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Abstract. We present a data-driven approach to assess and compare the behavior of large-scale spatial averages
of surface temperature in climate model simulations and in observational products. We rely on univariate and
multivariate dynamic linear model (DLM) techniques to estimate both long-term and seasonal changes in tem-
perature. The residuals from the DLM analyses capture the internal variability of the climate system and exhibit
complex temporal autocorrelation structure. To characterize this internal variability, we explore the structure of
these residuals using univariate and multivariate autoregressive (AR) models. As a proof of concept that can
easily be extended to other climate models, we apply our approach to one particular climate model (MIROC5).
Our results illustrate model versus data differences in both long-term and seasonal changes in temperature. De-
spite differences in the underlying factors contributing to variability, the different types of simulation yield very
similar spectral estimates of internal temperature variability. In general, we find that there is no evidence that
the MIROC5 model systematically underestimates the amplitude of observed surface temperature variability on
multi-decadal timescales – a finding that has considerable relevance regarding efforts to identify anthropogenic
“fingerprints” in observational surface temperature data. Our methodology and results present a novel approach
to obtaining data-driven estimates of climate variability for purposes of model evaluation.

1 Introduction

Exploring the impacts of anthropogenic climate change is
of great relevance and interest to society. Phase 5 of the
Coupled Model Intercomparison Project (CMIP5) generated
many different ensembles of climate model simulations (Tay-
lor et al., 2012). These simulations have enhanced our scien-
tific understanding of the ability of current models to rep-
resent key features of present-day climate. They have also
helped to identify human and natural influences on historical
climate and to quantify uncertainties in projections of future
climate change. The CMIP5 framework incorporates results
from large multi-model ensembles, and frequently includes
multiple realizations for each model and type of simulation.
More extensive details of the CMIP5 experimental design are
found in Taylor (2009).

In this paper we present a statistical model-based ap-
proach to compare the observational record with three differ-
ent types of CMIP5 simulations. We seek to develop a con-
sistently principled way of determining whether there are sta-

tistically significant differences in aspects of the variability,
both between the model simulations and the observational
record, and within three different types of simulation. Our
primary goal is to illustrate the utility of Bayesian statistical
techniques that are not in widespread use in climate science.
We develop a data-driven model diagnostic method and pro-
tocol with potential application to future CMIP model evalu-
ation.

Many attempts have been made to characterize the cli-
mate response to external and internal forcing simulated in
the CMIP5 experiments. Simulated internal variability is of
particular interested as there is evidence that it influences
trends in regional temperatures making model evaluation a
challenge (Kay et al., 2015; Gibson et al., 2017; Perkins-
Kirkpatrick et al., 2017). Separating the externally and in-
ternally forced components is a non-trivial challenge, and
many current studies rely on ad hoc approaches. The meth-
ods presented here have two main advantages: the protocol
we develop to jointly estimate the components of the tem-
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perature time series is statistically principled and consistent
across different series, and the results incorporate probabilis-
tic uncertainty as the approach is model-based.

To illustrate our statistical methods, we focus on one spe-
cific climate model: version 5 of the atmosphere–ocean gen-
eral circulation model (AOGCM), which has been jointly
developed by the Atmosphere and Ocean Research Insti-
tute at the University of Tokyo, the National Institute for
Environmental Studies, and the Japan Agency for Marine-
Earth Science and Technology (see Watanabe et al., 2010).
From this model, commonly referred to as the Model for
Interdisciplinary Research on Climate (MIROC5), we ex-
amine three different types of simulations: (1) decadal pre-
dictions of climate, initialized from a specific observational
state; (2) uninitialized simulations driven by estimated histor-
ical changes in key anthropogenic and natural forcings; and
(3) control integrations with no year-to-year changes in ex-
ternal forcings, which provide estimates of the natural inter-
nal variability of the climate system. Our analysis focuses on
monthly mean 2 m surface temperature time series over four
regions: global, tropical, Northern Hemisphere and Southern
Hemisphere. This allows us to explore the sensitivity of our
results to spatial differences in the large-scale structure of the
“signal” (the climate response to imposed changes in exter-
nal forcings) and the “noise” of natural internal variability.
Our statistical analysis of MIROC5 simulations can be easily
extended to other models in the CMIP archive.

Our approach extracts long-term externally forced changes
in temperature, seasonality and estimates of internal variabil-
ity of the climate model simulations and compares them to
the corresponding components in observational products. As
in Imbers et al. (2014), our focus is on investigating the spec-
tral characteristics of internal variability. We seek to deter-
mine whether model versus observed spectral differences are
significant, and can be interpreted in terms of known model
deficiencies (such as systematic errors in external forcings;
see Solomon et al., 2011; Schmidt et al., 2014). Addition-
ally, we investigate whether there are identifiable differences
between the spectral properties in the decadal prediction, his-
torical, and control simulations that are related to factors such
as the inclusion of external forcings and the initialization ap-
proach.

The paper is organized as follows. In Sect. 2, we describe
the model simulations and the observational products ana-
lyzed here. Section 3 presents our statistical modeling ap-
proach and introduces the DLM used to estimate the base-
line and seasonal components of the time series. Section 3
also describes the AR model that we apply to the residual
time series in order to estimate natural internal variability. In
Sect. 4, we show the results obtained from the application of
the DLM and AR models to the surface temperature time se-
ries for the four regions previously mentioned in a short-term
analysis (30 years). Section 5 presents results obtained simi-
larly for a long-term analysis (63 years). Section 6 provides
a summary and brief discussion.

2 Data

2.1 Climate model simulations

CMIP5 is a coordinated international modeling activity in-
volving a large suite of simulations performed with several
dozen different climate models. As this study is primarily an
exposition of methodology rather than a comprehensive anal-
ysis of internal variability behavior in CMIP5 models, we fo-
cus here on simulations performed with one particular state-
of-the-art climate model (MIROC5). We analyze both forced
and unforced climate simulations. The forced decadal pre-
diction and historical runs are used to explore the response of
the climate system to specified historical changes in anthro-
pogenic and natural external factors. Examples of such ex-
ternal factors include anthropogenic changes in well-mixed
greenhouse gases and natural changes in volcanic aerosols
(Kirtman et al., 2013). For a full description of the charac-
teristics of the different CMIP5 simulations, see Van Vuuren
et al. (2011). The forced simulations also reflect the natu-
ral internal variability of the climate system. In contrast, the
MIROC5 control integration yields an estimate of “pure” nat-
ural internal variability, uncontaminated by externally forced
climate changes. Below, we briefly describe the three types
of climate simulation that are of interest here.

Decadal prediction simulations are the newest addition to
the CMIP activity, and are therefore the most exploratory.
These near-term simulations were organized through a
collaboration between the World Climate Research Pro-
gramme’s Working Group on Coupled Modeling (WGCM)
and the Working Group on Seasonal to Interannual Predic-
tion (WGSIP). There are two core sets of these near-term
experiments. The first is a set of 10-year hindcasts initial-
ized from a number of different observational starting points.
Such simulations allow analysts to assess the prediction skill
and to investigate the sensitivity of skill to differences in the
initial state (e.g., to the presence or absence of a volcanic
eruption or a strong El Niño or La Niña). The second set
of decadal prediction runs extended the 10-year hindcasts to
30 years. The influence of external forcing is more promi-
nent in these longer simulations (Taylor et al., 2012). The
period from 1981 to 2010 is one of the few periods for which
30-year-long decadal simulations are available. This dictates
the time period and the length of our short-term analysis. It
also explains the absence of decadal simulations in our long-
term analysis, which spans the period from 1950 to 2012.
The decadal prediction runs include the same time-varying
anthropogenic and natural external forcings that are used in
the historical simulations.

