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Abstract. As the climate changes, it is important to understand the effects on the environment. Changes in
wildland fire risk are an important example. A stochastic lattice-based wildland fire spread model was proposed
by Boychuk et al. (2007), followed by a more realistic variant (Braun and Woolford, 2013). Fitting such a model
to data from remotely sensed images could be used to provide accurate fire spread risk maps, but an intermediate
step on the path to that goal is to verify the model on data collected under experimentally controlled conditions.
This paper presents the analysis of data from small-scale experimental fires that were digitally video-recorded.
Data extraction and processing methods and issues are discussed, along with an estimation methodology that
uses differential equations for the moments of certain statistics that can be derived from a sequential set of
photographs from a fire. The interaction between model variability and raster resolution is discussed and an
argument for partial validation of the model is provided. Visual diagnostics show that the model is doing well at
capturing the distribution of key statistics recorded during observed fires.

1 Introduction

1.1 The need for wildland fire spread models

The risk of large catastrophic wildland fires appears to be
increasing in many countries as evidenced by recent high-
profile wildfire events including the 2016 Fort McMurray
fire in Canada and the “Black Saturday” bushfires of 2009
in Australia. Of heightened concern are climate change im-
pacts on wildland fires. Weber and Stocks (1998) postulated
that increasing temperatures could lead to an increased num-
ber of wildland fire ignitions, a longer fire season, and/or
an increased number of days with severe fire weather. In
regions of Canada, fire seasons are getting longer (Albert-
Green et al., 2012) and fire risk has been shown to be in-
creasing (Woolford et al., 2010, 2014). Annual area burned
has increased and has been connected to human-induced
climate change (Gillett et al., 2004). Studies that analyzed
data output from climate model scenarios have suggested in-
creased severity ratings (Flannigan and Van Wagner, 1991),
area burned (Flannigan et al., 2005), ignitions (Wotton et
al., 2010), and a longer fire season (Wotton and Flannigan,
1993).

Consequently, the development of accurate, spatially ex-
plicit fire spread models is of crucial importance for under-
standing aspects of fire behaviour and forecasting whether
and how a wildland fire may spread. Many fire spread mod-
els are deterministic and although there have been some ef-
forts to incorporate randomness into such models, there is
also a strong need to develop stochastic fire spread models
along with the statistical methodology for calibrating such
models to data so that the uncertainty associated with where
and when a fire might spread can be determined. A well-
calibrated fire spread model can be used at the incident level
for individual fire management or be coupled to fire occur-
rence and fire duration models in a simulation-based ap-
proach for longer-term strategic planning by wildland fire
management agencies.

1.2 An overview and some recent developments

Taylor et al. (2013; Sect. 3) provided a detailed review of fire
growth, discussing the physical process of fire growth, fire
spread rate models, and spatially explicit fire growth models,
including a discussion of deterministic fire spread models,
such as Prometheus (Tymstra, 2005) and FARSITE (Finney,
2004), which play important roles in operational fire spread
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modelling by fire management agencies. Although these sim-
ulators are well established and used frequently in Canada,
the United States, and in several other countries, their chief
weakness is that they are not stochastic. Fire managers would
benefit from probability maps to indicate where a currently
burning fire may spread.

Burn-P3 (e.g. Parisien et al., 2005) used the deterministic
Prometheus fire spread model in an ensemble-type simula-
tion procedure which randomizes weather sequences in order
to induce randomness to produce “burn probability maps”,
typically a gridded map of the susceptibility of the landscape
to be burned by wildfire over a large study area over the
course of a year. We note that this kind of procedure may
be more appropriate for studying fire risk on large temporal
and spatial scales, such as producing an annual burn prob-
ability map for a region or district where wildland fires are
managed. However, modelling at the incident level, namely
quantifying whether or not a given fire may spread and where
it may spread to along with estimating the uncertainty asso-
ciated with the spread of a single fire, requires a different
approach.

We note that deterministic models, such as Prometheus,
can and are used at the incident level to model the spread
of a single fire given local conditions. We also note that
there has been some work to incorporate randomness into
the Prometheus fire growth engine. For example, Garcia
et al. (2008) attempted to introduce stochasticity to the
Prometheus model via a block bootstrap procedure, and Han
and Braun (2014) incorporated uncertainty through introduc-
ing an error component into the underlying model for rate of
spread (ROS), as a parametric bootstrap. Nevertheless, much
work remains to be done in order to make these procedures
operational.

