted from the same previous spun-up simulation with
a different perturbation of the initial ocean temperature field.
A 30-day relaxation term on the temperature field nudges the
model towards the initial field over the first month to reduce
the shock of the introduction of the varied initial conditions
to the simulation.
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A total of 10 years of monthly averaged 3-D prognostic
ocean fields (e.g., temperature, salinity, and velocity) along
with 2-D monthly fields (e.g., sea surface height) are stored
for later analysis. Similar prognostic quantities for the atmo-
sphere are also stored on a monthly basis (e.g., velocities,
temperatures, water vapor). Along with the prognostic vari-
ables, a large number of diagnostic quantities are available
for analyses. The end result is an almost inexhaustible set
of quantities which can be examined using the methods de-
scribed in Sect. 2.4 to understand uncertainty in the model’s
processes due to differences in the initial conditions. For this
paper we examine how perturbing the ocean’s initial con-
ditions affect the related fields of near-surface temperature
(25 m) in the ocean, the surface air temperature, and the pre-
cipitation fields. Other fields, such as wind and current ve-
locities and ocean overturning, may be explored in future re-
search.

2.2 Initial fields

The initial fields are generated from a number of ocean
reanalyses. Six ocean reanalyses contribute to the set of
anomaly fields: the German Estimating the Circulation and
Climate of the Ocean (GECCO; Köhl and Stammer, 2008),
the Geophysical Fluid Dynamics Laboratory’s Ensemble
Coupled Data Assimilation (GFDL-ECDA; Chang et al.,
2013), the Predictive Ocean Atmosphere Model for Australia
(POAMA; Stone and Partridge, 2003), the European Centre
for Medium-Range Weather Forecasting operational ocean
reanalysis system (ECMWF ORAS4; Balmaseda et al.,
2013), the University of Reading analysis (URA025.4; Val-
divieso et al., 2012), and the Simple Ocean Data Assimilation
(SODA; Carton and Giese, 2008). Anomalies are computed
by differencing monthly fields from a reference reanalysis,
URA025.4, for 2001 to the end of the particular reanaly-
sis product (2009 or 2010). URA025.4, chosen as the ref-
erence field, has the highest resolution. Any long-term trend
in the difference and any residual seasonal signals are also re-
moved. This process results in an ensemble of 564 anomaly
fields. Only potential temperature is used due to computa-
tional considerations.

The base initial field is extracted from one of the 20th cen-
tury CESM large ensemble experiment data sets (Kay et al.,
2015). For each of the 30 simulations, an anomaly or pertur-
bation field is added to the base field creating the total initial
value field. The method for determining the anomaly fields
is described next.

2.3 Input distribution and sampling

Initial conditions include two sources of uncertainty. The
first is the uncertainty related to observational measurement
error combined with any reanalysis error. Uncertainty (or
variance) also relates to the state of the ocean relating to
yt,seasonal, yt,trend, and yt,internal in Eq. (3). For example, in

some cases, the ocean may be in a temporal state that is more
stable in the short term (for example, a strong El Niño) com-
pared to a more unstable state (an eddy-rich region). These
regions may be spatially distinct. Thus, the interannual to
decadal uncertainty or variance depends upon the physical
state of the ocean and how intrinsically variable a region is.
This paper focuses on the first, the uncertainty that is related
to the initial condition given the state of the ocean. At simula-
tion time t = 0, yt,seasonal, yt,trend, and yt,internal are the same
at the large scales. All the anomalies are created from tem-
porally consistent fields. Because we are sampling anomalies
to add to a base field, the large-scale spatial structure of all
initial fields is similar (e.g., the ENSO and seasonal phasing
are the same).

Because a complex climate model cannot be run the num-
ber of times required to produce a believable and represen-
tative probability distribution, the set of all possible initial
fields needs to be wisely subsampled. There are several pos-
sibilities for sampling strategies. One possible solution might
be to create a large number of initial fields (O500) and sam-
ple a small number (30) from the distribution in a nonran-
dom way to ensure adequate coverage of the set of initial
conditions. However, the problem remains of how to create a
valid distribution for the outcomes, given only 30 members
of some spatial field. It would be difficult, if not impossi-
ble, to find a regression relationship between the initial value
spatial field and an outcome because of the size of the spa-
tial field. However, such a regression is necessary to form
a convincing posterior pdf. Kernel density methods (Silver-
man, 1986) might help but are unlikely to be informative with
such small numbers.

A solution to the problem can be found if the initial-
condition space can be reduced substantially to allow for the
determination of such a relationship. The four-dimensional
space (three spatial locations – latitude, longitude, depth –
and also the sample number) can be decomposed into a
set of principal components (PCs), thus reducing its dimen-
sions. The PC loadings, rather than the full spatial fields,
are sampled. The loadings are then used with the associated
PC spatial maps to rebuild an initial value anomaly spatial
field which, in turn, when added to the base field, is used
to initialize the forward model. The sampled loadings are
used as the independent variables (x) (rather than the fields
themselves) for a multivariate regression process (the em-
ulator; see Sect. 2.4, Fig. 1b) that relates the initial value
fields to outcomes from the forward deterministic simula-
tions (the GCM).

The size of the data set (described in Sect. 2.2) is large
(76 641 spatial points by 30 levels by 564 samples) and it is
necessary to divide the data set into regions before the de-
composition. The regions are defined as the ocean basins:
Indian, Pacific, Atlantic and Southern oceans.

Once decomposed, 30 samples are chosen from the 564
samples for each of 120 PCs using a Latin Hypercube scheme
(McKay et al., 1979). Once the loadings are identified, they

Adv. Stat. Clim. Meteorol. Oceanogr., 5, 17–35, 2019 www.adv-stat-clim-meteorol-oceanogr.net/5/17/2019/



R. Tokmakian and P. Challenor: Influence of initial ocean conditions 21

Figure 2. Example map of an anomaly field for one initial condi-
tion.

are combined with the appropriate spatial field to create a
reconstituted initial anomaly field. These anomaly fields are
then added to the base field (Sect. 2.2). In a companion paper,
Tokmakian and Challenor (2019), details and examples of
the sampling are given and we have chosen not to repeat the
information in this paper.