The modeling groups participating in CMIP5 used differ-
ent methods and observational data sets for initializing the
decadal simulations. Most initialization schemes utilize ob-
served ocean and sea ice conditions. A full discussion of the
initialization methods and the organization of the decadal
prediction simulations can be found in Meehl et al. (2009).
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Figure 1. The 10-year series of monthly mean, spatially averaged 2 m surface temperature from the MIROC5 model. The top plots in each
panel correspond to NCEP-2 and ERA-Interim reanalyses. The three remaining plots in each panel correspond to the three different types
of simulations, in vertical descending order, decadal, historical, and control (labeled “M-” for model in the header). Three realizations of
each model simulation are indicated by different line types. The top panels represent global (a) and tropical (b) regions; the bottom panels
represent the Northern Hemisphere (c) and Southern Hemisphere (d).

Six individual realizations of the MIROC5 decadal pre-
diction run were available (see Fig. 1). Each realization has
small differences in the initial state in 1981. These small ini-
tial differences amplify with time, eventually yielding differ-
ent sequences of natural internal variability in each realiza-
tion (Kirtman et al., 2013).

Historical runs are not initialized from a specific observed
three-dimensional ocean state. Such simulations typically
commence from estimated atmospheric greenhouse gas lev-
els in 1850 or 1860, and are then run until the early 21st cen-
tury. Like the decadal simulations, the historical simulations
are driven by estimated changes in well-mixed greenhouse
gases, particulate pollution, land surface properties, solar ir-
radiance, and volcanic aerosols. The MIROC5 historical in-

tegrations span the period from 1850 to 2012; five historical
realizations were available.

The longest period of overlap between the MIROC5
decadal and historical runs is from January 1981 to Decem-
ber 2010 (see Fig. 1). This is the period of our short-term
analysis. Our long-term analysis over January 1950 to De-
cember 2012 allows us to explore the sensitivity of model
versus data comparisons to the use of a longer record (and
hence provides a stronger observational constraint on decadal
variability).

As noted above, the decadal and historical simulations
are performed with exactly the same physical climate model
using identical anthropogenic and natural external forcings.
Differences between the MIROC5 historical and decadal pre-
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diction runs are related to the initialization of the latter. Ini-
tialization forces the model ocean temperature and sea ice to
be consistent with the estimated observational state in 1981.
No such consistency with observations is imposed in the his-
torical run. Therefore, the two types of simulation can pro-
duce noticeably different climate states in 1981. This differ-
ence is due to two factors. First, any systematic model errors
(in either the applied forcings and/or the climate response
to these forcings) should begin to manifest within 1–2 years
of the start of the historical run in 1850, causing the simu-
lated climate in the historical run to drift away from observed
climate. Second, even if there were no model forcing or re-
sponse errors, the phasing of internal variability is different
in the historical and decadal prediction runs – so the mean
states of these two types of simulation are unlikely to be ex-
actly the same in 1981 (except by chance).

Control simulations provide estimates of “pure” internal
variability, which is an integral component of climate change
detection and attribution studies (Santer et al., 2018). In
the MIROC5 pre-industrial control simulation analyzed here,
there are no year-to-year changes in the atmospheric con-
centrations of greenhouse gases, particulate pollution, vol-
canic aerosols, or solar irradiance. Changes in climate arise
solely from the behavior of modes of variability intrinsic to
the coupled atmosphere–ocean–sea-ice system. Examples of
such modes of variability include the El Niño–Southern Os-
cillation (ENSO), the Interdecadal Pacific Oscillation (IPO),
and the North Atlantic Oscillation (NAO). Control runs are
typically used to simulate many centuries of internal vari-
ability and do not have any direct correspondence with ac-
tual time. To create compatibility with the record length of
the data available for other simulation runs, we extract 10
nonoverlapping monthly mean temperature time series from
the 670-year MIROC5 control run. In the short-term analysis,
we extract ten 30-year time series. For the long-term anal-
ysis, ten 63-year time series are extracted from the control
run. Each 30-year (or 63-year) segment contains a different
unique manifestation of internal variability, so they are simi-
lar to the realizations available for the decadal prediction and
historical runs and we regard them as such (see Fig. 1).

Several points should be emphasized prior to the discus-
sion of the model results. First, the AOGCM simulations
analyzed here generate their own intrinsic variability – i.e.,
they produce their own sequences of El Niños, La Niñas, and
other quasi-periodic modes. In the historical runs, there is
no correspondence between the modeled and observed phas-
ing and amplitude of these modes, except by chance. In the
decadal prediction runs, the situation is different. The obser-
vational ocean data used in the initialization provide some in-
formation about the current state of ENSO and other, longer-
timescale modes of variability. This observational informa-
tion constrains (at least in the first 1–2 years after initializa-
tion) the climate trajectory that is followed in the decadal
prediction run, imparting some short-term similarity between
the simulation and observations. As the length of time af-

ter initialization increases, chaotic variability begins to over-
whelm the information that the initialization provided about
the likely trajectories of real-world modes of internal vari-
ability, and the phasing of internal variability begins to di-
verge in observations and the decadal prediction runs.

Second, the observational record, the historical runs, and
the decadal prediction simulations contain common com-
ponents of temperature variability associated with natural
changes in solar irradiance and volcanic activity. For the 30-
year period of interest (January 1981 to December 2010), the
main solar forcing of interest is the roughly 11-year solar cy-
cle (Kopp and Lean, 2011). The major volcanic eruptions are
those of El Chichón in 1982 and Pinatubo in 1991. Both erup-
tions produced short-term (1–2 year) cooling of the Earth’s
surface, followed by gradual recovery to pre-eruption tem-
perature levels (Santer et al., 2001). As noted above, the con-
trol simulation does not include any solar or volcanic forcing,
so each control segment should not exhibit any synchronic-
ity between the simulated and observed temperature variabil-
ity (except by chance). Further details of the MIROC5 model
and the simulations performed with it can be found in Watan-
abe et al. (2010).

2.2 Observational records

We compare the climate model simulations to reanalysis ob-
servational products and to one in situ observational record.
Reanalyses rely on a state-of-the-art numerical weather pre-
diction (NWP) model to produce internally and physically
consistent estimates of changes in real-world climate. The
NWP model assimilates raw observational data from satel-
lites, radiosondes, aircraft, land surface measurements, and
many other sources, and produces an optimal “blend” of the
assimilated data. A key point is that reanalyses are retro-
spective – the forecast model does not change over time,
so the reanalysis output is not contaminated by spurious
changes in climate associated with progressive improvement
of the forecast model, or by changes over time to the as-
similation system. A number of different groups around the
world have generated reanalysis-based estimates of histori-
cal climate change. Each group uses a different NWP model
and assimilation system and makes different subjective judg-
ments regarding the types of observations that are assimi-
lated, the weights applied to each data type, and the bias cor-
rection procedures applied to the ingested observations. This
leads to differences in the estimates of “observed” climate
change and climate variability generated by different reanal-
ysis products (Kalnay et al., 1996). These differences have
generally decreased over time, as NWP models and assimi-
lation methods have improved.

We use two reanalysis observational products for the short-
term analysis. The first is version 2 of the reanalysis per-
formed by the National Centers for Environmental Predic-
tion (NCEP), subsequently referred to as NCEP-2. Although
we only consider data for our time period of interest, NCEP-
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2 spans the longer period from 1979 to 2016. Further de-
tails of NCEP-2 are available in Kanamitsu et al. (2002). The
second reanalysis was generated by the European Centre for
Medium-Range Weather Forecasts (ECMWF) in collabora-
tion with a number of other institutions. We subsequently re-
fer to this reanalysis as ERA-Interim (ERA-I). It begins in
1979 and is continuously updated. Results from both reanal-
yses are shown in Fig. 1. For a detailed documentation of
ERA-I, see Berrisford et al. (2011) and Dee et al. (2011). A
more thorough discussion and comparison of these reanaly-
ses is available in Fujiwara et al. (2017).