In the meantime, several other models have been consid-
ered by several other authors, including the stochastic lattice-
spread model of Boychuk et al. (2007) that was studied by
Braun and Woolford (2013), who also introduced an inter-
esting variant of that lattice-spread model in their paper. This
modified Boychuk model is used in our study herein where
we address some statistical issues, studying the model from
the point of view of data analysis not through operational
implementation, which we illustrate through the analysis of
some small experimental fires or “microfires”. We purposely
restrict our analysis to such microfire data in order to study
the model on data collected under controlled experimental
conditions.

1.3 The modified Boychuk fire spread model

We study the modified version of the Boychuk et al. (2007)
model as described in Braun and Woolford (2013). In its sim-
plest special case one assumes the landscape to be flat with a
fuel type and density that is homogeneous, the weather con-
ditions to be constant, and no wind. On this landscape we im-
pose a regular square n×m lattice. Each of the grid cells can

be in one of three possible states: unburned fuel (F), burning
fuel (B), or burnt out (O). Transitions between these states
occur as follows: initially (i.e. at time t = 0), the grid cell at
some location (i,j ) is in state B, while all other cells are in
state F. The fire burning in cell (i,j ) will spread to each of
its four nearest neighbours (i.e. north, south, east, and west)
in random amounts of time T0,1,T0,−1,T1,0, and T−1,0, pro-
vided it does not burn out first. Specifically, at time T0,1, the
cell at (i,j + 1) makes the transition from state F to B, if the
cell is not already in state B. Similar transitions are made by
cell (i,j−1) at T0,−1, cell (i+1,0) at T1,0, and cell (i−1,0)
at T−1,0. These times are assumed to be independent and ex-
ponentially distributed with a mean of 1/λ. Once a cell has
made a transition to state B, fire spreads from that cell to
the sites of its nearest neighbourhood at a new set of inde-
pendent exponential random times. The time until the next
burning cell burns out is exponentially distributed with rate
µn, where n is the current number of burning cells. At that
time, the cell that has been in state B longest makes the tran-
sition to state O. Once in state O, a grid cell will make no
further transitions.

We note that the Boychuk model and its variant are much
more general than described above. Nonhomogeneous condi-
tions, due to changing weather, variations in fuel type, mois-
ture content, and topography can be handled. These issues
are described in detail in the Boychuk et al. (2007) paper.

1.4 Research objectives

The purpose of the current paper is to study the modified
Boychuk model from the point of view of data analysis. In
particular, we assume we have video data from a burning
wildfire and investigate the following two questions. First,
is it possible to fit the model to the data? And secondly, is it
possible to carry out model assessment? We will argue in this
paper that it is possible to show that the parameters for the
simplest case of this model can be estimated from a sequence
of pictures of a single fire. As in Zhang et al. (1992), we are
studying the characteristics of the modified Boychuk model
in the context of data collected on a tiny fire burned un-
der very controlled conditions. Although Zhang et al. (1992)
burned ordinary paper, we have chosen to use waxed paper
in our experiment because it burns more cleanly. In an earlier
paper (Braun and Woolford, 2013), we showed that the lat-
tice grid cell size can be calibrated using given data, and we
studied particular ways to assess the appropriateness of the
model, but a general parameter estimation scheme was not
proposed in that paper.

The rest of this paper proceeds as follows. In the next sec-
tion, we describe our burning experiments and how we ex-
tract data from a video clip of a microfire. In Sect. 3, we de-
scribe a method to estimate the two parameters of the basic
interacting particle model using data on numbers of burning
grid sites and numbers of neighbouring unburned sites. We
next summarize the results from the experiments and then
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provide specific tools to assess the fit of the model to the
data. We conclude the paper with our observations and our
ideas about future work on related problems.

We note that work has been carried out in incorporat-
ing fire rate of spread variability using variations in weather
streams (e.g. Anderson et al., 2007); here, our focus is on
what statisticians refer to as “unexplained” variation.