Figure 2 shows an example of one of the initial value
anomaly temperature fields, reconstituted from the PCs. It
contains large patches of similarly sized anomalies as well
as areas that have changes on much smaller spatial scales.
These are, generally, in the regions of the observed ocean
that are highly energetic with much eddy activity and, hence,
uncertainty. The reconstructed fields are similar to the origi-
nal anomaly fields.

2.4 Posterior or outcome distribution

The method for creating the emulator, necessary for con-
structing the posterior uncertainty distribution, is a form of
nonlinear regression, known as a Gaussian process regres-
sion. Given some input or independent variable (x), the value
of the dependent variable can be determined. Having created
the forward model ensemble with different initial conditions,
sampled outcomes (where the outcome, y, is some metric
of interest) form the set of the dependent variables for the
uncertainty quantification. The statistical machinery condi-
tioned on the relationship between the independent variable
(the initial condition) and the dependent variable (the GCM
outcome) define what is meant by an emulator. By provid-
ing the emulator with a large number of initial conditions,
the posterior distribution is found for possible outcomes. In
other words, the emulator allows for the determination of an
outcome at locations where the simulator (the GCM) has not
been run. Thus, through the use of the emulator, an ensemble
for 5000 inputs can be created.

In its simplest form (two dimensions), the emulator is a re-
gression fit of the input data (e.g., the loadings used to build

initial conditions, Fig. 1b) to some output metric. Based on
Gaussian process (GP) regression, an emulator has the ad-
vantage that it is more flexible than linear regression methods
(and handles nonlinear relationships) and is as adaptable as
neural networks but easier to interpret. GP methods also give
estimates of the emulator uncertainty. A good, general refer-
ence for GPs is Rasmussen and Williams (2006). Challenor
et al. (2010), Urban and Fricker (2010), Rougier and Sexton
(2007), and Holden and Edwards (2010) provide examples
of GPs for use with complex numerical models of oceanic
and atmospheric processes. Previously, the authors used em-
ulators based on GPs to understand the parameter space of
imbedded physical models within geophysical deterministic
models (Tokmakian et al., 2012; Tokmakian and Challenor,
2014). Full details of GP emulators are found in Appendix A.

Statistical inference about a quantity of interest for the
simulator is carried out not by using the simulator but by
using the emulator.

3 Uncertainty, 2σic, related to initial conditions

The 30 simulations of the forward model are run with vary-
ing initial conditions. After the simulation ensemble has been
generated, an emulator, using the ensemble outcomes, is con-
structed such that it allows for the determination of a set of
possible outcomes of sufficient size (5000). From the possi-
ble outcomes, an uncertainty pdf is generated. In the follow-
ing sections, the maps of uncertainty for surface temperature,
precipitation, and rain are described. Uncertainties are given
as the 2σic value.

3.1 Uncertainty in the ocean’s near-surface temperature
field

The spatial map of the uncertainty, 2σic, for December of the
10th year for the ocean’s near-surface (25 m) temperatures
(Fig. 3a) shows large, cohesive, areas that have an uncer-
tainty range of ±1 ◦C or greater (green-yellow areas). The
uncertainty is largest in the tropical Pacific, with uncertain-
ties reaching 10 ◦C. The amount of uncertainty is clearly a
reflection of different phasing of the El Niño–Southern Os-
cillation (ENSO) signal in the various ensemble members. In
areas where the ocean is more energetic, such as in the South-
ern Ocean and the western boundary currents, the uncertainty
is reflecting both the intrinsic nature of the flow in these re-
gions as well as differences induced by the initial conditions.
In the discussion in Sect. 5, these two characterizations of the
flow are explored.

Basin averages for December year 10, outside of the trop-
ics, north or south of ±10◦ N or S respectively, are as fol-
lows: North Pacific: 0.87 ◦C; North Atlantic: 0.54 ◦C; South
Pacific: 0.68 ◦C; South Atlantic: 0.48 ◦C; Indian Ocean (in-
cluding tropics): 0.68 ◦C; and the Southern Ocean: 0.65 ◦C
(see Table 1, column 4). The tropical Pacific has the largest
regional average at 2.97 ◦C. In contrast, the tropical Atlantic
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Figure 3. Maps of 2 standard deviations for representing uncer-
tainty (2σic) for December of the 10th year of the simulations in
(a) ocean near-surface temperature field at 25 m and (b) surface at-
mospheric temperature in ◦C. (The shading is in terms of a log 10
value with tick marks labeled with unlogged values.) The ratio be-
tween the two fields is shown in (c), in which the ratio of the ocean
temperature to the atmospheric temperature is given in red as a per-
centage. The inverse ratio is given in blue.

uncertainty is the smallest at 0.34 ◦C. For comparison, sim-
ilar patterns of uncertainty can be calculated for any month
of the simulation (not shown). The uncertainty maps for De-
cember of year 9 and June of year 10 exhibit similar spa-
tial patterns as the December year 10 map. That is, the un-
certainty in the tropical Pacific is the largest and the North
Pacific uncertainty is larger than the North Atlantic, for ex-
ample. The areal averages for these two additional months
are also given in Table 1, columns 2 and 3 (ocean region).
Generally, the two Decembers are of the same order for all
regions. The June year 10 values are also generally of the

same order. In the two tropical regions, the uncertainty in
June is slightly higher than the December values in the tropi-
cal Atlantic sector and reversed for the tropical Pacific. In the
Southern Ocean, the June uncertainty is slightly smaller.