We rely on two observational records for our long-term
analysis. The first is the ensemble mean of the 20th Cen-
tury Reanalysis Version 2 (20CRV2) observational prod-
uct. This reanalysis was jointly performed by the National
Oceanic and Atmospheric Administration (NOAA) and the
Cooperative Institute for Research in Environmental Sci-
ences (CIRES) at the University of Colorado. The 20CRV2
reanalysis does not assimilate any upper-air information from
radiosondes and satellites – it only incorporates surface ob-
servations of synoptic pressure, monthly sea surface temper-
ature, and sea ice distribution (Compo et al., 2011). Inclu-
sion of a reanalysis that has fewer sources of input data in
our analysis potentially provides a more homogeneous sur-
face temperature record. Further details on the 20CRV2 re-
analysis can be found in Compo et al. (2011). The second
observational record in our long-term analysis is the in situ
observational record from the Berkeley Earth Surface Tem-
perature project (BEST). Gridded monthly mean temperature
fields were generated using an averaging process described
in Rohde et al. (2013). Results are for land and ocean tem-
perature and for air temperature over sea ice. BEST data are
available from 1850 to the present, although we only con-
sider data from January 1950 until December 2012. Note that
observational products before the satellite era, which began
around 1979, are subject to regions with limited in situ data.
The choice of time period for the long-term analysis is mo-
tivated by surface temperature coverage being degraded in
the first half of the century and problems with sea surface
temperature (SST) measurements at the time of the Second
World War. Further details on the data and BEST averaging
process can be found in Rohde et al. (2013).

All model and observational surface temperature data are
available in gridded form for a global domain. We calculate
area-weighted spatial averages over four regions: the globe
(90◦ S to 90◦ N), the tropics (20◦ S to 20◦ N), the North-
ern Hemisphere (0 to 90◦ N), and the Southern Hemisphere
(90◦ S to 0◦). As an example of the data considered here, we
show the first 10 years of the three different types of sim-
ulation analyzed in Fig. 1. Globally averaged temperature
exhibits a pronounced annual cycle which is clearly dom-
inated by the Northern Hemisphere. As expected based on
the changes in incoming solar radiation as a function of lat-
itude and season, the phasing of the annual cycle differs in
the Northern and Southern hemispheres. A semiannual cycle

is apparent in the tropics (Santer et al., 2018). Our statistical
analyses focus on these area-averaged time series.

3 Statistical models for model-generated and
reanalysis time series

The protocol presented in this section involves decomposing
each temperature time series into what we refer to as a “base-
line” and a seasonal component using dynamic linear models
(DLMs). The baseline component aims to capture long-term
externally forced changes in temperature, whereas the sea-
sonal component is dominated by the externally forced an-
nual and semiannual cycles. We extract the baseline temper-
ature and seasonality of the climate model simulations and
seek to compare them to the corresponding components in
the observational products. The DLM residuals, which have
the baseline and seasonal components of the temperature re-
moved, are time series that primarily represent natural in-
ternal climate variability. Using autoregressive (AR) models,
we investigate the spectral characteristics of internal variabil-
ity both between the simulations and observational products,
as well as within the simulated experiments.

DLMs are a popular Bayesian modeling approach for the
analysis of nonstationary time series. We follow approaches
detailed in West and Harrison (1999) and Prado and West
(2010) in order to estimate time-varying baseline and sea-
sonality components. One of the main advantages of using
DLMs is that they naturally deal with nonstationary data
and allow us to extract the baseline and seasonality com-
ponents jointly, while quantifying the uncertainty associated
with each component. In Sect. 3.1, we present the DLM used
here to extract the baseline and seasonal components from
the spatially averaged model and observational surface tem-
perature time series. Section 3.2 details the multivariate ex-
tensions of the univariate analysis that are required to deal
with the availability of multiple realizations of the model
simulations. Section 3.3 presents our DLM discount factor
selection strategy. Section 3.4 describes a Bayesian approach
to fitting autoregressive models to investigate the DLM resid-
uals and their spectral properties. Section 3.5 presents the re-
sults of using the total variation distance (TVD) as a method
to compare the spectra of the DLM residuals. Section 3.6
concludes with a summary of our complete data analysis pro-
tocol.

3.1 Baseline and seasonal temperature estimation

Consider first a single observational product time series
for one of the four domains considered. Let yt denote the
univariate domain-average temperature at time t , for t =
1, . . .,T where T is 360 months for the short-term analy-
sis (30 years) and 756 months for the long-term analysis
(63 years). We decompose each time series into a baseline
temperature η1,t and seasonal components αk1,t for harmon-
ics k = 1, . . .,K of a fundamental period p. LetNd (m,S) de-
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note a d-dimensional normal with mean m and variance S.
We specify our model used to emulate the baseline and sea-
sonality of the data as a second-order polynomial DLM with
Fourier form seasonality, i.e.,

yt = η1,t +

K∑
k=1

αk1,t + νt , νt ∼N (0,V ), (1)

where V is the unknown level one variance (West and Harri-
son, 1999). For convenience it is assumed that the level one
errors νt are independent in time, although subsequently we
model the dependence of the residuals. We further assume
that the baseline component has a structure described by(
η1,t
η2,t

)
=

(
1 1
0 1

)(
η1,t−1
η2,t−1

)
+ω

η
t ,

ω
η
t ∼N2(0,VWη

t ). (2)

Here the system evolution error vectors ωηt , or level two er-
rors, are assumed to be independent over time. We denote the

baseline evolution matrix as Gη
=

(
1 1
0 1

)
. A maximum of

bp/2c harmonics can be included in the model, where p is
the fundamental period. Here p = 12 months, which is the
annual cycle. We include harmonics 1, ..,K with K = 4 in
the seasonal component of the DLM to capture the annual,
semiannual, triannual, and quarterly cycles. Our statistical
assessment based on the calculation of the highest posterior
density regions (see West and Harrison, 1999) indicated that
higher-order harmonics were not significant. Each harmonic
k included in the model is described with a Fourier form rep-
resentation of cyclical functions, given as

(
αk1,t
αk2,t

)
=

 cos(
2π
p
k) sin(

2π
p
k)

−sin(
2π
p
k) cos(

2π
p
k)

( αk1,t−1
αk2,t−1

)
+ω

α,k
t ,

ω
α,k
t ∼N2(0,VWα,k

t ). (3)

We denote the kth seasonal evolution matrix Gα,k
=(

cos( 2π
p
k) sin( 2π

p
k)

−sin( 2π
p
k) cos( 2π

p
k)

)
. It is assumed that ωα,kt are in-

dependent over time, as well as independent of ωηt for t =
1, . . .,T .

Using the superposition principle (West and Harrison,
1999), we write the model as a hierarchy with a level one
equation (commonly referred to as the observation equation
in DLM literature) and a level two (or system) equation, as

yt = F′θ t + νt , νt ∼N (0,V ) (4)
θ t =Gθ t−1+ωt , ωt ∼Nn(0,VWt ). (5)

Here we denote n= 2+ 2K as the length of
state vector θ t . The matrices G and Wt are de-
fined as G= blockdiag(Gη,Gα,1, . . .,Gα,K ) and

Wt = blockdiag(Wη
t ,W

α,1
t , . . .,Wα,K

t ), respec-
tively. The state vector denoted as θ t takes the
form θ t = (η1,t ,η2,t ,α

1
1,t ,α

1
2,t , . . .,α

K
1,t ,α

K
2,t ), where

F′ = (Fη′ ,Fα,1′ , . . .,Fα,K ′ ) with F·,·′ = (1,0) for all compo-
nents.