2 Microfire experiments

2.1 Apparatus and design

Data for testing the usefulness of the grid-based fire spread
model were obtained from a set of small-scale experimen-
tal fires. The experiments were conducted under a fume
hood in a laboratory, at a temperature of 20 ◦C where wind
was absent and slope and aspect effects were negligible.
In each experimental run, the material used for fuel was
a 25.4 cm× 38.1 cm sheet of dry waxed paper, which had
been soaked for 1 h in an aqueous solution of potassium ni-
trate (as in Zhang et al., 1992) and dried for 1 h on a hot
plate set to 60 ◦C. The concentration of the solution was
0.1 g KNO3 mL−1. The sheet was suspended, horizontally,
2.54 cm above the base of the pan to permit airflow. The pa-
per was ignited, from below, at a point near its center, and
an Olympus Stylus® 600 camera, which was suspended on
a tripod approximately 48 cm above the paper, was used to
digitally record the experimental fire until most of the paper
was consumed.

The potassium nitrate treatment protocol was adopted for
two reasons. First, it prevented flaming and, in fact, induced
smouldering combustion. This was important from a lab
safety standpoint. Second, flames tend to obscure the pattern
of combustion, and this leads to additional image process-
ing issues when extracting the data from the video footage.
To further simplify the image processing methodology, these
experimental runs were conducted in darkness. This resulted
in video footage in which only burning sites were visible; for
example, see the screenshots from one of the experimental
runs that are displayed in Fig. 1.

A total of 10 microfires were obtained, but only six were
retained for further study, due to issues deemed to be un-
related to the study. These issues had to do with difficul-
ties in processing the images from the video streams, due
to the presence of fire-spotting, which produced small fires
outside the perimeter of the original fire, and due to acciden-
tal changes in lighting, which interacted with the reflectivity
of the waxed paper. In both cases, this rendered data that will
be studied in the future, but which were not amenable to the
very quick and simple data extraction and image segmenta-
tion procedures that will be described later. In future work,
we plan to develop new image segmentation methodology to
handle these situations, but as our real focus here is on ap-
plying a stochastic model to real data, we feel this is beyond
the scope of the current paper.

2.2 Data extraction and segmentation

The open-source program ffmpeg (Libav, 2010–2013) was
used to freeze-frame each movie at approximately half-
second intervals to obtain clear image captures with times-
tamps. These captured images were then saved as JPEG files,
readable in the R system (R Core Team, 2018). For illus-
trative purposes, the images for the third experimental run
are shown in Fig. 1 (the images for the remaining five mi-
crofires can be found in the Supplement submitted along with
this paper). The original images were a combination of sev-
eral colours: yellow, red, grey, black, etc. In order to convert
the image matrices into a usable form, conversion to three
colours, red (burning), green (fuel), and black (burnt out),
was necessary.

This image segmentation problem was greatly simplified
because of the use of darkness in the experimental setup.
Each grid cell is unburned until it burns (and is lit up in the
video footage) and is burnt out for all remaining time. There-
fore, the time(s) at which each grid cell burns can be iden-
tified from the time series of the red, green, and blue (rgb)
measurements. The series corresponding to red is most use-
ful for this purpose. Prior to burning, the values are at or near
0; thus all images corresponding to these times can be set
to “green”. After burning, the values are again at or near 0;
these can be set to “black”. The values at the time(s) of burn-
ing can be set to “red”. The resulting patterns, corresponding
to the images in Fig. 1 are displayed in Fig. 2.

Finally, the colour-coded images were converted to a nu-
meric matrix corresponding to the green, red, and black pix-
els of the image array. We assigned the colour green to the
value 0, red to the value 1, and black to the value 2. The
numbers of 0, 1, and 2 were counted, which gave the num-
bers of unburned fuel sites, the number of burning sites, and
the number of burnt-out sites. In addition, the number of fuel
sites neighbouring burning sites at each time point were also
counted. To illustrate, the counts for each of these statistics
during the first 30 s are listed in Table 1 for the third mi-
crofire. The detailed smoldering experiment data for all the
microfires are provided in the Supplement.

3 Model fitting

We now develop the methodology required to fit the grid-
based fire spread model to the data extracted from a sequence
of images of a growing fire. Referring to data such as in Ta-
ble 1, let X(t) denote the number of burning sites at time
t and Y (t) denote the number of sites that are burnt out by
time t . In addition, let B`(t), Br(t), Bu(t), and Bd(t) denote
the number of burning sites with unburnt fuel in the site im-
mediately on their left (west), right (east), above (north/up),
or below (south/down), respectively. Also, let

x(t)= E[X(t)],
y(t)= E[Y (t)],
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Figure 1. A sequence of burn patterns on a sheet of wax paper observed at times of 1, 6, 11, 16, 21, 26, 31, 36, 41, and 46 s for the third
microfire. Time increases from left to right, and then down.