3.2 Uncertainty in the atmospheric surface temperature
field

The spatial map of uncertainty in the air surface tempera-
ture (December of the 10th year of simulation) field is shown
in Fig. 3b. Over the ocean, as might be expected, the un-
certainties are similar in size to uncertainties in the ocean
temperatures at a depth of 25 m. Over land, especially at lat-
itudes greater than 30◦ N, the uncertainty in the atmosphere
is as large as or larger than the uncertainty in outcomes for
the ocean’s near-surface temperature. In the Southern Ocean,
the atmospheric uncertainty is slightly larger than that for the
near-surface ocean temperature.

The December uncertainty (2σic) values for land regions
are listed in Table 1, column 4. The December average for
year 9 and for June year 10 are also provided. As a con-
sistency check. the two December uncertainty averages are
of the same order for all regions. However, there is a dif-
ference in the average uncertainty values calculated for June
of year 10 in the areas of the Antarctic, North America, Asia,
and Europe. The differences between the two Decembers and
June uncertainties imply that the winter months have a larger
spread of temperatures in those areas than during summer.

The full extent of the differences in the uncertainties can
be seen in a map of the ratios of the ocean temperature uncer-
tainty to surface air temperature. Figure 3c illustrates the re-
lationship between the ocean and atmosphere temperatures.
The reddish areas are where the ocean temperature uncer-
tainty is larger than the atmospheric temperature uncertainty
and the areas where the atmospheric surface temperature un-
certainty is greater are represented by the bluish colors. At
latitudes greater than about 65◦ N or S (blue areas) the at-
mosphere uncertainties are greater by over 100 %. At the
very eastern side of the tropical Pacific, the uncertainty in
the ocean’s temperature field is over twice the size of the
atmospheric temperature uncertainty, hinting at more active
oceanic processes in this region. In general, the Northern
Hemisphere’s ocean temperature uncertainties are on the or-
der of 25 %–40 % greater than the atmospheric temperature
(but still relatively small as compared to land temperature un-
certainties). In the region between 30 and 60◦ S, there are ar-
eas where the atmospheric temperature uncertainty is larger
than the ocean’s and vice versa. But over this region, the per-
centages are relatively small (less than 20 %). If processes in
both the ocean and the atmosphere are contributing to the un-
certainties, then regions with equal contributions from both
spheres (e.g., ocean or atmosphere) will have uncertainties of
the same order. In regions where there is an imbalance (e.g.,
> 25 %), then the processes related to the sphere (atmosphere
or ocean) with the greatest uncertainties are dominant.
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Table 1. Average uncertainty values 2σ .

Region Temperature (◦C) Precipitation (cm day−1)
(or rain over land)

December year 9 June year 10 December year 10 June year 10 December year 10

Land regions

Antarctic 1.45 4.69 1.59 0.000 0.001
Australia 2.16 1.11 1.63 0.082 0.163
South America 0.96 1.00 1.03 0.102 0.130
North America 7.08 2.02 6.04 0.089 0.060
Asia 8.08 2.09 7.38 0.151 0.023
Europe 9.54 2.03 10.82 0.081 0.074
Africa 1.21 1.05 1.23 0.124 0.121

Ocean regions

North Pacific 0.94 1.09 0.87 0.275 0.143
North Atlantic 0.55 0.65 0.54 0.107 0.162
South Pacific 0.65 0.64 0.68 0.234 0.466
South Atlantic 0.48 0.34 0.48 0.081 0.082
Indian 0.70 0.68 0.68 0.421 0.364
Southern Ocean 0.65 0.45 0.65 0.089 0.109
Tropical Pacific 2.14 1.51 2.97 0.344 0.491
Tropical Atlantic 0.26 0.54 0.34 0.092 0.253

3.3 Uncertainty in atmospheric precipitation and rain
fields

The uncertainty patterns of two related model fields, total
precipitation (atmospheric component output) and rain (land
component output), are shown in Fig. 4. The maps are for
June (a, c) and December (b, d) of the 10th year of simula-
tion. It can be seen, in the Northern Hemisphere, the spatial
distributions of uncertainty are lower over the inner regions
of the continents versus the coastal regions. In general, the
tropical uncertainties are low. The June maps are similar in
the Northern Hemisphere (Fig. 4a and c), while the Decem-
ber maps (Fig. 4b and d) differ from each other when com-
paring the land-based uncertainty over southern Africa, Aus-
tralia and South America. The difference in the uncertainties
for December are largely due to snow not being included in
Fig. 4b for the Northern Hemisphere. In the Antarctic, the
difference again is because most of the precipitation falls
as snow.

In December, both the rain and precipitation maps show
relatively large uncertainty for the west coast region of the
United States, in the south central to northeastern regions of
the United States, and over eastern Greenland. Over the trop-
ical Pacific ocean, Fig. 4c and d, the region has relatively
high uncertainty for precipitation in both June and Decem-
ber. Most of the uncertainty arises from the variability of the
convective processes (as compared to the uncertainty map of
large-scale precipitation, not shown).

The December area averages are listed in Table 1, column
6 and the June values are in column 5. For December, the

average regional land values, given in the table, show the
highest uncertainty for the regions of South America, Aus-
tralia and Africa (dominated by the area in the Southern
Hemisphere). Over land, the seasonal difference in uncer-
tainty shows that, in general, it is the summer months with
the larger uncertainty (December for Antarctic and Australia,
and June for North America, Asia, and Europe). Over the
ocean, the uncertainties in the Pacific also follow this pat-
tern, with the North Pacific uncertainty higher in June than
December and reversed for the South Pacific. The reason for
the tropical Atlantic’s difference in the seasonal uncertainty
is unknown, and needs further investigation that is outside
the scope of this paper.

4 Relationships between fields

The atmosphere–ocean coupled system is so complex that
it is difficult to determine cause-and-effect relationships. In
the experiment, the ocean fields are perturbed over the full
model, rather than at just one location, which complicates
how to perform a cause-and-effect analysis. In an effort to
understand how the 30 simulations are similar (or not) to
each other and how ocean patterns relate to land patterns, a
maximum covariance analysis (MCA) (e.g., Bretherton et al.,
1992; Frankignoul et al., 2011) is performed for several re-
gions of the model’s domain. Others (e.g., Li et al., 2012)
have used other methods to find correlations between a spe-
cific ocean location and land areas. Such methods are com-
prised due to the smaller scales of variability over land. The
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Figure 4. Maps of 2 standard deviations for representing uncertainty (2σic) for June (a, c) and December (b, d) of the 10th year of the
simulations in (a, b) rain (land) field (cm day−1) and (c, d) total precipitation (cm day−1). (The shading is in terms of a log 10 value with
tick marks labeled with unlogged values.)