3.2 Multivariate extension for simulation data

For an ensemble of the R realizations of model simulations
from a specified region, we consider a multivariate DLM
that is an immediate extension of the univariate case. For the
short-term analysis of the decadal, historical, and control ex-
periments,R is 6, 5, and 10 respectively. Let yt,r = F′θ t+νt,r
denote the univariate spatially averaged temperature at time
t , for t = 1, . . .,T , of realization r ∈ {1, . . .,R}. Each νt,r is
independent and identically distributed from N (0,V ), where
V now denotes the level one variance of the simulation data.
Replacing yt in Eq. (4) with a vector of R realization val-
ues Yt = (yt,1, . . .,yt,R)′ and νt,r with νt = (νt,1, . . .,νt,R)′,
a vector of R independent and identically distributed error
terms, only the level one equation changes, i.e.,

Yt = F′θ t + νt , νt ∼NR(0,V IR) (6)
θ t =Gθ t−1+ωt , ωt ∼Nn(0,VWt ). (7)

Note that F′ is now a R× n dynamic regression matrix with
identical rows, F′r = (Fη′ ,Fα,1′ , . . .,Fα,K ′ ) for r = 1, . . .,R,
with components defined in the previous section. As in the
univariate case, the multivariate DLM still yields a single es-
timate for the baseline and seasonal components; however,
this estimate now reflects the overall behavior of the realiza-
tions. The internal variability of each individual realization
(as well as any other variability not included in the baseline
and seasonal components) is captured by the components of
νt .

Assuming the system evolution covariance matrices Wt

at each time t are known, the posterior distributions for θ t
at each time can be sequentially updated using the filter-
ing and backward smoothing methods for unknown constant
level one variance (West and Harrison, 1999). Following this
approach, conjugate priors are chosen as follows: a normal
distribution for the initial state vector θ0 ∼Nn(m0,VC0)
and an inverse gamma for the unknown constant V ∼
IG(n0/2,n0S0/2) with values m0 = (285,0, . . .,0)′, C0 =

diag(5,2× 10−6,5,1, . . .,1), n0 = 1 and S0 = 0.01.

3.3 Specification of the evolution variance

To complete the model specification, we require the sequence
of the state evolution variance matrices, Wt . The structure
and magnitude of Wt control stochastic variation and sta-
bility of the evolution of the model over time. More pre-
cisely, if the posterior variance of the state vector θ t−1 at
time t − 1 is denoted as Var(θ t−1|Y1:(t−1))= Ct−1, the se-
quential updating equations produce the prior variance of

Adv. Stat. Clim. Meteorol. Oceanogr., 5, 67–85, 2019 www.adv-stat-clim-meteorol-oceanogr.net/5/67/2019/



R. Barata et al.: Comparison of climate model simulations 73

θ t , Rt = Var(θ t |Y1:(t−1))=GCt−1G′+Wt . Between obser-
vations, the addition of the error term ωt leads to an addi-
tive increase in the initial uncertainty GCt−1G′ of the sys-
tem variance. Thus, it is natural to write Wt as a fixed pro-
portion of GCt−1G′ such that Rt =GCt−1G′/δ ≥GCt−1G′.
Here δ is defined to be a discount factor such that 0< δ ≤ 1.
This suggests an evolution variance matrix of the form Wt =
1−δ
δ

GCt−1G′, where the δ = 1 results the static model with
parameters that do not change over time (West and Harrison,
1999).

Our method utilizes component discounting to specify Wt .
In other words, we use one discount factor for the base-
line, δbase, and one for the seasonal components, δseas. To set
the optimal seasonal discount factor values, we consider a
maximum likelihood approach based on computing the one-
step-ahead forecast distributions over a grid set of values
of (δbase,δseas) in (0.9,1)× (0.9,1) (see West and Harrison,
1999; Prado and West, 2010, for further details). We found
high discount factors were generally optimal, suggesting the
amplitudes do not vary significantly over time in the large-
scale regions considered. In particular, the optimal seasonal
discount factor δseas was found to be one, which ensures that
the smoothed harmonic estimates do not change over time.
This choice makes the DLM seasonal component analogous
to calculating a constant climatology, which is a common
practice in climate science. If small changes in the seasonal
amplitudes exist (Santer et al., 2018) the changes are aliased
in the DLM residuals, although we found no evidence of this
in the data.

Selection of the baseline discount factor presents more of
a challenge. We are empirically separating the long-term and
seasonal temperatures from a correlated noise (which primar-
ily consists of internal variability). There are many possibil-
ities to do this, and intuitively, increasing the variability of
one component will decrease that of another component. We
seek to develop a modeling approach which provides a con-
sistent framework for the analysis of all series. Within this
constraint, it is also necessary to account for the theoreti-
cal differences in the three types of simulation. Recall from
Sect. 2.1, the control run lacks external forcing, whereas the
historical and decadal prediction runs are affected by time-
varying anthropogenic and natural forcings. If the baseline is
to capture long-term externally forced changes in tempera-
ture, intuitively this suggests the control baselines should be
flat and exhibit little variability aside from random noise. To
ensure this feature in our baseline, within each region, we
optimize the discount factor (again using the maximum like-
lihood approach based on the one-step-ahead forecast distri-
butions mentioned above) for the control runs and use that
same discount factor, δmod

base , for all model simulation types in
that region. This data-driven modeling choice allows for a
very clear comparison of the effects of time-varying anthro-
pogenic and natural forcings present in the historical, decadal
and observational series within each region, with respect to
the control baseline.

It is important to note that because this is a data-driven
modeling scheme and the baseline discount factors can vary
from region to region, the amount of externally forced vari-
ability accounted for in the baselines will not necessarily
be comparable between regions, only within a given region.
For example, in the tropics, which is the smallest spatial re-
gion considered, we expect to see more variability result-
ing in lower discount factors. Lower baseline discount fac-
tors allow for flexibility, resulting in baselines which may re-
flect shorter-term externally forced changes such as 1–2 year
cooling caused by volcanic eruptions. Alternatively, in the
baselines which do not incorporate interaction between the
hemispheres (such as the Northern Hemisphere and Southern
Hemisphere regions), we can expect less variability which
will result in higher discount factors. High discount fac-
tors will result in smooth baselines which primarily illustrate
trends and omit shorter-term externally forced changes. As
a sensitively study, we did consider using the optimized dis-
count factor from the historical data instead. Although this
did produce baselines which captured shorter-term changes
in the externally forced temperature, the nonconstant base-
lines for the control incorporated more noise and diluted the
utility of the control as a reference to discern the effects of
long-term changes due to anthropogenic and natural forc-
ings.

The presence of multiple realizations in the simulated data
also presents a set of challenges. The multivariate DLM
inherently produces smoother baselines than the univariate
DLM as it is statistically averaging multiple simulation re-
alizations. That is, if the same discount factor was selected
for a univariate observational time series, δobs

base, as that cho-
sen for the average of the realizations, δmod

base , the resulting ob-
servational baseline estimates would be more “wiggly” than
those of the realizations. Obtaining observational baselines
(from the univariate DLM) which exhibit the same amount
of variability as the simulation baselines (from the multivari-
ate DLM) requires the variance of the evolution error to be
of the same magnitude in both cases. To quantify the over-
lap between the two baseline evolution error distributions
N2(0,Wη,mod

t ) and N2(0,Wη,obs
t ), we use the Bhattacharyya

distance (Derpanis, 2008). More specifically, we select the
value of δobs

base that minimizes the cumulative value of the
Bhattacharyya distance over time. The value is computed for
the comparison between the NCEP reanalysis and the histor-
ical ensemble-mean in the short-term analysis, and between
the 20CRV2 and the historical ensemble-mean for the long-
term analysis. It is important to note again that this specifi-
cation of the observational baseline discount factor ensures
comparable baseline estimates of temperature variability be-
tween the observational products and the simulations runs
within any one region, but not between regions.
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3.4 Internal variability assessment method

In addition to estimating the overall temperature baseline
and seasonal effects, we are also interested in quantifying
and assessing whether the model- and observation-based es-
timates of internal variability are consistent. The estimated
DLM residuals (with baseline and seasonality removed) are
time series that primarily represent the natural internal cli-
mate variability, which is not accounted for by the proposed
DLM. We capture the structure of the residuals utilizing AR
models, as described in the following paragraphs.