Figure 2. Thresholded patterns for the third microfire. Unburned areas are coded as the light grey (green, if in colour), burning regions are
at an intermediate grey shade (or red), and burnt regions are black.

b`(t)= E[B`(t)],
br(t)= E[Br(t)],
bu(t)= E[Bu(t)],

and

bd(t)= E[Bd(t)].

According to the model rules and arguing as in Braun and
Kulperger (1993), we have the relations

y′(t)= µx(t), (1)
x′(t)=−µx(t)+ λ (b`(t)+ br(t)+ bu(t)+ bd(t)) , (2)

and initial conditions of y(0)= 0 and x(0)= 1.
These equations hold for both the original Boychuk model

as well as the variant introduced by Braun and Wool-
ford (2013). This result seems surprising since the Braun

and Woolford variant is non-Markovian, while the Boychuk
model is. However, it is important to note that the differential
equations are for population level quantities. They are also
only a partial description of the process dynamics. However,
they contain enough process information to allow for con-
struction of moment estimators for the process parameters as
we now demonstrate.

The notation in the ensuing discussion can be simplified
by making the substitution

g(t)= b`(t)+ br(t)+ bu(t)+ bd(t).

Then

x′(t)=−µx(t)+ λg(t). (3)

By adding Eqs. (1) and (3), we obtain:

x′(t)+ y′(t)= λg(t). (4)
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Table 1. Counts of the six statistics for the third microfire at a se-
quence of times (measured in seconds): numbers of burning sites,
burnt-out points, and the four nearest-neighbour counts.

Elapsed Number Number u d l r
time burning burnt out

0 1 0 1 1 1 1
1 11 1 5 4 4 3
2 7 9 5 4 2 4
3 13 13 6 7 6 6
4 30 17 8 9 7 7
5 15 31 5 10 6 6
6 21 39 6 10 9 9
7 33 46 10 13 10 11
8 30 67 12 14 9 11
9 34 77 11 14 7 12
10 33 97 13 15 9 13
11 29 115 12 14 9 11
12 34 131 17 17 9 13
13 39 145 17 17 13 15
14 45 157 16 19 13 17
15 55 176 18 22 16 21
16 56 201 16 21 16 22
17 56 225 15 21 17 23
18 65 249 23 23 19 22
19 59 284 17 24 18 23
20 57 313 18 22 18 23
21 65 349 19 23 26 23
22 62 385 20 25 24 23
23 63 417 23 26 23 22
24 70 444 21 25 28 26
25 79 470 24 27 28 27
26 72 518 28 29 30 25
27 92 553 30 33 31 30
28 81 598 31 34 32 33
29 89 632 32 39 31 35
30 83 682 27 33 30 36

3.1 Moment and continuous least-squares estimation

We can estimate the functions x(t) and y(t) using X(t)
and Y (t), respectively. In fact, improved estimates of these
functions can be obtained by applying a local linear kernel
smoother to the (t,X(t)) data and (t,Y (t)) data respectively.
Similarly, estimates of g(t) can be improved by a local con-
stant smoother. We used the locpoly function in the KernS-
mooth package (Wand, 2015) with an automatically selected
smoothing parameter. The software also allows for estima-
tion of the first derivatives x′(t) and y′(t) from the same data
sets (see Wand and Jones, 1995, for example).

Substituting these local linear kernel-smoothing-based es-
timates ŷ′(t) and x̂(t) into Eq. (1), continuous least squares
can then be applied to estimate µ. That is,

µ̂= argmin
µ

tn∫
t1

(̂y′(t)−µx̂(t))2dt,

Table 2. Estimates of stochastic spread model parameters, µ and λ,
based on data from each of six microfires. The grid cell sizes used
in the spread model were taken as the camera pixel size divided by
the given scale factor. The two rightmost columns of the table give
the medians of the estimates of µ and λ for 100 simulated data sets
generated according to the fitted stochastic spread model using the
observed-data estimates of µ and λ.

Replicate Scale µ̂ λ̂ Median Median
factor µ̂sim λ̂sim

1 2.90 0.34 0.30 0.32 0.28
2 2.60 0.49 0.39 0.46 0.38
3 2.60 0.49 0.40 0.46 0.39
4 2.50 0.35 0.28 0.33 0.27
5 2.10 0.41 0.37 0.39 0.35
6 2.20 0.45 0.38 0.42 0.36

where ŷ′(t) and x̂(t) are the smoothed estimates described in
the preceding paragraph.