MCA method filters out these smaller scales. In this section,
we are considering the mathematical framework as described
with Eq. (3).

Prior to the analysis, a seasonal cycle (determined by av-
eraging monthly values for each simulation) and a long-term
trend (determined via linear regression) are removed from
the fields for each of the 30 simulations. In this temporal
analysis, εnumerical is included in the anomaly. The signal re-
movals are done to highlight the interannual relationships in
the data and what we are referring to as yinternal. MCA is
designed to extract dominant patterns of variability and gives
the percentage of covariance described by the patterns. Math-
ematically, given two data sets, X and Y , of size m× t and
n× t , where m and n are the size of the spatial field and t is
the time sampling, then the covariance matrix σ is as follows:

σ = cov[UTX,VT Y ] (4a)

= UTCx,yV, (4b)

Cx,y =
1

t − 1
XY T , (4c)

where U and V are the optimal, maximum patterns of co-
variance (or eigenvectors of Cxy) and Cxy is the covariance
matrix. The percent covariance for the kth mode is defined as

s2
k =

σ 2
k∑n

kk=1σ
2
kk

× 100. (5)

Monthly fields for years 2 through 10 are included in the
analysis. For each simulation, a separate MCA is performed,

resulting in spatial maps for each mode along with associ-
ated time series, scaled to allow for comparison between land
and ocean values. All analyses within this section are per-
formed using the ocean temperature fields at 25 m and the
land surface air temperature field, except for the last section,
where the precipitation over land replaces the land temper-
ature field. Stationarity is assumed over the period of the
model simulation. The discussion for the North Pacific ex-
plores the analysis extensively to illustrate, in detail, how
maps of the differences in ensemble members can be sum-
marized. The discussions for the North Atlantic and tropical
Pacific relationships are limited to just the summary figures
because the details of how these are created are similar to the
North Pacific analysis.

4.1 North Pacific

Figure 5 shows the first spatial mode (U over the ocean and
V over land) for all 30 simulations using North Pacific near-
ocean temperature fields and North America land surface
temperature. In the top left corner is the simulation num-
ber. The percent of covariance (s2

k , Eq. 5) is in the bottom
left corner for each simulation, representing the amount of
covariance explained by the pattern. The maps are oriented
such that each ocean pattern is positively correlated with all
the other maps. That is, the sign of the maps (and associated
time series) for a simulation are reversed when the majority
of the ocean region’s correlation value signs do not match
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15 or more of the other simulations’ sign orientation at the
same location. The ocean patterns of the first mode for most
of the simulations are similar, with positive values along the
eastern edge of the basin and negative values to the west.
The pattern is very similar to the Pacific Decadal Oscillation
(PDO) spatial pattern found using observations of sea sur-
face temperature (Mantua et al., 1997). It also allows for the
exploration of how the land temperatures relate to similar or
different ocean conditions. For example, in some of the 30
simulations (1, 2, 4, 7, 8, 15, 20), the region south of approx-
imately the US–Canadian border is positive, while in other
maps (3, 17, 21, 24, 27, 28, 30) that pattern is reversed. The
different responses of the land temperatures given the ocean
temperatures field in a similar state suggests that it would be
difficult to use the ocean’s state as a predictive guide for the
land temperatures.

The mean and variance of the 30 maps shown in Fig. 5 for
the first two modes are displayed in Fig. 6. The color repre-
sents the mean of the 30 maps, while the variance between
the maps is shown as the dashed and solid lines (contours
are 0.0008 for solid and 0.0004 for dashed lines). The largest
uncertainties are in the regions of the Kuroshio Extension
in the western Pacific Ocean, where different model simula-
tions will have different paths for the current, and a location
at about 35◦ N, 210◦ E. The land temperatures (concentrating
on North America) have much greater uncertainty in northern
Canada and the area west of the United States Rockies than
in the eastern region of the United States. The area between
55 and 45◦ N along the west coast of North America also has
relatively low variance for both the first and second modes,
with respect to the eastern area. The low variance can be in-
terpreted to mean that given a pattern, such as that seen in
the North Pacific, the land temperatures, with low variance,
respond similarly across all ensemble members and may be
predictable.

The time series of these two modes for each of the ar-
eas – ocean (UTX) and land (VT Y ) – are shown in Fig. 7.
The ocean series are on the left and the land series on the
right. The first mode is in the top row and below is the sec-
ond mode. The simulation run number is along the bottom,
with time on the y axis. Within the ellipses, both the ocean
and land regions for the first mode generally show a positive
amplitude, but with the land time series much more variable.
The first mode time series suggests a low-frequency signal
on the order of 5 years. The time series show the signal of
the dominant pattern in a different phase. The second mode’s
time series are much more complicated, again with the land
series more variable. These plots also show how each of the
30 simulations, with perturbed ocean initial conditions, re-
sults in variation of the phasing of the interannual signal.

The previous paragraphs describe the analyses of the data
at zero lag between the ocean temperatures and land tem-
peratures. The same analysis can be done for lags of 3, 9,
and 12 months. The spatial patterns of the mean and vari-
ance over 30 simulations (Fig. 8) shows that as the lag in-

creases, the area of the largest uncertainty (dashed and solid
lines) over North America is reduced over the 12 months.
The analyses show that the North Pacific ocean temperature
field increases its influence over the land temperature as the
time difference progresses.