Let zt denote the residuals obtained by subtracting (for the
current spatial domain of interest) the posterior mean of the
univariate DLM at time t from a reanalysis or observational
time series. That is, zt = yt−F′θ̂ t , where θ̂ t denotes the pos-
terior mean of θ t at time t . We use an autoregressive model of
order q, denoted by AR(q), to capture the temporal structure
of zt , i.e.,

zt =

q∑
j=1

φjzt−j + εt , εt ∼N (0,σ 2), (8)

where εt are independent over time and φ = (φ1, . . .,φq ) is
the vector of AR coefficients. In order to explore if the au-
tocovariances from month to month were dependent on the
time of year, we initially considered a more general time-
varying model, i.e., we considered an autoregressive model
with time-varying coefficients and variance. A model such
as this can be also written in DLM form with a single dis-
count factor to control the variability of the AR coefficients
over time, and another discount factor to control the vari-
ability of the variance over time. However, we found that
the optimal discount factor values were equal to one, indi-
cating that the standard static AR model was the optimal
choice in all the cases. For the MIROC5 simulations with
R realizations, this univariate model is easily extended to a
multivariate autoregressive model. Let zt,r denote the resid-
ual time series for realization r ∈ {1, . . .,R} for t = 1, . . .,T .
Thus, zt,r =

∑q

j=1φjzt−j,r + εt,r with each εt,r indepen-
dent and distributed N (0,σ 2). Replace zt and εt in Eq. (8)
with vectors of length R, Zt = (z1,t , . . .,zt,R)′ and εt =

(εt,1, . . .,εt,R)′ where εt ∼N (0,σ 2IR). We chose this hier-
archical AR model (instead of a general vector AR model)
to estimate a single vector of autoregression coefficients per
climate ensemble. With conjugate priors φ ∼Nq (0,Iq ) and
σ 2
∼ IG(1,0.01), it is straightforward to sample the poste-

rior distributions directly using standard Bayesian linear re-
gression techniques (Gelman et al., 2013).

In fitting the AR models, we also make the assumption
that q may vary between the four spatial domains considered
here, but that in any one domain, all residual time series for
the simulations and the observational data sets have the same
order q. We select the order q using the univariate time se-
ries of residuals for each simulation type, each domain, and
each individual realization. The order of the fit is the order

that maximizes the log-predictive likelihood (further details
are available in Prado and West, 2010). The highest order of
distinctly nonzero coefficients, over all types of simulations,
all realizations, and all reanalyses, is then used as the order
for all univariate and multivariate autoregressive models in
that spatial domain. A sensitivity study in which we allowed
unique orders for all data types indicated that the spectral es-
timates and model versus observational-record spectral dif-
ferences are robust with respect to the choice of model order
q. We note that constraining the order to be the same for all
data types within a region ensures that any spectral differ-
ences “within domain” are unrelated to differences in q.

For coefficients φ of an AR(q) process, the characteris-
tic polynomial is given by 8(u)= 1−φ1u−φ2u

2
− ·· ·−

φqu
q . The polynomial can have r real-valued and c pairs

of complex reciprocal roots such that q = r + 2c. Although
we do not necessarily expect complex roots, when present,
they appear in pairs of complex conjugates and are inter-
pretable as quasi-periodicities in the data. Each pair of com-
plex roots can be written in terms of the modulus and fre-
quency (ρj ,ωj ), or equivalently the modulus and wavelength
(ρj ,λj ) where λj = 2π/ωj (months), for j = 1, . . .,c. A
modulus close to one indicates a slow decay rate in the cor-
relation patterns, suggesting a persistent cyclical pattern oc-
curring every wavelength λj months. More importantly, the
autoregressive model allows for closed form calculation of
the spectral density given estimates of the coefficients φ:

f (ω)=
σ 2

2π |1−φ1e−iω− . . .−φqe−iqω|2
. (9)

Here, i =
√
−1. Using the posterior samples of φ for a given

type of model simulation, the Bayesian approach provides
a simple way to sample the corresponding spectral density.
Normalizing the equation with respect to the white-noise
spectrum, σ 2/2π , allows for the comparison of spectra solely
with respect to differences in the AR coefficients. Further de-
tails of the autoregressive model, the quasi-periodicities, and
the spectral densities can be found in Prado and West (2010).

3.5 Total variation distance for comparing internal
variability

We use the total variation distance (TVD) for normalized
spectral densities to quantify the differences between the
spectral densities of the climate model simulation and the
observational data sets. TVD was originally employed to
compare probability distributions, and has also been used
to measure the similarity of normalized spectra in Euan
et al. (2018) and Alvarez et al. (2016). In order for TVD to
be applicable to power spectra, normalization of the spec-
tral densities is first required; the integral of the normal-
ized density must be equal to one. This is equivalent to
normalizing the time series by dividing by its overall vari-
ance. The TVD of two normalized spectral densities f ∗(ω)=
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f (ω)/
∫
�
f (ω)dω and g∗(ω)= g(ω)/

∫
�
g(ω)dω is defined

as TVD(f ∗,g∗)= 1−
∫
�

min{f ∗(ω),g∗(ω)}dω. For discrete
normalized spectra, the TVD can equivalently be written in
terms of the L1 distance, TVD(f ∗,g∗)= ||f ∗− g∗||1/2=∑
ω∈�|f

∗(ω)−g∗(ω)|/2. The distance measure takes on val-
ues 0≤ TVD≤ 1, with 0 being the smallest possible discrep-
ancy between spectra and 1 the largest.

Using the posterior spectra samples from the AR model,
we can compute posterior distributions for the TVD values
compared to a reference spectrum. In the first step of our
analysis, we use a white-noise spectrum as a reference, and
examine whether the residuals for the actual model temper-
ature time series are statistically distinguishable from this
reference spectrum. Next, using the maximum a posteriori
(MAP) NCEP-2 and the 20CRV2 spectrum for the short- and
long-term analyses (respectively), we employ TVD to as-
sess the significance of the discrepancies between the internal
variability spectra of the reference observational product and
the MIROC5 simulations. We also show TVD values for the
comparison between two observational spectra for both the
long-term and short-term analyses, which provides a mea-
sure of the degree of difference we might expect due to un-
certainties in the observation-based estimates of temperature
variability.

3.6 Complete data analysis protocol

The protocol for the complete data analysis can be summa-
rized in the following steps:

1. Select δmod
base as the highest optimal baseline discount fac-

tor from the control realizations. Set δobs
base to ensure the

long-term externally forced variability is comparable in
the baselines of the externally forced model simulations
and the observational products, as described in Sect. 3.3.

2. To estimate the externally forced baseline and sea-
sonal components, fit univariate DLMs to the observa-
tional data using selected δobs

base and δobs
seas = 1, as detailed

in Sect. 3.1. Fit multivariate DLMs to the simulation
data using selected δmod

base and δmod
seas = 1, as detailed in

Sect. 3.2.

3. Compute the observed and simulated DLM residual
time series which primarily represent the natural inter-
nal climate variability.

4. Select the order q of the autoregressive models used
to capture the temporal structure of the residuals for
all observational and simulation types. Fit univariate
AR(q) to the observation DLM residuals and hierar-
chical AR(q) to the simulation DLM residuals, as de-
scribed in Sect. 3.4.

5. To explore the simulated versus observed spectral dif-
ferences, estimate the spectral densities from the autore-

gression coefficients and compute TVDs of estimated
spectral densities as detailed in Sects. 3.4 and 3.5.

4 Result from the 30-year assessment of large-scale
temperature

In this section, we first apply the previously described
methodology to the short-term 30-year time series of
monthly mean, spatially averaged near-surface temperature
from the three sets of MIROC5 simulations. We then com-
pare the model results to results obtained for the NCEP-2 and
ERA-I reanalysis products. Table 1 provides summaries of
DLM and AR statistical model parameters and posterior in-
ferences for each spatial domain. The table includes the base-
line discount factors δmod

base and δobs
base, MAP DLM level one

equation variance V , AR model order q, MAP AR variance
σ 2, maximum moduli of all reciprocal roots from the AR
characteristic polynomial based on the posterior means of the
AR coefficients, maximum moduli of the reciprocal complex
roots, and corresponding wavelengths (months). Note, again,
the results presented are not meant to be compared directly
between each region as our data-driven approach for extract-
ing the various components of the time series does not en-
sure comparable components between regions, only within
regions (see Sect. 3.3).