An estimator for λ can be obtained from the estimated ver-
sion of Eq. (4) similarly:

λ̂= argmin
λ

tn∫
t1

(̂x′(t)+ ŷ′(t)− λĝ(t))2dt.

3.2 Estimation of scale

It is important to note that the pixel size induced by the cam-
era specifications has nothing to do with the size of the grid
cells imposed on the lattice underlying the stochastic spread
model. Thus, a scale parameter must be selected, which is
used to expand or contract the default pixel sizes so that the
spread model process can be used as a realistic approxima-
tion for the actual data. Specifically, we adjust the scale factor
until the range of the observed data matches the range of the
simulated data by using the estimated parameters.

In this paper, slightly different amounts of scaling are used
for six replicates of the dark smouldering experiment in order
to match the pixel size for the camera and the grid cell size
on the lattice. The scale factors for all replicates are listed
in Table 2. Note that these scale factors are estimated specifi-
cally for our microfire data only. One can reproduce the same
results by using this fire spread model, based on the same mi-
crofire data.

4 Results

As noted earlier, the sequence of fire images is displayed in
Fig. 1 for one of the microfires. The corresponding thresh-
olded images are displayed in Fig. 2. Based on these im-
ages, counts of the various statistics (as listed in Sect. 3) were
taken, at a number of different grid resolutions (as discussed
in Sect. 3.2). Table 1 displays the counts at one of the res-
olutions, and the third row of Table 2 contains the resulting
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Figure 3. A simulation run of the model fit to the observed data from Figs. 1 and 2. Colour coding is the same as described in Fig. 2.

Figure 4. A second simulation run of the model fit to the observed data from Figs. 1 and 2.

parameter estimates and the amount of scaling performed to
increase the pixel size.

The remaining rows of Table 2 contain the parameter esti-
mates and scalings required for the other five microfires. We
see that the fires required different amounts of scaling, and
the estimates of µ range from 0.34 grid cells per second to
0.49 grid cells per second. The estimates of λ range from
0.28 to 0.40. In all cases, the burn out parameter exceeds the
spread rate parameter, which suggests a subcritical process.
Thus, the fires would be expected to ultimately die out with
probability 1.

4.1 Parameter estimation bias and variability

By simulating from the fitted model and re-estimating the
parameters, it is possible to assess bias and variability of the
parameter estimates. We have chosen to display the results
of this assessment for the third microfire in Fig. 5 using box
plots to graphically summarize the distribution of the esti-
mates µ and λ for the simulated data sets. Horizontal lines
have been drawn to indicate the locations of µ (solid) and
λ (dashed). What is immediately evident from the graphs is
that both µ and λ appear to be underestimated in the simu-

lations: the medians of the estimates from the simulated data
are both about 0.02 less than the values used to produce the
simulated data.

The box plots also show that the distributions of the
parameter estimates are approximately symmetric, and the
amount of variability is of the same order as the bias. That is,
if these simulations were viewed as a parametric bootstrap,
the standard errors for the two estimators are approximately
0.01. Thus, the bias dominates the MSE, and the root-MSE
is approximately 0.022 for both estimators.

Box plots for the other five fires (not shown) are quite sim-
ilar to what appears in Fig. 5. All six fires exhibit the same
degree and direction of bias. Table 2 contains information on
the medians for the estimates of λ and µ from simulations of
each of the fitted models. In all cases, the medians of the pa-
rameter estimates from the simulated data are slightly below
the parameter values used in the simulations.

4.2 Model assessment

To assess the adequacy of the grid-based fire spread model
for this particular data set, we again simulated realizations of
fire spread at the estimated parameter values, using the cho-
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Figure 5. Comparisons of parameter estimates between simulations and observed data for the third microfire. The box plots represent
samples of estimates based on 100 simulations of the fitted stochastic spread model. The solid horizontal line represents the estimated value
of µ and the dashed horizontal line represents the estimate of λ, based on the observed data.

sen grid resolution. The results are the sequence of pictures
in Fig. 3. The images have been plotted at approximately 5 s
intervals. We see from these pictures that the fire size and the
thickness of the fire perimeter are similar to the analogous
quantities for the thresholded images at corresponding times.
The boundary is somewhat less smooth in the simulation pic-
tures than in the actual fire, but the overall shapes are fairly
similar. The simulated fire appears to have grown somewhat
larger than the observed fire. However, Fig. 4 shows the re-
sults of another simulation run where similar qualitative be-
haviour is evident but where the fire sizes tend to be some-
what smaller than observed.