4.2 North Atlantic

A similar MCA analysis can be performed for the North At-
lantic ocean temperature with European land temperatures.
Figure 9, resembling the well known (Hurrell et al., 2013)
North Atlantic Oscillation (NAO) pattern, shows the mean
pattern of covariance for modes one and two overlaid with
the contours of variance. At zero lag, the relationship be-
tween the ocean and land temperatures is similar in the mag-
nitude of covariance explained to that seen in the Pacific.
There is relatively high variance (represented by the dashed
and solid lines) over all 30 simulations in the Scandinavian
region and low variance between simulations over north-
ern Africa, Britain and Spain. The second mode also shows
large variance between simulations over the ocean, mean-
ing that there is not one ocean pattern over all simulations
that can be used to describe the covariance patterns between
the ocean and land temperatures. Covariance maps computed
when lagging the land by several months behind the ocean do
not result in substantially different patterns.

4.3 Tropical analysis

The tropical Pacific ocean temperatures, when analyzed with
the land temperatures (Fig. 10), show a primary mode that
explains 81 % of the covariance between the two fields.
Rather than show many versions of the pattern at different
lags, only the pattern at a lag of 2 months is shown (the pat-
terns for other lags are similar). The variance (shown by the
dashed and solid contours) is the lowest over all 30 simula-
tions for this lagged period and the percent of covariance is
the highest. Spatially, the variance is lowest for the United
States region and increases northward into Canada. This pat-
tern is consistent with the analysis of van Oldenborgh et al.
(2012) (their Fig. 9b), showing ENSO teleconnections (note
that the method of analysis differs, as well as the model con-
figurations). The large areas with relatively low covariance
values over the land show that the tropical ocean is influ-
encing large areas of North America much more than the
midlatitudes in the Pacific (see Sect. 4.1). A similar analy-
sis using the tropical Atlantic rather than the tropical Pacific
only explains 40 % of the covariance over Europe, similar to
the midlatitude Atlantic percentage. This analysis is consis-
tent with others such as Rodríguez-Fonseca et al. (2016) and
Davey et al. (2014).
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Figure 5. MCA between ocean temperature at 25 m depth and land surface temperature. North Pacific Mode 1 for 30 simulations. Number
in left-top corner is model number. The bottom-left-corner number is the percentage of covariance explained by pattern.

Figure 6. Mean of North Pacific MCA maps in Fig. 5 shown by shading. Contours represent relative variance of the maps in Fig. 5. Contours
are for 0.0004 and 0.0008. The number in the title represents the average percent covariance explained by all 30 maps in Fig. 5.
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Figure 7. Time series for MCA analysis associated with maps in Fig. 5 for modes 1 (a) and 2 (b), with ocean time series in column 1 and
land time series in column 2. The model numbers are along the x axis with time on the y axis. The ellipses are used for identifying a region
of interest in the text.

4.4 Precipitation analysis

To evaluate how the Pacific Ocean’s near-surface tempera-
tures influence the precipitation field over North America,
an MCA is performed twice, once using the tropical Pacific
Ocean temperatures and the second time using the area north
of 15◦ N. The results are shown in Fig. 11. There is low vari-
ance across the 30 simulations in the interior of the conti-
nent in the analysis when using the tropical Pacific (Fig. 11a)
for the mapping. The maps indicate that the tropical Pacific
covaries in these simulations with the land temperatures to
a degree twice as much as the North Pacific region (0.76
vs. 0.37 covariance values), which is in agreement with pre-
vious work. However, Fig. 11b suggests that the North Pa-
cific midlatitude region does contribute to the uncertainty and
the unpredictable nature of the land precipitation due to the
high land variance between the simulations exhibited given a
similar ocean temperature map.

5 Discussion

The goal of this research is to understand how uncertainty
(2σic) manifests itself in an ensemble of simulations based
on the same numerics but differing only in the initial ocean
conditions, the differences having been introduced by pertur-
bations that represent our ignorance in the initial conditions.

In Sect. 3 spatial maps of this uncertainty for various quanti-
ties for a given time (December) (Figs. 3 and 4) are produced,
and in Sect. 4, the evolution of the initial conditions was an-
alyzed in terms of yt,internal. Included in the analysis of the
simulator ensemble was how the ocean temperatures influ-
ence land temperatures and precipitation (Sect. 4). Below the
relationship to the simulator’s internal variability (yt,internal)
and how the uncertainty defined by 2σic can be used jointly
to assess prediction possibilities is provided.

Secondly, we discuss what the maps of initial-condition
uncertainty (2σic) mean with respect to a similar experiment
without feedbacks between the ocean and atmosphere.

5.1 Uncertainty introduced by initial conditions

5.1.1 Internal variability

To understand how the uncertainty, 2σic, introduced by per-
turbing the initial conditions, relates to the internal variabil-
ity of the system (yinternal, Eq. 3), the following is computed.
From each of the 30 model simulations, a long-term mean
and the seasonal cycle are removed from the surface air tem-
perature field, y. The standard deviation is then found for
the Decembers over all simulations and all years. December
fields are used because we are making a comparison to the
estimate for the uncertainty in December of year 10. Equa-
tion (6) represents the computation for the standard devia-
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Figure 8. The mean MCA pattern over 30 models, at lags 0, 3, 6, 9
and 12 months. Contours represent relative variance for 30 simula-
tions as in Fig. 6. Contours are for 0.0004 and 0.0008. The number
in the title represents the percent covariance.

tion, Z. One might think of this internal variability as the
variability within an individual simulation.

y′m,n = (ym,n− ym,n,seasonal− yn), (6a)

Zn =

√∑
md

(y′md,n
− y′md,n

)2

10− 1
, (6b)

Z′ = Zn, (6c)

where ym,n represents a monthly spatial field; yn is the mean
of each simulation, n;m is the month in the model simulation
from 1 to 120 (10 years); and n represents the simulation run
or model number from 1 to nt , where nt = 30. Further, letmd
equal the month of December (i.e., k = 12, 24, 36, etc.), with
10 being the total number of Decembers per simulation. It is
again noted that the uncertainty, 2σic, arising from εinitial in
Eq. (1) is separate from yinternal as defined in Eq. (3) and the
variance of yinternal is approximately the same for all mem-
bers of our sample.