Figure 2 displays the 95 % posterior intervals for baselines
η1,t , estimated using the DLM model introduced in Sect. 3.1.
The control run baseline estimates are noticeably flat relative
to the baselines inferred for the other types of simulation and
for the reanalysis products. This difference is expected – the
control run lacks year-to-year changes in external forcings
(and therefore the baseline should reflect only random noise,
as discussed in Sect. 3.3), whereas the reanalysis products
and the historical and decadal prediction runs are affected
by time-varying anthropogenic and natural forcings. Within
each region, the control baselines are a reference to which we
can compare the baselines of the externally forced runs. This
comparison (within each region) shows secular temperature
increases over the period from 1981 to 2010, consistent with
warming of the Earth’s surface in response to time-increasing
net anthropogenic forcing.

Note that the surface temperature baseline has a larger
overall trend in the historical and decadal prediction runs
than in NCEP-2 and ERA-I. This discrepancy in the simu-
lated and observed warming rates is at least partly related
to the omission of the observed early 21st century increase
in stratospheric volcanic aerosols in the model historical and
decadal prediction simulations (Solomon et al., 2011). In the
real world, the cooling caused by this post-2000 increase
in stratospheric volcanic aerosols offset part of the anthro-
pogenic warming signal (Schmidt et al., 2014).

In the global and tropical regions, superimposed on the
long-term warming trends in the reanalyses and the decadal
prediction and historical runs are short-term (1–2 year) sur-
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Table 1. Model baseline discount factor δmod
base and observation baseline discount factor δobs

base. DLM smoothed estimates of level one variance,
V . AR order q and MAP of AR variance σ 2. Overall maximum modulus with ∗ indicating correspondence to real roots, maximum complex
modulus, and corresponding wavelength (months) calculated from the AR MAP characteristic polynomial.

Figure 2. Baseline temperature estimates which capture long-term externally forced changes (as well as short-term cooling responses to
volcanic eruptions). Different line colors denote the type of simulation and the reanalysis product. The top panels represent global (a) and
tropical (b) regions; the bottom panels represent the Northern (c) and Southern hemispheres (d). Vertical lines indicate the volcanic eruptions
of El Chichón in 1982 and Pinatubo in 1991.

face cooling signals associated with the major eruptions of
El Chichón in 1982 and Pinatubo in 1991 (Santer et al.,
2001). Because averaging over larger domains damps spa-
tial noise, volcanic cooling signals are more pronounced in
the global-spatial average, and are more noisy in the smaller-
scale tropical averages. The surface cooling signals caused
by El Chichón and Pinatubo are markedly smaller in the
Northern Hemisphere and Southern Hemisphere averages

than for the global domain. This is the result of the North-
ern Hemisphere and Southern Hemisphere baselines being
estimated with discount factors close to one (see Table 1).
As mentioned briefly in Sect. 3.3, it is not unexpected for the
hemisphere-specific externally forced components to be less
variable than the spatial domains which contain interaction
between the distinct hemispheric seasonal cycles, thus re-
sulting in higher baseline discount factors in the hemispheric
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regions. The selection of high discount factors suggests that
the externally forced longer-term variability in both hemi-
spheres was very close to linear. Alternately, the baseline
temperatures for the tropical region are estimated with much
lower discount factors (see Table 1), indicating the externally
forced longer-term variability in the tropics was more vari-
able. Any shorter-term forced variability not captured by the
baselines will be reflected in the residuals. As a sensitivity
study (also mentioned in Sect. 3.3), we considered more flex-
ible baselines which incorporated more variability, and there-
fore resulted in less variability in the residuals. Although
we found the results of the analysis on the residuals robust
with respect to the specification of variability of the baseline,
further investigation of the differences in the amplitude of
the global-average and hemispheric-average volcanic signals
may be of interest.

Figure 2 also yields many other features of interest, such
as differences in the mean temperature in 1981. Because the
decadal prediction runs are initialized from observed ocean
temperature and sea ice data, it is not unreasonable to expect
that at the time of initialization in 1981, the mean surface
temperature in these simulations should be close to the mean
temperature of the two reanalysis products. This is the case
for the Northern Hemisphere and tropical averages, but not
for the averages over the other two regions. The largest mean
state differences in 1981 are in the Southern Hemisphere,
where the decadal prediction runs are noticeably warmer than
either reanalysis. Because this Southern Hemisphere bias is
large, it also influences the global temperature average.

One possible interpretation of this large Southern Hemi-
sphere bias is that it may arise due to differences between
the observed sea surface temperature (SST) data sets used
as boundary conditions for the two reanalyses and the sur-
face temperature data selected for the initialization of the
MIROC5 decadal prediction runs. Observational SST uncer-
tainties are likely greater in the more poorly sampled South-
ern Hemisphere than in the Northern Hemisphere – which
may explain why the 1981 warm bias in the decadal predic-
tion runs is largest in the Southern Hemisphere. Addition-
ally, the land surface temperature is better sampled in 1981
than the SST. This could also be a cause of bias, as there is a
larger contribution from the land surface temperature in the
Northern Hemisphere and tropical regions than in the South-
ern Hemisphere.

The use of different observational SST data sets may also
explain why the two reanalyses show the largest mean state
differences in the Southern Hemisphere. An alternative (and
not mutually exclusive) interpretation is that the “between
reanalysis” mean state differences reflect the sparser obser-
vational coverage in the Southern Hemisphere, and a larger
Southern Hemisphere imprint of structural differences be-
tween the NCEP-2 and ERA-Interim forecast models (e.g.,
in terms of physics, parameterizations, resolution, and data
assimilation systems).

Note that the model versus reanalysis warm biases men-
tioned above do not only pertain to the decadal prediction
runs – they also affect the historical and control simulations.
In all four spatial domains considered, the model-generated
baseline temperatures are consistently warmer than in either
reanalysis product. Further, the baseline temperatures in the
decadal prediction integrations do not appear to exhibit ap-
preciable post-initialization secular drift, and are similar to
the baseline temperatures in the historical runs. This im-
plies that our DLM model is primarily capturing the exter-
nally forced component of surface temperature changes in
MIROC5, and that the amplitude and structure of this forced
response is relatively insensitive to whether the simulation is
“free running” or initialized from observations.

Figure 3 illustrates the 95 % posterior intervals of the sea-
sonal amplitudes αk1,t for k = 1,2 (i.e., for the amplitudes of
the annual and semiannual cycles, respectively). Amplitudes
were estimated using the DLM model in Sect. 3.1. For all
four spatial domains, the harmonics k = 3 and k = 4 (corre-
sponding to the trimestral and quarterly cycles, respectively)
are very close to zero and indistinguishable from one an-
other; therefore, they are not shown. Results for the annual
and semiannual cycles are more interesting. Consider the re-
analyses first. For all four spatial domains, and for both k = 1
and k = 2, NCEP-2 and ERA-I yield very similar amplitudes.
The only significant difference between the two reanalyses is
in the Northern Hemisphere, where the ERA-I annual cycle
amplitude is markedly higher than in NCEP-2.

For all spatial domains except the tropics, and for all three
types of simulation, the MIROC5 annual cycle amplitudes
differ significantly from those in either reanalysis product.
Model versus reanalysis differences in annual cycle ampli-
tude are most pronounced in the Southern Hemisphere. The
sign of the model annual cycle biases is not consistent across
domains. In the tropics and Southern Hemisphere, the annual
cycle amplitude is smaller in the simulations than in the re-
analyses. In the other two domains, however, the annual cy-
cle amplitude is larger in the simulations than in NCEP-2 and
ERA-I. We do not find any cases in which there are signifi-
cant amplitude differences between the three types of model
simulation.