Such plots are limited in their usefulness. In this case, we
can see that there are differences between the simulated pic-
tures and the actual data, but it is difficult to tell if these dif-
ferences are due to the variability we are trying to model or
if these are failures of the model itself.

As another check on the appropriateness of the model, we
can compare the burning cell counts, burnt-out cell counts,
and nearest-neighbour statistics for the original data with
simulated data from the fitted model (using data from the
third microfire only). Figure 6 shows the results of 100 sim-
ulated realizations (plotted in grey) with the observed counts
for all the other fires (plotted in blue) against time; the ob-
served data for the third microfire are plotted in black.

What is evident from this set of plots is that the range and
distribution of simulated counts of burning sites (based on the
observed data from one fire) match the observed range and
distribution of burning sites for other fires very well. Except
for a location shift in the distribution of simulated burnt-out
sites and neighbourhood statistics, we also see similarities in
the range and distribution in these cases. The location shift is
likely due to the estimation bias discussed earlier. Note that

by increasing both µ and λ slightly, we will not see much
change in the total number of burning sites over time, but
we will see many more burnt-out sites, for example. It is
also noteworthy that for one of the actual fires, there were
instances of flaming which distorted the camera images at
two time points, reflected in the anomalous spikes in Fig. 6.

These observations provide strong evidence that the model
is doing well at capturing distributional behaviour in these
dimensions. Further assessment of model goodness of fit is
provided in the Supplement submitted along with this paper.

5 Conclusions and further work

This work is part of an ongoing investigation into the suit-
ability of a simple grid-based interacting particle system for
stochastically modelling forest fire spread. Ultimately, we
wish to fit such a model to sequences of satellite-based pho-
tographs of wildfires. Then, simulations of the model could
be used to produce the maps of fire spread risk that are in
demand by forest fire managers. Before this can happen, ex-
periments under other conditions on slope and different kinds
of fuel and wind conditions must be carried out. This paper
represents the analysis of one such set of experiments, and
the results appear promising.

What can be firmly concluded is that the parameters for the
simplest case of the model can be estimated from a sequential
set of photographs from a fire, using differential equations for
the moments of certain statistics derivable from a video clip
of a fire. A critical element of this estimation is that of scale.
We have shown that the “natural” grid cell size can be deter-
mined, at least crudely, from a characteristic of the fire: the
ratio of burnt-out area to the square of the burning area. Infor-
mation about the scale is also likely related to the variability
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Figure 6. Comparisons between data from 100 simulation runs and observed data from six microfires. (a) Number of simulated (grey) and
observed (blue) burning sites versus time; (b) number of simulated (grey) and observed (blue) burnt-out sites versus time; (c–f) number of
simulated (grey) and observed (blue) neighbourhood counts versus time. The black curve in each panel corresponds to the observed data
from the third microfire, upon which the estimates of µ and λ underlying the simulated data are based.

of the fire spread; this is an issue that can be addressed by
studying an ensemble of experimental fires conducted under
the same conditions. It should be noted that we have thresh-
olded individual images; other methods taking account of the
time sequence at each pixel (and at neighbouring pixels) may
lead to more accurate counts of neighbourhood statistics and
burning and burnt-out sites, given that flames and/or smoke
cause distortions. The paper by Fang et al. (2007) indicates
another possible approach that could be adopted.

We have developed some goodness-of-fit methods. A sim-
ple visual assessment based on comparing burn patterns sim-
ulated from the fitted model with the observed pattern is a
useful, if limited, first step. This method of assessment gives
some assurance that the model appears to reasonably fit the
data. However, such a comparison is highly subjective and
will not necessarily generalize to cases where, for example,

the assumption of isotropy is invalid. The very nature of a
stochastic model leads to different possible patterns under
the same conditions. Hence, the following question arises:
how different can the patterns be from the observed pattern
before one might conclude that the model has failed?

What is needed, in general, is a metric for scoring spa-
tial burn pattern maps that evolve over time in terms of
their shape and boundary characteristics. In this paper, we
have proposed the four nearest-neighbourhood statistics as
belonging to such a set of measures. On the basis of an infor-
mal bootstrap procedure applied to these statistics, we have
a fair degree of confidence that the model is capturing some
of the stochastic behaviour of the actual fire.
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