The field, shown in Fig. 12a, represents an estimate of
the average variability in surface air temperature exhibited
by the CESM simulator and shows twice as much Z′ as de-
fined above to give an approximate 90 % confidence interval.
The map represents what we refer to as the average internal
variation of a quantity (in this case, temperature) across the
simulations. Any model biases between the ensemble mem-
bers have been excluded from the calculation (i.e., the stan-
dard deviation is calculated separately for each simulation
and then averaged over all the simulations). The assumption
is made that because all the simulations are using the same
numerical code, with the only difference being a unique per-
turbation of the ocean’s initial conditions, the variance rep-
resents the underlying variability due to the dynamics. The
mapped variance is in contrast to the uncertainty seen in
Fig. 3b, which represents the differences in phasing of sig-
nals between the simulations.

The map given in Fig. 12a shows, in general, an enhanced
variability over the higher latitudes in surface air tempera-
ture. The temperature variability is much higher over land
than over the ocean, as expected. Over the ocean, there is rel-
atively high variability in the surface air temperatures in the
tropical Pacific, and in regions of the Gulf Stream Extension
and Kuroshio Extension (currents flowing northwestward of
Cape Hatteras and Toyko, respectively) where the currents
are highly variable.

To compare the estimate, Z′, with the estimate of uncer-
tainty between the simulations shown in Fig. 3, ratios have
been computed and are displayed in Fig. 12b (call this field
Z∗). The scale is in terms of percentages. In the reddish areas
(Z′ > Z∗), the ratio is computed as Z′

Z∗
, while the blueish ar-

eas (Z∗ > Z′) show the inverse Z∗

Z′
. Only in a few areas, such

as along Antarctica and in the Greenland Sea, is the internal
(or within-simulation) uncertainty greater than the between-
simulation uncertainty. The relative uncertainty from intro-
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Figure 9. Same as Fig. 6, except for representing the covariance between the North Atlantic 25 m ocean temperatures and surface land
temperatures at zero lag.

Figure 10. Same as Fig. 6, except for representing the covariance between the tropical Pacific 25 m ocean temperatures and surface land
temperatures at a lag of 2 months.

ducing perturbations in the initial ocean fields is strongest at
the high latitudes and in the tropical Pacific. The tropical sig-
nal is due to the phasing of the ENSO processes. It is noted
that the sample size for the “within” or internal variability
(O100) is much smaller than the sample size for the initial-
condition uncertainty (O1000). Longer runs of the simulator
would address the sample size difference, however, we did
not have the computer resources available.

5.1.2 Comments related to the ocean-only ensemble

In a previous, related, experiment (Tokmakian and Challenor,
2019) the response to perturbing the initial ocean condi-
tions without feedback processes between the ocean and at-
mosphere is examined. In the experiment, all 30 ensemble
members of the ocean- or ice-only components of CESM are
forced with the same atmospheric reanalysis product. Fig-
ure 13b shows the uncertainty field for the ocean temperature
at 25 m for the December field of year 10 in the ocean-only
ensemble. The ocean-only field is compared to the same field

from the coupled ensemble, Fig. 13a (a repeat of Fig. 3a).
Figure 13c is the ratio of Fig. 13a (red shades) to Fig. 13b
(blue shades). Generally, the coupled response field is higher
than the ocean-only ensemble uncertainty field (see Table 2),
most notably in the tropical Pacific. As discussed above, the
high tropical uncertainty is due to the phasing of the tropi-
cal signal in the coupled simulation. The ocean-only ensem-
ble temperature uncertainty indicates slightly larger values
for the areas centered about 55◦ N, 320◦ E in the North At-
lantic, in the Kuroshio Extension region of the North Pacific,
and parts of the Southern Ocean. An explanation for these
enhancements has not been discovered. We suggest that in
these regions the feedbacks between the ocean and atmo-
sphere may dampen the variability of the ocean’s tempera-
ture.

To look in detail at the differences between the two ensem-
bles and to help in understanding the role of feedbacks in the
simulations, the differences between pairs of monthly maps
are summarized in Fig. 14 for ocean temperature at 25 m.
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Figure 11. Same as Fig. 6, except for representing the covariance between (a) the tropical Pacific 25 m ocean temperatures and land precip-
itation at a lag of 2 months and (b) the North Pacific 25 m ocean temperature and land precipitation at a lag of 2 months.

Figure 12. (a) Represents the uncertainty within the simulations
(“internal”,Z′) for surface air temperature over all Decembers. (The
shading is in terms of a log 10 value with tick marks labeled with
unlogged values; compare to Fig. 3b.) (b) Ratio temperature uncer-
tainty in Fig. 12a (Z′) and Fig. 3b (Z∗).

Let Z1=X−Y , where X represents the spatial field for a
month from the coupled ensemble and Y represents the same
for the ocean-only ensemble. In all cases the atmospheric ini-
tial conditions are the same. In each pair, both the ocean-only

Figure 13. (a) Same as Fig. 3. (b) Maps of 2 standard deviations
for representing uncertainty for December of the 10th year of the
ocean-only simulation. (c) Ratio of a : b, with coupled uncertainty
in red shades and ocean-only uncertainty in blue shades.

and coupled members have the same ocean initial conditions.
For each simulation, Z1yr, the average difference for a given
year is calculated. Table 3 column 2 gives the average over
the 30 pairs for each year and column 3 is the standard de-
viation over the 30 pairs. The values show a steady increase
in the spread through year 8, and then a small drop in year 9.
The variance across the ensemble (column 3) indicates that
for the first 5 years the spread increases and between years 6
and 9 the variance is approximately the same.
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Table 2. Regional uncertainty values (2σ ◦C).