Figure 4 illustrates the 95 % probability intervals on the
posterior spectra, normalized with respect to white noise
on the log scale. Spectra were estimated using the meth-
ods presented in Sect. 3.4. The spectral densities are rel-
atively smoothly varying as a function of frequency, par-
ticularly for spectra generated with lower-order AR models
(e.g., the q = 4 case for the global region; see Table 1). The
least-smooth spectra are obtained for temperatures spatially
averaged over the tropics, where a higher-order AR model
(q = 7) provides the best fit to the residuals remaining after
the removal of the baseline and seasonal temperature com-
ponents. This result is physically reasonable: the tropical do-
main is the smallest and “noisiest” of the four domains con-
sidered here, and is strongly influenced by modes of internal
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Figure 3. Posterior amplitude samples for harmonics k = 1, 2. Varying model versus reanalysis differences are seen across domains; however,
we do not find any cases in which there are significant amplitude differences between the three types of model simulation. Whiskers indicate
the maximum and minimum values and boxes indicate the 95 % posterior intervals. Different colors denote the type of simulation and the
reanalysis product.

variability acting on a range of different timescales, such as
the Madden–Julian Oscillation, ENSO, and the Interdecadal
Pacific Oscillation.

Other features of Fig. 4 are also noteworthy. First, within
each region, the spectra for the three different types of
MIROC5 simulation are very similar. This suggests that the
DLM method applied here has consistently estimated the in-
ternally generated component of surface temperature within
each region from (1) the significant externally forced com-
ponents of temperature changes in the historical runs, and
(2) the combined effects of external forcing and any post-
initialization drift in the decadal prediction simulations. Sec-
ond, at the lowest frequencies, model spectral densities are
higher than in NCEP-2 and ERA-I, and the 95 % posterior
intervals of nearly all of the simulated spectra do not overlap
with the reanalysis spectra. This difference in the amplitude
of simulated and observed variability (which is most pro-
nounced in the tropics) is consistent with findings obtained
elsewhere for multi-model analyses of tropospheric temper-
ature (Santer et al., 2018). A model bias in the opposite di-
rection to that found here (i.e., a systematic underestimate
of the amplitude of observed internal variability on multi-
decadal timescales) would be more concerning – such an er-
ror would spuriously inflate signal-to-noise ratios for anthro-
pogenic signal detection (Santer et al., 2018). We caution,
however, that the inference on “observed” estimates of inter-
nal variability on multi-decadal timescales is limited by the
relatively short (30-year) time-period.

Recall from Sect. 3.4 that the presence of complex roots
points towards the existence of quasi-cyclical temperature

variations. The results in the fifth row of Table 1 indicate
that complex roots are only consistently obtained for the
tropical domain. For all other domains, the characteristic
polynomials from the AR models are dominated by real
roots. This suggests that the tropics – which are strongly
affected by the El Niño–Southern Oscillation – are captur-
ing some quasi-periodic temperature variability associated
with the occurrence of El Niños and La Niñas. Confirma-
tion of this quasi-periodicity comes from the fact that the
tropics are also the only domain where the maximum mod-
uli of the reciprocal complex roots of the polynomials ex-
ceed 0.8 for both reanalyses and for all three types of sim-
ulation (see results in the sixth row of Table 1). The wave-
lengths for the tropical quasi-periodic variability are approx-
imately 28.6 months (2.38 years) for the reanalysis prod-
ucts, 57.2 months (4.77 years) for the decadal prediction
run, 56 months (4.67 years) for the historical simulation, and
73.9 months (6.16 years) for the control run. The apparent
absence of quasi-periodic behavior on longer timescales is
probably (at least in part) a reflection of the relatively short
record lengths considered here.

Finally, we present results for the total variation distance
(TVD), which allows us to make a quantitative evaluation
of the differences between the various spectra. The poste-
rior distributions of the TVD are given in Fig. 5. Figure 5a–d
show results for the comparison against a white-noise refer-
ence spectrum. All reanalysis and model data sets are sta-
tistically separable from white noise. For each of the four
domains, the reanalysis data sets have smaller TVD values,
and are closest to the white-noise case; the three sets of sim-
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Figure 4. MAP AR log10 spectra normalized with respect to white noise for each climate simulation by region with the 95 % posterior inter-
vals shaded. Instead of the frequency ω, the x axis is labeled at select years (2π/12ω). Different line colors denote the type of simulation and
the reanalysis product. The top panels represent global (a) and tropical (b) regions; the bottom panels represent the Northern Hemisphere (c)
and Southern Hemisphere (d).

ulations are further removed from the white-noise reference
spectrum. The systematically lower TVD values for NCEP-2
and ERA-I may partly reflect the fact that both reanalyses ex-
hibited decadal temperature variability that was consistently
smaller than in the MIROC5 simulations. The largest TVD
values for the reanalyses and the model simulations are in
the tropics, indicating that tropical temperature variability is
most clearly distinguishable from white noise. This is con-
sistent with the abovementioned finding that the discrepancy
between low-frequency temperature variability in the reanal-
yses and the MIROC5 simulations is largest in the tropics.

Figure 5e–h display results for the comparison between the
model spectra and the NCEP spectrum. The range of TVD
values for the NCEP spectrum versus itself is simply a reflec-
tion of posterior sampling variability. The global and tropi-
cal regions show distinct differences between the reanalysis

products and the three sets of simulations, with little or no
overlap between the 95th percentiles of the reanalyses and
the 5th percentiles of the simulations. The tropical region
exhibits the most significant difference between the NCEP
spectrum and the simulated spectra; this is likely due to the
abovementioned discrepancies in low-frequency variance. It
may also reflect the fact that the identified quasi-periodic
component of tropical temperature variability had a longer
timescale in the three sets of simulations than in the reanaly-
sis products.

5 Result from the 63-year assessment of large-scale
temperature

To examine the sensitivity of our results to record length we
apply a similar analysis to a time period of 63 years, Jan-
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Figure 5. (a–d) TVD calculated from φ samples with white noise as the reference. (e–h) TVD calculated from φ samples with the MAP
NCEP spectrum as the reference. Larger TVD values indicate higher discrepancy between spectral densities. Whiskers indicate the maximum
and minimum values and boxes indicate the 95 % posterior intervals. The scenario or observational product is indicated using colors. From
left to right: global (a, e), tropical (b, f), Northern Hemisphere (c, g), and Southern Hemisphere (d, h).

uary 1950 to December 2012. Excluding the decadal experi-
ment which does not include realizations covering more than
30 years, we use MIROC5 simulation data from the histori-
cal and control experiments. We compare the model results
to the results obtained from the 20CRV2 and BEST obser-
vational products. Again, we would like to reiterate that the
results are not meant to be directly compared between each
region. Table 2 provides summaries of the DLM and AR es-
timated model parameters and posterior inferences for each
spatial domain. This includes the baseline discount factors
δmod

base and δobs
base, MAP DLM level one equation variance V ,

AR model order q, MAP AR variance σ 2, maximum mod-
uli of all reciprocal roots from the AR characteristic poly-
nomial based on the posterior means of the AR coefficients,
maximum moduli of the reciprocal complex roots, and cor-
responding wavelengths (months).

Figure 6 displays the 95 % probability intervals for the
DLM estimated baselines η1,t . The control baseline is seen
to be flatter than the historical baseline, as the control runs
do not incorporate changes in the external forcings. However,
the historical runs and observational products are affected by
changes in anthropogenic forcing, resulting in the tempera-
ture increases seen over the period from 1950 to 2012. Cool-
ing effects of volcanic eruptions are also evident in the base-
lines with lower discount factors (global, tropical, and South-
ern Hemisphere), similarly to what is observed in the short-
term analysis. In this longer analysis, the Southern Hemi-
sphere exhibited more variability, resulting in a lower base-
line discount factor (see Table 2) than in the short-term anal-
ysis, which has an optimal value close to one (see Table 1).