Region Coupled Ocean only

Southern Ocean 0.65 0.25
Indian Ocean 0.68 0.21
North Pacific 0.87 0.40
South Pacific 0.68 0.23
North Atlantic 0.54 0.69
South Atlantic 0.48 0.21

Figure 14. Yearly averages of pair differences between monthly
ocean temperature derivatives Z2= (Xit−Xit−1)−(Yit−Yit−1) vs.
pair differencesZ1=X−Y , whereX is the coupled simulation and
Y is the ocean-only simulation. The color indicates the year, and
each dot represents an ensemble pair.

The second quantity calculated from the simulation out-
comes is the difference in the temporal derivative, Z2=
(Xit−Xit−1)− (Yit−Yit−1), where “it” represents the month.
The average of these derivative values is then computed for
each year, Z2yr. Table 3 column 4 lists the averages over the
30 pairs for each year, with twice the ensemble standard de-
viation given in column 5.
Z2yr vs. Z1yr is plotted in Fig. 14. Each color represents a

different year and each dot represents a different simulation
pair (30 for every color). From bottom to top, it is clear that
the differences show, as time progresses, the two ensembles
diverging as Z1yr increases, confirmed by column 2 of Ta-
ble 3. Looking left to right in the figure, the spread of Z2yr
does not have a trend over time (summarized in column 4
and 5 of Table 3). Generally, Z2yr is more positive than neg-
ative. The values of Z2yr in time can be interpreted to mean
that the feedback processes within the CESM model account

Table 3. Average mean differences (Z1yr) and average mean
derivative (Z2yr) (◦C).

Year Z1yrensemble σ 2
Z1 Z2yrensemble σ 2

Z2

1 −0.52 0.0009 0.026 0.37× 10−3

2 −0.42 0.0032 0.002 0.09× 10−3

3 −0.29 0.0057 0.006 0.14× 10−3

4 −0.18 0.0063 0.014 0.19× 10−3

5 0.01 0.0086 0.017 0.24× 10−3

6 0.16 0.0084 −0.003 0.20× 10−3

7 0.29 0.0093 0.025 0.18× 10−3

8 0.42 0.0088 −0.001 0.13× 10−3

9 0.38 0.0079 −0.022 0.27× 10−3

for, on average, 0.008 ◦C globally (average of the Z2yr over
30 models and 9 years). And after 9 years, the feedback con-
tributes to about 0.4 ◦C globally (average of Z29 at 25 m over
30 models).

5.2 Two distinct uncertainty quantities

There are two distinct uncertainty (or variance) quantities de-
scribed in this paper. The first relates to the initial conditions
(Sect. 3, Eq. 1) and the second relates to the relationships
between two metrics (Sect. 4) (e.g., temperature and precip-
itation) and how predictable one metric is given the other.
The following paragraphs expand on the meaning of these
two uncertainties.

The uncertainty represented by the variance contours in
Figs. 5 and 9–11 allows us to make a statement about how
well the metric over land (i.e., temperature or precipitation)
is knowable, given the ocean’s near-surface temperature pat-
tern. For example, from Fig. 10a, with high confidence, all
the models, no matter what the initial conditions are, will pro-
duce a similar ENSO-like pattern. The phasing of the ENSO
signal may differ, as shown by the high uncertainty values in
the tropics in Fig. 3b. And if the state of the tropical ocean is
known and if a perfect model existed, there would still be sig-
nificant uncertainty in the over land surface air temperatures
in the regions at high latitudes in Canada and Alaska.

However, we do not have perfect knowledge of the ocean,
and therefore an additional uncertainty, εinitial, is introduced
by the perturbation of the initial conditions. If North Amer-
ica is used as an example, the yellow-orange area extending
down into the United States in Fig. 3b illustrates the addi-
tional uncertainty.

We can use an equation with the same framework as
Eq. (1) to describe the combination of these two uncertain-
ties. Let y1 be the first metric, such as ocean temperature, and
let y2 represent the second metric, for example land temper-
ature.

y2= (y1truth+ εinitial+ εnumerical)+ εpredictability, (7)
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where εinitial and εnumerical are as described in Eq. (1) and
εpredictability is a third uncertainty related to the influence of
one field on another.

The MCA maps, shown in Fig. 5, give a sense of un-
derstanding the land uncertainty (εpredictability) assuming low
variance over ocean regions of the dominant pattern. The
between-model uncertainty (εinitial) gives a sense of how im-
portant it is to know the state of the ocean. So, while it is well
known that the tropical Pacific state reduces the εpredictability
in temperature over large land areas, it is also clear that small
perturbations in the ocean’s initial field lead to relatively
large εinitial in the outcomes, including the phasing of dy-
namical processes, such as ENSO.

6 Summary and conclusion

This paper has described the results of an experiment that
perturbed the initial conditions for the ocean’s temperature
field of the CESM with a well defined design. The experi-
ment resulted in a 30-member ensemble of CESM simula-
tions, each of 10 years in length. We estimated two types of
uncertainty: (i) a robust estimate of uncertainty in a metric
(temperature or precipitation) at a location and (ii) an esti-
mate of uncertainty over land dependent upon the state of the
ocean (MCA analysis).

Using outcomes of temperatures and precipitation from
each ensemble member combined with statistical machinery
known as an emulator, spatial maps of uncertainty have been
calculated for air surface temperature, precipitation, and the
ocean’s near-surface temperature (25 m) fields for year 10
of the simulations. Basin averages, outside the tropics, for
the uncertainty in the ocean temperature field range between
0.48 ◦C (Indian Ocean) and 87 ◦C (North Pacific). The trop-
ical Pacific uncertainty dominates due to the different phas-
ing of the ENSO signal. Over land areas, the regional av-
erages vary from 1.03 ◦C (South America) to 10.82 ◦C (Eu-
rope). Similarly, the regional averages in precipitation vary.
In general, both temperature and precipitation uncertainties
are larger over land than over the ocean.