It is not unexpected for a larger time-span to reflect more
temperature variability than a more narrow time-span. The
variability in the Northern Hemisphere remains less dynamic
than that of the other regions, as is the case for the short-term
analysis. This is reflected in a baseline discount factor that is
close to one (see Table 2). Again, we see the most variability
in the smaller-spatial-scale tropical averages.

Figure 6 also illustrates a distinct discrepancy between the
two observational products. This is most noticeable in the
global region and the Northern and Southern hemispheres,
where 20CRV2 is consistently warmer than BEST. The dis-
crepancy is present, but not very strong in the tropics, where
BEST is warmer than 20CRV2. It can also be seen that the
baseline for the historical simulations is cooler than that
of the observational products in the Northern Hemisphere,
and warmer than the observational products in the Southern
Hemisphere, whereas for the other two regions there are no
relevant discrepancies.

Figure 7 shows the 95 % posterior intervals of the sea-
sonal amplitudes of the annual and semiannual cycles. As
in the 30-year analysis, for all four spatial domains, the har-
monics corresponding to the trimestral and quarterly cycles
are very close to zero and are indistinguishable from one an-
other; therefore, they are not shown. The observational prod-
ucts exhibit differences in both annual and semiannual cy-
cles, for the global and Southern Hemisphere domains. BEST
exhibits lower amplitudes than 20CRV2 in the global do-
main, with the opposite being true in the Southern Hemi-
sphere. Differences between the observational products are
also seen in the annual cycle in the tropics, where BEST is
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Figure 6. Same as in Fig. 2 but for the long-term analysis.

Figure 7. Same as in Fig. 3 but for the long-term analysis.
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Table 2. Model baseline discount factor δmod
base and observation baseline discount factor δobs

base. DLM smoothed estimates of residual variance,
V . AR order q and MAP of AR variance σ 2. Overall maximum modulus with ∗ indicating correspondence to real roots, maximum complex
modulus, and corresponding wavelength (months) calculated from the AR MAP characteristic polynomial.

Figure 8. Same as in Fig. 4 but for the long-term analysis.

distinctly higher. In the Northern Hemisphere the two obser-
vational products are indistinguishable. In general, the model
versus observation differences in amplitude are less clear, al-
though pronounced differences are seen in the annual cycle
of the globe and Northern Hemisphere.

Figure 8 shows the 95 % posterior intervals for the spectra,
normalized with respect to white noise on the log scale. Once
again, the tropics exhibit the least smooth spectra, where an
AR of an order higher than in the other cases (q = 8, see
Table 2) provides the best fit for the residuals. The observa-
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tional spectra are indistinguishable within all spatial regions.
Furthermore, the model run spectra are also indistinguishable
within all spatial regions and exhibit notably higher power in
the low frequencies than the observational spectra. This is
consistent with the previous 30-year analysis. However, the
model versus observational differences seen here are stronger
than in the 30-year analysis.

We explore possible quasi-cyclical temperature variations
by considering the complex roots of the AR characteris-
tic polynomial. Table 2 again indicates that complex roots
with moduli exceeding 0.8 are only obtained for the trop-
ical domain – most likely reflecting temperature variabil-
ity associated with the occurrence of El Niños and La
Niñas. The wavelengths for the tropical quasi-periodic vari-
ability are approximately 23.27 months (1.94 years) for
20CRV2, 26.18 months (2.18 years) for BEST, 57.12 months
(4.76 years) for the historical simulation, and 62.8 months
(5.23 years) for the control run. Notice that even in a 63-
year record there is an absence of quasi-periodic behavior on
long timescales, as was the case for the analysis of the 30-
year record. To avoid redundancy, we have omitted the TVD
summaries, as they share many similarities with the 30-year
analysis.

6 Conclusions

We developed a model diagnostic statistical methodology
and protocol that can be generally applied to the assess-
ment and comparison of simulations from CMIP models. The
methods presented here have two main advantages: the pro-
tocol developed is a consistent and statistically principled ap-
proach to jointly estimate the components of the temperature
time series, and the results incorporate probabilistic uncer-
tainty as the approach is model-based. Within this protocol,
we applied univariate and multivariate dynamic linear mod-
eling (DLM) techniques to estimate two externally forced
components of surface temperature time series. These com-
ponents contain (1) seasonal information, which is invari-
ant from year-to-year, and (2) the time-varying nonlinear re-
sponse to combined external forcing by human factors (such
as greenhouse gases and particulate pollution) and natural in-
fluences (changes in solar irradiance and volcanic activity).
The three sets of numerical experiments considered were ini-
tialized decadal predictions (not included in the long-term
analysis), control runs, and uninitialized simulations of his-
torical climate change. Removal of the seasonal and baseline
components from the raw temperature data yielded residu-
als that primarily provided information on unforced natu-
ral internal climate variability. We characterized this inter-
nal variability by fitting univariate and multivariate autore-
gressive (AR) models to the residuals. As estimates of exter-
nally forced climate signals and internal variability depend
on the particular domain of interest, we explored the efficacy
of our DLM and AR signal and noise identification methods

for four different spatial domains, ranging in scale from the
entire globe to the tropics.

We illustrated our approach in both a short-term and long-
term analysis using one selected climate model (MIROC5).
In the short-term 30-year analysis, estimation of the various
temperature components was performed for two reanalysis
data sets and for three different types of experiments. Sim-
ilarly, in a long-term 63-year analysis, estimation of these
components was performed for a 20th century reanalysis,
gridded in situ data, and two of the three different simulated
experiments. We found significant differences between the
observational product data and the model-generated simula-
tions in all three temperature components (seasonal, baseline,
and internal variability), for both the short- and long-term
analyses.

From a climate perspective, two results of our analyses
were particularly intriguing. First, we note that the three
sets of simulations analyzed here are very different. While
temperature variability in the control run arises from inter-
nal variability alone, variability in the historical and decadal
prediction runs is a mixture of internal variability and re-
sponse to external forcing. Additionally, the decadal predic-
tion runs may also be influenced by post-initialization “drift”
in the model climate. Despite these differences in the mix
of underlying factors contributing to variability, the simu-
lation runs yielded very similar spectral estimates of inter-
nal temperature variability within each region – as might be
expected given that the same physical climate model is be-
ing used for each of the three sets of simulations. This sim-
ilarity of the model spectra is reassuring, and implies that
our statistical analysis methods are consistently extracting
comparable components of internal variability for the sim-
ulation data within each region. The second intriguing re-
sult emerged from the comparison of the model and ob-
servational product temperature variability on multi-decadal
timescales. These timescales are important components of
the background “noise” against which a gradually evolving
anthropogenic warming signal must be detected. If models
systematically underestimated natural internal variability on
multi-decadal timescales, it would imply that previously ob-
tained anthropogenic signal detection results were spuriously
inflated by low model noise levels. Consistent with related
work involving tropospheric temperature (Santer et al., 2013,
2018), we find no evidence that the MIROC5 model system-
atically underestimates the amplitude of low-frequency inter-
nal variability inferred from observational product data. Our
methodology and results present a novel approach for obtain-
ing data-driven estimates of the amplitude of observed multi-
decadal temperature variability, thereby providing a more
solid observational “target” for model evaluation purposes.

Code and data availability. The data used in the short-term
analysis MIROC5, NCEP Reanalysis 2, and ERA-Interim are
available from https://esgf-node.llnl.gov/search/cmip5/ (last
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access: 13 August 2018), https://www.esrl.noaa.gov/psd/ (last
access: 13 August 2018), and https://www.ecmwf.int/en/forecasts/
datasets/reanalysis-datasets/era-interim (last access: 13 August
2018), respectively. For the long-term analysis, observational
record data from the BEST and 20CRV2 are available from
http://berkeleyearth.org/data/ (last access: 13 August 2018) and
https://www.esrl.noaa.gov/psd/data/gridded/data.20thC_ReanV2.
monolevel.mm.html (last access: 13 August 2018), respec-
tively. The R package for DLMs, “dlm”, is available online
(https://cran.r-project.org/web/packages/dlm/index.html, last
access: 13 August 2018).
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