The MCA analysis for several regions showed how the
ocean temperature state relates to the land temperatures and
precipitation. The regions examined were the North Pacific
outside the tropics and North America, the tropical Pacific
and North America, and the North Atlantic and Europe and
eastern North America. These regions were chosen to exam-
ine how the CESM simulations reflected the NPO, ENSO,
and NAO climate indices and patterns. The analysis showed
that the tropical Pacific dominates the predictability of the
temperature in North America, which is also moderated by
the state of the North Pacific outside the tropics. There are
significant land regions that show a high degree of vari-
ance between the simulations in the ensemble and are un-
predictable given the analysis described here.

Finally, we discussed how our estimate of uncertainty
compares to the internal variability of the CESM model
framework along with a discussion on the importance of
feedback processes on the solution of the simulation over the
10 years of the experiment. In short-term climate forcing it
is often said that the initial-condition uncertainty is an im-
portant part of the final uncertainty in the forecast; we have
shown that in certain regions this uncertainty is in fact less
than the internal variability and so can effectively be ignored.

By jointly examining the uncertainties, we have a better
understanding about how the model evolves temporally, ar-
riving at a different state introduced by perturbations in the
initial temperature field of the ocean. While the end states
of each ensemble member (at December of year 10, tied to
the initial conditions) may differ, there are identifiable re-
lationships between ocean and land regions that can be ex-
ploited to help understand the predicability of land metrics.
In other words, ocean areas of relatively low initial-condition
uncertainty (e.g., North Pacific) (Fig. 3a) can be used to pre-
dict land precipitation along the west coast of the US about
40 % of the time (Fig. 11b). While, as Fig. 11a shows, in
this model, the state of the tropical Pacific can be used to
discern the west coast of US rain pattern a few months in
advance, the uncertainty introduced by initial-condition per-
turbations makes this difficult on a decadal scale. The addi-
tion of how ocean initial-condition uncertainty influences the
temporal variability is unique in this research.

The analyses in this paper can be extended to simulations
of any length. Care needs to be taken as to how the experi-
ment is designed, initially. A future experiment would be to
introduce anthropogenic forcing. Two approaches could be
examined using the methods described in this paper. First,
using the methods described in this paper, one could create
a separate emulator for each scenario. Second, a single emu-
lator with additional parameters to quantify changes in tem-
poral forcing could be created if continuous anthropogenic
forcing to one ensemble is used.

Code and data availability. Model output and software code are
available through a request to the authors.
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Appendix A: Gaussian emulator details

Bayesian analysis, in essence, combines a prior distribution
(informative or not) with the likelihood of a data set to pro-
duce a conditioned posterior distribution for the data. For-
mally,

π (θ |x)=
π (x|θ )π (θ )
π (x)

, (A1)

where the term on the left-hand side is the posterior pdf of
the metric of interest (denoted θ ) given the x, the data (in
this case, the initial field loadings). The pdf is equal to the
likelihood of observing the data, x, given the metric (θ , e.g.,
temperature) multiplied by the prior pdf of θ . It is divided
by the prior pdf for the data. The prior pdf is a normalizing
constant and can be estimated because the posterior pdf has
to integrate to 1.

Using the Bayesian framework, a prior defines the form
of the GP. The general form of the GP for the prior mean
function is given by m0 = h(x)T β , where h(x)T is a vec-
tor of q regression functions and β is a vector of q parame-
ters. For this study the mean prior function is a linear func-
tion with a zero mean. This means the joint distribution of
any two points is Gaussian with the covariance given by
= v0(x1,x2)= σ 2χ (x1,x2), where χ is a correlation func-
tion.

The posterior mean function is not equal to the prior mean
function. Rather, it combines the prior covariance function
and the data. The formal expression for the posterior mean is
as follows:

m∗ = h(x)T β̂ + t(x)TA−1(Y −Hβ̂), (A2)

where β̂ = (HTA−1H)−1HTA−1Y. A is an n-by-n covari-
ance matrix of the data (outcomes of forward model) with
itself and t is the n-by-1 covariance matrix between the data
and any new value x, in this case a Matérn covariance func-
tion. The general form is

χ (x1,x2)=
q∏
i=1

21−ν

0(ν)

(√
2ν(x1,i − x2,i)

b2
ii

)ν

Kν

(√
2ν(x1,i − x2,i)

b2
ii

)
, (A3)

where xj,i is the ith parameter for a given location j , bii is
the smoothing parameter in that dimension, q is the number
of parameters, Kν is a modified Bessel function (with its ar-
guments following in the brackets), and 0 is the gamma func-
tion. The emulators in this paper use ν = 7/2. H is the matrix
of the prior mean function. The first term on the right-hand
side of Eq. (A2), determined from the prior mean with re-
spect to the outcomes, is a regression function. The relation-
ships between the different members of the model response,
Z, and the initial conditions, x, of the second term modify

the regression function. As used for emulating complex nu-
merical models and because the simulator is a deterministic
model, the outcomes from the simulator are exactly interpo-
lated. A “nugget” term, reflecting a misfit between the data
and the GP at small scales, is included. Away from the data
points, the second term converges to zero and the fitted model
reverts to the form of the prior.

A posterior covariance term that gives us the uncertainty
in the predictions is defined as follows:

v∗(x1,x2)= σ̂ 2
[χ (x1,x2)− t(x1)TA−1t(x2)+

(h(x1)T − t(x1)TA−1H)×

(HTA−1H)−1(h(x2)T − t(x2)TA−1H)T ], (A4)

where σ̂ 2
= (n−q−2)−1(Y−Hβ̂)TA−1(Y−Hβ̂). This pos-

terior covariance term gives information about the differ-
ence in form between the mean posterior and the mean
prior functions. The first term within the brackets on the
right side of the equation, χ (x1,x2), represents the correla-
tion function dependent upon the different inputs. The sec-
ond term, t(x1)TA−1t(x2), arises from the correlation of Y
at an input location and its associated predicted emulator
outcome with the training set. The third term, (h(x1)T −
t(x1)TA−1H)× (HTA−1H)−1(h(x2)T − t(x2)TA−1H)T , is a
covariance quantity related to the residuals from the mean
posterior function, the regression function.
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